1
|
Michalska Z, Ostaszewska A, Fularczyk M, Dzierżyńska M, Bielak K, Morytz J, Sieradzan AK, Archacka K, Brzoska E, Rodziewicz-Motowidło S, Ciemerych MA. In Vitro Bioactivity Evaluation of IL-4 and SDF-1 Mimicking Peptides Engineered to Enhance Skeletal Muscle Reconstruction. J Biomed Mater Res A 2025; 113:e37898. [PMID: 40087853 DOI: 10.1002/jbm.a.37898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Skeletal muscle regeneration depends on satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, this process may not be properly executed, and muscle function may be affected. Thus, pro-regenerative actions, such as the use of various factors or cells, are widely tested as a tool to improve muscle regeneration. In the current study, we designed peptides derived from the IL-4 and SDF-1 proteins, namely IL-4-X, IL-4-Y, SDF-1-X, and SDF-1-Y. We showed that these peptides can bind to appropriate receptors and can adopt proper structure in solution. Importantly, we documented, using in vitro culture, that they do not negatively affect the cells that are present and active in skeletal muscles, such as myoblasts and fibroblasts, bone marrow stromal cells, as well as induced pluripotent stem cells, which can serve as a source of myoblasts. The presence of peptides did not affect cell proliferation compared to untreated cells. In vitro culture and differentiation protocols documented that selected IL-4 and SDF-1 peptides increased cell migration and inhibited undesirable adipogenic differentiation. Thus, we proved that these peptides are safe to use in in vivo studies aimed at improving skeletal muscle regeneration.
Collapse
Affiliation(s)
- Zuzanna Michalska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ostaszewska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Martyna Fularczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Kacper Bielak
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Justyna Morytz
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam K Sieradzan
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Boss-Kennedy A, Kim D, Barai P, Maldonado C, Reyes-Ordoñez A, Chen J. Muscle cell-derived Ccl8 is a negative regulator of skeletal muscle regeneration. FASEB J 2024; 38:e23841. [PMID: 39051762 PMCID: PMC11279459 DOI: 10.1096/fj.202400184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Skeletal muscles undergo robust regeneration upon injury, and infiltrating immune cells play a major role in not only clearing damaged tissues but also regulating the myogenic process through secreted cytokines. Chemokine C-C motif ligand 8 (Ccl8), along with Ccl2 and Ccl7, has been reported to mediate inflammatory responses to suppress muscle regeneration. Ccl8 is also expressed by muscle cells, but a role of the muscle cell-derived Ccl8 in myogenesis has not been reported. In this study, we found that knockdown of Ccl8, but not Ccl2 or Ccl7, led to increased differentiation of C2C12 myoblasts. Analysis of existing single-cell transcriptomic datasets revealed that both immune cells and muscle stem cells (MuSCs) in regenerating muscles express Ccl8, with the expression by MuSCs at a much lower level, and that the temporal patterns of Ccl8 expression were different in MuSCs and macrophages. To probe a function of muscle cell-derived Ccl8 in vivo, we utilized a mouse system in which Cas9 was expressed in Pax7+ myogenic progenitor cells (MPCs) and Ccl8 gene editing was induced by AAV9-delivered sgRNA. Depletion of Ccl8 in Pax7+ MPCs resulted in accelerated muscle regeneration after barium chloride-induced injury in both young and middle-aged mice, and intramuscular administration of a recombinant Ccl8 reversed the phenotype. Accelerated regeneration was also observed when Ccl8 was depleted in Myf5+ or MyoD+ MPCs by similar approaches. Our results suggest that muscle cell-derived Ccl8 plays a unique role in regulating the initiation of myogenic differentiation during injury-induced muscle regeneration.
Collapse
Affiliation(s)
- A Boss-Kennedy
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - D Kim
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - P Barai
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - C Maldonado
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - A Reyes-Ordoñez
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - J Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
4
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Distinct transcriptomic profile of satellite cells contributes to preservation of neuromuscular junctions in extraocular muscles of ALS mice. eLife 2024; 12:RP92644. [PMID: 38661532 PMCID: PMC11045223 DOI: 10.7554/elife.92644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible 'response biomarkers' in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple UniversityPhiladelphiaUnited States
| | - Jianjie Ma
- Department of Surgery, Division of Surgical Sciences, University of VirginiaCharlottesvilleUnited States
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| |
Collapse
|
5
|
Yi H, Chen G, Qiu S, Maxwell JT, Lin G, Criswell T, Zhang Y. Urine-derived stem cells genetically modified with IGF1 improve muscle regeneration. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:64-87. [PMID: 38736619 PMCID: PMC11087207 DOI: 10.62347/qskh2686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE In this study we aimed to determine the impact of human urine derived stem cells (USC) and genetically modified USC that were designed to overexpress myogenic growth factor IGF1 (USCIGF), on the regenerative capacity of cardiotoxin (CTX)-injured murine skeletal muscle. METHODS We overexpressed IGF1 in USC and investigated the alterations in myogenic capacity and regenerative function in cardiotoxin-injured muscle tissues. RESULTS Compared with USC alone, USCIGF1 activated the IGF1-Akt-mTOR signaling pathway, significantly improved myogenic differentiation capacity in vitro, and enhanced the secretion of myogenic growth factors and cytokines. In addition, IGF1 overexpression increased the ability of USC to fuse with skeletal myocytes to form myotubes, regulated the pro-regenerative immune response and inflammatory cytokines, and increased myogenesis in an in vivo model of skeletal muscle injury. CONCLUSION Overall, USC genetically modified to overexpress IGF1 significantly enhanced skeletal muscle regeneration by regulating myogenic differentiation, paracrine effects, and cell fusion, as well as by modulating immune responses in injured skeletal muscles in vivo. This study provides a novel perspective for evaluating the myogenic function of USC as a nonmyogenic cell source in skeletal myogenesis. The combination of USC and IGF1 expression has the potential to provide a novel efficient therapy for skeletal muscle injury and associated muscular defects in patients with urinary incontinence.
Collapse
Affiliation(s)
- Hualin Yi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated HospitalGuangzhou, Guangdong, China
| | - Gang Chen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyang, Hubei, China
| | - Shuai Qiu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Joshua T Maxwell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
| | - Guiting Lin
- Department of Urology, University of CaliforniaSan Francisco, California, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
| |
Collapse
|
6
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Distinct transcriptomic profile of satellite cells contributes to preservation of neuromuscular junctions in extraocular muscles of ALS mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.12.528218. [PMID: 36824725 PMCID: PMC9949002 DOI: 10.1101/2023.02.12.528218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7 + satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12 , along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro . Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible "response biomarkers" in pre-clinical and clinical studies.
Collapse
|
7
|
Guo Q, Luo Q, Song G. Control of muscle satellite cell function by specific exercise-induced cytokines and their applications in muscle maintenance. J Cachexia Sarcopenia Muscle 2024; 15:466-476. [PMID: 38375571 PMCID: PMC10995279 DOI: 10.1002/jcsm.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 02/21/2024] Open
Abstract
Exercise is recognized to play an observable role in improving human health, especially in promoting muscle hypertrophy and intervening in muscle mass loss-related diseases, including sarcopenia. Recent rapid advances have demonstrated that exercise induces the release of abundant cytokines from several tissues (e.g., liver, muscle, and adipose tissue), and multiple cytokines improve the functions or expand the numbers of adult stem cells, providing candidate cytokines for alleviating a wide range of diseases. Muscle satellite cells (SCs) are a population of muscle stem cells that are mitotically quiescent but exit from the dormancy state to become activated in response to physical stimuli, after which SCs undergo asymmetric divisions to generate new SCs (stem cell pool maintenance) and commit to later differentiation into myocytes (skeletal muscle replenishment). SCs are essential for the postnatal growth, maintenance, and regeneration of skeletal muscle. Emerging evidence reveals that exercise regulates muscle function largely via the exercise-induced cytokines that govern SC potential, but this phenomenon is complicated and confusing. This review provides a comprehensive integrative overview of the identified exercise-induced cytokines and the roles of these cytokines in SC function, providing a more complete picture regarding the mechanism of SC homeostasis and rejuvenation therapies for skeletal muscle.
Collapse
Affiliation(s)
- Qian Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
8
|
Shakarchy A, Zarfati G, Hazak A, Mealem R, Huk K, Ziv T, Avinoam O, Zaritsky A. Machine learning inference of continuous single-cell state transitions during myoblast differentiation and fusion. Mol Syst Biol 2024; 20:217-241. [PMID: 38238594 PMCID: PMC10912675 DOI: 10.1038/s44320-024-00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
Cells modify their internal organization during continuous state transitions, supporting functions from cell division to differentiation. However, tools to measure dynamic physiological states of individual transitioning cells are lacking. We combined live-cell imaging and machine learning to monitor ERK1/2-inhibited primary murine skeletal muscle precursor cells, that transition rapidly and robustly from proliferating myoblasts to post-mitotic myocytes and then fuse, forming multinucleated myotubes. Our models, trained using motility or actin intensity features from single-cell tracking data, effectively tracked real-time continuous differentiation, revealing that differentiation occurs 7.5-14.5 h post induction, followed by fusion ~3 h later. Co-inhibition of ERK1/2 and p38 led to differentiation without fusion. Our model inferred co-inhibition leads to terminal differentiation, indicating that p38 is specifically required for transitioning from terminal differentiation to fusion. Our model also predicted that co-inhibition leads to changes in actin dynamics. Mass spectrometry supported these in silico predictions and suggested novel fusion and maturation regulators downstream of differentiation. Collectively, this approach can be adapted to various biological processes to uncover novel links between dynamic single-cell states and their functional outcomes.
Collapse
Affiliation(s)
- Amit Shakarchy
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Giulia Zarfati
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Adi Hazak
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Reut Mealem
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Karina Huk
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 761001, Israel.
