1
|
Li D, Li F, Zhou Y, Tang Y, Hu Z, Wu Q, Xie T, Lin Q, Wang H, Luo F. Role and Mechanism of Sialic Acid in Alleviating Acute Lung Injury through In Vivo and In Vitro Models. Foods 2024; 13:2984. [PMID: 39335912 PMCID: PMC11431537 DOI: 10.3390/foods13182984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Excessive inflammatory reactions are the most important pathological injury factor in acute lung injury (ALI). Our recent study found that sialic acid had an anti-colitis effect. In this study, the effect of sialic acid (SA) on acute lung inflammation was investigated. A lipopolysaccharide (LPS)-induced ALI animal model and LPS-stimulated HUVEC cell model were used to evaluate the anti-inflammatory effect of SA and study its molecular mechanisms. Compared with the LPS group, the lung index of the SA group decreased from 0.79 ± 0.05% to 0.58 ± 0.06% (LPS + 50 SA) and 0.62 ± 0.02% (LPS + 100 SA), with p < 0.01, suggesting that SA could improve the pulmonary edema of mice and alleviate LPS-induced lung injury. Transcriptome research identified 26 upregulated genes and 25 downregulated genes involved in the protection of SA against ALI. These genes are mainly related to the MAPK and NF-κB signaling pathways. Our study also proved that SA markedly downregulated the expression of inflammatory factors and blocked the JNK/p38/PPAR-γ/NF-κB pathway. Meanwhile, SA treatment also upregulated the expression of HO-1 and NQO1 in ALI mice. In vitro, SA obviously repressed the expressions of inflammatory cytokines and the JNK/p38-NF-κB/AP-1 pathway. SA also regulated the expression of oxidative stress-related genes through the Nrf2 pathway. Taken together, SA exhibits a protective role by modulating the anti-inflammatory and anti-oxidation pathways in ALI, and it may be a promising candidate for functional foods to prevent ALI.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Fangyan Li
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Yiping Tang
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| | - Hanqing Wang
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.L.); (Y.Z.); (Y.T.); (Z.H.); (Q.W.); (T.X.); (Q.L.)
| |
Collapse
|
2
|
Qin P, Li Q, Zu Q, Dong R, Qi Y. Natural products targeting autophagy and apoptosis in NSCLC: a novel therapeutic strategy. Front Oncol 2024; 14:1379698. [PMID: 38628670 PMCID: PMC11019012 DOI: 10.3389/fonc.2024.1379698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant type. The roles of autophagy and apoptosis in NSCLC present a dual and intricate nature. Additionally, autophagy and apoptosis interconnect through diverse crosstalk molecules. Owing to their multitargeting nature, safety, and efficacy, natural products have emerged as principal sources for NSCLC therapeutic candidates. This review begins with an exploration of the mechanisms of autophagy and apoptosis, proceeds to examine the crosstalk molecules between these processes, and outlines their implications and interactions in NSCLC. Finally, the paper reviews natural products that have been intensively studied against NSCLC targeting autophagy and apoptosis, and summarizes in detail the four most retrieved representative drugs. This paper clarifies good therapeutic effects of natural products in NSCLC by targeting autophagy and apoptosis and aims to promote greater consideration by researchers of natural products as candidates for anti-NSCLC drug discovery.
Collapse
Affiliation(s)
- Peiyi Qin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qingchen Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Zu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ruxue Dong
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Wang Y, Yue Y, Li C, Chen Z, Cai Y, Hu C, Qu Y, Li H, Zhou K, Yan J, Li P. Insights into the adaptive evolution of chromosome and essential traits through chromosome-level genome assembly of Gekko japonicus. iScience 2024; 27:108445. [PMID: 38205241 PMCID: PMC10776941 DOI: 10.1016/j.isci.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Gekko japonicus possesses flexible climbing and detoxification abilities under insectivorous habits. Still, the evolutionary mechanisms behind these traits remain unclarified. This study presents a chromosome-level G. japonicus genome, revealing that its evolutionary breakpoint regions were enriched with specific repetitive elements and defense response genes. Gene families unique to G. japonicus and positively selected genes are mainly enriched in immune, sensory, and nervous pathways. Expansion of bitter taste receptor type 2 primarily in insectivorous species could be associated with toxin clearance. Detox cytochrome P450 in G. japonicus has undergone more birth and death processes than biosynthesis-type P450 genes. Proline, cysteine, glycine, and serine in corneous beta proteins of G. japonicus might influence flexibility and setae adhesiveness. Certain thermosensitive transient receptor potential channels under relaxed purifying selection or positive selection in G. japonicus might enhance adaptation to climate change. This genome assembly offers insights into the adaptive evolution of gekkotans.
Collapse
Affiliation(s)
- Yinwei Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Youxia Yue
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhiyi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yao Cai
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P.R. China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
- Analytical and Testing Center, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
4
|
Zheng Y, Wang W, Gao Y, Wang W, Zhang R, Wu D, Yu L, Chen Y. Nanosonosensitizers-engineered injectable thermogel for augmented chemo-sonodynamic therapy of melanoma and infected wound healing. Mater Today Bio 2023; 20:100621. [PMID: 37056919 PMCID: PMC10085782 DOI: 10.1016/j.mtbio.2023.100621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Easy recurrence and bacteria infected-wound healing after surgery excision pose severe challenges to clinical melanoma therapy. Herein, an injectable CuO2 nanodots-engineered thermosensitive chitosan hydrogel (CuO2-BSO@Gel) for enhanced melanoma chemo-sonodynamic therapy and improved infected wound healing was rationally constructed by facilely integrating the CuO2 nanodots and L-Buthionine-(S, R)-sulfoximine (BSO) with thermoresponsive hydrogel. Favored by the Fenton catalytic activity of Cu2+, the CuO2 nanodots can achieve enhanced chemodynamic therapy (CDT) by self-supplying H2O2 under acidic tumor microenvironment. Simultaneously, the CuO2 nanodots with a narrow bandgap (2.29 eV) were proven to be the efficient sonosensitizers, and the corresponding quantum yield of singlet oxygen (1O2) could be boosted by the O2 generation during Fenton-like reactions. Additionally, combining with the glutathione (GSH) depletion of loaded BSO, intracellular oxidative stress induced by SDT and CDT was further amplified, leading to the specific ferroptosis. Importantly, this multifunctional hydrogel significantly promoted the proliferation of normal skin cells and accelerated the bacteria-infected wound healing by the effective chemo-sonodynamic antibacterial activity and the enhanced angiogenesis. Thus, the engineered thermogel features the distinct chemo-sonodynamic performance, desirable biocompatibility and bioactivity, providing a competitive strategy for eradicating melanoma and infected wound healing.
Collapse
Affiliation(s)
- Yaling Zheng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Wei Wang
- Shanghai Key Laboratory of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Yao Gao
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Weiyi Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Renwu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
5
|
Kutsarova E, Schohl A, Munz M, Wang A, Zhang YY, Bilash OM, Ruthazer ES. BDNF signaling in correlation-dependent structural plasticity in the developing visual system. PLoS Biol 2023; 21:e3002070. [PMID: 37011100 PMCID: PMC10101647 DOI: 10.1371/journal.pbio.3002070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
During development, patterned neural activity instructs topographic map refinement. Axons with similar patterns of neural activity converge onto target neurons and stabilize their synapses with these postsynaptic partners, restricting exploratory branch elaboration (Hebbian structural plasticity). On the other hand, non-correlated firing in inputs leads to synapse weakening and increased exploratory growth of axons (Stentian structural plasticity). We used visual stimulation to control the correlation structure of neural activity in a few ipsilaterally projecting (ipsi) retinal ganglion cell (RGC) axons with respect to the majority contralateral eye inputs in the optic tectum of albino Xenopus laevis tadpoles. Multiphoton live imaging of ipsi axons, combined with specific targeted disruptions of brain-derived neurotrophic factor (BDNF) signaling, revealed that both presynaptic p75NTR and TrkB are required for Stentian axonal branch addition, whereas presumptive postsynaptic BDNF signaling is necessary for Hebbian axon stabilization. Additionally, we found that BDNF signaling mediates local suppression of branch elimination in response to correlated firing of inputs. Daily in vivo imaging of contralateral RGC axons demonstrated that p75NTR knockdown reduces axon branch elongation and arbor spanning field volume.
Collapse
Affiliation(s)
- Elena Kutsarova
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Anne Schohl
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Martin Munz
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alex Wang
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Interdepartmental Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Yuan Yuan Zhang
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Olesia M Bilash
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- NYU Neuroscience Institute, New York University, New York, New York, United States of America
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Cytoplasmic and Nuclear Functions of cIAP1. Biomolecules 2022; 12:biom12020322. [PMID: 35204822 PMCID: PMC8869227 DOI: 10.3390/biom12020322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular inhibitor of apoptosis 1 (cIAP1) is a cell signaling regulator of the IAP family. Through its E3-ubiquitine ligase activity, it has the ability to activate intracellular signaling pathways, modify signal transduction pathways by changing protein-protein interaction networks, and stop signal transduction by promoting the degradation of critical components of signaling pathways. Thus, cIAP1 appears to be a potent determinant of the response of cells, enabling their rapid adaptation to changing environmental conditions or intra- or extracellular stresses. It is expressed in almost all tissues, found in the cytoplasm, membrane and/or nucleus of cells. cIAP1 regulates innate immunity by controlling signaling pathways mediated by tumor necrosis factor receptor superfamily (TNFRs), some cytokine receptors and pattern recognition-receptors (PRRs). Although less documented, cIAP1 has also been involved in the regulation of cell migration and in the control of transcriptional programs.
