1
|
Chen Z, Liu C, Zheng W, Li Z, Tang Y, Peng J, Miao C, Zheng D, Xia Y. MYH9 promotes malignant progression of glioma cells through regulating β-catenin stability via epithelial-mesenchymal transition signaling pathway. Sci Rep 2025; 15:4618. [PMID: 39920245 PMCID: PMC11806050 DOI: 10.1038/s41598-025-87151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Epithelial‒mesenchymal transition (EMT) is a process in which polar epithelial cells transform into active mesenchymal cells and acquire invasion and migration capabilities (Cano CE, Motoo Y, Iovanna JL in Sci World J 10, 2010). EMT is involved in multiple physiological and pathological processes in the human body. The occurrence of EMT involves many signal transduction pathways and complex molecular mechanisms related to calnexin, growth factors, transcription factors, and the microenvironment. EMT is closely related to the invasion and metastasis of tumour cells. The MYH9 gene is closely associated with tumour progression. However, the function and regulatory mechanism of MYH9 in tumour occurrence and development remain unclear. Herein, we revealed for the first time that the migration, invasion, and metastatic abilities of glioma cells decreased significantly after MYH9 expression was downregulated. Moreover, our results suggested that MYH9 regulated the epithelial‒mesenchymal transition (EMT) process in glioma cells via β-catenin. In this mechanism, MYH9 was shown to bind to β-catenin and to increase its protein level by recruiting the deubiquitinase USP2 to form a complex. This complex suppressed β-catenin protein degradation, ultimately enhancing EMT signal transduction. This MYH9/β-catenin/EMT pathway represents a new molecular mechanism involved in the invasion promotion in gliomas. Our findings also demonstrated that MYH9 was crucial for inducing glioma cell migration. In summary, we suggest that MYH9 is a potential molecular marker for predicting tumour progression and prognosis and highlight its role in a new molecular mechanism of tumour metastasis.
Collapse
Affiliation(s)
- Zigui Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, 412000, Hunan, China
| | - Wei Zheng
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, 412000, Hunan, China
| | - Zhilong Li
- Department of Neurosurgery, Hunan Taihe Hospital Management Co Ltd, Changsha, 410005, Hunan, China
| | - Yuanhui Tang
- Department of Neurosurgery, Changsha Meixihu Sanzhen Rehabilitation Hospital, Changsha, 410005, Hunan, China
| | - Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| | - Changfeng Miao
- Department of Neurosurgery Second Branche, Hunan Provincial People's Hospital (The First affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China.
| | - Dandan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital Zhejiang University, Hangzhou, 310009, China.
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
2
|
Noronha C, Ribeiro AS, Carvalho R, Mendes N, Reis J, Faria CC, Taipa R, Paredes J. Cadherin Expression Profiles Define Glioblastoma Differentiation and Patient Prognosis. Cancers (Basel) 2024; 16:2298. [PMID: 39001361 PMCID: PMC11240393 DOI: 10.3390/cancers16132298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Cadherins are cell-cell adhesion proteins which have been strongly implicated in cancer invasion, dissemination and metastasis capacity; thus, they are key players in the epithelial-to-mesenchymal transition (EMT) program. However, their role in glioblastoma (GBM), a primary central nervous system aggressive tumor, remains to be clarified. N-, E- and P-cadherin expression was analyzed on a large series of GBMs, characterized with clinical, imaging and neuropathological parameters, as well as with patients' survival data. In addition, cadherins' expression was studied in match-recurrent cases. Using TCGA data, cadherin expression profiles were also evaluated according to GBM transcription subtypes. N-cadherin expression was observed in 81.5% of GBM, followed by E-cadherin in 31% and P-cadherin in 20.8%. Upon tumor recurrence, P-cadherin was the only significantly upregulated cadherin compared with the primary tumor, being positive in 65.8% of the cases. Actually, P-cadherin gain was observed in 51.4% of matched primary-recurrent cases. Cadherins' co-expression was also explored. Interestingly, E- and N-cadherin co-expression identified a GBM subgroup with frequent epithelial differentiation and a significant survival benefit. On the other hand, subgroups with P-cadherin expression carried the worse prognosis. P- and N-cadherin co-expression correlated with the presence of a mesenchymal phenotype. Expressions of isolated P-cadherin or E- and P-cadherin co-expression were associated with imaging characteristics of aggressiveness, to highly heterogeneous tumors, an d to worse patient survival. Classical cadherins co-expression subgroups present consistent clinical, imaging, neuropathological and survival differences, which probably reflect different states of an EMT-like program in GBM.
Collapse
Affiliation(s)
- Carolina Noronha
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar e Universitário do Porto, 4050-366 Porto, Portugal
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, 4200-135 Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Rita Carvalho
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Nuno Mendes
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Histology and Electron Microscopy, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Joaquim Reis
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar e Universitário do Porto, 4050-366 Porto, Portugal
| | - Claudia C Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
- IMM-Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Ricardo Taipa
- Neuropathology Department, Hospital de Santo António, Centro Hospitalar Universitário de Santo António, 4050-342 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-346 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Joana Paredes
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Kim D, Olson JM, Cooper JA. N-cadherin dynamically regulates pediatric glioma cell migration in complex environments. J Cell Biol 2024; 223:e202401057. [PMID: 38477830 PMCID: PMC10937189 DOI: 10.1083/jcb.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that intercellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James M. Olson
- Clinical Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Jonathan A. Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
4
|
Fan Q, Wang H, Gu T, Liu H, Deng P, Li B, Yang H, Mao Y, Shao Z. Modeling the precise interaction of glioblastoma with human brain region-specific organoids. iScience 2024; 27:109111. [PMID: 38390494 PMCID: PMC10882168 DOI: 10.1016/j.isci.2024.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Glioblastoma is a highly aggressive malignant tumor of the central nervous system, but the interaction between glioblastoma and different types of neurons remains unclear. Here, we established a co-culture model in vitro using 3D printed molds with microchannels, in which glioblastoma organoids (GB), dorsal forebrain organoids (DO, mainly composed of excitatory neurons), and ventral forebrain organoids (VO, mainly composed of inhibitory neurons) were assembled. Our results indicate that DO has a greater impact on altered gene expression profiles of GB, resulting in increased invasive potential. GB cells preferentially invaded DO along axons, whereas this phenomenon was not observed in VO. Furthermore, GB cells selectively inhibited neurite outgrowth in DOs and reduced the expression of the vesicular GABA transporter (VGAT), leading to neuronal hyperexcitability. By revealing how glioblastoma interacts with brain cells, our study provides a more comprehensive understanding of this disease.
Collapse
Affiliation(s)
- Qi Fan
- Institutes for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Hanze Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Tianyi Gu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China
| | - Huihui Liu
- Institutes for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Peng Deng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Bo Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhicheng Shao
- Institutes for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Ravichandran Y, Hänisch J, Murray K, Roca V, Dingli F, Loew D, Sabatet V, Boëda B, Stradal TE, Etienne-Manneville S. The distinct localization of CDC42 isoforms is responsible for their specific functions during migration. J Cell Biol 2024; 223:e202004092. [PMID: 38386112 PMCID: PMC10883850 DOI: 10.1083/jcb.202004092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/26/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024] Open
Abstract
The small G-protein CDC42 is an evolutionary conserved polarity protein and a key regulator of polarized cell functions, including directed cell migration. In vertebrates, alternative splicing gives rise to two CDC42 proteins: the ubiquitously expressed isoform (CDC42u) and the brain isoform (CDC42b), which only differ in their carboxy-terminal sequence, including the CAAX motif essential for their association with membranes. We show that these divergent sequences do not directly affect the range of CDC42's potential binding partners but indirectly influence CDC42-driven signaling by controlling the subcellular localization of the two isoforms. In astrocytes and neural precursors, which naturally express both variants, CDC42u associates with the leading-edge plasma membrane of migrating cells, where it recruits the Par6-PKCζ complex to fulfill its polarity function. In contrast, CDC42b mainly localizes to intracellular membrane compartments, where it regulates N-WASP-mediated endocytosis. Both CDC42 isoforms contribute their specific functions to promote the chemotaxis of neural precursors, demonstrating that their expression pattern is decisive for tissue-specific cell behavior.
Collapse
Affiliation(s)
- Yamini Ravichandran
- UMR3691 CNRS, Equipe Labellisée Ligue 2023, Université de Paris, Cell Polarity, Migration and Cancer Unit, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Jan Hänisch
- UMR3691 CNRS, Equipe Labellisée Ligue 2023, Université de Paris, Cell Polarity, Migration and Cancer Unit, Institut Pasteur, Paris, France
| | - Kerren Murray
- UMR3691 CNRS, Equipe Labellisée Ligue 2023, Université de Paris, Cell Polarity, Migration and Cancer Unit, Institut Pasteur, Paris, France
| | - Vanessa Roca
- UMR3691 CNRS, Equipe Labellisée Ligue 2023, Université de Paris, Cell Polarity, Migration and Cancer Unit, Institut Pasteur, Paris, France
| | - Florent Dingli
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | - Damarys Loew
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | - Valentin Sabatet
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | - Batiste Boëda
- UMR3691 CNRS, Equipe Labellisée Ligue 2023, Université de Paris, Cell Polarity, Migration and Cancer Unit, Institut Pasteur, Paris, France
| | - Theresia E. Stradal
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, Germany
| | - Sandrine Etienne-Manneville
- UMR3691 CNRS, Equipe Labellisée Ligue 2023, Université de Paris, Cell Polarity, Migration and Cancer Unit, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Kim D, Olson JM, Cooper JA. N-cadherin dynamically regulates pediatric glioma cell migration in complex environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.04.535599. [PMID: 38260559 PMCID: PMC10802396 DOI: 10.1101/2023.04.04.535599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that inter-cellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - James M Olson
- Clinical Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Jonathan A Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
7
|
Xu L, Kan S, Yu X, Liu Y, Fu Y, Peng Y, Liang Y, Cen Y, Zhu C, Jiang W. Deep learning enables stochastic optical reconstruction microscopy-like superresolution image reconstruction from conventional microscopy. iScience 2023; 26:108145. [PMID: 37867953 PMCID: PMC10587619 DOI: 10.1016/j.isci.2023.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/05/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
Despite its remarkable potential for transforming low-resolution images, deep learning faces significant challenges in achieving high-quality superresolution microscopy imaging from wide-field (conventional) microscopy. Here, we present X-Microscopy, a computational tool comprising two deep learning subnets, UR-Net-8 and X-Net, which enables STORM-like superresolution microscopy image reconstruction from wide-field images with input-size flexibility. X-Microscopy was trained using samples of various subcellular structures, including cytoskeletal filaments, dot-like, beehive-like, and nanocluster-like structures, to generate prediction models capable of producing images of comparable quality to STORM-like images. In addition to enabling multicolour superresolution image reconstructions, X-Microscopy also facilitates superresolution image reconstruction from different conventional microscopic systems. The capabilities of X-Microscopy offer promising prospects for making superresolution microscopy accessible to a broader range of users, going beyond the confines of well-equipped laboratories.