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
9
|
Yang J, Dong X, Wen H, Li Y, Wang X, Yan S, Zuo C, Lyu L, Zhang K, Qi X. FGFs function in regulating myoblasts differentiation in spotted sea bass (Lateolabrax maculatus). Gen Comp Endocrinol 2024; 347:114426. [PMID: 38103843 DOI: 10.1016/j.ygcen.2023.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related peptides that regulate processes such as cell proliferation, differentiation, and damage repair. In our previous study, fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL), when identified of QTLs and genetic markers for growth-related traits in spotted sea bass. However, knowledge of the function of fgfr4 is lacking, even the legends to activate the receptor is unknown in fish. To remedy this problem, in the present study, a total of 33 fgfs were identified from the genomic and transcriptomic databases of spotted sea bass, of which 10 were expressed in the myoblasts. According to the expression pattern during myoblasts proliferation and differentiation, fgf6a, fgf6b and fgf18 were selected for further prokaryotic expression and purification. The recombinant proteins FGF6a, FGF6b and FGF18 were found to inhibit myoblast differentiation. Overall, our results provide a theoretical basis for the molecular mechanisms of growth regulation in economic fish such as spotted sea bass.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003.
| |
Collapse
|
10
|
Tavakoli S, Garcia V, Gähwiler E, Adatto I, Rangan A, Messemer KA, Kakhki SA, Yang S, Chan VS, Manning ME, Fotowat H, Zhou Y, Wagers AJ, Zon LI. Transplantation-based screen identifies inducers of muscle progenitor cell engraftment across vertebrate species. Cell Rep 2023; 42:112365. [PMID: 37018075 PMCID: PMC10548355 DOI: 10.1016/j.celrep.2023.112365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023] Open
Abstract
Stem cell transplantation presents a potentially curative strategy for genetic disorders of skeletal muscle, but this approach is limited by the deleterious effects of cell expansion in vitro and consequent poor engraftment efficiency. In an effort to overcome this limitation, we sought to identify molecular signals that enhance the myogenic activity of cultured muscle progenitors. Here, we report the development and application of a cross-species small-molecule screening platform employing zebrafish and mice, which enables rapid, direct evaluation of the effects of chemical compounds on the engraftment of transplanted muscle precursor cells. Using this system, we screened a library of bioactive lipids to discriminate those that could increase myogenic engraftment in vivo in zebrafish and mice. This effort identified two lipids, lysophosphatidic acid and niflumic acid, both linked to the activation of intracellular calcium-ion flux, which showed conserved, dose-dependent, and synergistic effects in promoting muscle engraftment across these vertebrate species.
Collapse
Affiliation(s)
- Sahar Tavakoli
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vivian Garcia
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Eric Gähwiler
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Institute for Regenerative Medicine, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Isaac Adatto
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Apoorva Rangan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Stanford Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sara Ashrafi Kakhki
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Victoria S Chan
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Margot E Manning
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Haleh Fotowat
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA.
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Andre AB, Rees KP, O’Connor S, Severson GW, Newbern JM, Wilson-Rawls J, Plaisier CL, Rawls A. Single cell analysis reveals satellite cell heterogeneity for proinflammatory chemokine expression. Front Cell Dev Biol 2023; 11:1084068. [PMID: 37051469 PMCID: PMC10083252 DOI: 10.3389/fcell.2023.1084068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Background: The expression of proinflammatory signals at the site of muscle injury are essential for efficient tissue repair and their dysregulation can lead to inflammatory myopathies. Macrophages, neutrophils, and fibroadipogenic progenitor cells residing in the muscle are significant sources of proinflammatory cytokines and chemokines. However, the inducibility of the myogenic satellite cell population and their contribution to proinflammatory signaling is less understood.Methods: Mouse satellite cells were isolated and exposed to lipopolysaccharide (LPS) to mimic sterile skeletal muscle injury and changes in the expression of proinflammatory genes was examined by RT-qPCR and single cell RNA sequencing. Expression patterns were validated in skeletal muscle injured with cardiotoxin by RT-qPCR and immunofluorescence.Results: Satellite cells in culture were able to express Tnfa, Ccl2, and Il6, within 2 h of treatment with LPS. Single cell RNA-Seq revealed seven cell clusters representing the continuum from activation to differentiation. LPS treatment led to a heterogeneous pattern of induction of C-C and C-X-C chemokines (e.g., Ccl2, Ccl5, and Cxcl0) and cytokines (e.g., Tgfb1, Bmp2, Il18, and Il33) associated with innate immune cell recruitment and satellite cell proliferation. One cell cluster was enriched for expression of the antiviral interferon pathway genes under control conditions and LPS treatment. Activation of this pathway in satellite cells was also detectable at the site of cardiotoxin induced muscle injury.Conclusion: These data demonstrate that satellite cells respond to inflammatory signals and secrete chemokines and cytokines. Further, we identified a previously unrecognized subset of satellite cells that may act as sensors for muscle infection or injury using the antiviral interferon pathway.
Collapse
Affiliation(s)
- Alexander B. Andre
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, United States
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, United States
| | - Samantha O’Connor
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Biomedical Engineering Graduate Program, Arizona State University, Tempe, AZ, United States
| | - Grant W. Severson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, United States
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Christopher L. Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Alan Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- *Correspondence: Alan Rawls,
| |
Collapse
|
12
|
Mendes S, Leal DV, Baker LA, Ferreira A, Smith AC, Viana JL. The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24076017. [PMID: 37046990 PMCID: PMC10094245 DOI: 10.3390/ijms24076017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Kidney Disease (CKD) is a global health burden with high mortality and health costs. CKD patients exhibit lower cardiorespiratory and muscular fitness, strongly associated with morbidity/mortality, which is exacerbated when they reach the need for renal replacement therapies (RRT). Muscle wasting in CKD has been associated with an inflammatory/oxidative status affecting the resident cells' microenvironment, decreasing repair capacity and leading to atrophy. Exercise may help counteracting such effects; however, the molecular mechanisms remain uncertain. Thus, trying to pinpoint and understand these mechanisms is of particular interest. This review will start with a general background about myogenesis, followed by an overview of the impact of redox imbalance as a mechanism of muscle wasting in CKD, with focus on the modulatory effect of exercise on the skeletal muscle microenvironment.
Collapse
Affiliation(s)
- Sara Mendes
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Diogo V Leal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Luke A Baker
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Aníbal Ferreira
- Nova Medical School, 1169-056 Lisbon, Portugal
- NephroCare Portugal SA, 1750-233 Lisbon, Portugal
| | - Alice C Smith
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| |
Collapse
|
13
|
Huang Y, Cai L, Duan Y, Zeng Q, He M, Wu Z, Zou X, Zhou M, Zhang Z, Xiao S, Yang B, Ma J, Huang L. Whole-genome sequence-based association analyses on an eight-breed crossed heterogeneous stock of pigs reveal the genetic basis of skeletal muscle fiber characteristics. Meat Sci 2022; 194:108974. [PMID: 36167013 DOI: 10.1016/j.meatsci.2022.108974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Skeletal muscle fiber characteristics (MFCs) have been extensively studied due to their importance to human health and athletic ability, as well as to the quantity and quality of livestock meat production. Hence, we performed a genome-wide association study (GWAS) on nine muscle fiber traits by using whole genome sequence data in an eight-breed crossed heterogeneous stock pig population. This GWAS revealed 67 quantitative trait loci (QTLs) for these traits. The most significant GWAS signal was detected in the region of Sus scrofa chromosome 12 (SSC12) containing the MYH gene family. Notably, we identified a significant SNP rs322008693 (P = 7.52E-09) as the most likely causal mutation for the total number of muscle fibers (TNMF) QTL on SSC1. The results of EMSA and luciferase assays indicated that the rs322008693 SNP resided in a functional element. These findings provide valuable molecular markers for pig meat production selection as well as for deciphering the genetic mechanisms of the muscle fiber physiology.