Collapse
|
7
|
Ferreira ÉC, Oliveira ACDR, Garcia CG, Cossenza M, Gonçalves-de-Albuquerque CF, Castro-Faria-Neto HC, Giestal-de-Araujo E, Dos Santos AA. PMA treatment fosters rat retinal ganglion cell survival via TNF signaling. Neurosci Lett 2021; 763:136197. [PMID: 34437989 DOI: 10.1016/j.neulet.2021.136197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
An insult can trigger a protective response or even cell death depending on different factors that include the duration and magnitude of the event and the ability of the cell to activate protective intracellular signals, including inflammatory cytokines. Our previous work showed that the treatment of Lister Hooded rat retinal cell cultures with 50 ng/mL phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, increases the survival of retinal ganglion cells (RGCs) kept in culture for 48 h after axotomy. Here we aim to analyze how PMA modulates the levels of TNF-α and IL-1β (both key inflammatory mediators) and the impact of this modulation on RGCs survival. We hypothesize that the increase in RGCs survival mediated by PMA treatment depends upon modulation of the levels of IL-1β and TNF-α. The effect of PMA treatment was assayed on cell viability, caspase 3 activation, TNF-α and IL-1β release and TNF receptor type I (TNFRI) and TNF receptor type II (TNFRII) levels. PMA treatment increases IL-1β and TNF-α levels in 15 min in culture and increases the release of both cytokines after 30 min and 24 h, respectively. Both IL-1β and TNF-α levels decrease after 48 h of PMA treatment. PMA treatment also induces an increase in TNFRII levels while decreasing TNFRI after 24 h. PMA also inhibited caspase-3 activation, and decreased ROS production and EthD-1/calcein ratio in retinal cell cultures leading to an increase in cell viability. The neutralization of IL-1β (anti-IL1β 0,1ng/mL), the neutralization of TNF-α (anti-TNF-α 0,1ng/mL) and the TNF-α inhibition using a recombinant soluble TNFRII abolished PMA effect on RGCs survival. These data suggest that PMA treatment induces IL1β and TNF-α release and modulation of TNFRI/TNFRII expression promoting RGCs survival after axotomy.
Collapse
Affiliation(s)
- Érica Camila Ferreira
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | - Carlos Gustavo Garcia
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Universidade Anhanguera, Av. Visconde do Rio Branco, 123, Niterói, Rio de Janeiro CEP 24020-000, Brazil
| | - Marcelo Cossenza
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas e Laboratório de Farmacologia Molecular, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP: 24020-150, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro CEP 21040900, Brazil; Departamento de Bioquímica - Laboratório de Imunofarmacologia, Instituto Biomédico, UNIRIO Rua Frei Caneca 94, Rio de Janeiro, RJ CEP 20211030, Brazil
| | - Hugo Caire Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro CEP 21040900, Brazil; INCT-NIM - Instituto Oswaldo Cruz-FIOCRUZ, Manguinhos, RJ CEP:21040-360, Brazil
| | - Elizabeth Giestal-de-Araujo
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Departamento de Neurobiologia, Laboratório de Cultura de Tecidos Hertha Meyer, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP: 24020-140, Brazil; INCT-NIM - Instituto Oswaldo Cruz-FIOCRUZ, Manguinhos, RJ CEP:21040-360, Brazil
| | - Aline Araujo Dos Santos
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas e Laboratório de Farmacologia Molecular, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP: 24020-150, Brazil.
| |
Collapse
|
8
|
Steichele M, Sauermann LS, König AC, Hauck S, Böttger A. Ancestral role of TNF-R pathway in cell differentiation in the basal metazoan Hydra. J Cell Sci 2021; 134:224109. [PMID: 33277380 DOI: 10.1242/jcs.255422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022] Open
Abstract
Tumour necrosis factor receptors (TNF-Rs) and their ligands, tumour necrosis factors, are highly conserved proteins described in all metazoan phyla. They function as inducers of extrinsic apoptotic signalling and facilitate inflammation, differentiation and cell survival. TNF-Rs use distinct adaptor molecules to activate signalling cascades. Fas-associated protein with death domain (FADD) family adaptors often mediate apoptosis, and TNF-R-associated factor (TRAF) family adaptors mediate cell differentiation and inflammation. Most of these pathway components are conserved in cnidarians, and, here, we investigated the Hydra TNF-R. We report that it is related to the ectodysplasin receptor, which is involved in epithelial cell differentiation in mammals. In Hydra, it is localised in epithelial cells with incorporated nematocytes in tentacles and body column, indicating a similar function. Further experiments suggest that it interacts with the Hydra homologue of a TRAF adaptor, but not with FADD proteins. Hydra FADD proteins colocalised with Hydra caspases in death effector filaments and recruited caspases, suggesting that they are part of an apoptotic signalling pathway. Regulating epithelial cell differentiation via TRAF adaptors therefore seems to be an ancient function of TNF-Rs, whereas FADD-caspase interactions may be part of a separate apoptotic pathway.
Collapse
Affiliation(s)
- Mona Steichele
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Lara S Sauermann
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Ann-Christine König
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Stefanie Hauck
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Angelika Böttger
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| |
Collapse
|
9
|
Igarashi N, Honjo M, Kaburaki T, Aihara M. Effects of ROCK Inhibitors on Apoptosis of Corneal Endothelial Cells in CMV-Positive Posner-Schlossman Syndrome Patients. Invest Ophthalmol Vis Sci 2021; 61:5. [PMID: 32749463 PMCID: PMC7441372 DOI: 10.1167/iovs.61.10.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose To examine the role of aqueous tumor necrosis factor α (TNF-α)–RhoA–Rho kinase (ROCK) signaling in cytomegalovirus (CMV)-induced apoptosis and the barrier function of cultured human corneal endothelial cells (hCECs) in CMV-positive Posner–Schlossman syndrome (CMV+/PSS) patients. Methods Aqueous levels of TNF-α, IL-8, IL-10, and several other cytokines in 19 CMV+/PSS patients and 20 healthy control subjects were quantitated using a multiplex assay. The expression of active RhoA in hCECs post-CMV infection was determined using western blotting (WB). The expression levels of TNF-α and nuclear factor kappa B (NF-κB) in CMV-infected hCECs were examined by immunocytochemistry (ICC) and WB with and without ROCK inhibitors. The apoptotic rate and barrier integrity in CMV-infected hCECs were also examined. Results The expression levels of TNF-α, monocyte chemoattractant protein-1 (MCP-1), IL-8, and IL-10 were upregulated in the aqueous humor of CMV+/PSS patients, and among these upregulated cytokines aqueous TNF-α was negatively correlated with the number of corneal endothelial cells. In CMV-infected hCECs, upregulation of TNF-α and NF-κB was determined by WB and ICC. In hCECs, CMV infection induced apoptosis and significantly impaired cell–cell contacts, effects that were attenuated by treatment with a ROCK inhibitor. Conclusions Aqueous TNF-α was upregulated in CMV+/PSS patients, which may have triggered corneal endothelial cell loss. Modulation of TNF-α, including its downstream Rho–ROCK signaling, could serve as a novel treatment modality for corneal endothelial cell loss in CMV+/PSS patients.
Collapse
|
10
|
Wang XC, Liu Z, Jin LH. Drosophila jumu modulates apoptosis via a JNK-dependent pathway and is required for other processes in wing development. Apoptosis 2020; 24:465-477. [PMID: 30796611 DOI: 10.1007/s10495-019-01527-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies in several model organisms have revealed that members of the Forkhead (Fkh) transcription factor family have multiple functions. Drosophila Jumeau (Jumu), a member of this family, participates in cardiogenesis, hematopoiesis and immune system homeostasis. Here, we show that loss of jumu function positively regulates or triggers apoptosis via a JNK-dependent pathway in wing development. jumu mutants showed reduced wing size and increased apoptosis. Moreover, we observed a loss of the anterior cross vein (ACV) phenotype that was similar to that observed in wings in which JNK signaling has been ectopically activated. The JNK signaling markers puckered (puc) and p-JNK were also significantly increased in the wing discs of jumu mutants. In addition, apoptosis induced by the loss of jumu was rescued by knocking down JNK, indicating a role for JNK in reducing jumu-induced apoptosis. Jumu could also control wing margin development via the positive regulation of cut expression, and the observed wing margin defect did not result from a loss of jumu-induced apoptosis. Further, jumu deficiency in the pupal wing could induce multiple wing hairs via a Rho1-mediated planar cell polarity pathway, but abnormal Rho1 expression was not why jumu loss induced apoptosis via a JNK-dependent pathway in wing discs.