Collapse
Affiliation(s)
- Lei Xu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Shichao Kan
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiying Yu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ye Liu
- HAMD (Ningbo) Intelligent Medical Technology Co., Ltd, Ningbo 315194, China
| | - Yuxia Fu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiqiang Peng
- HAMD (Ningbo) Intelligent Medical Technology Co., Ltd, Ningbo 315194, China
| | - Yanhui Liang
- HAMD (Ningbo) Intelligent Medical Technology Co., Ltd, Ningbo 315194, China
| | - Yigang Cen
- Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
| | - Changjun Zhu
- Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Chen J, Rodriguez AS, Morales MA, Fang X. Autophagy Modulation and Its Implications on Glioblastoma Treatment. Curr Issues Mol Biol 2023; 45:8687-8703. [PMID: 37998723 PMCID: PMC10670099 DOI: 10.3390/cimb45110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Autophagy is a vital cellular process that functions to degrade and recycle damaged organelles into basic metabolites. This allows a cell to adapt to a diverse range of challenging conditions. Autophagy assists in maintaining homeostasis, and it is tightly regulated by the cell. The disruption of autophagy has been associated with many diseases, such as neurodegenerative disorders and cancer. This review will center its discussion on providing an in-depth analysis of the current molecular understanding of autophagy and its relevance to brain tumors. We will delve into the current literature regarding the role of autophagy in glioma pathogenesis by exploring the major pathways of JAK2/STAT3 and PI3K/AKT/mTOR and summarizing the current therapeutic interventions and strategies for glioma treatment. These treatments will be evaluated on their potential for autophagy induction and the challenges associated with their utilization. By understanding the mechanism of autophagy, clinical applications for future therapeutics in treating gliomas can be better targeted.
Collapse
Affiliation(s)
- Johnny Chen
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Andrea Salinas Rodriguez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Maximiliano Arath Morales
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Xiaoqian Fang
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
9
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
10
|
Qu S, Huang X, Guo X, Zheng Z, Wei T, Chen B. Metastasis Related Epithelial-Mesenchymal Transition Signature Predicts Prognosis and Response to Chemotherapy in Acute Myeloid Leukemia. Drug Des Devel Ther 2023; 17:1651-1663. [PMID: 37305402 PMCID: PMC10257403 DOI: 10.2147/dddt.s415521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly heterogenous disease with varying clinical outcomes among patients. Epithelial-mesenchymal transition (EMT) is an important mechanism underlying cancer metastasis and chemotherapy resistance. However, few EMT-based signatures have been established to predict AML prognosis and treatment efficacy. Methods By conducting comparative RNA-seq analysis, we discovered the differential expression of EMT genes between AML patients with relapse and those without relapse. Based on the prognostic analysis of the differentially expressed EMT genes, a metastasis-related EMT signature (MEMTs) was constructed. An analysis was conducted on both TARGET and TCGA cohorts to explore the possible association between MEMTs and prognosis in AML. Three separate chemotherapy treatment cohorts were utilized to assess the predictive efficacy of MEMTs for chemotherapy response. In addition, the potential correlation between MEMTs and the tumor microenvironment was also investigated. Finally, random forest analysis and functional experiments were conducted to verify the key MEMTs gene associated with AML metastasis. Results Based on expression and prognostic analysis, we constructed MEMTs that include three EMT genes (CDH2, LOX, and COL3A1). Our findings suggested that the MEMTs could act as a prognostic factor for AML patients, and furthermore, it proved to be a predictor of their response to chemotherapy. Specifically, high MEMTs was associated with worse prognosis and poor response to chemotherapy, while low MEMTs was linked to better prognosis and higher response rates. Random forest and functional experiments demonstrate that CDH2 is a key gene promoting leukemia cell metastasis among the three MEMTs genes. Conclusion The identification of MEMTs could potentially act as a predictor for the prognosis and the response to chemotherapy in AML patients. Individual tumor evaluation based on MEMTs could provide personalized treatment options for AML patients in the future.
Collapse
Affiliation(s)
- Shuang Qu
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| | - Xiaoli Huang
- Department of Clinical Laboratory Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| | - Xiaoling Guo
- Translational Medicine Centre, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhihai Zheng
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| | - Tiannan Wei
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| | - Biyun Chen
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| |
Collapse
|
11
|
Liu A, Yu L, Li X, Zhang K, Zhang W, So KF, Tissir F, Qu Y, Zhou L. Celsr2-mediated morphological polarization and functional phenotype of reactive astrocytes in neural repair. Glia 2023. [PMID: 37186402 DOI: 10.1002/glia.24378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Neural repair is highly influenced by reactive astrocytes. Atypical cadherin Celsr2 regulates neuron development and axon regeneration, while its role in glial cells remains unexplored. In this study, we show that Celsr2 is highly expressed in spinal astrocytes of adult mice, and knockout of Celsr2 results in reactive astrocytes with longer protrusions preferentially orientated towards lesion borders in culture scratch assay and injured spinal cord, and elevation of total and active Cdc42 and Rac1 protein in western blots. Inactivation of Celsr2 enhances calcium influx in reactive astrocytes in time-lapse imaging. Morphological phenotypes of cultured Celsr2-/- astrocytes are rescued by Cdc42 or Rac1 inhibitors. Following spinal cord injury (SCI), Celsr2-/- mice exhibit smaller lesion cavity and glial scar, enhanced fiber regeneration, weaker microglial response, and improved functional recovery than control animals. Similar phenotypes are found in mice with conditional knockout of Celsr2 in astrocytes. In Celsr2-/- mice, astrocyte phenotype is changed and neuroinflammation is alleviated after injury. Inhibiting Cdc42/Rac1 activities compromises astrocyte polarization and the improvement of neural repair and functional recovery in Celsr2-/- mice with SCI. In conclusion, Celsr2 regulates morphological polarization and functional phenotype of reactive astrocytes and inactivating Celsr2 is a potential therapeutic strategy for neural repair.
Collapse
Affiliation(s)
- Aimei Liu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
| | - Lingtai Yu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Xuejun Li
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Kejiao Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Wei Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Fadel Tissir
- Institute of Neuroscience, Developmental Neurobiology, Université catholique de Louvain, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yibo Qu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Schildhauer P, Selke P, Scheller C, Strauss C, Horstkorte R, Leisz S, Scheer M. Glycation Leads to Increased Invasion of Glioblastoma Cells. Cells 2023; 12:cells12091219. [PMID: 37174618 PMCID: PMC10177211 DOI: 10.3390/cells12091219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and invasive brain tumor with a poor prognosis despite extensive treatment. The switch to aerobic glycolysis, known as the Warburg effect, in cancer cells leads to an increased production of methylglyoxal (MGO), a potent glycation agent with pro-tumorigenic characteristics. MGO non-enzymatically reacts with proteins, DNA, and lipids, leading to alterations in the signaling pathways, genomic instability, and cellular dysfunction. In this study, we investigated the impact of MGO on the LN229 and U251 (WHO grade IV, GBM) cell lines and the U343 (WHO grade III) glioma cell line, along with primary human astrocytes (hA). The results showed that increasing concentrations of MGO led to glycation, the accumulation of advanced glycation end-products, and decreasing cell viability in all cell lines. The invasiveness of the GBM cell lines increased under the influence of physiological MGO concentrations (0.3 mmol/L), resulting in a more aggressive phenotype, whereas glycation decreased the invasion potential of hA. In addition, glycation had differential effects on the ECM components that are involved in the invasion progress, upregulating TGFβ, brevican, and tenascin C in the GBM cell lines LN229 and U251. These findings highlight the importance of further studies on the prevention of glycation through MGO scavengers or glyoxalase 1 activators as a potential therapeutic strategy against glioma and GBM.
