1
|
Nakagawa Y, Egawa G, Miyake T, Nakajima S, Otsuka A, Nomura T, Kitoh A, Dainichi T, Sakabe JI, Shibaki A, Tokura Y, Honda T, Kabashima K. A phenotypic analysis of involucrin-mOVA mice following adoptive transfer of OVA-specific CD8+ T cells. JID INNOVATIONS 2022; 2:100127. [PMID: 36090298 PMCID: PMC9460514 DOI: 10.1016/j.xjidi.2022.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/03/2022] Open
Abstract
To investigate the mechanism of autoimmunity and peripheral tolerance in the skin, several transgenic mouse strains expressing membrane-bound ovalbumin (mOVA) as an epidermal self-antigen under the control of keratinocyte-specific promotors, such as keratin 5 and keratin 14, were employed in combination with adoptive transfer of CD8+ T cells from OT-I mice (OT-I T cells) that recognize an ovalbumin-derived peptide. However, these strains showed bodyweight loss and required additional inflammatory stimuli, such as γ-irradiation and tape-stripping, to induce skin inflammation. In this study, we generated a mouse strain expressing mOVA under the control of human involucrin promoter (involucrin-mOVA mice). In contrast to previous strains, involucrin-mOVA mice spontaneously developed skin inflammation after the transfer of OT-I T cells in the absence of external stimuli without significant bodyweight loss. We focused on the skin infiltration process of OT-I T cells and found that transferred OT-I T cells accumulated around the hair follicles in the early phase of skin inflammation, and in the later phase, the skin inflammation spontaneously resolved despite the remaining OT-I T cells in the skin. Our involucrin-mOVA mice will provide a promising tool to investigate the pathogenesis and the tolerance mechanisms of cytotoxic skin autoimmunity.
Collapse
|
2
|
Mathyer ME, Brettmann EA, Schmidt AD, Goodwin ZA, Oh IY, Quiggle AM, Tycksen E, Ramakrishnan N, Matkovich SJ, Guttman-Yassky E, Edwards JR, de Guzman Strong C. Selective sweep for an enhancer involucrin allele identifies skin barrier adaptation out of Africa. Nat Commun 2021; 12:2557. [PMID: 33963188 PMCID: PMC8105351 DOI: 10.1038/s41467-021-22821-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
The genetic modules that contribute to human evolution are poorly understood. Here we investigate positive selection in the Epidermal Differentiation Complex locus for skin barrier adaptation in diverse HapMap human populations (CEU, JPT/CHB, and YRI). Using Composite of Multiple Signals and iSAFE, we identify selective sweeps for LCE1A-SMCP and involucrin (IVL) haplotypes associated with human migration out-of-Africa, reaching near fixation in European populations. CEU-IVL is associated with increased IVL expression and a known epidermis-specific enhancer. CRISPR/Cas9 deletion of the orthologous mouse enhancer in vivo reveals a functional requirement for the enhancer to regulate Ivl expression in cis. Reporter assays confirm increased regulatory and additive enhancer effects of CEU-specific polymorphisms identified at predicted IRF1 and NFIC binding sites in the IVL enhancer (rs4845327) and its promoter (rs1854779). Together, our results identify a selective sweep for a cis regulatory module for CEU-IVL, highlighting human skin barrier evolution for increased IVL expression out-of-Africa.