Collapse
Affiliation(s)
- Xiao Chun Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ziguang Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150040, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
11
|
Yong Y, Gamage K, Cheng I, Barford K, Spano A, Winckler B, Deppmann C. p75NTR and DR6 Regulate Distinct Phases of Axon Degeneration Demarcated by Spheroid Rupture. J Neurosci 2019; 39:9503-9520. [PMID: 31628183 PMCID: PMC6880466 DOI: 10.1523/jneurosci.1867-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/11/2019] [Accepted: 10/13/2019] [Indexed: 12/19/2022] Open
Abstract
The regressive events associated with trophic deprivation are critical for sculpting a functional nervous system. After nerve growth factor withdrawal, sympathetic axons derived from male and female neonatal mice maintain their structural integrity for ∼18 h (latent phase) followed by a rapid and near unison disassembly of axons over the next 3 h (catastrophic phase). Here we examine the molecular basis by which axons transition from latent to catastrophic phases of degeneration following trophic withdrawal. Before catastrophic degeneration, we observed an increase in intra-axonal calcium. This calcium flux is accompanied by p75 neurotrophic factor receptor-Rho-actin-dependent expansion of calcium-rich axonal spheroids that eventually rupture, releasing their contents to the extracellular space. Conditioned media derived from degenerating axons are capable of hastening transition into the catastrophic phase of degeneration. We also found that death receptor 6, but not p75 neurotrophic factor receptor, is required for transition into the catastrophic phase in response to conditioned media but not for the intra-axonal calcium flux, spheroid formation, or rupture that occur toward the end of latency. Our results support the existence of an interaxonal degenerative signal that promotes catastrophic degeneration among trophically deprived axons.SIGNIFICANCE STATEMENT Developmental pruning shares several morphological similarities to both disease- and injury-induced degeneration, including spheroid formation. The function and underlying mechanisms governing axonal spheroid formation, however, remain unclear. In this study, we report that axons coordinate each other's degeneration during development via axonal spheroid rupture. Before irreversible breakdown of the axon in response to trophic withdrawal, p75 neurotrophic factor receptor-RhoA signaling governs the formation and growth of spheroids. These spheroids then rupture, allowing exchange of contents ≤10 kDa between the intracellular and extracellular space to drive death receptor 6 and calpain-dependent catastrophic degeneration. This finding informs not only our understanding of regressive events during development but may also provide a rationale for designing new treatments toward myriad neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Kanchana Gamage
- Department of Cell Biology
- Amgen, Massachusetts & Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Irene Cheng
- Department of Biology
- Neuroscience Graduate Program
| | | | | | | | - Christopher Deppmann
- Department of Biology,
- Neuroscience Graduate Program
- Department of Cell Biology
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, and
| |
Collapse
|
12
|
Regulation of connexin 43 expression in human gingival fibroblasts. Exp Cell Res 2018; 371:238-249. [PMID: 30118696 DOI: 10.1016/j.yexcr.2018.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
Abstract
AIMS Abundance of connexin 43 (Cx43), a transmembrane protein that forms hemichannels (HCs) and gap junctions (GJs), is dynamically regulated in human gingival fibroblasts (GFBLs) during wound healing. This may be important for fast and scarless gingival wound healing as Cx43 is involved in key cell functions important during this process. Our aim was to uncover the factors that regulate Cx43 expression and abundance in GFBLs. We hypothesized that cytokines and growth factors released during wound healing coordinately regulate Cx43 abundance in GFBLs. RESULTS TGF-β1, -β2, -β3, PGE2 and IL-1β significantly upregulated, while TNF-α and IFN-γ downregulated Cx43 in cultured GFBLs. TGF-β1, -β2, -β3, IL-1β and IFN-γ modulated Cx43 abundance at both mRNA and protein levels, while TNF-α and PGE2 regulated only Cx43 protein abundance, suggesting involvement of distinct transcriptional/post-transcriptional and translational/post-translational mechanisms, respectively. TGF-β1-induced upregulation of Cx43 was mediated by TGFβRI (ALK5) and SMAD2/3 signaling, and this was potently suppressed by PGE2, IL-1β, TNF-α and IFN-γ that inhibited SMAD2/3 phosphorylation. CONCLUSION Regulation of Cx43 abundance in GFBLs involves transcriptional/post-transcriptional and translational/post-translational mechanisms that are distinctly modulated by an interplay between TGF-β isoforms and PGE2, IL-1β, TNF-α and IFN-γ.
Collapse
|
13
|
Córdoba S, Estella C. The transcription factor Dysfusion promotes fold and joint morphogenesis through regulation of Rho1. PLoS Genet 2018; 14:e1007584. [PMID: 30080872 PMCID: PMC6095628 DOI: 10.1371/journal.pgen.1007584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/16/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
The mechanisms that control tissue patterning and cell behavior are extensively studied separately, but much less is known about how these two processes are coordinated. Here we show that the Drosophila transcription factor Dysfusion (Dysf) directs leg epithelial folding and joint formation through the regulation of Rho1 activity. We found that Dysf-induced Rho1 activity promotes apical constriction specifically in folding epithelial cells. Here we show that downregulation of Rho1 or its downstream effectors cause defects in fold and joint formation. In addition, Rho1 and its effectors are sufficient to induce the formation of epithelial folds when misexpressed in a flat epithelium. Furthermore, as apoptotic cells can actively control tissue remodeling, we analyzed the role of cell death in the formation of tarsal folds and its relation to Rho1 activity. Surprisingly, we found no defects in this process when apoptosis is inhibited. Our results highlight the coordination between a patterning transcription factor and the cellular processes that cause the cell shape changes necessary to sculpt a flat epithelium into a three dimensional structure. Epithelial morphogenesis drives the formation of organs and the acquisition of body shape. Changes in cell behavior such as cell proliferation, cell shape or apoptosis contribute to the remodeling of the epithelia from a simple layer to a three dimensional structure. These changes have to be precisely regulated by an underlying patterning network to control the final shape of an organ. However, how these two processes are coordinated is mostly unknown. In this work we use the formation of the fly leg joints as a model to study how Dysfusion (Dysf), a patterning transcription factor, regulates the cellular mechanisms that form the folds in the leg discs epithelium. We have found that dysf modulates the localization and activity of Rho1, a key regulator of the acto-myosin cytoskeleton, to drive cell apical constriction and epithelial folding in the leg disc. Furthermore, in this work we provide proof of the direct requirements of Rho1 and its downstream effectors in fold and joint formation. We conclude that Dysf-regulated Rho1 activity controls the cell shape changes that sculpt leg joints.
Collapse
Affiliation(s)
- Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-CSIC, Madrid, Spain
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
Parks JC, McCallie BR, Patton AL, Al-Safi ZA, Polotsky AJ, Griffin DK, Schoolcraft WB, Katz-Jaffe MG. The impact of infertility diagnosis on embryo-endometrial dialogue. Reproduction 2018; 155:543-552. [PMID: 29636406 DOI: 10.1530/rep-17-0566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/10/2018] [Indexed: 12/24/2022]
Abstract
Initial stages of implantation involve bi-directional molecular crosstalk between the blastocyst and endometrium. This study investigated an association between infertility etiologies, specifically advanced maternal age (AMA) and endometriosis, on the embryo-endometrial molecular dialogue prior to implantation. Co-culture experiments were performed with endometrial epithelial cells (EEC) and cryopreserved day 5 blastocysts (n = 41 ≥ Grade 3BB) donated from patients presenting with AMA or endometriosis, compared to fertile donor oocyte controls. Extracellular vesicles isolated from co-culture supernatant were analyzed for miRNA expression and revealed significant alterations correlating to AMA or endometriosis. Specifically, AMA resulted in 16 miRNAs with increased expression (P ≤ 0.05) and strong evidence for negative regulation toward 206 target genes. VEGFA, a known activator of cell adhesion, displayed decreased expression (P ≤ 0.05), validating negative regulation by 4 of these increased miRNAs: miR-126; 150; 29a; 29b (P ≤ 0.05). In endometriosis patients, a total of 10 significantly altered miRNAs displayed increased expression compared to controls (miR-7b; 9; 24; 34b; 106a; 191; 200b; 200c; 342-3p; 484) (P ≤ 0.05), targeting 1014 strong evidence-based genes. Three target genes of miR-106a (CDKN1A, E2F1 and RUNX1) were independently validated. Functional annotation analysis of miRNA-target genes revealed enriched pathways for both infertility etiologies, including disrupted cell cycle regulation and proliferation (P ≤ 0.05). These extracellular vesicle-bound secreted miRNAs are key transcriptional regulators in embryo-endometrial dialogue and may be prospective biomarkers of implantation success. One of the limitations of this study is that it was a stimulated, in vitro model and therefore may not accurately reflect the in-vivo environment.
Collapse
Affiliation(s)
- Jason C Parks
- Colorado Center for Reproductive MedicineLone Tree, Colorado, USA .,University of KentCanterbury, UK
| | - Blair R McCallie
- Colorado Center for Reproductive MedicineLone Tree, Colorado, USA.,University of KentCanterbury, UK
| | - Alyssa L Patton
- Colorado Center for Reproductive MedicineLone Tree, Colorado, USA
| | - Zain A Al-Safi
- Department of Obstetrics and GynecologyUniversity of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alex J Polotsky
- Department of Obstetrics and GynecologyUniversity of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
15
|
FAM13A is a modifier gene of cystic fibrosis lung phenotype regulating rhoa activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition. J Cyst Fibros 2017; 17:190-203. [PMID: 29239766 DOI: 10.1016/j.jcf.2017.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease severity is highly variable and dependent on several factors including genetic modifiers. Family with sequence similarity 13 member A (FAM13A) has been previously associated with lung function in the general population as well as in several chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), we examined whether FAM13A is a modifier gene of CF lung phenotype. We also studied how FAM13A may contribute to the physiopathological mechanisms associated with CF. METHODS We investigated the association of FAM13A with lung function in CF French patients (n=1222) by SNP-wise analysis and Versatile Gene Based Association Study. We also analyzed the consequences of FAM13A knockdown in A549 cells and primary bronchial epithelial cells from CF patients. RESULTS We found that FAM13A is associated with lung function in CF patients. Utilizing lung epithelial A549 cells and primary human bronchial epithelial cells from CF patients we observed that IL-1β and TGFβ reduced FAM13A expression. Knockdown of FAM13A was associated with increased RhoA activity, induction of F-actin stress fibers and regulation of epithelial-mesenchymal transition markers such as E-cadherin, α-smooth muscle actin and vimentin. CONCLUSION Our data show that FAM13A is a modifier gene of CF lung phenotype regulating RhoA activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition.
Collapse
|
16
|
You Y, Cheng AC, Wang MS, Jia RY, Sun KF, Yang Q, Wu Y, Zhu D, Chen S, Liu MF, Zhao XX, Chen XY. The suppression of apoptosis by α-herpesvirus. Cell Death Dis 2017; 8:e2749. [PMID: 28406478 PMCID: PMC5477576 DOI: 10.1038/cddis.2017.139] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/09/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically.