Collapse
Affiliation(s)
- Yizhong Huang
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liping Cai
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanyu Duan
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingjie Zeng
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Maozhang He
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Wu
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoxiao Zou
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mengqing Zhou
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhou Zhang
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shijun Xiao
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Yang
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junwu Ma
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lusheng Huang
- State Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
14
|
Zhang W, Yu J, Fu G, Li J, Huang H, Liu J, Yu D, Qiu M, Li F. ISL1/SHH/CXCL12 signaling regulates myogenic cell migration during mouse tongue development. Development 2022; 149:277065. [DOI: 10.1242/dev.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT
Migration of myoblasts derived from the occipital somites is essential for tongue morphogenesis. However, the molecular mechanisms of myoblast migration remain elusive. In this study, we report that deletion of Isl1 in the mouse mandibular epithelium leads to aglossia due to myoblast migration defects. Isl1 regulates the expression pattern of chemokine ligand 12 (Cxcl12) in the first branchial arch through the Shh/Wnt5a cascade. Cxcl12+ mesenchymal cells in Isl1ShhCre embryos were unable to migrate to the distal region, but instead clustered in a relatively small proximal domain of the mandible. CXCL12 serves as a bidirectional cue for myoblasts expressing its receptor CXCR4 in a concentration-dependent manner, attracting Cxcr4+ myoblast invasion at low concentrations but repelling at high concentrations. The accumulation of Cxcl12+ mesenchymal cells resulted in high local concentrations of CXCL12, which prevented Cxcr4+ myoblast invasion. Furthermore, transgenic activation of Ihh alleviated defects in tongue development and rescued myoblast migration, confirming the functional involvement of Hedgehog signaling in tongue development. In summary, this study provides the first line of genetic evidence that the ISL1/SHH/CXCL12 axis regulates myoblast migration during tongue development.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jiaojiao Yu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Guoquan Fu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Huarong Huang
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Department of Environmental Sciences, College of Environmental and Resource Sciences, Zhejiang University 2 , Hangzhou 310058 , People's Republic of China
| | - Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University 3 , Hangzhou 310018 , People's Republic of China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| | - Feixue Li
- Zhejiang Key Laboratory 1 , Hangzhou 311121 , People's Republic of China
- of Organ Development and Regeneration, Department of Biological Sciences, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University 1 , Hangzhou 311121 , People's Republic of China
| |
Collapse
|
15
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
16
|
De Paepe B, Bracke KR, De Bleecker JL. An exploratory study of circulating cytokines and chemokines in patients with muscle disorders proposes CD40L and CCL5 represent general disease markers while CXCL10 differentiates between patients with an autoimmune myositis. Cytokine X 2022; 4:100063. [PMID: 35128380 PMCID: PMC8803590 DOI: 10.1016/j.cytox.2022.100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Discriminating an autoimmune myositis from other disorders and subtyping of patient groups within this heterogeneous group of conditions remain diagnostic challenges. In our study we explored the potential of cytokine and chemokine typing in patient sera as an addition to the expanding set of blood-accessible diagnostic biomarkers available today. We selected sets of ten patients within well-characterized disease groups representing healthy controls, and patients with hereditary muscular dystrophies, immune-mediated necrotizing myopathy (IMNM) and sporadic inclusion body myositis (IBM). Prescreening using proteome arrays singled out three biomarker candidates, being the cytokine CD40L, and chemokines CXCL10 and CCL5. Enzyme-linked immunosorbent assays showed all three markers to be elevated in muscle disease irrespective of patient subgroup. CXCL10 levels on the other hand were higher in autoimmune myositis only, and levels were significantly higher in IBM compared to IMNM. The strong CXCL10 expression observed in the auto-aggressive inflammatory cells within IBM muscle tissues possibly represents a major source of circulating CXCL10. We conclude that CXCL10 levels could represent a convenient marker for autoimmune myositis indicative of patient subgroups.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
- Corresponding author at: Neuromuscular Reference Center, Ghent University Hospital, Route 830 - 3K5, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Ken R. Bracke
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan L. De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
17
|
Bhat N, Narayanan A, Fathzadeh M, Shah K, Dianatpour M, Abou Ziki MD, Mani A. Dyrk1b promotes autophagy during skeletal muscle differentiation by upregulating 4e-bp1. Cell Signal 2022; 90:110186. [PMID: 34752933 PMCID: PMC8712395 DOI: 10.1016/j.cellsig.2021.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
Rare gain of function mutations in the gene encoding Dyrk1b, a key regulator of skeletal muscle differentiation, have been associated with sarcopenic obesity (SO) and metabolic syndrome (MetS) in humans. So far, the global gene networks regulated by Dyrk1b during myofiber differentiation have remained elusive. Here, we have performed untargeted proteomics to determine Dyrk1b-dependent gene-network in differentiated C2C12 myofibers. This analysis led to identification of translational inhibitor, 4e-bp1 as a post-transcriptional target of Dyrk1b in C2C12 cells. Accordingly, CRISPR/Cas9 mediated knockout of Dyrk1b in zebrafish identified 4e-bp1 as a downstream target of Dyrk1b in-vivo. The Dyrk1b knockout zebrafish embryos exhibited markedly reduced myosin heavy chain 1 expression in poorly developed myotomes and were embryonic lethal. Using knockdown and overexpression approaches in C2C12 cells, we found that 4e-bp1 enhances autophagy and mediates the effects of Dyrk1b on skeletal muscle differentiation. Dyrk1bR102C, the human sarcopenic obesity-associated mutation impaired muscle differentiation via excessive activation of 4e-bp1/autophagy axis in C2C12 cells. Strikingly, the defective muscle differentiation in Dyrk1bR102C cells was rescued by reduction of autophagic flux. The identification of Dyrk1b-4e-bp1-autophagy axis provides significant insight into pathways that are relevant to human skeletal muscle development and disorders.
Collapse
Affiliation(s)
- Neha Bhat
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anand Narayanan
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mohsen Fathzadeh
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kanan Shah
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mehdi Dianatpour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maen D Abou Ziki
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
18
|
Lagerwaard B, Nieuwenhuizen AG, Bunschoten A, de Boer VC, Keijer J. Matrisome, innervation and oxidative metabolism affected in older compared with younger males with similar physical activity. J Cachexia Sarcopenia Muscle 2021; 12:1214-1231. [PMID: 34219410 PMCID: PMC8517362 DOI: 10.1002/jcsm.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Due to the interaction between skeletal muscle ageing and lifestyle factors, it is often challenging to attribute the decline in muscle mass and quality to either changes in lifestyle or to advancing age itself. Because many of the physiological factors affecting muscle mass and quality are modulated by physical activity and physical activity declines with age, the aim of this study is to better understand the effects of early ageing on muscle function by comparing a population of healthy older and young males with similar physical activity patterns. METHODS Eighteen older (69 ± 2.0 years) and 20 young (22 ± 2.0 years) males were recruited based on similar self-reported physical activity, which was verified using accelerometry measurements. Gene expression profiles of vastus lateralis biopsies obtained by RNA sequencing were compared, and key results were validated using quantitative polymerase chain reaction and western blot. RESULTS Total physical activity energy expenditure was similar between the young and old group (404 ± 215 vs. 411 ± 189 kcal/day, P = 0.11). Three thousand seven hundred ninety-seven differentially expressed coding genes (DEGs) were identified (adjusted P-value cut-off of <0.05), of which 1891 were higher and 1906 were lower expressed in the older muscle. The matrisome, innervation and inflammation were the main upregulated processes, and oxidative metabolism was the main downregulated process in old compared with young muscle. Lower protein levels of mitochondrial transcription factor A (TFAM, P = 0.030) and mitochondrial respiratory Complexes IV and II (P = 0.011 and P = 0.0009, respectively) were observed, whereas a trend was observed for Complex I (P = 0.062), in older compared with young muscle. Protein expression of Complexes I and IV was significantly correlated to mitochondrial capacity in the vastus lateralis as measured in vivo (P = 0.017, R2 = 0.42 and P = 0.030, R2 = 0.36). A trend for higher muscle-specific receptor kinase (MUSK) protein levels in the older group was observed (P = 0.08). CONCLUSIONS There are clear differences in the transcriptome signatures of the vastus lateralis muscle of healthy older and young males with similar physical activity levels, including significant differences at the protein level. By disentangling physical activity and ageing, we appoint early skeletal muscle ageing processes that occur despite similar physical activity. Improved understanding of these processes will be key to design targeted anti-ageing therapies.
Collapse
Affiliation(s)
- Bart Lagerwaard
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
- TI Food and NutritionWageningenThe Netherlands
| | - Arie G. Nieuwenhuizen
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Annelies Bunschoten
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Vincent C.J. de Boer
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
19
|
Lahmann I, Griger J, Chen JS, Zhang Y, Schuelke M, Birchmeier C. Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration. eLife 2021; 10:57356. [PMID: 34350830 PMCID: PMC8370772 DOI: 10.7554/elife.57356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species, as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.
Collapse
Affiliation(s)
- Ines Lahmann
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Jie-Shin Chen
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Yao Zhang
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
20
|
Demina PA, Sindeeva OA, Abramova AM, Prikhozhdenko ES, Verkhovskii RA, Lengert EV, Sapelkin AV, Goryacheva IY, Sukhorukov GB. Fluorescent Convertible Capsule Coding Systems for Individual Cell Labeling and Tracking. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19701-19709. [PMID: 33900738 DOI: 10.1021/acsami.1c02767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand in situ with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules. We show that this new fluorescent convertible capsule coding system is robust and is actively uptaken by cell lines while demonstrating low toxicity. Using a variety of cellular lines, we demonstrate how this tagging system can be used for code-like marking and long-term tracking of multiple individual cells in large cellular populations.
Collapse
Affiliation(s)
- Polina A Demina
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Olga A Sindeeva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna M Abramova
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | | | | | | | - Andrei V Sapelkin
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
- Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | | | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
21
|
Skeletal Muscle Subpopulation Rearrangements upon Rhabdomyosarcoma Development through Single-Cell Mass Cytometry. J Clin Med 2021; 10:jcm10040823. [PMID: 33671425 PMCID: PMC7922544 DOI: 10.3390/jcm10040823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
The embryonal rhabdomyosarcoma (eRMS) is a soft tissue sarcoma commonly affecting the head and neck, the extremities and the genitourinary tract. To contribute to revealing the cell types that may originate this tumor, we exploited mass cytometry, a single-cell technique that, by using heavy-metal-tagged antibodies, allows the accurate monitoring of the changes occurring in the mononuclear cell composition of skeletal muscle tissue during tumor development. To this end, we compared cell populations of healthy muscles with those from spatiotemporal-induced eRMS tumors in a mouse model (LSL-KrasG12D/+;Tp53Fl/Fl) that can be used to develop rhabdomyosarcoma by means of infection with an adenovirus vector expressing Cre (Ad-Cre) recombinase. By monitoring different time points after tumor induction, we were able to analyze tumor progression and composition, identifying fibro/adipogenic progenitors (FAPs) as the cell type that, in this model system, had a pivotal role in tumor development. In vitro studies highlighted that both FAPs and satellite cells (SCs), upon infection with the Ad-Cre, acquired the potential to develop rhabdomyosarcomas when transplanted into immunocompromised mice. However, only infected FAPs had an antigen profile that was similar to embryonal rhabdomyosarcoma cells. Overall, our analysis supports the involvement of FAPs in eRMS development.
Collapse
|
22
|
Puchert M, Koch C, Zieger K, Engele J. Identification of CXCL11 as part of chemokine network controlling skeletal muscle development. Cell Tissue Res 2021; 384:499-511. [PMID: 33502606 PMCID: PMC8141492 DOI: 10.1007/s00441-020-03398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
The chemokine, CXCL12, and its receptors, CXCR4 and CXCR7, play pivotal roles during development and maintenance of limb muscles. CXCR7 additionally binds CXCL11, which uses CXCR3 as its prime receptor. Based on this cross-talk, we investigate whether CXCL11 would likewise affect development and/or function of skeletal muscles. Western blotting and immunolabelling demonstrated the developmentally restricted expression of CXCL11 in rat limb muscles, which was contrasted by the continuous expression of its receptors in proliferating and differentiating C2C12 cells as well as in late embryonic to adult rat limb muscle fibres. Consistent with a prime role in muscle formation, functional studies identified CXCL11 as a potent chemoattractant for undifferentiated C2C12 cells and further showed that CXCL11 does neither affect myoblast proliferation and differentiation nor metabolic/catabolic pathways in formed myotubes. The use of selective receptor antagonists unravelled complementary effects of CXCL11 and CXCL12 on C2C12 cell migration, which either require CXCR3/CXCR7 or CXCR4, respectively. Our findings provide new insights into the chemokine network controlling skeletal muscle development and function and, thus, might provide a base for future therapies of muscular diseases.