Collapse
Affiliation(s)
- Mary Elizabeth Mathyer
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Erin A. Brettmann
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Alina D. Schmidt
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Zane A. Goodwin
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Inez Y. Oh
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Ashley M. Quiggle
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Eric Tycksen
- grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Natasha Ramakrishnan
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Scot J. Matkovich
- grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Emma Guttman-Yassky
- grid.59734.3c0000 0001 0670 2351Department of Dermatology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029 USA
| | - John R. Edwards
- grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Cristina de Guzman Strong
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
3
|
Regulation of ERK basal and pulsatile activity control proliferation and exit from the stem cell compartment in mammalian epidermis. Proc Natl Acad Sci U S A 2020; 117:17796-17807. [PMID: 32651268 PMCID: PMC7395546 DOI: 10.1073/pnas.2006965117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding how intracellular signaling cascades control cell fate is a key issue in stem cell biology. Here we show that exit from the stem cell compartment in mammalian epidermis is characterized by pulsatile ERK MAPK activity. Basal activity and pulses are differentially regulated by DUSP10 and DUSP6, two phosphatases that have been shown previously to regulate differentiation commitment in the epidermis. ERK activity is controlled both transcriptionally and posttranscriptionally. Spatial segregation of mean ERK activity and pulses is observed both in reconstituted human epidermis and in mouse epidermis. Our findings demonstrate the tight spatial and temporal regulation of ERK MAPK expression and activity in mammalian epidermis. Fluctuation in signal transduction pathways is frequently observed during mammalian development. However, its role in regulating stem cells has not been explored. Here we tracked spatiotemporal ERK MAPK dynamics in human epidermal stem cells. While stem cells and differentiated cells were distinguished by high and low stable basal ERK activity, respectively, we also found cells with pulsatile ERK activity. Transitions from Basalhi-Pulselo (stem) to Basalhi-Pulsehi, Basalmid-Pulsehi, and Basallo-Pulselo (differentiated) cells occurred in expanding keratinocyte colonies and in response to differentiation stimuli. Pharmacological inhibition of ERK induced differentiation only when cells were in the Basalmid-Pulsehi state. Basal ERK activity and pulses were differentially regulated by DUSP10 and DUSP6, leading us to speculate that DUSP6-mediated ERK pulse down-regulation promotes initiation of differentiation, whereas DUSP10-mediated down-regulation of mean ERK activity promotes and stabilizes postcommitment differentiation. Levels of MAPK1/MAPK3 transcripts correlated with DUSP6 and DUSP10 transcripts in individual cells, suggesting that ERK activity is negatively regulated by transcriptional and posttranslational mechanisms. When cells were cultured on a topography that mimics the epidermal−dermal interface, spatial segregation of mean ERK activity and pulses was observed. In vivo imaging of mouse epidermis revealed a patterned distribution of basal cells with pulsatile ERK activity, and down-regulation was linked to the onset of differentiation. Our findings demonstrate that ERK MAPK signal fluctuations link kinase activity to stem cell dynamics.
Collapse
|
4
|
Gouin O, Barbieux C, Leturcq F, Bonnet des Claustres M, Petrova E, Hovnanian A. Transgenic Kallikrein 14 Mice Display Major Hair Shaft Defects Associated with Desmoglein 3 and 4 Degradation, Abnormal Epidermal Differentiation, and IL-36 Signature. J Invest Dermatol 2020; 140:1184-1194. [PMID: 32169475 DOI: 10.1016/j.jid.2019.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Netherton syndrome is a rare autosomal recessive skin disease caused by loss-of-function mutations in SPINK5 encoding LEKTI protein that results in unopposed activity of epidermal kallikrein-related peptidases (KLKs), mainly KLK5, KLK7, and KLK14. Although the function of KLK5 and KLK7 has been previously studied, the role of KLK14 in skin homeostasis and its contribution to Netherton syndrome pathogenesis remains unknown. We generated a transgenic murine model overexpressing human KLK14 (TghKLK14) in stratum granulosum. TghKLK14 mice revealed increased proteolytic activity in the granular layers and in hair follicles. Their hair did not grow and displayed major defects with hyperplastic hair follicles when hKLK14 was overexpressed. TghKLK14 mice displayed abnormal epidermal hyperproliferation and differentiation. Ultrastructural analysis revealed cell separation in the hair cortex and increased thickness of Huxley's layer. Desmoglein (Dsg) 2 staining was increased, whereas Dsg3 and Dsg4 were markedly reduced. In vitro studies showed that hKLK14 directly cleaves recombinant human DSG3 and recombinant human DSG4, suggesting that their degradation contributes to hair abnormalities. Their skin showed an inflammatory signature, with enhanced expression of IL-36 family members and their downstream targets involved in innate immunity. This in vivo study identifies KLK14 as an important contributor to hair abnormalities and skin inflammation seen in Netherton syndrome.