Collapse
Affiliation(s)
- Paola Schildhauer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
13
|
Klonou A, Korkolopoulou P, Giannopoulou AI, Kanakoglou DS, Pampalou A, Gargalionis AN, Sarantis P, Mitsios A, Sgouros S, Papavassiliou AG, Piperi C. Histone H3K9 methyltransferase SETDB1 overexpression correlates with pediatric high-grade gliomas progression and prognosis. J Mol Med (Berl) 2023; 101:387-401. [PMID: 36811655 DOI: 10.1007/s00109-023-02294-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Pediatric high-grade gliomas (pHGGs) are heterogeneous, diffuse, and highly infiltrative tumors with dismal prognosis. Aberrant post-translational histone modifications with elevated histone 3 lysine trimethylation (H3K9me3) have been recently implicated in pHGGs' pathology, conferring to tumor heterogeneity. The present study investigates the potential involvement of H3K9me3 methyltransferase SETDB1 in the cellular function, progression, and clinical significance of pHGG. The bioinformatic analysis detected SETDB1 enrichment in pediatric gliomas compared to the normal brain, as well as positive and negative correlations with a proneural and mesenchymal signature, respectively. In our cohort of pHGGs, SETDB1 expression was significantly increased compared to pLGG and normal brain tissue and correlated with p53 expression, as well as reduced patients' survival. In accordance, H3K9me3 levels were also elevated in pHGG compared to the normal brain and were associated with worse patient survival. Gene silencing of SETDB1 in two patient-derived pHGG cell lines showed a significant reduction in cell viability followed by reduced cell proliferation and increased apoptosis. SETDB1 silencing further reduced cell migration of pHGG cells and the expression of the mesenchymal markers N-cadherin and vimentin. mRNA analysis of epithelial-mesenchymal transition (EMT) markers upon SETDB1 silencing showed a reduction in SNAI1 levels and downregulation of CDH2 along with the EMT regulator gene MARCKS. In addition, SETDB1 silencing significantly increased the bivalent tumor suppressor gene SLC17A7 mRNA levels in both cell lines, indicating its implication in the oncogenic process.Altogether, our findings demonstrate a predominant oncogenic role of SETDB1 in pHGG which along with elevated H3K9me3 levels correlate significantly to tumor progression and inferior patients' survival. There is evidence that targeting SETDB1 may effectively inhibit pHGG progression, providing a novel insight into the therapeutic strategies for pediatric gliomas. KEY MESSAGES: SETDB1 gene expression is enriched in pHGG compared to normal brain. SETDB1 expression is increased in pHGG tissues and associates with reduced patients' survival. Gene silencing of SETDB1 reduces cell viability and migration. SETDB1 silencing affects mesenchymal markers expression. SETDB1 silencing upregulates SLC17A7 levels. SETDB1 has an oncogenic role in pHGG.
Collapse
Affiliation(s)
- Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece
| | - Dimitrios S Kanakoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Andromachi Pampalou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece
| | - Andreas Mitsios
- Department of Pediatric Neurosurgery, IASO Children's Hospital, National and Kapodistrian University of Athens, 15123, Athens, Greece
| | - Spyros Sgouros
- Department of Pediatric Neurosurgery, IASO Children's Hospital, National and Kapodistrian University of Athens, 15123, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece.
| |
Collapse
|
14
|
Potez M, Snedal S, She C, Kim J, Thorner K, Tran TH, Ramello MC, Abate-Daga D, Liu JKC. Use of phage display biopanning as a tool to design CAR-T cells against glioma stem cells. Front Oncol 2023; 13:1124272. [PMID: 37035164 PMCID: PMC10080078 DOI: 10.3389/fonc.2023.1124272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Background Glioblastoma (GBM) is both the most common and aggressive type of primary brain tumor, associated with high mortality rates and resistance to conventional therapy. Despite recent advancements in knowledge and molecular profiling, recurrence of GBM is nearly inevitable. This recurrence has been attributed to the presence of glioma stem cells (GSCs), a small fraction of cells resistant to standard-of-care treatments and capable of self-renewal and tumor initiation. Therefore, targeting these cancer stem cells will allow for the development of more effective therapeutic strategies against GBM. We have previously identified several 7-amino acid length peptides which specifically target GSCs through in vitro and in vivo phage display biopanning. Methods and results We have combined two of these peptides to create a dual peptide construct (EV), and demonstrated its ability to bind GSCs in vitro and target intracranial GBM in mouse models. A peptide pull-down performed with peptide EV followed by mass spectrometry determined N-cadherin as the binding partner of the peptide, which was validated by enzyme-linked immunosorbent assay and surface plasmon resonance. To develop cytotoxic cellular products aimed at specifically targeting GSCs, chimeric antigen receptors (CARs) were engineered containing the peptide EV in place of the single-chain variable fragment (scFv) as the antigen-binding domain. EV CAR-transduced T cells demonstrated specific reactivity towards GSCs by production of interferon-gamma when exposed to GSCs, in addition to the induction of GSC-specific apoptosis as illustrated by Annexin-V staining. Conclusion These results exemplify the use of phage display biopanning for the isolation of GSC-targeting peptides, and their potential application in the development of novel cytotoxic therapies for GBM.
Collapse
Affiliation(s)
- Marine Potez
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Sebastian Snedal
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Chunhua She
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jongmyung Kim
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Konrad Thorner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Timothy H. Tran
- Chemical Biology Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Maria Cecilia Ramello
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - James K. C. Liu
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
15
|
Yifan H, Peng G, Tao Q, Bo C, Tao X, Jiang Y, Qian W, Zhenqi Y, Tao J, Jin F, Shujie Z, Wei Z, Jian C, Guoyong Y. Delayed inhibition of collagen deposition by targeting bone morphogenetic protein 1 promotes recovery after spinal cord injury. Matrix Biol 2023; 118:69-91. [PMID: 36918086 DOI: 10.1016/j.matbio.2023.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Fibrotic scars appear after spinal cord injury (SCI) and are mainly composed of fibroblasts and excess extracellular matrix (ECM), including different types of collagen. The temporal and spatial distribution and role of excess collagens and ECM after SCI are not yet fully understood. Here, we identified that the procollagen type I C-terminal propeptide (PICP), a marker of collagen type I deposition, and bone morphogenetic protein 1 (BMP1), a secreted procollagen c-proteinase (PCP) for type I collagen maturation, were significantly elevatedin cerebrospinal fluid of patients with SCI compared with healthy controls, and were associated with spinal cord compression and neurological symptoms. We revealed the deposition of type I collagen in the area damaged by SCI in mice and confirmed that BMP1 was the only expressed PCP and induced collagen deposition. Furthermore, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) can activate the expression of BMP1. However, inhibition of BMP1 at the acute phase eliminated fibrotic scars in the damaged area and inhibited activation and enrichment of astrocytes, which made the damage difficult to repair and increased hematoma. Unexpectedly, knockdown of Bmp1 by adeno-associated virus or the inhibition of BMP1 biological function by specific inhibitors and monoclonal antibodies at different time points after injury led to distinct therapeutic effects. Only delayed inhibition of BMP1 improved axonal regeneration and myelin repair at the subacute stage post-injury, and led to the recovery of motor function, suggesting that scarring had a dual effect. Early inhibition of the scarring was not conducive to limiting inflammation, while excessive scar formation inhibited the growth of axons. After SCI, the collagen deposition indicators increased in both human cerebrospinal fluid and mouse spinal cord. Therefore, suppression of BMP1 during the subacute phase improves nerve function after SCI and is a potential target for scar reduction.
Collapse
Affiliation(s)
- Huang Yifan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Gao Peng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Qin Tao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Chu Bo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xu Tao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yi Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Wang Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yang Zhenqi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Fan Jin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zhao Shujie
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Zhou Wei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Chen Jian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Yin Guoyong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
16
|
Singh AV, Chandrasekar V, Laux P, Luch A, Dakua SP, Zamboni P, Shelar A, Yang Y, Pandit V, Tisato V, Gemmati D. Micropatterned Neurovascular Interface to Mimic the Blood–Brain Barrier’s Neurophysiology and Micromechanical Function: A BBB-on-CHIP Model. Cells 2022; 11:cells11182801. [PMID: 36139383 PMCID: PMC9497163 DOI: 10.3390/cells11182801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/25/2022] Open
Abstract
A hybrid blood–brain barrier (BBB)-on-chip cell culture device is proposed in this study by integrating microcontact printing and perfusion co-culture to facilitate the study of BBB function under high biological fidelity. This is achieved by crosslinking brain extracellular matrix (ECM) proteins to the transwell membrane at the luminal surface and adapting inlet–outlet perfusion on the porous transwell wall. While investigating the anatomical hallmarks of the BBB, tight junction proteins revealed tortuous zonula occludens (ZO-1), and claudin expressions with increased interdigitation in the presence of astrocytes were recorded. Enhanced adherent junctions were also observed. This junctional phenotype reflects in-vivo-like features related to the jamming of cell borders to prevent paracellular transport. Biochemical regulation of BBB function by astrocytes was noted by the transient intracellular calcium effluxes induced into endothelial cells. Geometry-force control of astrocyte–endothelial cell interactions was studied utilizing traction force microscopy (TFM) with fluorescent beads incorporated into a micropatterned polyacrylamide gel (PAG). We observed the directionality and enhanced magnitude in the traction forces in the presence of astrocytes. In the future, we envisage studying transendothelial electrical resistance (TEER) and the effect of chemomechanical stimulations on drug/ligand permeability and transport. The BBB-on-chip model presented in this proposal should serve as an in vitro surrogate to recapitulate the complexities of the native BBB cellular milieus.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
- Correspondence: (A.V.S.); (S.P.D.)
| | | | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- Correspondence: (A.V.S.); (S.P.D.)
| | - Paolo Zamboni
- Department of Vascular Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Doha 24404, Qatar
| | - Vaibhav Pandit
- Dynex Technologies, 14340 Sullyfield Circle, Chantilly, VA 20151, USA
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Basilico B, Palamà IE, D’Amone S, Lauro C, Rosito M, Grieco M, Ratano P, Cordella F, Sanchini C, Di Angelantonio S, Ragozzino D, Cascione M, Gigli G, Cortese B. Substrate stiffness effect on molecular crosstalk of epithelial-mesenchymal transition mediators of human glioblastoma cells. Front Oncol 2022; 12:983507. [PMID: 36091138 PMCID: PMC9454310 DOI: 10.3389/fonc.2022.983507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The complexity of the microenvironment effects on cell response, show accumulating evidence that glioblastoma (GBM) migration and invasiveness are influenced by the mechanical rigidity of their surroundings. The epithelial–mesenchymal transition (EMT) is a well-recognized driving force of the invasive behavior of cancer. However, the primary mechanisms of EMT initiation and progression remain unclear. We have previously showed that certain substrate stiffness can selectively stimulate human GBM U251-MG and GL15 glioblastoma cell lines motility. The present study unifies several known EMT mediators to uncover the reason of the regulation and response to these stiffnesses. Our results revealed that changing the rigidity of the mechanical environment tuned the response of both cell lines through change in morphological features, epithelial-mesenchymal markers (E-, N-Cadherin), EGFR and ROS expressions in an interrelated manner. Specifically, a stiffer microenvironment induced a mesenchymal cell shape, a more fragmented morphology, higher intracellular cytosolic ROS expression and lower mitochondrial ROS. Finally, we observed that cells more motile showed a more depolarized mitochondrial membrane potential. Unravelling the process that regulates GBM cells’ infiltrative behavior could provide new opportunities for identification of new targets and less invasive approaches for treatment.