Collapse
Affiliation(s)
- Malte Puchert
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany
| | - Christian Koch
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany
| | - Konstanze Zieger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany.
| |
Collapse
|
23
|
Ceco E, Celli D, Weinberg S, Shigemura M, Welch LC, Volpe L, Chandel NS, Bharat A, Lecuona E, Sznajder JI. Elevated CO 2 Levels Delay Skeletal Muscle Repair by Increasing Fatty Acid Oxidation. Front Physiol 2021; 11:630910. [PMID: 33551852 PMCID: PMC7859333 DOI: 10.3389/fphys.2020.630910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Muscle dysfunction often occurs in patients with chronic obstructive pulmonary diseases (COPD) and affects ventilatory and non-ventilatory skeletal muscles. We have previously reported that hypercapnia (elevated CO2 levels) causes muscle atrophy through the activation of the AMPKα2-FoxO3a-MuRF1 pathway. In the present study, we investigated the effect of normoxic hypercapnia on skeletal muscle regeneration. We found that mouse C2C12 myoblasts exposed to elevated CO2 levels had decreased fusion index compared to myoblasts exposed to normal CO2. Metabolic analyses of C2C12 myoblasts exposed to high CO2 showed increased oxidative phosphorylation due to increased fatty acid oxidation. We utilized the cardiotoxin-induced muscle injury model in mice exposed to normoxia and 10% CO2 for 21 days and observed that muscle regeneration was delayed. High CO2-delayed differentiation in both mouse C2C12 myoblasts and skeletal muscle after injury and was restored to control levels when cells or mice were treated with a carnitine palmitoyltransfearse-1 (CPT1) inhibitor. Taken together, our data suggest that hypercapnia leads to changes in the metabolic activity of skeletal muscle cells, which results in impaired muscle regeneration and recovery after injury.
Collapse
Affiliation(s)
- Ermelinda Ceco
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Diego Celli
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Samuel Weinberg
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lena Volpe
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ankit Bharat
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Emilia Lecuona
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
24
|
Yegorova S, Yegorov O, Ferreira LF. RNA-sequencing reveals transcriptional signature of pathological remodeling in the diaphragm of rats after myocardial infarction. Gene 2020; 770:145356. [PMID: 33333219 DOI: 10.1016/j.gene.2020.145356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
The diaphragm is the main inspiratory muscle, and the chronic phase post-myocardial infarction (MI) is characterized by diaphragm morphological, contractile, and metabolic abnormalities. However, the mechanisms of diaphragm weakness are not fully understood. In the current study, we aimed to identify the transcriptome changes associated with diaphragm abnormalities in the chronic stage MI. We ligated the left coronary artery to cause MI in rats and performed RNA-sequencing (RNA-Seq) in diaphragm samples 16 weeks post-surgery. The sham group underwent thoracotomy and pericardiotomy but no artery ligation. We identified 112 differentially expressed genes (DEGs) out of a total of 9664 genes. Myocardial infarction upregulated and downregulated 42 and 70 genes, respectively. Analysis of DEGs in the framework of skeletal muscle-specific biological networks suggest remodeling in the neuromuscular junction, extracellular matrix, sarcomere, cytoskeleton, and changes in metabolism and iron homeostasis. Overall, the data are consistent with pathological remodeling of the diaphragm and reveal potential biological targets to prevent diaphragm weakness in the chronic stage MI.
Collapse
Affiliation(s)
- Svetlana Yegorova
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | - Oleg Yegorov
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA.
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
25
|
Alexeev V, Olavarria J, Bonaldo P, Merlini L, Igoucheva O. Congenital muscular dystrophy-associated inflammatory chemokines provide axes for effective recruitment of therapeutic adult stem cell into muscles. Stem Cell Res Ther 2020; 11:463. [PMID: 33138863 PMCID: PMC7607684 DOI: 10.1186/s13287-020-01979-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Congenital muscular dystrophies (CMD) are a clinically and genetically heterogeneous group of neuromuscular disorders characterized by muscle weakness. The two most prevalent forms of CMD, collagen VI-related myopathies (COL6RM) and laminin α2 deficient CMD type 1A (MDC1A), are both caused by deficiency or dysfunction of extracellular matrix proteins. Previously, we showed that an intramuscular transplantation of human adipose-derived stem cells (ADSC) into the muscle of the Col6a1−/− mice results in efficient stem cell engraftment, migration, long-term survival, and continuous production of the collagen VI protein, suggesting the feasibility of the systemic cellular therapy for COL6RM. In order for this therapeutic approach to work however, stem cells must be efficiently targeted to the entire body musculature. Thus, the main goal of this study is to test whether muscle homing of systemically transplanted ADSC can be enhanced by employing muscle-specific chemotactic signals originating from CMD-affected muscle tissue. Methods Proteomic screens of chemotactic molecules were conducted in the skeletal muscles of COL6RM- and MDC1A-affected patients and CMD mouse models to define the inflammatory and immune activities, thus, providing potential markers of disease activity or treatment effect. Also using a pre-clinical animal model, recapitulating mild Ullrich congenital muscular dystrophy (UCMD), the therapeutic relevance of identified chemotactic pathways was investigated in vivo, providing a basis for future clinical investigations. Results Comprehensive proteomic screens evaluating relevant human and mouse skeletal muscle biopsies offered chemotactic axes to enhance directional migration of systemically transplanted cells into CMD-affected muscles, including CCL5-CCR1/3/5, CCL2-CCR2, CXCL1/2-CXCR1,2, and CXCL7-CXCR2. Also, the specific populations of ADSC selected with an affinity for the chemokines being released by damaged muscle showed efficient migration to injured site and presented their therapeutic effect. Conclusions Collectively, identified molecules provided insight into the mechanisms governing directional migration and intramuscular trafficking of systemically infused stem cells, thus, permitting broad and effective application of the therapeutic adult stem cells for CMD treatment.
Collapse
Affiliation(s)
- Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB, Rm. 430, Philadelphia, PA, 19107, USA
| | - Jacquelyn Olavarria
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB, Rm. 430, Philadelphia, PA, 19107, USA
| | - Paolo Bonaldo
- Departments of Molecular Medicine, University of Padova, Padova, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB, Rm. 430, Philadelphia, PA, 19107, USA.
| |
Collapse
|
26
|
Tan Y, Jin Y, Wang S, Cao J, Ren Z. The RNA surveillance factor UPF1 regulates the migration and adhesion of porcine skeletal muscle satellite cells. J Muscle Res Cell Motil 2020; 42:203-217. [PMID: 32990898 DOI: 10.1007/s10974-020-09585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Skeletal muscle satellite cells (SCs) play an important role in the repairment and regeneration of damaged muscle. The activation, proliferation, migration, and differentiation of SCs are essential to the response to muscle injury. Up-frameshift 1 (UPF1) is involved in the regulation of many developmental processes. However, the role of UPF1 and its associated regulatory mechanism in SCs are still unclear. Here, we analyzed changes in the transcriptome of porcine SCs with UPF1 knockdown. The results showed that focal adhesion and actin cytoskeleton processes were regulated by UPF1. We also confirmed experimentally that UPF1 promoted SC migration and adhesion by regulating the expression of F-Actin, Vinculin, and several adhesion-related genes. Furthermore, we found that phosphorylated focal adhesion kinase (p-FAK) was down-regulated by UPF1 knockdown. This study identifies the role of UPF1 in regulating SC migration and adhesion and therefore provides new insight into the regulatory mechanism of UPF1 in the process of repairing damaged muscle.
Collapse
Affiliation(s)
- Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Sheng Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jianhua Cao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Prats-Puig A, García-Retortillo S, Puig-Parnau M, Vasileva F, Font-Lladó R, Xargay-Torrent S, Carreras-Badosa G, Mas-Parés B, Bassols J, López-Bermejo A. DNA Methylation Reorganization of Skeletal Muscle-Specific Genes in Response to Gestational Obesity. Front Physiol 2020; 11:938. [PMID: 32848869 PMCID: PMC7412435 DOI: 10.3389/fphys.2020.00938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
The goals were to investigate in umbilical cord tissue if gestational obesity: (1) was associated with changes in DNA methylation of skeletal muscle-specific genes; (2) could modulate the co-methylation interactions among these genes. Additionally, we assessed the associations between DNA methylation levels and infant's variables at birth and at age 6. DNA methylation was measured in sixteen pregnant women [8-gestational obesity group; 8-control group] in umbilical cord using the Infinium Methylation EPIC Bead Chip microarray. Differentially methylated CpGs were identified with Beta Regression Models [false discovery rate (FDR) < 0.05 and an Odds Ratio > 1.5 or < 0.67]. DNA methylation interactions between CpGs of skeletal muscle-specific genes were studied using data from Pearson correlation matrices. In order to quantify the interactions within each network, the number of links was computed. This identification analysis reported 38 differential methylated CpGs within skeletal muscle-specific genes (comprising 4 categories: contractibility, structure, myokines, and myogenesis). Compared to control group, gestational obesity (1) promotes hypermethylation in highly methylated genes and hypomethylation in low methylated genes; (2) CpGs in regions close to transcription sites and with high CpG density are hypomethylated while regions distant to transcriptions sites and with low CpG density are hypermethylated; (3) diminishes the number of total interactions in the co-methylation network. Interestingly, the associations between infant's fasting glucose at age 6 and MYL6, MYH11, TNNT3, TPM2, CXCL2, and NCAM1 were still relevant after correcting for multiple testing. In conclusion, our study showed a complex interaction between gestational obesity and the epigenetic status of muscle-specific genes in umbilical cord tissue. Additionally, gestational obesity may alter the functional co-methylation connectivity of CpG within skeletal muscle-specific genes interactions, our results revealing an extensive reorganization of methylation in response to maternal overweight. Finally, changes in methylation levels of skeletal muscle specific genes may have persistent effects on the offspring of mothers with gestational obesity.