Collapse
Affiliation(s)
- Olivier Gouin
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France; University of Paris, Paris, France
| | - Claire Barbieux
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France; University of Paris, Paris, France
| | - Florent Leturcq
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France; University of Paris, Paris, France
| | - Mathilde Bonnet des Claustres
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France; University of Paris, Paris, France
| | - Evgeniya Petrova
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France; University of Paris, Paris, France
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France; University of Paris, Paris, France; Department of Genetics, Necker Hospital for Sick Children (AP-HP), Paris, France.
| |
Collapse
|
5
|
Grond S, Radner FPW, Eichmann TO, Kolb D, Grabner GF, Wolinski H, Gruber R, Hofer P, Heier C, Schauer S, Rülicke T, Hoefler G, Schmuth M, Elias PM, Lass A, Zechner R, Haemmerle G. Skin Barrier Development Depends on CGI-58 Protein Expression during Late-Stage Keratinocyte Differentiation. J Invest Dermatol 2017; 137:403-413. [PMID: 27725204 PMCID: PMC5551682 DOI: 10.1016/j.jid.2016.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/02/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
Adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) are limiting in cellular triglyceride catabolism. Although ATGL deficiency is compatible with normal skin development, mice globally lacking CGI-58 die postnatally and exhibit a severe epidermal permeability barrier defect, which may originate from epidermal and/or peripheral changes in lipid and energy metabolism. Here, we show that epidermis-specific disruption of CGI-58 is sufficient to provoke a defect in the formation of a functional corneocyte lipid envelope linked to impaired ω-O-acylceramide synthesis. As a result, epidermis-specific CGI-58-deficient mice show severe skin dysfunction, arguing for a tissue autonomous cause of disease development. Defective skin permeability barrier formation in global CGI-58-deficient mice could be reversed via transgenic restoration of CGI-58 expression in differentiated but not basal keratinocytes suggesting that CGI-58 is essential for lipid metabolism in suprabasal epidermal layers. The compatibility of ATGL deficiency with normal epidermal function indicated that CGI-58 may stimulate an epidermal triglyceride lipase beyond ATGL required for the adequate provision of fatty acids as a substrate for ω-O-acylceramide synthesis. Pharmacological inhibition of ATGL enzyme activity similarly reduced triglyceride-hydrolytic activities in wild-type and CGI-58 overexpressing epidermis implicating that CGI-58 participates in ω-O-acylceramide biogenesis independent of its role as a coactivator of epidermal triglyceride catabolism.