Collapse
Affiliation(s)
| | - Ilaria Elena Palamà
- National Research Council-Nanotechnology Institute (CNR Nanotec), Lecce, Italy
| | - Stefania D’Amone
- National Research Council-Nanotechnology Institute (CNR Nanotec), Lecce, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Maria Rosito
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience, Italian Institute of Technology (IIT), Rome, Italy
| | - Maddalena Grieco
- National Research Council-Nanotechnology Institute (CNR Nanotec), Lecce, Italy
| | - Patrizia Ratano
- National Research Council-Nanotechnology Institute (CNR Nanotec), Rome, Italy
| | - Federica Cordella
- Center for Life Nanoscience, Italian Institute of Technology (IIT), Rome, Italy
| | - Caterina Sanchini
- Center for Life Nanoscience, Italian Institute of Technology (IIT), Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience, Italian Institute of Technology (IIT), Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Giuseppe Gigli
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Department of Mathematics and Physics “Ennio De Giorgi” University of Salento, Lecce, Italy
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute (CNR Nanotec), Rome, Italy
- *Correspondence: Barbara Cortese,
| |
Collapse
|
18
|
Szczepaniak J, Sosnowska M, Wierzbicki M, Witkowska-Pilaszewicz O, Strojny-Cieslak B, Jagiello J, Fraczek W, Kusmierz M, Grodzik M. Reduced Graphene Oxide Modulates the FAK-Dependent Signaling Pathway in Glioblastoma Multiforme Cells In Vitro. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175843. [PMID: 36079225 PMCID: PMC9457042 DOI: 10.3390/ma15175843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 08/19/2022] [Indexed: 05/27/2023]
Abstract
Aggressive invasiveness is a common feature of malignant gliomas, despite their high level of tumor heterogeneity and possible diverse cell origins. Therefore, it is important to explore new therapeutic methods. In this study, we evaluated and compared the effects of graphene (GN) and reduced graphene oxides (rGOs) on a highly invasive and neoplastic cell line, U87. The surface functional groups of the GN and rGO flakes were characterized by X-ray photoelectron spectroscopy. The antitumor activity of these flakes was obtained by using the neutral red assay and their anti-migratory activity was determined using the wound healing assay. Further, we investigated the mRNA and protein expression levels of important cell adhesion molecules involved in migration and invasiveness. The rGO flakes, particularly rGO/ATS and rGO/TUD, were found highly toxic. The migration potential of both U87 and Hs5 cells decreased, especially after rGO/TUD treatment. A post-treatment decrease in mobility and FAK expression was observed in U87 cells treated with rGO/ATS and rGO/TUD flakes. The rGO/TUD treatment also reduced β-catenin expression in U87 cells. Our results suggest that rGO flakes reduce the migration and invasiveness of U87 tumor cells and can, thus, be used as potential antitumor agents.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Olga Witkowska-Pilaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Barbara Strojny-Cieslak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Joanna Jagiello
- Graphene and Composites Research Group, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, 01-919 Warsaw, Poland
| | - Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Marcin Kusmierz
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
19
|
Pillai M, Rajaram G, Thakur P, Agarwal N, Muralidharan S, Ray A, Barbhaya D, Somarelli JA, Jolly MK. Mapping phenotypic heterogeneity in melanoma onto the epithelial-hybrid-mesenchymal axis. Front Oncol 2022; 12:913803. [PMID: 36003764 PMCID: PMC9395132 DOI: 10.3389/fonc.2022.913803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a well-studied hallmark of epithelial-like cancers that is characterized by loss of epithelial markers and gain of mesenchymal markers. Melanoma, which is derived from melanocytes of the skin, also undergo phenotypic plasticity toward mesenchymal-like phenotypes under the influence of various micro-environmental cues. Our study connects EMT to the phenomenon of de-differentiation (i.e., transition from proliferative to more invasive phenotypes) observed in melanoma cells during drug treatment. By analyzing 78 publicly available transcriptomic melanoma datasets, we found that de-differentiation in melanoma is accompanied by upregulation of mesenchymal genes, but not necessarily a concomitant loss of an epithelial program, suggesting a more “one-dimensional” EMT that leads to a hybrid epithelial/mesenchymal phenotype. Samples lying in the hybrid epithelial/mesenchymal phenotype also correspond to the intermediate phenotypes in melanoma along the proliferative-invasive axis - neural crest and transitory ones. As melanoma cells progress along the invasive axis, the mesenchymal signature does not increase monotonically. Instead, we observe a peak in mesenchymal scores followed by a decline, as cells further de-differentiate. This biphasic response recapitulates the dynamics of melanocyte development, suggesting close interactions among genes controlling differentiation and mesenchymal programs in melanocytes. Similar trends were noted for metabolic changes often associated with EMT in carcinomas in which progression along mesenchymal axis correlates with the downregulation of oxidative phosphorylation, while largely maintaining glycolytic capacity. Overall, these results provide an explanation for how EMT and de-differentiation axes overlap with respect to their transcriptional and metabolic programs in melanoma.
Collapse
Affiliation(s)
- Maalavika Pillai
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Undergraduate Programme, Indian Institute of Science, Bangalore, India
| | - Gouri Rajaram
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Pradipti Thakur
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Nilay Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Undergraduate Programme, Indian Institute of Science, Bangalore, India
| | - Srinath Muralidharan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ankita Ray
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Dev Barbhaya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- *Correspondence: Mohit Kumar Jolly,
| |
Collapse
|
20
|
ZEB1 induces N-cadherin expression in human glioblastoma and may alter patient survival. Mol Clin Oncol 2022; 17:123. [PMID: 35911664 DOI: 10.3892/mco.2022.2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the expression of epithelial-mesenchymal transition (EMT)-related factors zinc finger E-box-binding homeobox 1 (ZEB1), cadherin-1 (CDH1), cadherin-2 (CDH2) and the cell cycle modulating kinase cyclin-dependent kinase 1 (CDK1) in human glioblastoma (GBM) compared to normal brain tissue, as well as whether the levels of expression were associated with the overall and progression-free survival of the GBM patients. In 44 GBM and five normal brain tissue specimens, the expression levels of ZEB1, CDH1, CDH2 and CDK1 were evaluated by real-time PCR and immunostaining, and the results were correlated with clinical data. The expression levels of all investigated genes as detected by immunostaining were significantly higher in the GBM when compared to the normal brain tissues. There was no influence on survival. A linear correlation between ZEB1 and CDH2 and CDK1 expression was observed in GBM. Moreover, ZEB1 was involved in EMT (e.g., signaling in human GBM) and high ZEB1 levels were linked to an aberrant cell cycle processing, marked by CDK1 overexpression.
Collapse
|
21
|
Puebla M, Tapia PJ, Espinoza H. Key Role of Astrocytes in Postnatal Brain and Retinal Angiogenesis. Int J Mol Sci 2022; 23:ijms23052646. [PMID: 35269788 PMCID: PMC8910249 DOI: 10.3390/ijms23052646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis is a key process in various physiological and pathological conditions in the nervous system and in the retina during postnatal life. Although an increasing number of studies have addressed the role of endothelial cells in this event, the astrocytes contribution in angiogenesis has received less attention. This review is focused on the role of astrocytes as a scaffold and in the stabilization of the new blood vessels, through different molecules release, which can modulate the angiogenesis process in the brain and in the retina. Further, differences in the astrocytes phenotype are addressed in glioblastoma, one of the most devastating types of brain cancer, in order to provide potential targets involved in the cross signaling between endothelial cells, astrocytes and glioma cells, that mediate tumor progression and pathological angiogenesis. Given the relevance of astrocytes in angiogenesis in physiological and pathological conditions, future studies are required to better understand the interrelation between endothelial and astrocyte signaling pathways during this process.
Collapse
Affiliation(s)
- Mariela Puebla
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Av. Plaza 680, Las Condes, Santiago 7550000, Chile;
| | - Pablo J. Tapia
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Av. Lota 2465, Providencia, Santiago 7500000, Chile;
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Av. República 71, Santiago 8320000, Chile
| | - Hilda Espinoza
- Facultad de Ciencias de la Salud, Universidad del Alba, Av. Ejército Libertador 171, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
22
|
Glioblastoma Microenvironment and Cellular Interactions. Cancers (Basel) 2022; 14:cancers14041092. [PMID: 35205842 PMCID: PMC8870579 DOI: 10.3390/cancers14041092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This paper summarizes the crosstalk between tumor/non-tumor cells and other elements of the glioblastoma (GB) microenvironment. In tumor pathology, glial cells result in the highest number of cancers, and GB is considered the most lethal tumor of the central nervous system (CNS). The tumor microenvironment (TME) is a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be a key factor for the ineffective treatment since the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. A deeper understanding of cell–cell interactions in the TME and with the tumor cells could be the basis for a more efficient therapy. Abstract The central nervous system (CNS) represents a complex network of different cells, such as neurons, glial cells, and blood vessels. In tumor pathology, glial cells result in the highest number of cancers, and glioblastoma (GB) is considered the most lethal tumor in this region. The development of GB leads to the infiltration of healthy tissue through the interaction between all the elements of the brain network. This results in a GB microenvironment, a complex peritumoral hallo composed of tumor cells and several non-tumor cells (e.g., nervous cells, stem cells, fibroblasts, vascular and immune cells), which might be the principal factor for the ineffective treatment due to the fact that the microenvironment modulates the biologic status of the tumor with the increase in its evasion capacity. Crosstalk between glioma cells and the brain microenvironment finally inhibits the beneficial action of molecular pathways, favoring the development and invasion of the tumor and its increasing resistance to treatment. A deeper understanding of cell–cell interactions in the tumor microenvironment (TME) and with the tumor cells could be the basis for a more efficient therapy.