Collapse
Affiliation(s)
- Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sergi García-Retortillo
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
- Complex Systems in Sport, National Institute of Physical Education and Sport of Catalonia (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel Puig-Parnau
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Fidanka Vasileva
- Faculty of Physical Education, Sport and Health, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Raquel Font-Lladó
- University School of Health and Sport (EUSES), University of Girona, Girona, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| | - Berta Mas-Parés
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Judit Bassols
- Maternal & Fetal Metabolic Research, Girona Institute for Biomedical Research, Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology, Girona Institute for Biomedical Research, Dr. Josep Trueta Hospital, Girona, Spain
| |
Collapse
|
28
|
He R, Li H, Wang L, Li Y, Zhang Y, Chen M, Zhu Y, Zhang C. Engraftment of human induced pluripotent stem cell-derived myogenic progenitors restores dystrophin in mice with duchenne muscular dystrophy. Biol Res 2020; 53:22. [PMID: 32430065 PMCID: PMC7238630 DOI: 10.1186/s40659-020-00288-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder with no effective treatment that is caused by the loss of dystrophin. Human induced pluripotent stem cells (hiPSCs) offer a promising unlimited resource for cell-based therapies of muscular dystrophy. However, their clinical applications are hindered by inefficient myogenic differentiation, and moreover, the engraftment of non-transgene hiPSC-derived myogenic progenitors has not been examined in the mdx mouse model of DMD. Methods We investigated the muscle regenerative potential of myogenic progenitors derived from hiPSCs in mdx mice. The hiPSCs were transfected with enhanced green fluorescent protein (EGFP) vector and defined as EGFP hiPSCs. Myogenic differentiation was performed on EGFP hiPSCs with supplementary of basic fibroblast growth factor, forskolin, 6-bromoindirubin-3′-oxime as well as horse serum. EGFP hiPSCs-derived myogenic progenitors were engrafted into mdx mice via both intramuscular and intravenous injection. The restoration of dystrophin expression, the ratio of central nuclear myofibers, and the transplanted cells-derived satellite cells were accessed after intramuscular and systemic transplantation. Results We report that abundant myogenic progenitors can be generated from hiPSCs after treatment with these three small molecules, with consequent terminal differentiation giving rise to mature myotubes in vitro. Upon intramuscular or systemic transplantation into mdx mice, these myogenic progenitors engrafted and contributed to human-derived myofiber regeneration in host muscles, restored dystrophin expression, ameliorated pathological lesions, and seeded the satellite cell compartment in dystrophic muscles. Conclusions This study demonstrates the muscle regeneration potential of myogenic progenitors derived from hiPSCs using non-transgenic induction methods. Engraftment of hiPSC-derived myogenic progenitors could be a potential future therapeutic strategy to treat DMD in a clinical setting.
Collapse
Affiliation(s)
- Ruojie He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Yaqin Li
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yu Zhang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Menglong Chen
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yuling Zhu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China.
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Strenzke M, Alberton P, Aszodi A, Docheva D, Haas E, Kammerlander C, Böcker W, Saller MM. Tenogenic Contribution to Skeletal Muscle Regeneration: The Secretome of Scleraxis Overexpressing Mesenchymal Stem Cells Enhances Myogenic Differentiation In Vitro. Int J Mol Sci 2020; 21:E1965. [PMID: 32183051 PMCID: PMC7139530 DOI: 10.3390/ijms21061965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/07/2023] Open
Abstract
Integrity of the musculoskeletal system is essential for the transfer of muscular contraction force to the associated bones. Tendons and skeletal muscles intertwine, but on a cellular level, the myotendinous junctions (MTJs) display a sharp transition zone with a highly specific molecular adaption. The function of MTJs could go beyond a mere structural role and might include homeostasis of this musculoskeletal tissue compound, thus also being involved in skeletal muscle regeneration. Repair processes recapitulate several developmental mechanisms, and as myotendinous interaction does occur already during development, MTJs could likewise contribute to muscle regeneration. Recent studies identified tendon-related, scleraxis-expressing cells that reside in close proximity to the MTJs and the muscle belly. As the muscle-specific function of these scleraxis positive cells is unknown, we compared the influence of two immortalized mesenchymal stem cell (MSC) lines-differing only by the overexpression of scleraxis-on myoblasts morphology, metabolism, migration, fusion, and alignment. Our results revealed a significant increase in myoblast fusion and metabolic activity when exposed to the secretome derived from scleraxis-overexpressing MSCs. However, we found no significant changes in myoblast migration and myofiber alignment. Further analysis of differentially expressed genes between native MSCs and scleraxis-overexpressing MSCs by RNA sequencing unraveled potential candidate genes, i.e., extracellular matrix (ECM) proteins, transmembrane receptors, or proteases that might enhance myoblast fusion. Our results suggest that musculotendinous interaction is essential for the development and healing of skeletal muscles.
Collapse
Affiliation(s)
- Maximilian Strenzke
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany;
| | - Elisabeth Haas
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Christian Kammerlander
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Wolfgang Böcker
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| |
Collapse
|
30
|
Ahmad K, Shaikh S, Ahmad SS, Lee EJ, Choi I. Cross-Talk Between Extracellular Matrix and Skeletal Muscle: Implications for Myopathies. Front Pharmacol 2020; 11:142. [PMID: 32184725 PMCID: PMC7058629 DOI: 10.3389/fphar.2020.00142] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle (SM) comprises around 40% of total body weight and is among the most important plastic tissues, as it supports skeletal development, controls body temperature, and manages glucose levels. Extracellular matrix (ECM) maintains the integrity of SM, enables biochemical signaling, provides structural support, and plays a vital role during myogenesis. Several human diseases are coupled with dysfunctions of the ECM, and several ECM components are involved in disease pathologies that affect almost all organ systems. Thus, mutations in ECM genes that encode proteins and their transmembrane receptors can result in diverse SM diseases, a large proportion of which are types of fibrosis and muscular dystrophy. In this review, we present major ECM components of SMs related to muscle-associated diseases, and discuss two major ECM myopathies, namely, collagen myopathy and laminin myopathies, and their therapeutic managements. A comprehensive understanding of the mechanisms underlying these ECM-related myopathies would undoubtedly aid the discovery of novel treatments for these devastating diseases.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
31
|
Etienne J, Liu C, Skinner CM, Conboy MJ, Conboy IM. Skeletal muscle as an experimental model of choice to study tissue aging and rejuvenation. Skelet Muscle 2020; 10:4. [PMID: 32033591 PMCID: PMC7007696 DOI: 10.1186/s13395-020-0222-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is among the most age-sensitive tissues in mammal organisms. Significant changes in its resident stem cells (i.e., satellite cells, SCs), differentiated cells (i.e., myofibers), and extracellular matrix cause a decline in tissue homeostasis, function, and regenerative capacity. Based on the conservation of aging across tissues and taking advantage of the relatively well-characterization of the myofibers and associated SCs, skeletal muscle emerged as an experimental system to study the decline in function and maintenance of old tissues and to explore rejuvenation strategies. In this review, we summarize the approaches for understanding the aging process and for assaying the success of rejuvenation that use skeletal muscle as the experimental system of choice. We further discuss (and exemplify with studies of skeletal muscle) how conflicting results might be due to variations in the techniques of stem cell isolation, differences in the assays of functional rejuvenation, or deciding on the numbers of replicates and experimental cohorts.
Collapse
Affiliation(s)
- Jessy Etienne
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Colin M Skinner
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA.
| |
Collapse
|
32
|
Mierzejewski B, Archacka K, Grabowska I, Florkowska A, Ciemerych MA, Brzoska E. Human and mouse skeletal muscle stem and progenitor cells in health and disease. Semin Cell Dev Biol 2020; 104:93-104. [PMID: 32005567 DOI: 10.1016/j.semcdb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
The proper functioning of tissues and organs depends on their ability to self-renew and repair. Some of the tissues, like epithelia, renew almost constantly while in the others this process is induced by injury or diseases. The stem or progenitor cells responsible for tissue homeostasis have been identified in many organs. Some of them, such as hematopoietic or intestinal epithelium stem cells, are multipotent and can differentiate into various cell types. Others are unipotent. The skeletal muscle tissue does not self-renew spontaneously, however, it presents unique ability to regenerate in response to the injury or disease. Its repair almost exclusively relies on unipotent satellite cells. However, multiple lines of evidence document that some progenitor cells present in the muscle can be supportive for skeletal muscle regeneration. Here, we summarize the current knowledge on the complicated landscape of stem and progenitor cells that exist in skeletal muscle and support its regeneration. We compare the cells from two model organisms, i.e., mouse and human, documenting their similarities and differences and indicating methods to test their ability to undergo myogenic differentiation.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Anita Florkowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland.