Collapse
Affiliation(s)
- Susanne Grond
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research/Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, Microscopy Facility, University of Graz, Graz, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, University of Innsbruck, Innsbruck, Austria
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, Graz, Austria; Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- BioTechMed-Graz, Microscopy Facility, University of Graz, Graz, Austria; Institute of Pathology, Medical University of Graz, Graz, Austria; Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, University of Innsbruck, Innsbruck, Austria
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| |
Collapse
|
6
|
Yokouchi M, Atsugi T, Logtestijn MV, Tanaka RJ, Kajimura M, Suematsu M, Furuse M, Amagai M, Kubo A. Epidermal cell turnover across tight junctions based on Kelvin's tetrakaidecahedron cell shape. eLife 2016; 5:19593. [PMID: 27894419 PMCID: PMC5127639 DOI: 10.7554/elife.19593] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022] Open
Abstract
In multicellular organisms, cells adopt various shapes, from flattened sheets of endothelium to dendritic neurons, that allow the cells to function effectively. Here, we elucidated the unique shape of cells in the cornified stratified epithelia of the mammalian epidermis that allows them to achieve homeostasis of the tight junction (TJ) barrier. Using intimate in vivo 3D imaging, we found that the basic shape of TJ-bearing cells is a flattened Kelvin's tetrakaidecahedron (f-TKD), an optimal shape for filling space. In vivo live imaging further elucidated the dynamic replacement of TJs on the edges of f-TKD cells that enables the TJ-bearing cells to translocate across the TJ barrier. We propose a spatiotemporal orchestration model of f-TKD cell turnover, where in the classic context of 'form follows function', cell shape provides a fundamental basis for the barrier homeostasis and physical strength of cornified stratified epithelia. DOI:http://dx.doi.org/10.7554/eLife.19593.001 The skin surface – known as the epidermis – is made up of sheets of cells that are stacked up in layers. One of the roles of the skin is to provide a protective barrier that limits what leaks into or out of the body. A particular layer of the epidermis – referred to as the stratum granulosum – is primarily responsible for forming this barrier. The cells in this layer are sealed together in a zipper-like fashion by structures known as tight junctions. New skin cells are continuously produced in the lowest cell layers of the epidermis, and move upwards to integrate into the stratum granulosum layer to replace old cells (which also move upwards to leave the layer). How stratum granulosum cells are replaced without disrupting the tight junction barrier was not well understood. Yokouchi et al. used a technique called confocal microscopy to examine the stratum granulosum cells in the ears of mice, and found that the shape of these cells forms the basis of the barrier that they form. These cells resemble a flattened version of a shape called Kelvin’s tetrakaidecahedron: a 14-sided solid with six rectangular and eight hexagonal sides. This structure was proposed by Lord Kelvin in 1887 to be the best shape for filling space. Tight junctions are present on the edges of the flattened Kelvin’s tetrakaidecahedron. Further experiments revealed that the tight junctions move from cell to cell in a spatiotemporally-coordinated manner in order to maintain a continuous barrier throughout the stratum granulosum as cells are replaced. A newly formed stratum granulosum cell appears beneath the cell that it will replace. The shape of these cells enables a new barrier of three-way tight junction contacts to form between them and the neighboring cells in the stratum granulosum. After this barrier has formed, the upper cell leaves the stratum granulosum. Future research could address how cells adopt the flattened Kelvin’s tetrakaidecahedron shape, and discover why tight junctions only form in one layer of the epidermis. DOI:http://dx.doi.org/10.7554/eLife.19593.002
Collapse
Affiliation(s)
- Mariko Yokouchi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.,Nerima General Hospital, Tokyo, Japan
| | - Toru Atsugi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.,KOSÉ Corporation, Tokyo, Japan
| | - Mark van Logtestijn
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Reiko J Tanaka
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Mayumi Kajimura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.,Suematsu Gas Biology Project, Exploratory Research for Advanced Technology, Japan Science and Technology, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.,Suematsu Gas Biology Project, Exploratory Research for Advanced Technology, Japan Science and Technology, Tokyo, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Furio L, de Veer S, Jaillet M, Briot A, Robin A, Deraison C, Hovnanian A. Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. ACTA ACUST UNITED AC 2014; 211:499-513. [PMID: 24534191 PMCID: PMC3949577 DOI: 10.1084/jem.20131797] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Netherton syndrome (NS) is a severe genetic skin disease in which absence of a key protease inhibitor causes congenital exfoliative erythroderma, eczematous-like lesions, and atopic manifestations. Several proteases are overactive in NS, including kallikrein-related peptidase (KLK) 5, KLK7, and elastase-2 (ELA2), which are suggested to be part of a proteolytic cascade initiated by KLK5. To address the role of KLK5 in NS, we have generated a new transgenic murine model expressing human KLK5 in the granular layer of the epidermis (Tg-KLK5). Transgene expression resulted in increased proteolytic activity attributable to KLK5 and its downstream targets KLK7, KLK14, and ELA2. Tg-KLK5 mice developed an exfoliative erythroderma with scaling, growth delay, and hair abnormalities. The skin barrier was defective and the stratum corneum was detached through desmosomal cleavage. Importantly, Tg-KLK5 mice displayed cutaneous and systemic hallmarks of severe inflammation and allergy with pruritus. The skin showed enhanced expression of inflammatory cytokines and chemokines, infiltration of immune cells, and markers of Th2/Th17/Th22 T cell responses. Moreover, serum IgE and Tslp levels were elevated. Our study identifies KLK5 as an important contributor to the NS proteolytic cascade and provides a new and viable model for the evaluation of future targeted therapies for NS or related diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Laetitia Furio
- Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Kasparek P, Krenek P, Buryova H, Suchanova S, Beck IM, Sedlacek R. Transgenic mouse model expressing tdTomato under involucrin promoter as a tool for analysis of epidermal differentiation and wound healing. Transgenic Res 2012; 21:683-9. [PMID: 22020981 DOI: 10.1007/s11248-011-9567-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/04/2011] [Indexed: 11/26/2022]
Abstract
The epidermis is a stratified tissue composed of different keratinocyte layers that create a barrier protecting the body from external influences, pathogens, and dehydration. The barrier function is mainly achieved by its outermost layer, the stratum corneum. To create a mouse model to study pathophysiological processes in the outermost layers of the epidermis in vivo and in vitro we prepared a construct containing red fluorescent td-Tomato reporter sequence under the control of involucrin promoter and its first intron. Transgenic mice were generated by pronuclear injection and the expression and regulation of the transgene was determined by in vivo imaging and fluorescent microscopy. The promoter targeted the transgene efficiently and specifically into the outermost epidermal layers although weak expression was also found in epithelia of tongue and bladder. The regulation of expression in the epidermis, i.e. fluorescence intensity of the reporter, could be easily followed during wound healing and dermatitis. Thus, these transgenic mice carrying the tdTomato reporter could be used as a valuable tool to study impact of various genes dysregulating the epidermal barrier and to follow effects of therapeutic agents for treatment of skin diseases in vivo.
Collapse
Affiliation(s)
- Petr Kasparek
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
9
|
Staunstrup NH, Madsen J, Primo MN, Li J, Liu Y, Kragh PM, Li R, Schmidt M, Purup S, Dagnæs-Hansen F, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG. Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human β1 and α2 integrin. PLoS One 2012; 7:e36658. [PMID: 22590584 PMCID: PMC3349713 DOI: 10.1371/journal.pone.0036658] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 04/04/2012] [Indexed: 12/03/2022] Open
Abstract
Integrins constitute a superfamily of transmembrane signaling receptors that play pivotal roles in cutaneous homeostasis by modulating cell growth and differentiation as well as inflammatory responses in the skin. Subrabasal expression of integrins α2 and/or β1 entails hyperproliferation and aberrant differentiation of keratinocytes and leads to dermal and epidermal influx of activated T-cells. The anatomical and physiological similarities between porcine and human skin make the pig a suitable model for human skin diseases. In efforts to generate a porcine model of cutaneous inflammation, we employed the Sleeping Beauty DNA transposon system for production of transgenic cloned Göttingen minipigs expressing human β1 or α2 integrin under the control of a promoter specific for subrabasal keratinocytes. Using pools of transgenic donor fibroblasts, cloning by somatic cell nuclear transfer was utilized to produce reconstructed embryos that were subsequently transferred to surrogate sows. The resulting pigs were all transgenic and harbored from one to six transgene integrants. Molecular analyses on skin biopsies and cultured keratinocytes showed ectopic expression of the human integrins and localization within the keratinocyte plasma membrane. Markers of perturbed skin homeostasis, including activation of the MAPK pathway, increased expression of the pro-inflammatory cytokine IL-1α, and enhanced expression of the transcription factor c-Fos, were identified in keratinocytes from β1 and α2 integrin-transgenic minipigs, suggesting the induction of a chronic inflammatory phenotype in the skin. Notably, cellular dysregulation obtained by overexpression of either β1 or α2 integrin occurred through different cellular signaling pathways. Our findings mark the creation of the first cloned pig models with molecular markers of skin inflammation. Despite the absence of an overt psoriatic phenotype, these animals may possess increased susceptibility to severe skin damage-induced inflammation and should be of great potential in studies aiming at the development and refinement of topical therapies for cutaneous inflammation including psoriasis.