Collapse
|
23
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
24
|
Wang Y, Xu Y, Zhu C. The Role of Autophagy in Childhood Central Nervous System Tumors. Curr Treat Options Oncol 2022; 23:1535-1547. [PMID: 36197606 PMCID: PMC9596594 DOI: 10.1007/s11864-022-01015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Autophagy is a physiological process that occurs in normal tissues. Under external environmental pressure or internal environmental changes, cells can digest part of their contents through autophagy in order to reduce metabolic pressure or remove damaged organelles. In cancer, autophagy plays a paradoxical role, acting as a tumor suppressor-by removing damaged organelles and inhibiting inflammation or by promoting genome stability and the tumor-adaptive responses-as a pro-survival mechanism to protect cells from stress. In this article, we review the autophagy-dependent mechanisms driving childhood central nervous system tumor cell death, malignancy invasion, chemosensitivity, and radiosensitivity. Autophagy inhibitors and inducers have been developed, and encouraging results have been achieved in autophagy modulation, suggesting that these might be potential therapeutic agents for the treatment of pediatric central nervous system (CNS) tumors.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Hematology and Oncology, Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital,Zhengzhou Children’s Hospital, Zhengzhou, 450018 China ,Henan Key Laboratory of Child Brain injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,Commission Key Laboratory of Birth Defects Prevention,Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
25
|
Zhang H, Wang S, Lei C, Li G, Wang B. Experimental study of negative pressure wound therapy combined with platelet-rich fibrin for bone-exposed wounds. Regen Med 2021; 17:23-35. [PMID: 34905932 DOI: 10.2217/rme-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the efficacy of negative pressure wound therapy (NPWT) combined with platelet-rich fibrin (PRF) in treating bone-exposed wounds and explore its possible mechanism. Materials & methods: A bone-exposed wound was created in a total of 32 healthy Sprague-Dawley rats, which were divided into either control group, NPWT group, PRF group or both (N + P group). The bone-exposed area, skin contraction rate and granulation coverage and the level of growth factors in granulation tissue were determined on days 4, 7 and 10. Results: The N + P group showed significantly higher wound closure rate than that achieved with others respectively. Four factors were significantly higher in N + P group than in the other three groups. Conclusion: Combination of NPWT and PRF can repair bone-exposed wounds effectively and accelerate wound healing.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China.,Department of Pediatric Surgery, Fujian Children's Hospital, Fuzhou Fujian, 350000, PR China.,Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Fuzhou Fujian, 350000, PR China.,Fujian Maternity & Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Songyu Wang
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Chen Lei
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Guanmin Li
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| | - Biao Wang
- Department of Plastic & Cosmetic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350000, PR China
| |
Collapse
|
26
|
Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion. Dev Cell 2021; 56:2841-2855.e8. [PMID: 34559979 DOI: 10.1016/j.devcel.2021.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma are heterogeneous tumors composed of highly invasive and highly proliferative clones. Heterogeneity in invasiveness could emerge from discrete biophysical properties linked to specific molecular expression. We identified clones of patient-derived glioma propagating cells that were either highly proliferative or highly invasive and compared their cellular architecture, migratory, and biophysical properties. We discovered that invasiveness was linked to cellular fitness. The most invasive cells were stiffer, developed higher mechanical forces on the substrate, and moved stochastically. The mechano-chemical-induced expression of the formin FMN1 conferred invasive strength that was confirmed in patient samples. Moreover, FMN1 expression was also linked to motility in other cancer and normal cell lines, and its ectopic expression increased fitness parameters. Mechanistically, FMN1 acts from the microtubule lattice and promotes a robust mechanical cohesion, leading to highly invasive motility.
Collapse
|
27
|
Noronha C, Ribeiro AS, Taipa R, Castro DS, Reis J, Faria C, Paredes J. Cadherin Expression and EMT: A Focus on Gliomas. Biomedicines 2021; 9:biomedicines9101328. [PMID: 34680444 PMCID: PMC8533397 DOI: 10.3390/biomedicines9101328] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cadherins are calcium-binding proteins with a pivotal role in cell adhesion and tissue homeostasis. The cadherin-dependent mechanisms of cell adhesion and migration are exploited by cancer cells, contributing to tumor invasiveness and dissemination. In particular, cadherin switch is a hallmark of epithelial to mesenchymal transition, a complex development process vastly described in the progression of most epithelial cancers. This is characterized by drastic changes in cell polarity, adhesion, and motility, which lead from an E-cadherin positive differentiated epithelial state into a dedifferentiated mesenchymal-like state, prone to metastization and defined by N-cadherin expression. Although vastly explored in epithelial cancers, how these mechanisms contribute to the pathogenesis of other non-epithelial tumor types is poorly understood. Herein, the current knowledge on cadherin expression in normal development in parallel to tumor pathogenesis is reviewed, focusing on epithelial to mesenchymal transition. Emphasis is taken in the unascertained cadherin expression in CNS tumors, particularly in gliomas, where the potential contribution of an epithelial-to-mesenchymal-like process to glioma genesis and how this may be associated with changes in cadherin expression is discussed.
Collapse
Affiliation(s)
- Carolina Noronha
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Ricardo Taipa
- Neuropathology Unit, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Diogo S. Castro
- Stem Cells & Neurogenesis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Joaquim Reis
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Anatomy Department, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte, 1649-028 Lisboa, Portugal;
- IMM—Instituto de Medicina Molecular Joao Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joana Paredes
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
28
|
Balaraju AK, Hu B, Rodriguez JJ, Murry M, Lin F. Glypican 4 regulates planar cell polarity of endoderm cells by controlling the localization of Cadherin 2. Development 2021; 148:dev199421. [PMID: 34131730 PMCID: PMC8313861 DOI: 10.1242/dev.199421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
Noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling has been implicated in endoderm morphogenesis. However, the underlying cellular and molecular mechanisms of this process are unclear. We found that, during convergence and extension (C&E) in zebrafish, gut endodermal cells are polarized mediolaterally, with GFP-Vangl2 enriched at the anterior edges. Endoderm cell polarity is lost and intercalation is impaired in the absence of glypican 4 (gpc4), a heparan-sulfate proteoglycan that promotes Wnt/PCP signaling, suggesting that this signaling is required for endodermal cell polarity. Live imaging revealed that endoderm C&E is accomplished by polarized cell protrusions and junction remodeling, which are impaired in gpc4-deficient endodermal cells. Furthermore, in the absence of gpc4, Cadherin 2 expression on the endodermal cell surface is increased as a result of impaired Rab5c-mediated endocytosis, which partially accounts for the endodermal defects in these mutants. These findings indicate that Gpc4 regulates endodermal planar cell polarity during endoderm C&E by influencing the localization of Cadherin 2. Thus, our study uncovers a new mechanism by which Gpc4 regulates planar cell polarity and reveals the role of Wnt/PCP signaling in endoderm morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Alibert C, Pereira D, Lardier N, Etienne-Manneville S, Goud B, Asnacios A, Manneville JB. Multiscale rheology of glioma cells. Biomaterials 2021; 275:120903. [PMID: 34102526 DOI: 10.1016/j.biomaterials.2021.120903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/08/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022]
Abstract
Cells tend to soften during cancer progression, suggesting that mechanical phenotyping could be used as a diagnostic or prognostic method. Here we investigate the cell mechanics of gliomas, brain tumors that originate from glial cells or glial progenitors. Using two microrheology techniques, a single-cell parallel plates rheometer to probe whole-cell mechanics and optical tweezers to probe intracellular rheology, we show that cell mechanics discriminates human glioma cells of different grades. When probed globally, grade IV glioblastoma cells are softer than grade III astrocytoma cells, while they are surprisingly stiffer at the intracellular level. We explain this difference between global and local intracellular behaviours by changes in the composition and spatial organization of the cytoskeleton, and by changes in nuclear mechanics. Our study highlights the need to combine rheology techniques for potential diagnostic or prognostic methods based on cancer cell mechanophenotyping.
Collapse
Affiliation(s)
- Charlotte Alibert
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France
| | - David Pereira
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS, UMR7057, Université Paris-Diderot, 10 Rue Alice Domon et Léonie Duquet, F-75013, Paris, France
| | - Nathan Lardier
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS, UMR7057, Université Paris-Diderot, 10 Rue Alice Domon et Léonie Duquet, F-75013, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France; Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, 26 Rue D'Ulm, F-75005, Paris, France.