| |
Collapse
|
33
|
Kasprzycka P, Archacka K, Kowalski K, Mierzejewski B, Zimowska M, Grabowska I, Piotrowski M, Rafałko M, Ryżko A, Irhashava A, Senderowski K, Gołąbek M, Stremińska W, Jańczyk-Ilach K, Koblowska M, Iwanicka-Nowicka R, Fogtman A, Janowski M, Walczak P, Ciemerych MA, Brzoska E. The factors present in regenerating muscles impact bone marrow-derived mesenchymal stromal/stem cell fusion with myoblasts. Stem Cell Res Ther 2019; 10:343. [PMID: 31753006 PMCID: PMC6873517 DOI: 10.1186/s13287-019-1444-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Satellite cells, a population of unipotent stem cells attached to muscle fibers, determine the excellent regenerative capability of injured skeletal muscles. Myogenic potential is also exhibited by other cell populations, which exist in the skeletal muscles or come from other niches. Mesenchymal stromal/stem cells inhabiting the bone marrow do not spontaneously differentiate into muscle cells, but there is some evidence that they are capable to follow the myogenic program and/or fuse with myoblasts. METHODS In the present study we analyzed whether IGF-1, IL-4, IL-6, and SDF-1 could impact human and porcine bone marrow-derived mesenchymal stromal/stem cells (hBM-MSCs and pBM-MSCs) and induce expression of myogenic regulatory factors, skeletal muscle-specific structural, and adhesion proteins. Moreover, we investigated whether these factors could induce both types of BM-MSCs to fuse with myoblasts. IGF-1, IL-4, IL-6, and SDF-1 were selected on the basis of their role in embryonic myogenesis as well as skeletal muscle regeneration. RESULTS We found that hBM-MSCs and pBM-MSCs cultured in vitro in the presence of IGF-1, IL-4, IL-6, or SDF-1 did not upregulate myogenic regulatory factors. Consequently, we confirmed the lack of their naïve myogenic potential. However, we noticed that IL-4 and IL-6 impacted proliferation and IL-4, IL-6, and SDF-1 improved migration of hBM-MSCs. IL-4 treatment resulted in the significant increase in the level of mRNA encoding CD9, NCAM, VCAM, and m-cadherin, i.e., proteins engaged in cell fusion during myotube formation. Additionally, the CD9 expression level was also driven by IGF-1 treatment. Furthermore, the pre-treatment of hBM-MSCs either with IGF-1, IL-4, or SDF-1 and treatment of pBM-MSCs either with IGF-1 or IL-4 increased the efficacy of hybrid myotube formation between these cells and C2C12 myoblasts. CONCLUSIONS To conclude, our study revealed that treatment with IGF-1, IL-4, IL-6, or SDF-1 affects BM-MSC interaction with myoblasts; however, it does not directly promote myogenic differentiation of these cells.
Collapse
Affiliation(s)
- Paulina Kasprzycka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Małgorzata Zimowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Mariusz Piotrowski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Milena Rafałko
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Agata Ryżko
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Aliksandra Irhashava
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Kamil Senderowski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Magdalena Gołąbek
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawinskiego 5a St, 02-106 Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawinskiego 5a St, 02-106 Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a St, 02-106 Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a St, 02-106 Warsaw, Poland
| | - Mirosław Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106 Warsaw, Poland
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Institute for Cell Engineering, Cellular Imaging Section, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Maria A. Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| |
Collapse
|
34
|
Hardy D, Fefeu M, Besnard A, Briand D, Gasse P, Arenzana-Seisdedos F, Rocheteau P, Chrétien F. Defective angiogenesis in CXCL12 mutant mice impairs skeletal muscle regeneration. Skelet Muscle 2019; 9:25. [PMID: 31533830 PMCID: PMC6751827 DOI: 10.1186/s13395-019-0210-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/05/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND During muscle regeneration, the chemokine CXCL12 (SDF-1) and the synthesis of some specific heparan sulfates (HS) have been shown to be critical. CXCL12 activity has been shown to be heavily influenced by its binding to extracellular glycosaminoglycans (GAG) by modulating its presentation to its receptors and by generating haptotactic gradients. Although CXCL12 has been implicated in several phases of tissue repair, the influence of GAG binding under HS influencing conditions such as acute tissue destruction remains understudied. METHODS To investigate the role of the CXCL12/HS proteoglycan interactions in the pathophysiology of muscle regeneration, we performed two models of muscle injuries (notexin and freeze injury) in mutant CXCL12Gagtm/Gagtm mice, where the CXCL12 gene having been selectively mutated in critical binding sites of CXCL12 to interact with HS. Histological, cytometric, functional transcriptomic, and ultrastructure analysis focusing on the satellite cell behavior and the vessels were conducted on muscles before and after injuries. Unless specified, statistical analysis was performed with the Mann-Whitney test. RESULTS We showed that despite normal histology of the resting muscle and normal muscle stem cell behavior in the mutant mice, endothelial cells displayed an increase in the angiogenic response in resting muscle despite the downregulated transcriptomic changes induced by the CXCL12 mutation. The regenerative capacity of the CXCL12-mutated mice was only delayed after a notexin injury, but a severe damage by freeze injury revealed a persistent defect in the muscle regeneration of CXCL12 mutant mice associated with vascular defect and fibroadipose deposition with persistent immune cell infiltration. CONCLUSION The present study shows that CXCL12 is crucial for proper muscle regeneration. We highlight that this homing molecule could play an important role in drastic muscle injuries and that the regeneration defect could be due to an impairment of angiogenesis, associated with a long-lasting fibro-adipogenic scar.
Collapse
Affiliation(s)
- David Hardy
- Experimental Neuropathology Unit, Institut Pasteur, 75015, Paris, France
| | - Mylène Fefeu
- Experimental Neuropathology Unit, Institut Pasteur, 75015, Paris, France
| | - Aurore Besnard
- Experimental Neuropathology Unit, Institut Pasteur, 75015, Paris, France
| | - David Briand
- Experimental Neuropathology Unit, Institut Pasteur, 75015, Paris, France
| | - Paméla Gasse
- Viral Pathogenesis Unit, Institut Pasteur, 75015, Paris, France
| | | | - Pierre Rocheteau
- Experimental Neuropathology Unit, Institut Pasteur, 75015, Paris, France.,Service Hospitalo-Universitaire de Psychiatrie, Centre Hospitalier Sainte Anne, 75014, Paris, France
| | - Fabrice Chrétien
- Experimental Neuropathology Unit, Institut Pasteur, 75015, Paris, France. .,Paris Descartes University, Sorbonne Paris Cité, 75006, Paris, France. .,Service Hospitalo-Universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, 75014, Paris, France.
| |
Collapse
|
35
|
Weiler J, Dittmar T. Minocycline impairs TNF-α-induced cell fusion of M13SV1-Cre cells with MDA-MB-435-pFDR1 cells by suppressing NF-κB transcriptional activity and its induction of target-gene expression of fusion-relevant factors. Cell Commun Signal 2019; 17:71. [PMID: 31266502 PMCID: PMC6604204 DOI: 10.1186/s12964-019-0384-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background To date, several studies have confirmed that driving forces of the inflammatory tumour microenvironment trigger spontaneous cancer cell fusion. However, less is known about the underlying factors and mechanisms that facilitate inflammation-induced cell fusion of a cancer cell with a normal cell. Recently, we demonstrated that minocycline, a tetracycline antibiotic, successfully inhibited the TNF-α-induced fusion of MDA-MB-435 cancer cells with M13SV1 breast epithelial cells. Here, we investigated how minocycline interferes with the TNF-α induced signal transduction pathway. Methods A Cre-LoxP recombination system was used to quantify the fusion of MDA-MB-435-pFDR1 cancer cells and M13SV1-Cre breast epithelial cells. The impact of minocycline on the TNF-α signalling pathway was determined by western blotting. The transcriptional activity of NF-κB was characterised by immunocytochemistry, western blot and ChIP analyses. An NF-κB-luciferase reporter assay was indicative of NF-κB activity. Results Minocycline treatment successfully inhibited the TNFR1-TRAF2 interaction in both cell types, while minocycline abrogated the phosphorylation of IκBα and NF-κB-p65 to suppress nuclear NF-κB and its promotor activity only in M13SV1-Cre cells, which attenuated the expression of MMP9 and ICAM1. In MDA-MB-435-pFDR1 cells, minocycline increased the activity of NF-κB, leading to greater nuclear accumulation of NF-κB-p65, thus increasing promoter activity to stimulate the expression of ICAM1. Even though TNF-α also activated all MAPKs (ERK1/2, p38 and JNK), minocycline differentially affected these kinases to either inhibit or stimulate their activation. Moreover, SRC activation was analysed as an upstream activator of MAPKs, but no activation by TNF-α was revealed. The addition of several specific inhibitors that block the activation of SRC, MAPKs, AP-1 and NF-κB confirmed that only NF-κB inhibition was successful in inhibiting the TNF-α-induced cell fusion process. Conclusion Minocycline is a potent inhibitor in the TNF-α-induced cell fusion process by targeting the NF-κB pathway. Thus, minocycline prevented NF-κB activation and nuclear translocation to abolish the target-gene expression of MMP9 and ICAM1 in M13SV1-Cre cells, resulting in reduced cell fusion frequency.
Collapse
Affiliation(s)
- Julian Weiler
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| |
Collapse
|
36
|
Talbot JC, Teets EM, Ratnayake D, Duy PQ, Currie PD, Amacher SL. Muscle precursor cell movements in zebrafish are dynamic and require Six family genes. Development 2019; 146:dev171421. [PMID: 31023879 PMCID: PMC6550023 DOI: 10.1242/dev.171421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/16/2019] [Indexed: 01/09/2023]
Abstract
Muscle precursors need to be correctly positioned during embryonic development for proper body movement. In zebrafish, a subset of hypaxial muscle precursors from the anterior somites undergo long-range migration, moving away from the trunk in three streams to form muscles in distal locations such as the fin. We mapped long-distance muscle precursor migrations with unprecedented resolution using live imaging. We identified conserved genes necessary for normal precursor motility (six1a, six1b, six4a, six4b and met). These genes are required for movement away from somites and later to partition two muscles within the fin bud. During normal development, the middle muscle precursor stream initially populates the fin bud, then the remainder of this stream contributes to the posterior hypaxial muscle. When we block fin bud development by impairing retinoic acid synthesis or Fgfr function, the entire stream contributes to the posterior hypaxial muscle indicating that muscle precursors are not committed to the fin during migration. Our findings demonstrate a conserved muscle precursor motility pathway, identify dynamic cell movements that generate posterior hypaxial and fin muscles, and demonstrate flexibility in muscle precursor fates.