Collapse
Affiliation(s)
- Yu You
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - An-Chun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ming-Shu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ren-Yong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Kun-Feng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ma-Feng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Xiao-Yue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| |
Collapse
|
17
|
Tran AHV, Han SH, Kim J, Grasso F, Kim IS, Han YS. MutY DNA Glycosylase Protects Cells From Tumor Necrosis Factor Alpha-Induced Necroptosis. J Cell Biochem 2017; 118:1827-1838. [PMID: 28059467 DOI: 10.1002/jcb.25866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022]
Abstract
Numerous studies have implied that mutY DNA glycosylase (MYH) is involved in the repair of post-replicative mispairs and plays a critical role in the base excision repair pathway. Recent in vitro studies have shown that MYH interacts with tumor necrosis factor receptor type 1-associated death domain (TRADD), a key effector protein of tumor necrosis factor receptor-1 (TNFR1) signaling. The association between MYH and TRADD is reversed during tumor necrosis factor alpha (TNF-α)- and camptothecin (CPT)-induced apoptosis, and enhanced during TNF-α-induced survival. After investigating the role of MYH interacts with various proteins following TNF-α stimulation, here, we focus on MYH and TRADD interaction functions in necroptosis and its effects to related proteins. We report that the level of the MYH and TRADD complex was also reduced during necroptosis induced by TNF-α and zVAD-fmk. In particular, we also found that MYH is a biologically important necrosis suppressor. Under combined TNF-α and zVAD-fmk treatment, MYH-deficient cells were induced to enter the necroptosis pathway but primary mouse embryonic fibroblasts (MEFs) were not. Necroptosis in the absence of MYH proceeds via the inactivation of caspase-8, followed by an increase in the formation of the kinase receptor- interacting protein 1 (RIP1)-RIP3 complex. Our results suggested that MYH, which interacts with TRADD, inhibits TNF-α necroptotic signaling. Therefore, MYH inactivation is essential for necroptosis via the downregulation of caspase-8. J. Cell. Biochem. 118: 1827-1838, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| | - Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology and BioInstitute, Korea University, Seoul, Korea
| | - Francesca Grasso
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Lazio, Italy
| | - In San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
18
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
19
|
Abstract
Among all the E2 ubiquitin-conjugating enzymes, Ubc13, which heterodimerizes with Uev1a, specifically mediates lysine 63 (K63)-linked protein polyubiquitylation, a process that does not lead to proteasomal degradation of its substrates. Instead, it plays a key role in signal transduction. Numerous roles of Lys63-linked polyubiquitylation in immune responses have emerged, indicating the importance of this regulatory strategy. Here, we summarize some of the signaling pathways that depend on Lys63-linked polyubiquitylation during innate and adaptive immune responses, with a focus on the underlying molecular mechanisms. In addition, we describe how Ubc13 itself is regulated and outline its function in transforming growth factor β signaling. We discuss the current progress in pharmacological targeting of Ubc13 in inflammatory and autoimmune diseases as well as cancer therapy.
Collapse
Affiliation(s)
- Xuefeng Wu
- Laboratory of Signal Transduction and Gene Regulation, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Signal Transduction and Gene Regulation, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Urdy S, Goudemand N, Pantalacci S. Looking Beyond the Genes: The Interplay Between Signaling Pathways and Mechanics in the Shaping and Diversification of Epithelial Tissues. Curr Top Dev Biol 2016; 119:227-90. [PMID: 27282028 DOI: 10.1016/bs.ctdb.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas.
Collapse
Affiliation(s)
- S Urdy
- University of Zürich, Institute of Physics, Zürich, Switzerland.
| | - N Goudemand
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, Lyon Cedex 07, France
| | - S Pantalacci
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratory of Biology and Modelling of the Cell, UMR 5239, INSERM U1210, Lyon Cedex 07, France
| |
Collapse
|
21
|
O'Neill E, Kwok B, Day JS, Connor TJ, Harkin A. Amitriptyline protects against TNF-α-induced atrophy and reduction in synaptic markers via a Trk-dependent mechanism. Pharmacol Res Perspect 2016; 4:e00195. [PMID: 27069625 PMCID: PMC4804321 DOI: 10.1002/prp2.195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
Neuritic degeneration and synaptic loss are features of both neuroinflammation and neurodegenerative disease. The tricyclic antidepressant amitriptyline has neurotrophic and anti-inflammatory properties and acts as a novel agonist of the neurotrophin Trk receptors. Primary cortical neurons were treated with amitriptyline, nortriptyline and NGF and tested for neuronal complexity by Sholl analysis, protein expression by Western immunoblotting, and synapse number by colocalization of pre and postsynaptic makers. Amitriptyline (500 nmol/L) and its active metabolite nortriptyline (50 nmol/L) are found to induce neurite outgrowth in rat primary cortical neurons. Amitriptyline-induced neurite outgrowth is blocked by inhibition of Trk signaling using Trk antagonist K252a (200 nmol/L) but not by the neurotrophin inhibitor Y1036 (40 μmol/L), indicating that amitriptyline binds directly to the Trk receptor to initiate neurite outgrowth. MEK inhibitor PD98059 (10 μmol/L) also blocks amitriptyline-induced neurite outgrowth, implicating activation of the MAPK signaling pathway downstream of Trk receptor activation. Furthermore, pretreatment of primary cortical neurons with amitriptyline and nortriptyline prevents the effects of the proinflammatory cytokine TNF-α (10 ng/mL) on neurite outgrowth and colocalization of synaptic proteins. These findings suggest that amitriptyline and nortriptyline can exert neurotrophic effects in primary cortical neurons via activation of a Trk/MAPK signaling pathway. These compounds therefore have significant potential to be used in the treatment of neurodegenerative conditions where atrophy and loss of synaptic connections contribute to progression of disease.
Collapse
Affiliation(s)
- Eimear O'Neill
- Neuropsychopharmacology Research Group School of Pharmacy & Pharmaceutical Sciences and Trinity College Institute of Neuroscience Dublin Ireland; Neuroimmunology Research Group Department of Physiology School of Medicine and Trinity College Institute of Neuroscience Dublin Ireland
| | - Billy Kwok
- Neuroimmunology Research Group Department of Physiology School of Medicine and Trinity College Institute of Neuroscience Dublin Ireland
| | - Jennifer S Day
- Neuroimmunology Research Group Department of Physiology School of Medicine and Trinity College Institute of Neuroscience Dublin Ireland
| | - Thomas J Connor
- Neuroimmunology Research Group Department of Physiology School of Medicine and Trinity College Institute of Neuroscience Dublin Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group School of Pharmacy & Pharmaceutical Sciences and Trinity College Institute of Neuroscience Dublin Ireland
| |
Collapse
|
22
|
Cheng H, Davis DA, Hasheminassab S, Sioutas C, Morgan TE, Finch CE. Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFα in vitro. J Neuroinflammation 2016; 13:19. [PMID: 26810976 PMCID: PMC4727336 DOI: 10.1186/s12974-016-0480-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 12/05/2022] Open
Abstract
Background The basis for air pollution-associated neurodegenerative changes in humans is being studied in rodent models. We and others find that the ultrafine particulate matter (PM) derived from vehicular exhaust can induce synaptic dysfunction and inflammatory responses in vivo and in vitro. In particular, a nano-sized subfraction of particulate matter (nPM, PM0.2) from a local urban traffic corridor can induce glial TNFα production in mixed glia (astrocytes and microglia) derived from neonatal rat cerebral cortex. Methods Here, we examine the role of TNFα in neurite dysfunctions induced by nPM in aqueous suspensions at 12 μg/ml. First, we show that the proximal brain gateway to nPM, the olfactory neuroepithelium (OE), rapidly responds to nPM ex vivo, with induction of TNFα, activation of macrophages, and dendritic shrinkage. Cell interactions were further analyzed with mixed glia and neurons from neonatal rat cerebral cortex. Results Microglia contributed more than astrocytes to TNFα induction by nPM. We then showed that the threefold higher TNFα in conditioned media (nPM-CM) from mixed glia was responsible for the inhibition of neurite outgrowth by small interfering RNA (siRNA) TNFα knockdown and by TNFα immunoneutralization. Despite lack of TNFR1 induction by nPM in the OE, experimental blocking of TNFR1 by TNFα receptor blockers restored total neurite length. Conclusions These findings implicate microglia-derived TNFα as a mediator of nPM in air pollution-associated neurodegenerative changes which alter synaptic functions and neuronal growth.
Collapse
Affiliation(s)
- Hank Cheng
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA. .,USC Dornsife College, University of Southern California, Los Angeles, CA, 90089, USA.
| | - David A Davis
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Sina Hasheminassab
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Todd E Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Caleb E Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA. .,USC Dornsife College, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
23
|
Hall AM, Hemmer R, Spaulding R, Wetzel HN, Curcio J, Sabel BA, Henrich-Noack P, Pixley S, Hopkins T, Boyce RL, Schultheis PJ, Haik KL. Cytotoxicity and apoptotic gene expression in an in vitro model of the blood-brain barrier following exposure to poly(butylcyanoacrylate) nanoparticles. J Drug Target 2015; 24:635-44. [PMID: 26707984 DOI: 10.3109/1061186x.2015.1132222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Poly(butylcyanoacrylate) (PBCA) nanoparticles (NPs) loaded with doxorubicin (DOX) and coated with polysorbate 80 (PS80) have shown efficacy in the treatment of rat glioblastoma. However, cytotoxicity of this treatment remains unclear. Purpose The purpose of this study was to investigate cytotoxicity and apoptotic gene expression using a proven in vitro co-culture model of the blood-brain barrier. Methods The co-cultures were exposed to uncoated PBCA NPs, PBCA-PS80 NPs or PBCA-PS80-DOX NPs at varying concentrations and evaluated using a resazurin-based cytotoxicity assay and an 84-gene apoptosis RT-PCR array. Results The cytotoxicity assays showed PBCA-PS80-DOX NPs exhibited a decrease in metabolic function at lower concentrations than uncoated PBCA NPs and PBCA-PS80 NPs. The apoptosis arrays showed differential expression of 18 genes in PBCA-PS80-DOX treated cells compared to the untreated control. Discussion As expected, the cytotoxicity assays demonstrated enhanced dose-dependent toxicity in the DOX loaded NPs. The differentially expressed apoptotic genes participate in both the tumor necrosis factor receptor-1 and mitochondria-associated apoptotic pathways implicated in current DOX chemotherapeutic toxicity. Conclusion The following data suggest that the cytotoxic effect may be attributed to DOX and not the NPs themselves, further supporting the use of PBCA-PS80 NPs as an effective drug delivery vehicle for treating central nervous system conditions.