| |
Collapse
|
30
|
Choi S, Yu J, Kim W, Park KS. N-cadherin mediates the migration of bone marrow-derived mesenchymal stem cells toward breast tumor cells. Theranostics 2021; 11:6786-6799. [PMID: 34093853 PMCID: PMC8171089 DOI: 10.7150/thno.59703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: Bone marrow-derived mesenchymal stem cells (BM-MSCs) recruited into breast tumors regulate the behavior of tumor cells via various mechanisms and affect clinical outcomes. Although signaling molecules, such as transforming growth factor β (TGF-β), are known to transmit signals between BM-MSCs and breast tumor cells for recruiting BM-MSCs, it is unclear which specific intrinsic molecules involved in cell motility mediate the migration of BM-MSCs into breast tumor. It is also unclear as to how specific intrinsic molecules contribute to the migration. Methods: Conditioned medium (CM) from breast tumor cells (MCF-7 and MDA-MB-231) that simulates breast tumor secreting TGF-β was used to examine the migration of BM-MSCs into breast tumors. A three-dimensional migration assay was performed to investigate the collective migration of BM-MSCs, maintaining cell-cell adhesion, toward breast tumor cells. Results: N-cadherin formed adherens junction-like structures on the intercellular borders of BM-MSCs, and TGF-β increased the expression of N-cadherin on these borders. Knockdown of Smad4 impaired the TGF-β-mediated increase in N-cadherin expression in BM-MSCs, but inhibitors of non-canonical TGF-β pathways, such as extracellular signal-regulated kinases, Akt, and p38, did not affect it. siRNA-mediated knockdown of N-cadherin and Smad4 impaired the migration of BM-MSCs in response to TGF-β. Conditioned medium from breast tumor cells also enhanced the expression of N-cadherin in BM-MSCs, but inactivation of TGF-β type 1 receptor (TGFBR1) with SB505124 and TGFBR1 knockdown abolished the increase in N-cadherin expression. BM-MSCs collectively migrated toward CM from MDA-MB-231 in vitro while maintaining cell-cell adhesion through N-cadherin. Knockdown of N-cadherin abolished the migration of BM-MSCs toward the CM from breast tumor cells. Conclusion: In the present study, we identified N-cadherin, an intrinsic transmembrane molecule in adherens junction-like structures, on BM-MSCs as a mediator for the migration of these cells toward breast tumor. The expression of N-cadherin increases on the intercellular borders of BM-MSCs through the TGF-β canonical signaling and they collectively migrate in response to breast tumor cells expressing TGF-β via N-cadherin-dependent cell-cell adhesion. We, herein, introduce a novel promising strategy for controlling and re-engineering the breast tumor microenvironment.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wootak Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
31
|
Kastian RF, Minegishi T, Baba K, Saneyoshi T, Katsuno-Kambe H, Saranpal S, Hayashi Y, Inagaki N. Shootin1a-mediated actin-adhesion coupling generates force to trigger structural plasticity of dendritic spines. Cell Rep 2021; 35:109130. [PMID: 34010643 DOI: 10.1016/j.celrep.2021.109130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Dendritic spines constitute the major compartments of excitatory post-synapses. They undergo activity-dependent enlargement, which is thought to increase the synaptic efficacy underlying learning and memory. The activity-dependent spine enlargement requires activation of signaling pathways leading to promotion of actin polymerization within the spines. However, the molecular machinery that suffices for that structural plasticity remains unclear. Here, we demonstrate that shootin1a links polymerizing actin filaments in spines with the cell-adhesion molecules N-cadherin and L1-CAM, thereby mechanically coupling the filaments to the extracellular environment. Synaptic activation enhances shootin1a-mediated actin-adhesion coupling in spines. Promotion of actin polymerization is insufficient for the plasticity; the enhanced actin-adhesion coupling is required for polymerizing actin filaments to push against the membrane for spine enlargement. By integrating cell signaling, cell adhesion, and force generation into the current model of actin-based machinery, we propose molecular machinery that is sufficient to trigger the activity-dependent spine structural plasticity.
Collapse
Affiliation(s)
- Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kentarou Baba
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Hiroko Katsuno-Kambe
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Singh Saranpal
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
32
|
Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y, Takeichi M. Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J Cell Biol 2021; 219:152072. [PMID: 32886101 PMCID: PMC7659716 DOI: 10.1083/jcb.202006196] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Collective migration of epithelial cells plays crucial roles in various biological processes such as cancer invasion. In migrating epithelial sheets, leader cells form lamellipodia to advance, and follower cells also form similar motile apparatus at cell-cell boundaries, which are called cryptic lamellipodia (c-lamellipodia). Using adenocarcinoma-derived epithelial cells, we investigated how c-lamellipodia form and found that they sporadically grew from around E-cadherin-based adherens junctions (AJs). WAVE and Arp2/3 complexes were localized along the AJs, and silencing them not only interfered with c-lamellipodia formation but also prevented follower cells from trailing the leaders. Disruption of AJs by removing αE-catenin resulted in uncontrolled c-lamellipodia growth, and this was brought about by myosin II activation and the resultant contraction of AJ-associated actomyosin cables. Additional observations indicated that c-lamellipodia tended to grow at mechanically weak sites of the junction. We conclude that AJs not only tie cells together but also support c-lamellipodia formation by recruiting actin regulators, enabling epithelial cells to undergo ordered collective migration.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Sylvain Hiver
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaki Yamamoto
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
33
|
Selke P, Rosenstock P, Bork K, Strauss C, Horstkorte R, Scheer M. Glycation of benign meningioma cells leads to increased invasion. Biol Chem 2021; 402:849-859. [PMID: 33725749 DOI: 10.1515/hsz-2020-0376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Meningiomas are the most common non-malignant intracranial tumors. Like most tumors, meningiomas prefer anaerobic glycolysis for energy production (Warburg effect). This leads to an increased synthesis of the metabolite methylglyoxal (MGO). This metabolite is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation endproducts (AGEs). In this study, we investigated the influence of glycation on two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). Increasing MGO concentrations led to the formation of AGEs and decreased growth in both cell lines. When analyzing the influence of glycation on adhesion, chemotaxis and invasion, we could show that the glycation of meningioma cells resulted in increased invasive potential of the benign meningioma cell line, whereas the invasive potential of the malignant cell line was reduced. In addition, glycation increased the E-cadherin- and decreased the N-cadherin-expression in BEN-MEN-1 cells, but did not affect the cadherin-expression in IOMM-Lee cells.
Collapse
Affiliation(s)
- Philipp Selke
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
| | - Philip Rosenstock
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
| | - Kaya Bork
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
| | - Christian Strauss
- Department for Neurosurgery, University Hospital Halle, D-06120Halle/Saale, Germany
| | - Rüdiger Horstkorte
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
| | - Maximilian Scheer
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
- Department for Neurosurgery, University Hospital Halle, D-06120Halle/Saale, Germany
| |
Collapse
|
34
|
Osuka S, Zhu D, Zhang Z, Li C, Stackhouse CT, Sampetrean O, Olson JJ, Gillespie GY, Saya H, Willey CD, Van Meir EG. N-cadherin upregulation mediates adaptive radioresistance in glioblastoma. J Clin Invest 2021; 131:136098. [PMID: 33720050 PMCID: PMC7954595 DOI: 10.1172/jci136098] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of β-catenin at the cell surface, which suppressed Wnt/β-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.
Collapse
Affiliation(s)
- Satoru Osuka
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Dan Zhu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Zhaobin Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Chaoxi Li
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christian T. Stackhouse
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, USA
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Jeffrey J. Olson
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - G. Yancey Gillespie
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, USA
| | - Erwin G. Van Meir
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Xu A, Wang X, Luo J, Zhou M, Yi R, Huang T, Lin J, Wu Z, Xie C, Ding S, Zeng Y, Song Y. Overexpressed P75CUX1 promotes EMT in glioma infiltration by activating β-catenin. Cell Death Dis 2021; 12:157. [PMID: 33542188 PMCID: PMC7862635 DOI: 10.1038/s41419-021-03424-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
The homeobox protein cut-like 1 (CUX1) comprises three isoforms and has been shown to be involved in the development of various types of malignancies. However, the expression and role of the CUX1 isoforms in glioma remain unclear. Herein, we first identified that P75CUX1 isoform exhibited consistent expression among three isoforms in glioma with specifically designed antibodies to identify all CUX1 isoforms. Moreover, a significantly higher expression of P75CUX1 was found in glioma compared with non-tumor brain (NB) tissues, analyzed with western blot and immunohistochemistry, and the expression level of P75CUX1 was positively associated with tumor grade. In addition, Kaplan-Meier survival analysis indicated that P75CUX1 could serve as an independent prognostic indicator to identify glioma patients with poor overall survival. Furthermore, CUX1 knockdown suppressed migration and invasion of glioma cells both in vitro and in vivo. Mechanistically, this study found that P75CUX1 regulated epithelial-mesenchymal transition (EMT) process mediated via β-catenin, and CUX1/β-catenin/EMT is a novel signaling cascade mediating the infiltration of glioma. Besides, CUX1 was verified to promote the progression of glioma via multiple other signaling pathways, such as Hippo and PI3K/AKT. In conclusion, we suggested that P75CUX1 could serve as a potential prognostic indicator as well as a novel treatment target in malignant glioma.
Collapse
Affiliation(s)
- Anqi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Xizhao Wang
- Department of Neurosurgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, PR China
| | - Jie Luo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Renhui Yi
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Tengyue Huang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Zhiyong Wu
- Department of Neurosurgery, The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, 518116, PR China
| | - Cheng Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Shengfeng Ding
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yu Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, PR China.
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China.
| |
Collapse
|
36
|
Wang Y, Zhang Y, Sang B, Zhu X, Yu R, Zhou X. Human giant larvae-1 promotes migration and invasion of malignant glioma cells by regulating N-cadherin. Oncol Lett 2021; 21:167. [PMID: 33552285 PMCID: PMC7798033 DOI: 10.3892/ol.2021.12428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Human giant larvae-1 (Hugl-1) is a human homologue of Drosophila tumor suppressor lethal (2)-giant larvae and has been reported to be involved in the development of human malignancies. Previous studies performed by our group demonstrated that Hugl-1 inhibits glioma cell proliferation in an intracranial model of nude mice. However, the exact molecular mechanisms underlying the participation of Hugl-1 in glioma invasion and migration, and in the depolarizing process remain largely unknown. Utilizing the U251-MG cells with stable expression of Hugl-1, the present study used wound healing, Transwell invasion and western blot assays to explore the role and specific mechanism of Hugl-1 in glioma invasion and migration. The results of the present study demonstrated that overexpression of Hugl-1 decreased cell-cell adhesion and increased cell-cell extracellular matrix adhesion. In addition, overexpression of Hugl-1 promoted pseudopodia formation, glioma cell migration and invasion. The molecular mechanism of action involved the negative regulation of N-cadherin protein levels by Hugl-1. Overexpression or knockdown of N-cadherin partially suppressed or enhanced the effects of Hugl-1 on glioma cell migration and invasion, respectively. Furthermore, Hugl-1 inhibited cell proliferation, while promoting cell migration, which suggests that it may serve a two-sided biological role in cellular processes. Taken together, these results suggest that Hugl-1 promotes the migration and invasion of malignant glioma cells by decreasing N-cadherin expression. Thus, Hugl-1 may be applied in the development of targeted and personalized treatment.