Collapse
Affiliation(s)
- Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Emily M Teets
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Phan Q Duy
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Mathematical Modelling and Simulation of Atherosclerosis Formation and Progress: A Review. Ann Biomed Eng 2019; 47:1764-1785. [PMID: 31020444 DOI: 10.1007/s10439-019-02268-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is a major threat to human health since it is the leading cause of death in western countries. Atherosclerosis is a type of CVD related to hypertension, diabetes, high levels of cholesterol, smoking, oxidative stress, and age. Atherosclerosis primarily occurs in medium and large arteries, such as coronary and the carotid artery and, in particular, at bifurcations and curvatures. Atherosclerosis is compared to an inflammatory disease where a thick, porous material comprising cholesterol fat, saturated sterols, proteins, fatty acids, calcium etc., is covered by an endothelial membrane and a fragile fibrous tissue which makes atheromatic plaque prone to rupture that could lead to the blockage of the artery due to the released plaque material. Despite the great progress achieved, the nature of the disease is not fully understood. This paper reviews the current state of modelling of all levels of atherosclerosis formation and progress and discusses further challenges in atherosclerosis modelling. The objective is to pave a way towards more precise computational tools to predict and eventually reengineer the fate of atherosclerosis.
Collapse
|
38
|
Marino Gammazza A, Macaluso F, Di Felice V, Cappello F, Barone R. Hsp60 in Skeletal Muscle Fiber Biogenesis and Homeostasis: From Physical Exercise to Skeletal Muscle Pathology. Cells 2018; 7:cells7120224. [PMID: 30469470 PMCID: PMC6315887 DOI: 10.3390/cells7120224] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
Hsp60 is a molecular chaperone classically described as a mitochondrial protein with multiple roles in health and disease, participating to the maintenance of protein homeostasis. It is well known that skeletal muscle is a complex tissue, rich in proteins, that is, subjected to continuous rearrangements, and this homeostasis is affected by many different types of stimuli and stresses. The regular exercise induces specific histological and biochemical adaptations in skeletal muscle fibers, such as hypertrophy and an increase of mitochondria activity and oxidative capacity. The current literature is lacking in information regarding Hsp60 involvement in skeletal muscle fiber biogenesis and regeneration during exercise, and in disease conditions. Here, we briefly discuss the functions of Hsp60 in skeletal muscle fibers during exercise, inflammation, and ageing. Moreover, the potential usage of Hsp60 as a marker for disease and the evaluation of novel treatment options is also discussed. However, some questions remain open, and further studies are needed to better understand Hsp60 involvement in skeletal muscle homeostasis during exercise and in pathological condition.
Collapse
Affiliation(s)
- Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| | - Filippo Macaluso
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
- Department of SMART Engineering Solutions & Technologies, eCampus University, 22060 Novedrate, Italy.
| | - Valentina Di Felice
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| |
Collapse
|
39
|
Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro. PLoS One 2018; 13:e0195432. [PMID: 29617432 PMCID: PMC5884547 DOI: 10.1371/journal.pone.0195432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/22/2018] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and proliferation, which are two important steps during early myogenesis.
Collapse
|
40
|
Chaweewannakorn C, Tsuchiya M, Koide M, Hatakeyama H, Tanaka Y, Yoshida S, Sugawara S, Hagiwara Y, Sasaki K, Kanzaki M. Roles of IL-1α/β in regeneration of cardiotoxin-injured muscle and satellite cell function. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29513560 DOI: 10.1152/ajpregu.00310.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Skeletal muscle regeneration after injury is a complex process involving interactions between inflammatory microenvironments and satellite cells. Interleukin (IL)-1 is a key mediator of inflammatory responses and exerts pleiotropic impacts on various cell types. Thus, we aimed to investigate the role of IL-1 during skeletal muscle regeneration. We herein show that IL-1α/β-double knockout (IL-1KO) mice exhibit delayed muscle regeneration after cardiotoxin (CTX) injection, characterized by delayed infiltrations of immune cells accompanied by suppressed local production of proinflammatory factors including IL-6 and delayed increase of paired box 7 (PAX7)-positive satellite cells postinjury compared with those of wild-type (WT) mice. A series of in vitro experiments using satellite cells obtained from the IL-1KO mice unexpectedly revealed that IL-1KO myoblasts have impairments in terms of both proliferation and differentiation, both of which were reversed by exogenous IL-1β administration in culture. Intriguingly, the delay in myogenesis was not attributable to the myogenic transcriptional program since MyoD and myogenin were highly upregulated in IL-1KO cells, instead appearing, at least in part, to be due to dysregulation of cellular fusion events, possibly resulting from aberrant actin regulatory systems. We conclude that IL-1 plays a positive role in muscle regeneration by coordinating the initial interactions among inflammatory microenvironments and satellite cells. Our findings also provide compelling evidence that IL-1 is intimately engaged in regulating the fundamental function of myocytes.
Collapse
Affiliation(s)
- Chayanit Chaweewannakorn
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry , Sendai , Japan.,Tohoku University Graduate School of Biomedical Engineering , Sendai , Japan
| | | | - Masashi Koide
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Hiroyasu Hatakeyama
- Tohoku University Graduate School of Biomedical Engineering , Sendai , Japan.,Frontier Research Institute for Interdisciplinary Science, Tohoku University , Sendai , Japan
| | - Yukinori Tanaka
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Shinichirou Yoshida
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Makoto Kanzaki
- Tohoku University Graduate School of Biomedical Engineering , Sendai , Japan
| |
Collapse
|
41
|
Liang XH, Liu ZJ, Sun JH, Dong ZX, Lu J, Jiang ML, Wang LX, Wang YY. Expression of Wnt/β-catenin related genes after skeletal muscle contusion. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:704-711. [PMID: 31938156 PMCID: PMC6957999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/12/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND It was aimed to determine expressions of genes related to Wnt/β-catenin signaling for evaluating time duration after skeletal muscle contusion. METHODS Pathological change of skeletal muscle was observed after H-E staining. mRNA of respective genes was quantified with real-time quantitative PCR. Expression of β-catenin was further characterized with immunostaining and quantified as intensity/area and further immune blotting and quantified as grey intensity normalized to loading control (GADPH). RESULTS After injury, skeletal muscle exhibited prominent inflammatory response, hyperplasia and regeneration. Infiltration of inflammatory cell, formation of myotube and maturation of skeletal muscle fiber were observed under HE staining. Expression of FZD4, Myo D, Myf5 changed during early stages after injury and could serve to evaluate injury within 24 h; Expression of SFRP5 and Fra1 changed during early-to-intermediate stages after injury and could serve to evaluate injury within 12-48 h; Expression of MRF4 changed during intermediate stages after injury and could serve to evaluate injury within 36-48 h; Expression of β-catenin changed during intermediate stages after injury and could serve to evaluate injury within 36 h-3 d; Expression of MyoG changed during late stages after injury and could serve to evaluate injury within 48 h-7 d. Immunostaining experiments showed that 36 h after injury, membrane β-catenin decreased while nucleus β-catenin increased. CONCLUSION Wnt/β-catenin related genes are involved in regeneration of skeletal muscle after contusion. The sequential changes of gene expression can be used for evaluating the duration after contusion.
Collapse
Affiliation(s)
- Xin-Hua Liang
- School of Forensic Medicine, Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| | - Zhi-Jie Liu
- School of Forensic Medicine, Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| | - Jun-Hong Sun
- School of Forensic Medicine, Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| | - Zu-Xin Dong
- Shanxi Province Public Security BureauTaiyuan, Shanxi, China
| | - Jian Lu
- School of Forensic Medicine, Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| | - Mei-Ling Jiang
- School of Forensic Medicine, Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| | - Li-Xiao Wang
- School of Forensic Medicine, Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| | - Ying-Yuan Wang
- School of Forensic Medicine, Shanxi Medical UniversityTaiyuan 030001, Shanxi Province, China
| |
Collapse
|
42
|
Wang D, Gao CQ, Chen RQ, Jin CL, Li HC, Yan HC, Wang XQ. Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells. Oncotarget 2017; 7:30845-54. [PMID: 27127174 PMCID: PMC5058722 DOI: 10.18632/oncotarget.9010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
The focal adhesion kinase (FAK) signaling pathway contributes to the cell migration and adhesion that is critical for wound healing and regeneration of damaged muscle, but its function in skeletal muscle satellite cells (SCs) is less clear. We compared the migration and adhesion of SCs derived from two species of pig (Lantang and Landrace) in vitro, and explored how FAK signaling modulates the two processes. The results showed that Lantang SCs had greater ability to migrate and adhere to fibronection (P < 0.05) than Landrace SCs. Compared to Landrace SCs, Lantang SCs expressed many more focal adhesion (FA) sites, which were indicated by the presence of p-paxillin (Tyr118), and exhibited less F-actin reorganization 24 h after seeding onto fibronectin. Levels of p-FAK (Tyr397) and p-paxillin (Tyr118) were greater (P < 0.05) in Lantang SCs than Landrace SCs after migration for 24 h. Similarly, Lantang SCs showed much higher levels of p-FAK (Tyr397), p-paxillin (Tyr118) and p-Akt (Ser473) than Landrace SCs 2 h after adhesion. Treatment with the FAK inhibitor PF-573228 (5 or 10 μmol/L) inhibited Lantang SC migration and adhesion to fibronectin (P < 0.05), decreased levels of p-paxillin (Tyr118) and p-Akt (Ser473) (P < 0.05), and suppressed the formation of FA sites on migrating SCs. Thus FAK appears to play a key role in the regulation of SC migration and adhesion necessary for muscle regeneration.