Collapse
Affiliation(s)
- Andrew M Hall
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA ;,b Department of Chemistry , Northern Kentucky University , Highland Heights , KY , USA
| | - Ruth Hemmer
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Robert Spaulding
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Hanna N Wetzel
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Joseph Curcio
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Bernhard A Sabel
- c Institute of Medical Psychology, Otto-von-Guericke University , Magdeburg , Germany
| | - Petra Henrich-Noack
- c Institute of Medical Psychology, Otto-von-Guericke University , Magdeburg , Germany
| | - Sarah Pixley
- d Molecular and Cellular Physiology Department , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Tracy Hopkins
- d Molecular and Cellular Physiology Department , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Richard L Boyce
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Patrick J Schultheis
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| | - Kristi L Haik
- a Department of Biological Sciences , Northern Kentucky University , Highland Heights , KY , USA
| |
Collapse
|
24
|
Regulation of bitter taste responses by tumor necrosis factor. Brain Behav Immun 2015; 49:32-42. [PMID: 25911043 PMCID: PMC4567432 DOI: 10.1016/j.bbi.2015.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 12/22/2022] Open
Abstract
Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases.
Collapse
|
25
|
Hussein HAM, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AKM, Akula SM. Beyond RGD: virus interactions with integrins. Arch Virol 2015; 160:2669-81. [PMID: 26321473 PMCID: PMC7086847 DOI: 10.1007/s00705-015-2579-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
Viruses successfully infect host cells by initially binding to the surfaces of the cells, followed by an intricate entry process. As multifunctional heterodimeric cell-surface receptor molecules, integrins have been shown to usefully serve as entry receptors for a plethora of viruses. However, the exact role(s) of integrins in viral pathogen internalization has yet to be elaborately described. Notably, several viruses harbor integrin-recognition motifs displayed on viral envelope/capsid-associated proteins. The most common of these motifs is the minimal peptide sequence for binding integrins, RGD (Arg-Gly-Asp), which is known for its role in virus infection via its ability to interact with over half of the more than 20 known integrins. Not all virus-integrin interactions are RGD-dependent, however. Non-RGD-binding integrins have also been shown to effectively promote virus entry and infection as well. Such virus-integrin binding is shown to facilitate adhesion, cytoskeleton rearrangement, integrin activation, and increased intracellular signaling. Also, we have attempted to discuss the role of carbohydrate moieties in virus interactions with receptor-like host cell surface integrins that drive the process of internalization. As much as possible, this article examines the published literature regarding the role of integrins in terms of virus infection and virus-encoded glycosylated proteins that mediate interactions with integrins, and it explores the idea of targeting these receptors as a therapeutic treatment option.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sayed A Desouky
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
26
|
Ford AJ, Jain G, Rajagopalan P. Designing a fibrotic microenvironment to investigate changes in human liver sinusoidal endothelial cell function. Acta Biomater 2015; 24:220-7. [PMID: 26117313 DOI: 10.1016/j.actbio.2015.06.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/08/2015] [Accepted: 06/23/2015] [Indexed: 02/08/2023]
Abstract
The deposition of extracellular matrix (ECM) proteins by hepatic cells during fibrosis leads to the stiffening of the organ and perturbed cellular functions. Changes in the elasticity of liver tissue are manifested by altered phenotype in hepatic cells. We have investigated changes in human liver sinusoidal endothelial cells (hLSECs) that occur as the elastic modulus of their matrix transitions from healthy (6kPa) to fibrotic (36kPa) conditions. We have also investigated the role played by Kupffer cells in the dedifferentiation of hLSECs. We report the complete loss of fenestrae and the expression of CD31 at the surface as a result of increasing elastic moduli. LSECs exhibited a greater number of actin stress fibers and vinculin focal adhesion on the stiffer substrate, as well. A novel finding is that these identical trends can be obtained on soft (6kPa) substrates by introducing an inflamed microenvironment through the addition of Kupffer cells. hLSEC monocultures on 6kPa gels exhibited fenestrae that were 140.7±52.6nm in diameter as well as a lack of surface CD31 expression. Co-culturing hLSECs with rat Kupffer cells (rKCs) on 6kPa substrates, resulted in the complete loss of fenestrae, an increase in CD31 expression and in a well-organized cytoskeleton. These results demonstrate that the increasing stiffness of liver matrices does not solely result in changes in hLSEC phenotype. Even on soft substrates, culturing hLSECs in an inflamed microenvironment can result in their dedifferentiation. Our findings demonstrate the interplay between matrix elasticity and inflammation in the progression of hepatic fibrosis.
Collapse
|
27
|
IAPs and cell migration. Semin Cell Dev Biol 2015; 39:124-31. [PMID: 25769935 DOI: 10.1016/j.semcdb.2015.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 12/11/2022]
Abstract
Inhibitors of apoptosis (IAPs) constitute a family of cell signaling regulators controlling several fundamental biological processes such as innate immunity, inflammation, cell death, cell proliferation, and cell differentiation. Increasing evidence from in vivo and in vitro studies indicate a function for IAPs in the modulation of invasive and migratory properties of cells. Here, we present and discuss the mechanisms whereby IAPs can control cell migration.
Collapse
|
28
|
Abstract
Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1's interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.
Collapse
|
29
|
Oxygen radicals elicit paralysis and collapse of spinal cord neuron growth cones upon exposure to proinflammatory cytokines. BIOMED RESEARCH INTERNATIONAL 2014; 2014:191767. [PMID: 25050325 PMCID: PMC4090484 DOI: 10.1155/2014/191767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022]
Abstract
A persistent inflammatory and oxidative stress is a hallmark of most chronic CNS pathologies (Alzheimer's (ALS)) as well as the aging CNS orchestrated by the proinflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β). Loss of the integrity and plasticity of neuronal morphology and connectivity comprises an early step in neuronal degeneration and ultimate decline of cognitive function. We examined in vitro whether TNFα or IL-1β impaired morphology and motility of growth cones in spinal cord neuron cultures. TNFα and IL-1β paralyzed growth cone motility and induced growth cone collapse in a dose-dependent manner reflected by complete attenuation of neurite outgrowth. Scavenging reactive oxygen species (ROS) or inhibiting NADPH oxidase activity rescued loss of neuronal motility and morphology. TNFα and IL-1β provoked rapid, NOX-mediated generation of ROS in advancing growth cones, which preceded paralysis of motility and collapse of morphology. Increases in ROS intermediates were accompanied by an aberrant, nonproductive reorganization of actin filaments. These findings suggest that NADPH oxidase serves as a pivotal source of oxidative stress in neurons and together with disruption of actin filament reorganization contributes to the progressive degeneration of neuronal morphology in the diseased or aging CNS.
Collapse
|
30
|
Itin PH. Etiology and pathogenesis of ectodermal dysplasias. Am J Med Genet A 2014; 164A:2472-7. [PMID: 24715647 DOI: 10.1002/ajmg.a.36550] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/28/2014] [Indexed: 02/04/2023]
Abstract
Ectodermal dysplasias are a large group of heterogeneous heritable conditions characterized by congenital defects of one or more ectodermal structures and their appendages. The skin and its appendages are mainly composed by ectodermal components but development initiation of appendages is orchestrated by signals of the mesoderm with the help of placodes. A complex network of signaling pathways coordinates the formation and function of ectodermal structures. In recent years much has been discovered regarding the molecular mechanisms of ectodermal embryogenesis and this facilitates a rational basis for classification of ectodermal dysplasia. Interestingly, not only complex ectodermal syndromes but also mono- or oligosymptomatic ectodermal malformations may result from a mutation in a gene that is critical for ectodermal development. Mesodermal, and occasionally endodermal malformations may coexist. Embryogenesis occurs in distinct tissue organizational fields and specific interactions among the germ layers exist that may lead to a wide range of ectodermal dysplasias. Of the approximately 200 different ectodermal dysplasias, about 80 have been characterized at the molecular level with identification of the genes that are mutated in these disorders. Modern molecular genetics will increasingly elucidate the basic defects of these distinct syndromes and shed more light into the regulatory mechanisms of embryology. The upcoming classification of ectodermal dysplasias will combine detailed clinical and molecular knowledge.