Collapse
Affiliation(s)
- Yan Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yu Zhang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Ben Sang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xianlong Zhu
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
37
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Seilicovich A, Candolfi M. The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: what do we know so far? Expert Opin Ther Targets 2020; 24:1121-1133. [PMID: 32896197 DOI: 10.1080/14728222.2020.1821187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Prolactin (PRL) and its receptor (PRLR) have been associated with the development of hormone-dependent tumors and have been detected in glioblastoma (GBM) biopsies. GBM is the most common and aggressive primary brain tumor in adults and the prognosis for patients is dismal; hence researchers are exploring the PRLR pathway as a therapeutic target in this disease. Areas covered: This paper explores the effects of PRLR activation on the biology of GBM, the correlation between PRL and PRLR expression and GBM progression and survival in male and female patients. Finally, we discuss how a better understanding of the PRLR pathway may allow the development of novel treatments for GBM. Expert opinion: We propose PRL and PRLR as potential prognosis biomarkers and therapeutic targets in GBM. Local administration of PRLR inhibitors using gene therapy may offer a beneficial strategy for targeting GBM cells disseminated in the non-neoplastic brain; however, efficacy and safety require careful and extensive evaluation. The data depicted herein underline the need to (i) improve our understanding of sexual dimorphism in GBM, and (ii) develop accurate preclinical models that take into consideration different hormonal contexts, specific genetic alterations, and tumor grades.
Collapse
Affiliation(s)
- Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Camila F Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina.,departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
38
|
Hughes R, Yeomans JM. Collective chemotaxis of active nematic droplets. Phys Rev E 2020; 102:020601. [PMID: 32942458 DOI: 10.1103/physreve.102.020601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/12/2020] [Indexed: 11/07/2022]
Abstract
Collective chemotaxis plays a key role in the navigation of cell clusters in, e.g., embryogenesis and cancer metastasis. Using the active nematic continuum equations, coupled to a chemical field that regulates activity, we demonstrate and explain a physical mechanism that results in collective chemotaxis. The activity naturally leads to cell polarization at the cluster interface which induces outward flows. The chemical gradient then breaks the symmetry of the flow field, leading to a net motion. The velocity is independent of the cluster size, in agreement with experiment.
Collapse
Affiliation(s)
- Rian Hughes
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
39
|
Simpson JE, Gammoh N. The impact of autophagy during the development and survival of glioblastoma. Open Biol 2020; 10:200184. [PMID: 32873152 PMCID: PMC7536068 DOI: 10.1098/rsob.200184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common and aggressive adult brain tumour, with poor median survival and limited treatment options. Following surgical resection and chemotherapy, recurrence of the disease is inevitable. Genomic studies have identified key drivers of glioblastoma development, including amplifications of receptor tyrosine kinases, which drive tumour growth. To improve treatment, it is crucial to understand survival response processes in glioblastoma that fuel cell proliferation and promote resistance to treatment. One such process is autophagy, a catabolic pathway that delivers cellular components sequestered into vesicles for lysosomal degradation. Autophagy plays an important role in maintaining cellular homeostasis and is upregulated during stress conditions, such as limited nutrient and oxygen availability, and in response to anti-cancer therapy. Autophagy can also regulate pro-growth signalling and metabolic rewiring of cancer cells in order to support tumour growth. In this review, we will discuss our current understanding of how autophagy is implicated in glioblastoma development and survival. When appropriate, we will refer to findings derived from the role of autophagy in other cancer models and predict the outcome of manipulating autophagy during glioblastoma treatment.
Collapse
Affiliation(s)
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
40
|
Zuchegna C, Di Zazzo E, Moncharmont B, Messina S. Dual-specificity phosphatase (DUSP6) in human glioblastoma: epithelial-to-mesenchymal transition (EMT) involvement. BMC Res Notes 2020; 13:374. [PMID: 32771050 PMCID: PMC7414695 DOI: 10.1186/s13104-020-05214-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Survival is poor and improved treatment options are urgently needed. Dual specificity phosphatase-6 (DUSP6) is actively involved in oncogenesis showing unexpected tumor-promoting properties in human glioblastoma, contributing to the development and expression of the full malignant and invasive phenotype. The purpose of this study was to assess if DUSP6 activates epithelial-to-mesenchymal transition (EMT) in glioblastoma and its connection with the invasive capacity. Results We found high levels of transcripts mRNA by qPCR analysis in a panel of primary GBM compared to adult or fetal normal tissues. At translational levels, these data correlate with high protein expression and long half-life values by cycloheximide-chase assay in immunoblot experiments. Next, we demonstrate that DUSP6 gene is involved in epithelial-to-mesenchymal transition (EMT) in GBM by immunoblot characterization of the mesenchymal and epithelial markers. Vimentin, N-Cadherin, E-Cadherin and fibronectin were measured with and without DUSP6 over-expression, and in response to several stimuli such as chemotherapy treatment. In particular, the high levels of vimentin were blunted at increasing doses of cisplatin in condition of DUSP6 over-expression while N-Cadherin contextually increased. Finally, DUSP6 per se increased invasion capacity of GBM. Overall, our data unveil the DUSP6 involvement in invasive mesenchymal-like properties in GBM.
Collapse
Affiliation(s)
- Candida Zuchegna
- Department of Biology, Federico II University of Naples, 80126, Naples, Italy
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
41
|
Colak-Champollion T, Lan L, Jadhav AR, Yamaguchi N, Venkiteswaran G, Patel H, Cammer M, Meier-Schellersheim M, Knaut H. Cadherin-Mediated Cell Coupling Coordinates Chemokine Sensing across Collectively Migrating Cells. Curr Biol 2020; 29:2570-2579.e7. [PMID: 31386838 DOI: 10.1016/j.cub.2019.06.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
The directed migration of cells sculpts the embryo, contributes to homeostasis in the adult, and, when dysregulated, underlies many diseases [1, 2]. During these processes, cells move singly or as a collective. In both cases, they follow guidance cues, which direct them to their destination [3-6]. In contrast to single cells, collectively migrating cells need to coordinate with their neighbors to move together in the same direction. Recent studies suggest that leader cells in the front sense the guidance cue, relay the directional information to the follower cells in the back, and can pull the follower cells along [7-19]. In this manner, leader cells steer the collective and set the collective's overall speed. However, whether follower cells also participate in steering and speed setting of the collective is largely unclear. Using chimeras, we analyzed the role of leader and follower cells in the collectively migrating zebrafish posterior lateral line primordium. This tissue expresses the chemokine receptor Cxcr4 and is guided by the chemokine Cxcl12a [20-23]. We find that leader and follower cells need to sense the attractant Cxcl12a for efficient migration, are coupled to each other through cadherins, and require coupling to pull Cxcl12a-insensitive cells along. Analysis of cell dynamics in chimeric and protein-depleted primordia shows that Cxcl12a-sensing and cadherin-mediated adhesion contribute jointly to direct migration at both single-cell and tissue levels. These results suggest that all cells in the primordium need to sense the attractant and adhere to each other to coordinate their movements and migrate with robust directionality.
Collapse
Affiliation(s)
- Tugba Colak-Champollion
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Ling Lan
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alisha R Jadhav
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Gayatri Venkiteswaran
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Heta Patel
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Michael Cammer
- NYU Langone's Microscopy Laboratory, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Martin Meier-Schellersheim
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
42
|
Chen BJ, Wu JS, Tang YJ, Tang YL, Liang XH. What makes leader cells arise: Intrinsic properties and support from neighboring cells. J Cell Physiol 2020; 235:8983-8995. [PMID: 32572948 DOI: 10.1002/jcp.29828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Cancer cells collectively invading as a cohesive and polarized group is termed collective invasion, which is a fundamental property of many types of cancers. In this multicellular unit, cancer cells are heterogeneous, consisting of two morphologically and functionally distinct subpopulations, leader cells and follower cells. Leader cells at the invasive front are responsible for exploring the microenvironment, paving the way, and transmitting information to follower cells. Here, in this review, we will describe the important role of leader cells in collective invasion and the emerging underlying mechanisms of leader cell formation including intrinsic properties and the support from neighboring cells. It will help us to elucidate the essence of collective invasion and provide new anticancer therapeutic clues.
Collapse
Affiliation(s)
- Bing-Jun Chen
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Serial Xenotransplantation in NSG Mice Promotes a Hybrid Epithelial/Mesenchymal Gene Expression Signature and Stemness in Rhabdomyosarcoma Cells. Cancers (Basel) 2020; 12:cancers12010196. [PMID: 31941033 PMCID: PMC7016569 DOI: 10.3390/cancers12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Serial xenotransplantation of sorted cancer cells in immunodeficient mice remains the most complex test of cancer stem cell (CSC) phenotype. However, we have demonstrated in various sarcomas that putative CSC surface markers fail to identify CSCs, thereby impeding the isolation of CSCs for subsequent analyses. Here, we utilized serial xenotransplantation of unsorted rhabdomyosarcoma cells in NOD/SCID gamma (NSG) mice as a proof-of-principle platform to investigate the molecular signature of CSCs. Indeed, serial xenotransplantation steadily enriched for rhabdomyosarcoma stem-like cells characterized by enhanced aldehyde dehydrogenase activity and increased colony and sphere formation capacity in vitro. Although the expression of core pluripotency factors (SOX2, OCT4, NANOG) and common CSC markers (CD133, ABCG2, nestin) was maintained over the passages in mice, gene expression profiling revealed gradual changes in several stemness regulators and genes linked with undifferentiated myogenic precursors, e.g., SOX4, PAX3, MIR145, and CDH15. Moreover, we identified the induction of a hybrid epithelial/mesenchymal gene expression signature that was associated with the increase in CSC number. In total, 60 genes related to epithelial or mesenchymal traits were significantly altered upon serial xenotransplantation. In silico survival analysis based on the identified potential stemness-associated genes demonstrated that serial xenotransplantation of unsorted rhabdomyosarcoma cells in NSG mice might be a useful tool for the unbiased enrichment of CSCs and the identification of novel CSC-specific targets. Using this approach, we provide evidence for a recently proposed link between the hybrid epithelial/mesenchymal phenotype and cancer stemness.