Collapse
Affiliation(s)
- Dan Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Rong-Qiang Chen
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Cheng-Long Jin
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Hai-Chang Li
- Davis Heart and Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus, OH, USA
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| |
Collapse
|
43
|
Zhang C, Wang C, Li Y, Miwa T, Liu C, Cui W, Song WC, Du J. Complement C3a signaling facilitates skeletal muscle regeneration by regulating monocyte function and trafficking. Nat Commun 2017; 8:2078. [PMID: 29233958 PMCID: PMC5727192 DOI: 10.1038/s41467-017-01526-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
Regeneration of skeletal muscle following injury is accompanied by transient inflammation. Here we show that complement is activated in skeletal muscle injury and plays a key role during regeneration. Genetic ablation of complement C3 or its inactivation with Cobra Venom Factor (CVF) result in impaired muscle regeneration following cardiotoxin-induced injury in mice. The effect of complement in muscle regeneration is mediated by the alternative pathway and C3a receptor (C3aR) signaling, as deletion of Cfb, a key alternative pathway component, or C3aR leads to impaired regeneration and reduced monocyte/macrophage infiltration. Monocytes from C3aR-deficient mice express a reduced level of adhesion molecules, cytokines and genes associated with antigen processing and presentation. Exogenous administration of recombinant CCL5 to C3aR-deficient mice rescues the defects in inflammatory cell recruitment and regeneration. These findings reveal an important role of complement C3a in skeletal muscle regeneration, and suggest that manipulating complement system may produce therapeutic benefit in muscle injury and regeneration.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Chunxiao Wang
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yulin Li
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Takashi Miwa
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Chang Liu
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Wei Cui
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Wen-Chao Song
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Jie Du
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
44
|
Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development. Nat Commun 2017; 8:1218. [PMID: 29084951 PMCID: PMC5662571 DOI: 10.1038/s41467-017-01120-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/17/2017] [Indexed: 12/31/2022] Open
Abstract
Fibro-adipogenic progenitors (FAPs) are an interstitial cell population in adult skeletal muscle that support muscle regeneration. During development, interstitial muscle connective tissue (MCT) cells support proper muscle patterning, however the underlying molecular mechanisms are not well understood and it remains unclear whether adult FAPs and embryonic MCT cells share a common lineage. We show here that mouse embryonic limb MCT cells expressing the transcription factor Osr1, differentiate into fibrogenic and adipogenic cells in vivo and in vitro defining an embryonic FAP-like population. Genetic lineage tracing shows that developmental Osr1+ cells give rise to a subset of adult FAPs. Loss of Osr1 function leads to a reduction of myogenic progenitor proliferation and survival resulting in limb muscle patterning defects. Transcriptome and functional analyses reveal that Osr1+ cells provide a critical pro-myogenic niche via the production of MCT specific extracellular matrix components and secreted signaling factors. Fibro-adipogenic progenitors (FAPs) form part of interstitial muscle connective tissue (MCT) in adults but the origin of this non-myogenic lineage is unclear. Here, the authors show that Odd skipped related 1 (Osr1) in mice marks embryonic MCT, giving rise to FAPs, and loss of Osr1 in the limb causes muscle defects.
Collapse
|
45
|
González MN, de Mello W, Butler-Browne GS, Silva-Barbosa SD, Mouly V, Savino W, Riederer I. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skelet Muscle 2017; 7:20. [PMID: 29017538 PMCID: PMC5635537 DOI: 10.1186/s13395-017-0138-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Background The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. Methods We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. Results We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. Conclusions We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving the migration of donor cells within the host tissue, a main issue regarding this approach. Electronic supplementary material The online version of this article (10.1186/s13395-017-0138-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariela Natacha González
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Wallace de Mello
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil
| | - Gillian S Butler-Browne
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Suse Dayse Silva-Barbosa
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Department of Clinical Research, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Vincent Mouly
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil. .,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil.
| |
Collapse
|
46
|
Wang W, Chen M, Gao Y, Song X, Zheng H, Zhang K, Zhang B, Chen D. P2Y6 regulates cytoskeleton reorganization and cell migration of C2C12 myoblasts via ROCK pathway. J Cell Biochem 2017; 119:1889-1898. [PMID: 28815725 DOI: 10.1002/jcb.26350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Abstract
Migration of skeletal muscle precursor cells is required for limb muscle development and skeletal muscle repair. This study aimed to examine the role of P2Y6 receptor in C2C12 myoblasts migration. C2C12 myoblasts were treated with P2Y6 agonist UDP, P2Y6 antagonist MRS2578, Ca2+ channel blocker BTP2, or ROCK inhibitor GSK269962 or Y27632, and the migration ability of C2C12 cells was assessed by wound healing assay. The cellular Ca2+ content was analyzed with fluo-4 probe and the activation of ROCK (phosphorlyation of LIMK and cofilin) was assayed by western blot. The cytoskeleton was labeled with Actin-Tracker Green and Tubulin-Tracker-Red. Silencing P2Y6 expression in C2C12 myoblasts reduced intracellular Ca2+ content and cell motility. Whereas UDP increased cellular Ca2+ content, actin filaments, and cell migration, MRS2578 had the opposite effects. The effects of UDP were abrogated by BTP2 and GSK269962 (and Y27632). Disruption of P2Y6 signaling pathway caused C2C12 myoblasts to have an elongated morphology. These results demonstrated that P2Y6 signaled through Ca2+ influx and RhoA/ROCK to reorganize cytoskeleton and promote migration in myoblasts.
Collapse
Affiliation(s)
- Wei Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Mengjie Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yingna Gao
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianmin Song
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongliang Zheng
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Donghui Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
47
|
Pizza FX, Martin RA, Springer EM, Leffler MS, Woelmer BR, Recker IJ, Leaman DW. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions. Sci Rep 2017; 7:5094. [PMID: 28698658 PMCID: PMC5506053 DOI: 10.1038/s41598-017-05283-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Francis X Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA.
| | - Ryan A Martin
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Evan M Springer
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Maxwell S Leffler
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Bryce R Woelmer
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Isaac J Recker
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Douglas W Leaman
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.,Wright State University, 4035 Colonel Glenn Hwy., Suite 300, Beavercreek, OH, 45431, USA
| |
Collapse
|
48
|
Thakar D, Dalonneau F, Migliorini E, Lortat-Jacob H, Boturyn D, Albiges-Rizo C, Coche-Guerente L, Picart C, Richter RP. Binding of the chemokine CXCL12α to its natural extracellular matrix ligand heparan sulfate enables myoblast adhesion and facilitates cell motility. Biomaterials 2017; 123:24-38. [PMID: 28152381 PMCID: PMC5405871 DOI: 10.1016/j.biomaterials.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/24/2023]
Abstract
The chemokine CXCL12α is a potent chemoattractant that guides the migration of muscle precursor cells (myoblasts) during myogenesis and muscle regeneration. To study how the molecular presentation of chemokines influences myoblast adhesion and motility, we designed multifunctional biomimetic surfaces as a tuneable signalling platform that enabled the response of myoblasts to selected extracellular cues to be studied in a well-defined environment. Using this platform, we demonstrate that CXCL12α, when presented by its natural extracellular matrix ligand heparan sulfate (HS), enables the adhesion and spreading of myoblasts and facilitates their active migration. In contrast, myoblasts also adhered and spread on CXCL12α that was quasi-irreversibly surface-bound in the absence of HS, but were essentially immotile. Moreover, co-presentation of the cyclic RGD peptide as integrin ligand along with HS-bound CXCL12α led to enhanced spreading and motility, in a way that indicates cooperation between CXCR4 (the CXCL12α receptor) and integrins (the RGD receptors). Our findings reveal the critical role of HS in CXCL12α induced myoblast adhesion and migration. The biomimetic surfaces developed here hold promise for mechanistic studies of cellular responses to different presentations of biomolecules. They may be broadly applicable for dissecting the signalling pathways underlying receptor cross-talks, and thus may guide the development of novel biomaterials that promote highly specific cellular responses.
Collapse
Affiliation(s)
- Dhruv Thakar
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Fabien Dalonneau
- CNRS UMR 5628 (LMGP), Grenoble, France; Grenoble Institute of Technology, Université Grenoble Alpes, LMGP, Grenoble, France
| | - Elisa Migliorini
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Didier Boturyn
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Corinne Albiges-Rizo
- Institut Albert Bonniot, Université Grenoble Alpes, INSERM, CNRS, Grenoble, France
| | - Liliane Coche-Guerente
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), Grenoble, France; Grenoble Institute of Technology, Université Grenoble Alpes, LMGP, Grenoble, France.
| | - Ralf P Richter
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France; University of Leeds, School of Biomedical Sciences and School of Physics and Astronomy, Leeds, United Kingdom; CIC biomaGUNE, San Sebastian, Spain.
| |
Collapse
|
49
|
Nassari S, Duprez D, Fournier-Thibault C. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues. Front Cell Dev Biol 2017; 5:22. [PMID: 28386539 PMCID: PMC5362625 DOI: 10.3389/fcell.2017.00022] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.
Collapse
Affiliation(s)
- Sonya Nassari
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Delphine Duprez
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| | - Claire Fournier-Thibault
- Developmental Biology Laboratory, IBPS, Centre National de la Recherche Scientifique UMR7622, Institut National de la Santé Et de la Recherche Médicale U1156, Université Pierre et Marie Curie, Sorbonne Universités Paris, France
| |
Collapse
|
50
|
Xie X, Wu SP, Tsai MJ, Tsai S. The Role of COUP-TFII in Striated Muscle Development and Disease. Curr Top Dev Biol 2017; 125:375-403. [PMID: 28527579 DOI: 10.1016/bs.ctdb.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal and cardiac muscles are the only striated muscles in the body. Although sharing many structural and functional similarities, skeletal and cardiac muscles have intrinsic differences in terms of physiology and regenerative potential. While skeletal muscle possesses a robust regenerative response, the mammalian heart has limited repair capacity after birth. In this review, we provide an updated view regarding chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) function in vertebrate myogenesis, with particular emphasis on the skeletal and cardiac muscles. We also highlight the new insights of COUP-TFII hyperactivity underlying striated muscle dysfunction. Lastly, we discuss the challenges and strategies in translating COUP-TFII action for clinical intervention.
Collapse
Affiliation(s)
- Xin Xie
- Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Ming-Jer Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| | - Sophia Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|