Collapse
Affiliation(s)
- Peter H Itin
- Department of Dermatology, University Hospital Basel, Basel, Switzerland; Research Group of Dermatology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
McMichael BK, Scherer KF, Franklin NC, Lee BS. The RhoGAP activity of myosin IXB is critical for osteoclast podosome patterning, motility, and resorptive capacity. PLoS One 2014; 9:e87402. [PMID: 24466350 PMCID: PMC3900720 DOI: 10.1371/journal.pone.0087402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/28/2013] [Indexed: 12/15/2022] Open
Abstract
Osteoclasts are large, multinucleated cells of the monocyte-macrophage lineage that generate specialized substrate adhesion complexes to facilitate their function as bone-degrading cells. The patterning and function of these actin-based complexes, podosomes and sealing zones, are regulated by the small GTPase Rho. Myosin IXB (Myo9b) is a unique actin-based motor protein that contains a RhoGAP domain, which, like other RhoGAPs, is inhibitory to Rho signaling. In this study, Myo9b is shown to be expressed in osteoclasts and act as a critical regulator of podosome patterning and osteoclast function. SiRNA-mediated knockdown of Myo9b results in increased activity of Rho but not Rac in osteoclasts. Knockdown in osteoclasts on glass results in altered podosome patterning and decreased motility, and this effect is reversed by addition of a Rho inhibitor. SiRNA-mediated suppression of Myo9b expression in osteoclasts on bone results in a dramatic loss of resorptive capacity even though sealing zones appear normal. This loss of resorption is also reversible with addition of a Rho inhibitor. Cells with diminished Myo9b levels display mislocalization and suppressed activation of Src, a tyrosine kinase with critical effects on osteoclast actin cytoskeletal rearrangement and function. In addition, siRNA-treated cells display poorly formed microtubule networks and a lack of tubulin acetylation, a marker of microtubule stability. However, short-term addition of TNFα to cells with suppressed Myo9b levels overcomes or circumvents these defects and causes increased sealing zone size and resorptive capacity. These results indicate that the RhoGAP activity of Myo9b plays a key role in regulating the actin-based structures necessary for osteoclast motility and resorption, and confirms that Myo9b can act as a motorized signaling molecule that links Rho signaling to the dynamic actin cytoskeleton.
Collapse
Affiliation(s)
- Brooke K. McMichael
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Katharine F. Scherer
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Nicole C. Franklin
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Beth S. Lee
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation. Oncogene 2013; 33:5534-45. [DOI: 10.1038/onc.2013.499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/20/2013] [Accepted: 10/21/2013] [Indexed: 02/08/2023]
|
33
|
Bertrand S, Iwema T, Escriva H. FGF Signaling Emerged Concomitantly with the Origin of Eumetazoans. Mol Biol Evol 2013; 31:310-8. [DOI: 10.1093/molbev/mst222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Obesity and the Endometrium: Adipocyte-Secreted Proinflammatory TNF α Cytokine Enhances the Proliferation of Human Endometrial Glandular Cells. Obstet Gynecol Int 2013; 2013:368543. [PMID: 24288542 PMCID: PMC3832969 DOI: 10.1155/2013/368543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/22/2013] [Indexed: 11/18/2022] Open
Abstract
Obesity, a state of chronic inflammation, is associated with poor fertility and low implantation rates and is a well-documented risk factor for endometrial cancer. Adipokines, such as tumor necrosis factor alpha, play an important role in initiation of endometrial cancer. The aim of this study is to evaluate in vitro effects of human adipocyte cells (SW872) on growth of endometrial glandular epithelial cells (EGE). Methods. We measured cell proliferation and expression of cell-growth proteins—proliferating cell nuclear antigen, cyclin D1, cyclin-dependent kinase-1, and apoptotic markers (BCL-2 and BAK) in human EGE cells cocultured with SW872 cells. EGE cells were also evaluated in SW872-conditioned media neutralized with anti-TNFα antibody. Results. A significant increase in EGE cell proliferation was observed in both SW872-conditioned media and in coculture (P < 0.05). We observed an upregulation of proliferation markers PCNA, cyclin D1, CDK-1, and BCL-2 and decrease in BAK (P < 0.05). Neutralization of SW872-conditioned media using anti-TNFα antibodies reversed EGE cell proliferation as indicated by BCL-2 expression. Conclusions. Adipocytes have potent proliferative paracrine effect on EGE cells which may be, in part, mediated via TNFα. Further understanding of the role of obesity in endometrial carcinogenesis should lead to better preventative and therapeutic strategies.
Collapse
|
35
|
The tricyclic antidepressant amitriptyline is cytotoxic to HTB114 human leiomyosarcoma and induces p75NTR-dependent apoptosis. Anticancer Drugs 2013; 24:899-910. [DOI: 10.1097/cad.0b013e328364312f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 2013; 15:281-95. [PMID: 23479506 DOI: 10.1593/neo.122010] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 02/06/2023] Open
Abstract
Tumor exosomes educate selected host tissues toward a prometastatic phenotype. We demonstrated this for exosomes of the metastatic rat adenocarcinoma BSp73ASML (ASML), which modulate draining lymph nodes and lung tissue to support settlement of poorly metastatic BSp73ASML-CD44v4-v7 knockdown (ASML-CD44v(kd)) cells. Now, we profiled mRNA and microRNA (miRNA) of ASML(wt) and ASML-CD44v(kd) exosomes to define the pathway(s), whereby exosomes prepare the premetastatic niche. ASML exosomes, recovered in draining lymph nodes after subcutaneous injection, preferentially are taken up by lymph node stroma cells (LnStr) and lung fibroblasts (LuFb) that were chosen as exosome targets. ASML(wt) and ASML-CD44v(kd) exosomes contain a restricted mRNA and miRNA repertoire that differs significantly between the two lines and exosomes thereof due to CD44v6 influencing gene and miRNA transcription/posttranscriptional regulation. Exosomal mRNA and miRNA are recovered in target cells, where transferred miRNA significantly affected mRNA translation. Besides others, this was exemplified for abundant ASML(wt)-exosomal miR-494 and miR-542-3p, which target cadherin-17 (cdh17). Concomitantly, matrix metalloproteinase transcription, accompanying cdh17 down-regulation, was upregulated in LnStr transfected with miR-494 or miR-542-3p or co-cultured with tumor exosomes. Thus, tumor exosomes target non-transformed cells in premetastatic organs and modulate premetastatic organ cells predominantly through transferred miRNA, where miRNA from a metastasizing tumor prepares premetastatic organ stroma cells for tumor cell hosting. Fitting the demands of metastasizing tumor cells, transferred exosomal miRNA mostly affected proteases, adhesion molecules, chemokine ligands, cell cycle- and angiogenesis-promoting genes, and genes engaged in oxidative stress response. The demonstration of function-competent exosomal miRNA in host target cells encourages exploiting exosomes as a therapeutic gene delivery system.
Collapse
|
37
|
Ivanovska J, Tregubova A, Mahadevan V, Chakilam S, Gandesiri M, Benderska N, Ettle B, Hartmann A, Söder S, Ziesché E, Fischer T, Lautscham L, Fabry B, Segerer G, Gohla A, Schneider-Stock R. Identification of DAPK as a scaffold protein for the LIMK/cofilin complex in TNF-induced apoptosis. Int J Biochem Cell Biol 2013; 45:1720-9. [DOI: 10.1016/j.biocel.2013.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/09/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
|
38
|
Lou JS, Chen XE, Zhang Y, Gao ZW, Chen TP, Zhang GQ, Ji C. Photoprotective and immunoregulatory capacity of ginsenoside Rg1 in chronic ultraviolet B-irradiated BALB/c mouse skin. Exp Ther Med 2013; 6:1022-1028. [PMID: 24137309 PMCID: PMC3797320 DOI: 10.3892/etm.2013.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/15/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the photoprotective and immunoregulatory capacities of ginsenoside Rg1 in skin irradiated by chronic ultraviolet B (UVB) and to verify the potential mechanisms of action. BALB/c mice were pretreated with a topical application of ginsenoside Rg1 and irradiated with different doses of UVB daily for 30 consecutive days. Following chronic UVB irradiation, there were significant pathological changes in the skin of the BALB/c mice, including hyperkeratosis, acanthosis, sponge-like edematization and sunburn occurring in the epidermis, while edema, telangiectasis and inflammatory cell infiltration were observed in the papillary layer of the dermis. Treatment with ginsenoside Rg1 was able to reduce such changes induced by UVB irradiation. The number of p53 protein-positive stained cells following UVB irradiation was also observed by immunohistochemical analysis. Ginsenoside Rg1 downregulated the p53 protein expression induced by UVB irradiation, leading to reductions of 69.50, 23.53 and 12.93% at doses of 30, 60 and 120 mJ/cm2, respectively. Using reverse transcription polymerase chain reaction (RT-PCR), reductions in the levels of interferon (IFN)-γ mRNA expression were detected following UVB exposure; reductions of 19.6, 36.3 and 39.6% were observed following UVB irradiation at doses of 30, 60 and 120 mJ/cm2, respectively. The interleukin (IL)-10 mRNA expression levels increased by 40.1, 71.0 and 89.4% and the tumor necrosis factor (TNF)-α mRNA expression levels increased by 36.4, 18.4 and 8.6% following UVB irradiation at doses of 30, 60 and 120 mJ/cm2, respectively. However, pretreatment with ginsenoside Rg1 was observed to markedly attenuate the UVB irradiation-induced effects on the mRNA expression levels of the three cytokines. The topical application of ginsenoside Rg1 was able to protect the irradiated skin from UVB injury and reduce UVB-induced p53 protein expression. Ginsenoside Rg1 also demonstrated a potential regulatory effect on the UVB-induced local expression of the mRNA of the cytokines IFN-γ, IL-10 and TNF-α, which may be important in its immunoregulatory and inflammatory mechanisms.