Collapse
|
44
|
Giamanco KA, Matthews RT. The Role of BEHAB/Brevican in the Tumor Microenvironment: Mediating Glioma Cell Invasion and Motility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:117-132. [PMID: 32845505 DOI: 10.1007/978-3-030-48457-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are the most common tumors in the central nervous system (CNS) and, unfortunately, are also the most deadly. The lethal nature of malignant gliomas is due in large part to their unique and distinctive ability to invade the surrounding neural tissue. The invasive and dispersive nature of these tumors makes them particularly challenging to treat, and currently there are no effective therapies for malignant gliomas. The brain tumor microenvironment plays a particularly important role in mediating the invasiveness of gliomas, and, therefore, understanding its function is key to developing novel therapies to treat these deadly tumors. A defining aspect of the tumor microenvironment of gliomas is the unique composition of the extracellular matrix that enables tumors to overcome the typically inhibitory environment found in the CNS. One conspicuous component of the glioma tumor microenvironment is the neural-specific ECM molecule, brain-enriched hyaluronan binding (BEHAB)/brevican (B/b). B/b is highly overexpressed in gliomas, and its expression in these tumors contributes importantly to the tumor invasiveness and aggressiveness. However, B/b is a complicated protein with multiple splice variants, cleavage products, and glycoforms that contribute to its complex functions in these tumors and provide unique targets for tumor therapy. Here we review the role of B/b in glioma tumor microenvironment and explore targeting of this protein for glioma therapy.
Collapse
Affiliation(s)
- Kristin A Giamanco
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, CT, USA
| | - Russell T Matthews
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
45
|
Gritsenko PG, Atlasy N, Dieteren CEJ, Navis AC, Venhuizen JH, Veelken C, Schubert D, Acker-Palmer A, Westerman BA, Wurdinger T, Leenders W, Wesseling P, Stunnenberg HG, Friedl P. p120-catenin-dependent collective brain infiltration by glioma cell networks. Nat Cell Biol 2020; 22:97-107. [PMID: 31907411 PMCID: PMC6952556 DOI: 10.1038/s41556-019-0443-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/26/2019] [Indexed: 12/23/2022]
Abstract
Diffuse brain infiltration by glioma cells causes detrimental disease progression, but its multicellular coordination is poorly understood. We show here that glioma cells infiltrate the brain collectively as multicellular networks. Contacts between moving glioma cells are adaptive epithelial-like or filamentous junctions stabilized by N-cadherin, β-catenin and p120-catenin, which undergo kinetic turnover, transmit intercellular calcium transients and mediate directional persistence. Downregulation of p120-catenin compromises cell-cell interaction and communication, disrupts collective networks, and both the cadherin and RhoA binding domains of p120-catenin are required for network formation and migration. Deregulating p120-catenin further prevents diffuse glioma cell infiltration of the mouse brain with marginalized microlesions as the outcome. Transcriptomics analysis has identified p120-catenin as an upstream regulator of neurogenesis and cell cycle pathways and a predictor of poor clinical outcome in glioma patients. Collective glioma networks infiltrating the brain thus depend on adherens junctions dynamics, the targeting of which may offer an unanticipated strategy to halt glioma progression.
Collapse
Affiliation(s)
- Pavlo G Gritsenko
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nader Atlasy
- Department of Molecular Biology, Radboud University, Nijmegen, The Netherlands
- Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Cindy E J Dieteren
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
- Protinhi Therapeutics, Nijmegen, The Netherlands
| | - Anna C Navis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jan-Hendrik Venhuizen
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelia Veelken
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk Schubert
- Cognitive Neuroscience Department, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and BMLS, Goethe University Frankfurt, Frankfurt, Germany
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Bart A Westerman
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - William Leenders
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands.
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Genomics Center, Utrecht, The Netherlands.
| |
Collapse
|
46
|
Capuana L, Boström A, Etienne-Manneville S. Multicellular scale front-to-rear polarity in collective migration. Curr Opin Cell Biol 2019; 62:114-122. [PMID: 31756576 DOI: 10.1016/j.ceb.2019.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
Collective cell migration does not only reflect the migration of cells at a similar speed and in the same direction, it also implies the emergence of new properties observed at the level of the cell group. This collective behavior relies on interactions between the cells and the establishment of a hierarchy amongst cells with leaders driving the group of followers. Here, we make the parallel between the front-to-rear polarity axis in single cell and the front-to-rear multicellular-scale polarity of a migrating collective which established through exchange of biochemical and mechanical information from the front to the rear and vice versa. Such multicellular-scale polarity gives the migrating group the possibility to better sense and adapt to energy, biochemical and mechanical constraints and facilitates migration over long distances in complex and changing environments.
Collapse
Affiliation(s)
- Lavinia Capuana
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Astrid Boström
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France; School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
47
|
Cutone A, Colella B, Pagliaro A, Rosa L, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Di Bartolomeo S, Musci G. Native and iron-saturated bovine lactoferrin differently hinder migration in a model of human glioblastoma by reverting epithelial-to-mesenchymal transition-like process and inhibiting interleukin-6/STAT3 axis. Cell Signal 2019; 65:109461. [PMID: 31678680 DOI: 10.1016/j.cellsig.2019.109461] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
Glioblastoma, the most lethal form of brain cancer, is characterized by fast growth, migration and invasion of the surrounding parenchyma, with epithelial-to-mesenchymal transition (EMT)-like process being mostly responsible for tumour spreading and dissemination. A number of actors, including cadherins, vimentin, transcriptional factors such as SNAIL, play critical roles in the EMT process. The interleukin (IL)-6/STAT3 axis has been related to enhanced glioblastoma's migration and invasion abilities as well. Here, we present data on the differential effects of native and iron-saturated bovine lactoferrin (bLf), an iron-chelating glycoprotein of the innate immune response, in inhibiting migration in a human glioblastoma cell line. Through a wound healing assay, we found that bLf was able to partially or completely hinder cell migration, depending on its iron saturation rate. At a molecular level, bLf down-regulated both SNAIL and vimentin expression, while inducing a notable increase in cadherins' levels and inhibiting IL-6/STAT3 axis. Again, these effects positively correlated to bLf iron-saturation state, with the Holo-form resulting more efficient than the native one. Overall, our data suggest that bLf could represent a novel and efficient adjuvant treatment for glioblastoma's standard therapeutic approaches.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Barbara Colella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Andrea Pagliaro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
| |
Collapse
|
48
|
Cao ZQ, Wang Z, Leng P. Aberrant N-cadherin expression in cancer. Biomed Pharmacother 2019; 118:109320. [DOI: 10.1016/j.biopha.2019.109320] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
|
49
|
28-Hydroxy-3-oxoolean-12-en-29-oic Acid, a Triterpene Acid from Celastrus Orbiculatus Extract, Inhibits the Migration and Invasion of Human Gastric Cancer Cells In Vitro. Molecules 2019; 24:molecules24193513. [PMID: 31569766 PMCID: PMC6803947 DOI: 10.3390/molecules24193513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer is the fifth most common tumor and has the third-highest mortality rate among various malignant tumors, and the survival rate of patients is low. Celastrus orbiculatus extract has been shown to inhibit the activity of a variety of tumors. This study explored the inhibitory effect of the oleanane-type triterpenoid acid 28-hydroxy-3-oxoolean-12-en-29-oic acid molecule from Celastrus orbiculatus extract on gastric cancer cell invasion and metastasis and determined its mechanism. 28-Hydroxy-3-oxoolean-12-en-29-oic acid was first diluted to various concentrations and then used to treat SGC-7901 and BGC-823 cells. Cell proliferation was assessed by an MTT (thiazole blue) assay. Transwell and wound healing assays were used to assess cell invasion and migration. High-content imaging technology was used to further observe the effects of the drug on cell invasion and migration. Western blotting was used to assess the effects on the expression of matrix metalloproteinases (MMPs) and the effects on epithelial-mesenchymal transition (EMT)-related proteins and phosphorylation-related proteins. We found that 28-Hydroxy-3-oxoolean-12-en-29-oic acid inhibited the migration and invasion of SGC-7901 and BGC-823 gastric cancer cells in a dose-dependent manner. Consequently, 28-hydroxy-3-oxoolean-12-en-29-oic acid decreased the expression of EMT-related proteins and MMPs in gastric cancer cells and reduced protein phosphorylation, inhibiting the migration and invasion of gastric cancer cells.
Collapse
|
50
|
Cdh4 Down-Regulation Impairs in Vivo Infiltration and Malignancy in Patients Derived Glioblastoma Cells. Int J Mol Sci 2019; 20:ijms20164028. [PMID: 31426573 PMCID: PMC6718984 DOI: 10.3390/ijms20164028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
The high invasive phenotype of glioblastoma is one of the main causes of therapy inefficacy and tumor relapse. Cell adhesion molecules of the cadherin family are involved in cell migration and are known as master regulators of epithelial tumor invasiveness, but their role in glioblastoma is less understood. In particular, we recently demonstrated, in the syngeneic murine model, the occurrence of a previously undescribed cadherin switch between Cdh2 and Cdh4 during gliomagenesis, which is necessary for the acquisition of the highly infiltrative and tumorigenic phenotype of these cells. In the present study, we tested the role of Cdh4 in human gliomas. Our results on patient-derived glioma cells demonstrate a positive correlation between Cdh4 expression levels and the loss of cell-cell contact inhibition of proliferation controls that allows cells to proliferate over confluence. Moreover, the silencing of Cdh4 by artificial microRNAs induced a decrease in the infiltrative ability of human glioma cells both in vitro and in vivo. More strikingly, Cdh4 silencing induced an impairment of the tumorigenic potential of these cells after orthotopic transplantation in immunodeficient mice. Overall, we conclude that in human glioblastoma, Cdh4 can also actively contribute in regulating cell invasiveness and malignancy.
Collapse
|