Collapse
Affiliation(s)
- Jin-Shu Lou
- Department of Medical Oncology, The 86th Hospital of the Dangtu, Dangtu, Anhui 243100
| | | | | | | | | | | | | |
Collapse
|
39
|
Chandrasekharan UM, Dechert L, Davidson UI, Waitkus M, Mavrakis L, Lyons K, Beach JR, Li X, Egelhoff TT, Fox PL, DiCorleto PE. Release of nonmuscle myosin II from the cytosolic domain of tumor necrosis factor receptor 2 is required for target gene expression. Sci Signal 2013; 6:ra60. [PMID: 23861542 DOI: 10.1126/scisignal.2003743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor-α (TNF-α) elicits its biological activities through activation of TNF receptor 1 (TNFR1, also known as p55) and TNFR2 (also known as p75). The activities of both receptors are required for the TNF-α-induced proinflammatory response. The adaptor protein TNFR-associated factor 2 (TRAF2) is critical for either p55- or p75-mediated activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, as well as for target gene expression. We identified nonmuscle myosin II (myosin) as a binding partner of p75. TNF-α-dependent signaling by p75 and induction of target gene expression persisted substantially longer in cells deficient in myosin regulatory light chain (MRLC; a component of myosin) than in cells replete in myosin. In resting endothelial cells, myosin was bound constitutively to the intracellular region of p75, a region that overlaps with the TRAF2-binding domain, and TNF-α caused the rapid dissociation of myosin from p75. At early time points after exposure to TNF-α, p75 activated Rho-associated kinase 1 (ROCK1). Inhibition of ROCK1 activity blocked TNF-α-dependent phosphorylation of MRLC and the dissociation of myosin from p75. ROCK1-dependent release of myosin was necessary for the TNF-α-dependent recruitment of TRAF2 to p75 and for p75-specific activation of NF-κB and MAPK signaling. Thus, our findings have revealed a previously uncharacterized, noncanonical regulatory function of myosin in cytokine signaling.
Collapse
Affiliation(s)
- Unni M Chandrasekharan
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sessler T, Healy S, Samali A, Szegezdi E. Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 2013; 140:186-99. [PMID: 23845861 DOI: 10.1016/j.pharmthera.2013.06.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022]
Abstract
Death receptors are members of the tumour necrosis factor (TNF) receptor superfamily characterised by an ~80 amino acid long alpha-helical fold, termed the death domain (DD). Death receptors diversified during early vertebrate evolution indicating that the DD fold has plasticity and specificity that can be easily adjusted to attain additional functions. Eight members of the death receptor family have been identified in humans, which can be divided into four structurally homologous groups or clades, namely: the p75(NTR) clade (consisting of ectodysplasin A receptor, death receptor 6 (DR6) and p75 neurotrophin (NTR) receptor); the tumour necrosis factor receptor 1 clade (TNFR1 and DR3), the CD95 clade (CD95/FAS) and the TNF-related apoptosis-inducing ligand receptor (TRAILR) clade (TRAILR1 and TRAILR2). Receptors in the same clade participate in similar processes indicating that structural diversification enabled functional specialisation. On the surface of nearly all human cells multiple death receptors are expressed, enabling the cell to respond to a plethora of external signals. Activation of different death receptors converges on the activation of three main signal transduction pathways: nuclear factor-κB-mediated differentiation or inflammation, mitogen-associated protein kinase-mediated stress response and caspase-mediated apoptosis. While the ability to induce cell death is true for nearly all DRs, the FAS and TRAILR clades have specialised in inducing cell death. Here we summarise recent discoveries about the molecular regulation and structural requirements of apoptosis induction by death receptors and discuss how this information can be used to better explain the biological functions, similarities and distinguishing features of death receptors.
Collapse
Affiliation(s)
- Tamas Sessler
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
41
|
Benedetti G, Fokkelman M, Yan K, Fredriksson L, Herpers B, Meerman J, van de Water B, de Graauw M. The nuclear factor κB family member RelB facilitates apoptosis of renal epithelial cells caused by cisplatin/tumor necrosis factor α synergy by suppressing an epithelial to mesenchymal transition-like phenotypic switch. Mol Pharmacol 2013; 84:128-38. [PMID: 23625948 DOI: 10.1124/mol.112.084053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cis-diamminedichloroplatinum(II) (cisplatin)-induced renal proximal tubular apoptosis is known to be preceded by actin cytoskeleton reorganization, in conjunction with disruption of cell-matrix and cell-cell adhesion. In the present study, we show that the proinflammatory cytokine tumor necrosis factor α (TNF-α) aggravated these cisplatin-induced F-actin and cell adhesion changes, which was associated with enhanced cisplatin-induced apoptosis of immortalized proximal tubular epithelial cells. TNF-α-induced RelB expression and lentiviral small hairpin RNA (shRNA)-mediated knockdown of RelB, but not other nuclear factor κB members, abrogated the synergistic apoptosis observed with cisplatin/TNF-α treatment to the level of cisplatin-induced apoptosis. This protective effect was associated with increased stress fiber formation, cell-matrix, and cell-cell adhesion in the shRNARelB (shRelB) cells during cisplatin/TNF-α treatment, mimicking an epithelial-to-mesenchymal phenotypic switch. Indeed, gene array analysis revealed that knockdown of RelB was associated with upregulation of several actin regulatory genes, including Snai2 and the Rho GTPase proteins Rhophilin and Rho guanine nucleotide exchange factor 3 (ARHGEF3). Pharmacological inhibition of Rho kinase signaling re-established the synergistic apoptosis induced by combined cisplatin/TNF-α treatment of shRelB cells. In conclusion, our study shows for the first time that RelB is required for the cisplatin/TNF-α-induced cytoskeletal reorganization and apoptosis in renal cells by controlling a Rho kinase-dependent signaling network.
Collapse
Affiliation(s)
- Giulia Benedetti
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratory, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ravera S, Vaccaro D, Cuccarolo P, Columbaro M, Capanni C, Bartolucci M, Panfoli I, Morelli A, Dufour C, Cappelli E, Degan P. Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A. Biochimie 2013; 95:1828-37. [PMID: 23791750 DOI: 10.1016/j.biochi.2013.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape.
Collapse
Affiliation(s)
- Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacology, University of Genova, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Boesten RJ, Schuren FHJ, Willemsen LEM, Vriesema A, Knol J, De Vos WM. Bifidobacterium breve - HT-29 cell line interaction: modulation of TNF-α induced gene expression. Benef Microbes 2013; 2:115-28. [PMID: 21831793 DOI: 10.3920/bm2011.0005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To provide insight in the molecular basis for intestinal host-microbe interactions, we determined the genome-wide transcriptional response of human intestinal epithelial cells following exposure to cells of Bifidobacterium breve. To select an appropriate test system reflecting inflammatory conditions, the responsiveness to TNF-α was compared in T84, Caco-2 and HT-29 cells. The highest TNF-α response was observed in HT-29 cells and this cell line was selected for exposure to the B. breve strains M-16V, NR246 and UCC2003. After one hour of bacterial pre-incubation followed by two hours of additional TNF-α stimulation, B. breve M-16V (86%), but to a much lesser extent strains NR246 (50%) or UCC2003 (32%), showed a strain-specific reduction of the HT-29 transcriptional response to the inflammatory treatment. The most important functional groups of genes that were transcriptionally suppressed by the presence of B. breve M-16V, were found to be involved in immune regulation and apoptotic processes. About 54% of the TNF-α induced genes were solely suppressed by the presence of B. breve M-16V. These included apoptosis-related cysteine protease caspase 7 (CASP7), interferon regulatory factor 3 (IRF3), amyloid beta (A4) precursor proteinbinding family A member 1 (APBA1), NADPH oxidase (NOX5), and leukemia inhibitory factor receptor (LIFR). The extracellular IL-8 concentration was determined by an immunological assay but did not change significantly, indicating that B. breve M-16V only partially modulates the TNF-α pathway. In conclusion, this study shows that B. breve strains modulate gene expression in HT-29 cells under inflammatory conditions in a strain-specific way.
Collapse
Affiliation(s)
- R J Boesten
- Microbiology Department, TNO Quality of Life, Utrechtseweg, Zeist, the Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Cytokines are a group of diverse molecules that influence the function of every organ system. They are most well studied in their effects on the immune system and their integral role in mediating inflammation. The common cold and otitis media are two such disease states, and much has been learned about the various effects of cytokines in each disease. Most often the viruses isolated include rhinovirus (RV), respiratory syncytial virus (RSV), adenovirus, coronavirus, and picornavirus. Otitis media, sinusitis, bronchiolitis, pneumonia, and asthma exacerbation are commonly accepted as complications of viral upper respiratory tract infections. Furthermore, otitis media and upper respiratory infections are inextricably linked in that the majority (>70 %) of cases of acute otitis media occur as complications of the common cold. Cytokine polymorphisms have been associated with the severity of colds as well as the frequency of otitis media. This article attempts to update the reader on various studies that have recently been published regarding the role of cytokines in these two disease entities.
Collapse
Affiliation(s)
- Todd M Wine
- Division of Pediatric Otolaryngology, Children's Hospital of Pittsburgh of UPMC, Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
45
|
Ruan W, Unsain N, Desbarats J, Fon EA, Barker PA. Wengen, the sole tumour necrosis factor receptor in Drosophila, collaborates with moesin to control photoreceptor axon targeting during development. PLoS One 2013; 8:e60091. [PMID: 23544124 PMCID: PMC3609737 DOI: 10.1371/journal.pone.0060091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/23/2013] [Indexed: 01/10/2023] Open
Abstract
Photoreceptor neurons (R cells) in the Drosophila eye define a map of visual space by connecting to targets in distinct layers of the optic lobe, with R1-6 cells connecting to the lamina (the first optic ganglion) and R7 and R8 cells connecting to the medulla (the second optic ganglion). Here, we show that Wengen (Wgn) directly binds Moesin (Moe) through a cytosolic membrane proximal domain and this interaction is important for mediating two distinct aspects of axonal targeting. First, we show that loss of wgn or moe function disrupts cell autonomous R8 axon targeting. Second, we report that wgn or moe mutants show defects in R2–R5 targeting that result from disruption of non-cell autonomous effects, which are secondary to the cell autonomous R8 phenotype. Thus, these studies reveal that the Wgn-Moe signaling cascade plays a key role in photoreceptor target field innervations through cell autonomous and non-cell autonomous mechanisms.
Collapse
Affiliation(s)
- Wenjing Ruan
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Nicolas Unsain
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Julie Desbarats
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward A. Fon
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (EF); (PB)
| | - Philip A. Barker
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (EF); (PB)
| |
Collapse
|
46
|
Kim SJ, Nian C, McIntosh CH. Resistin knockout mice exhibit impaired adipocyte glucose-dependent insulinotropic polypeptide receptor (GIPR) expression. Diabetes 2013; 62:471-7. [PMID: 23002036 PMCID: PMC3554369 DOI: 10.2337/db12-0257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone that also plays a regulatory role in fat metabolism. In 3T3-L1 cells, resistin was demonstrated to be a key mediator of GIP stimulation of lipoprotein lipase (LPL) activity, involving activation of protein kinase B (PKB) and reduced phosphorylation of liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK). The current study was initiated to determine whether resistin has additional roles in GIP-regulated adipocyte functions. Analysis of primary adipocytes isolated from Retn(-/-), Retn(+/-), and Retn(+/+) mice found that GIP stimulated the PKB/LKB1/AMPK/LPL pathway and fatty acid uptake only in Retn(+/+) adipocytes, suggesting that GIP signaling and/or GIP responsiveness were compromised in Retn(+/-) and Retn(-/-) adipocytes. GIP receptor (GIPR) protein and mRNA were decreased in Retn(+/-) and Retn(-/-) adipocytes, but resistin treatment rescued LPL responsiveness to GIP. In addition, genes encoding tumor necrosis factor (TNF), TNF receptor 2 (TNFR2), and the signaling proteins stress-activated protein kinase (SAPK)/Jun NH(2)-terminal kinase (JNK), were downregulated, and phosphorylated levels of SAPK/JNK/c-Jun were decreased in Retn(-/-) mice. Chromatin immunoprecipitation assays were used to identify a 12-O-tetradecanoylphorbol-13-acetate (TPA)-response element (TRE-III) responsible for c-Jun-mediated transcriptional activation of Gipr. Blunted GIP responsiveness in Retn(+/-) and Retn(-/-) adipocytes was therefore largely due to the greatly reduced GIPR expression associated with decreased c-Jun-mediated transcriptional activation of Gipr.
Collapse
|
47
|
Tomar D, Sripada L, Prajapati P, Singh R, Singh AK, Singh R. Nucleo-cytoplasmic trafficking of TRIM8, a novel oncogene, is involved in positive regulation of TNF induced NF-κB pathway. PLoS One 2012; 7:e48662. [PMID: 23152791 PMCID: PMC3495970 DOI: 10.1371/journal.pone.0048662] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/28/2012] [Indexed: 12/16/2022] Open
Abstract
TNF induced nuclear factor kappa B (NF-κB) is one of the central signaling pathways that plays a critical role in carcinogenesis and inflammatory diseases. Post-translational modification through ubiquitin plays important role in the regulation of this pathway. In the current study, we investigated the role of TRIM8, member of RING family ubiquitin ligase in regulation of NF-κB pathway. We observed that TRIM8 positively regulates TNF induced NF-κB pathway. Different domains of TRIM8 showed discrete functions at the different steps in regulation of TNF induced NF-κB pathway. Ubiquitin ligase activity of TRIM8 is essential for regulation of NF-κB activation in both cytoplasm as well as nucleus. TRIM8 negates PIAS3 mediated negative repression of NF-κB at p65 by inducing translocation of PIAS3 from nucleus to cytoplasm as well as its turnover. TNF induces translocation of TRIM8 from nucleus to cytoplasm, which positively regulates NF-κB. The cytoplasmic translocation of TRIM8 is essential for TNF induced NF-κB but not for p65 mediated NF-κB regulation. TRIM8 also enhanced the clonogenic and migration ability of cells by modulating NF-κB. The further study will help to understand the role of TRIM8 in inflammation and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajesh Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
- * E-mail:
| |
Collapse
|
48
|
Skender B, Vaculova AH, Hofmanova J. Docosahexaenoic fatty acid (DHA) in the regulation of colon cell growth and cell death: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:186-99. [PMID: 23069883 DOI: 10.5507/bp.2012.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/24/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Experimental, epidemiological and clinical data substantiate the beneficial role of n-3 polyunsaturated fatty acids (PUFAs) in preventing inflammation and cancer of the colon. This review covers the unsaturated docosahexaenoic fatty acid (DHA), describes some of its important cellular and molecular mechanisms, its interaction with another dietary lipid, butyrate and with endogenous apoptotic regulators of the tumour necrosis factor (TNF) family. We also discuss the clinical impact of this knowledge and the use of these lipids in colon cancer prevention and treatment. RESULTS From the literature, DHA has been shown to suppress the growth, induce apoptosis in colon cancer cells in vitro and decrease the incidence and growth of experimental tumours in vivo. Based on these data and our own experimental results, we describe and discuss the possible mechanisms of DHA anticancer effects at various levels of cell organization. We show that DHA can sensitize colon cancer cells to other chemotherapeutic/chemopreventive agents and affect the action of physiological apoptotic regulators of the TNF family. CONCLUSION Use of n-3 PUFAs could be a relatively non-toxic form of supportive therapy for improving colon cancer treatment and slowing down or preventing its recurrence. However, it is necessary to use them with caution, based on solid scientific evidence of their mechanisms of action from the molecular to the cellular and organism levels.
Collapse
Affiliation(s)
- Belma Skender
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Brno, Czech Republic
| | | | | |
Collapse
|
49
|
Cheng X, Liu Y, Chu H, Kao HY. Promyelocytic leukemia protein (PML) regulates endothelial cell network formation and migration in response to tumor necrosis factor α (TNFα) and interferon α (IFNα). J Biol Chem 2012; 287:23356-67. [PMID: 22589541 DOI: 10.1074/jbc.m112.340505] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Promyelocytic leukemia protein (PML) is a tumor suppressor that is highly expressed in vascular endothelium and inflamed tissues, yet its role in inflammation-associated cytokine-regulated angiogenesis and underlying mechanism remains largely unclear. We show that tumor necrosis factor α (TNFα) and interferon α (IFNα) stimulate PML expression while suppressing EC network formation and migration, two key events during angiogenesis. By a knockdown approach, we demonstrate that PML is indispensable for TNFα- and IFNα-mediated inhibition of EC network formation. We further demonstrate that signal transducer and activator of transcription 1 (STAT1) binds PML promoter and that is an important regulator of PML expression. Knockdown of STAT1 reduces endogenous PML and blocks TNFα- and IFNα-induced PML accumulation and relieves TNFα- and IFNα-mediated inhibition of EC network formation. Our data also indicate that PML regulates EC migration, in part, by modulating expression of downstream genes, such as negatively regulating integrin β1 (ITGB1). In addition, knockdown of STAT1 or PML alleviates TNFα- and IFNα-mediated inhibition of ITGB1 expression. Antibody blockade demonstrates that ITGB1 is functionally important for PML- and STAT1-regulated EC migration. Taken together, our data provide novel mechanistic insights that PML functions as a negative regulator in EC network formation and migration.
Collapse
Affiliation(s)
- Xiwen Cheng
- Department of Biochemistry, School of Medicine, Case Western Reserve University and the Comprehensive Cancer Center of CWRU and University Hospital of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
50
|
Teng L, Fan LM, Meijles D, Li JM. Divergent effects of p47(phox) phosphorylation at S303-4 or S379 on tumor necrosis factor-α signaling via TRAF4 and MAPK in endothelial cells. Arterioscler Thromb Vasc Biol 2012; 32:1488-96. [PMID: 22460559 DOI: 10.1161/atvbaha.112.247775] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To define the mechanism of p47(phox) phosphorylation in regulating endothelial cell response to tumor necrosis factor-α (TNFα) stimulation. METHODS AND RESULTS We replaced 11 serines (303-4, 310, 315, 320, 328, 345, 348, 359, 370, and 379) with alanines and investigated their effects on TNFα (100 U/mL, 30 minutes)-induced acute O(2)(.-) production and mitogen-activated protein kinase phosphorylation in endothelial cells. Seven constructs, S303-4A (double), S310A, S315A, S328A, S345A, S370A, and S379A, significantly reduced the O(2)(.-) production, and 4 of them (S328A, S345A, S370A, and S379A) also inhibited TNFα-induced extracellular-signal-regulated kinase (ERK) 1/2 phosphorylation. Blocking the phosphorylation of S303-4 and S379 inhibited most effectively TNFα-induced O(2)(.-) production. However, phosphorylation of S303-4 was not required for TNFα-induced p47(phox) membrane translocation and binding to TNF receptor-associated factor 4, ERK1/2 activation, and subsequent vascular cell adhesion molecule-1 expression. Knockout of p47(phox) or knockdown of TNF receptor-associated factor 4 using siRNA abolished TNFα-induced ERK1/2 phosphorylation, and inhibition of ERK1/2 activation significantly reduced the TNFα-induced vascular cell adhesion molecule-1 expression. CONCLUSIONS Phosphorylation of p47(phox) at different serine sites plays distinct roles in endothelial cell response to TNFα stimulation. Double serine (S303-4) phosphorylation is crucial for acute O(2)(.-) production, but is not involved in TNFα signaling through TNF receptor-associated factor 4 and ERK1/2. p47(phox) requires serine phosphorylation at distinct sites to support specific signaling events in response to TNFα.
Collapse
Affiliation(s)
- Lei Teng
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | | | | |
Collapse
|