Collapse
Affiliation(s)
| | - Johannes Madsen
- Department of Disease Pharmacology, LEO Pharma, Ballerup, Denmark
| | | | - Juan Li
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Ying Liu
- Department of Animal Science, Aarhus University, Tjele, Denmark
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peter M. Kragh
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Mette Schmidt
- Department of Veterinary Reproduction and Obstetrics, University of Copenhagen, Frederiksberg, Denmark
| | - Stig Purup
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | | | - Lars Svensson
- Department of Disease Pharmacology, LEO Pharma, Ballerup, Denmark
| | | | - Henrik Callesen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- HuaDa JiYin (BGI), Shenzhen, China
| | | |
Collapse
|
10
|
Jing X, Wang T, Huang S, Glorioso JC, Albers KM. The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a. Exp Neurol 2011; 233:221-32. [PMID: 22024412 DOI: 10.1016/j.expneurol.2011.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 12/17/2022]
Abstract
Factors that enhance the intrinsic growth potential of adult neurons are key players in the successful repair and regeneration of neurons following injury. Injury-induced activation of transcription factors has a central role in this process because they regulate expression of regeneration-associated genes. Sox11 is a developmentally expressed transcription factor that is significantly induced in adult neurons in response to injury. Its function in injured neurons is however undefined. Here, we report studies that use herpes simplex virus (HSV)-vector-mediated expression of Sox11 in adult sensory neurons to assess the effect of Sox11 overexpression on neuron regeneration. Cultured mouse dorsal root ganglia (DRG) neurons transfected with HSV-Sox11 exhibited increased neurite elongation and branching relative to naïve and HSV-vector control treated neurons. Neurons from mice injected in foot skin with HSV-Sox11 exhibited accelerated regeneration of crushed saphenous nerves as indicated by faster regrowth of axons and nerve fibers to the skin, increased myelin thickness and faster return of nerve and skin sensitivity. Downstream targets of HSV-Sox11 were examined by analyzing changes in gene expression of known regeneration-associated genes. This analysis in combination with mutational and chromatin immunoprecipitation assays indicates that the ability of Sox11 to accelerate in vivo nerve regeneration is dependent on its transcriptional activation of the regeneration-associated gene, small proline rich protein 1a (Sprr1a). This finding reveals a new functional linkage between Sox11 and Sprr1a in adult peripheral neuron regeneration.
Collapse
Affiliation(s)
- Xiaotang Jing
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
11
|
Bonnart C, Deraison C, Lacroix M, Uchida Y, Besson C, Robin A, Briot A, Gonthier M, Lamant L, Dubus P, Monsarrat B, Hovnanian A. Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest 2010; 120:871-82. [PMID: 20179351 DOI: 10.1172/jci41440] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/06/2010] [Indexed: 12/31/2022] Open
Abstract
The human epidermis serves 2 crucial barrier functions: it protects against water loss and prevents penetration of infectious agents and allergens. The physiology of the epidermis is maintained by a balance of protease and antiprotease activities, as illustrated by the rare genetic skin disease Netherton syndrome (NS), in which impaired inhibition of serine proteases causes severe skin erythema and scaling. Here, utilizing mass spectrometry, we have identified elastase 2 (ELA2), which we believe to be a new epidermal protease that is specifically expressed in the most differentiated layer of living human and mouse epidermis. ELA2 localized to keratohyalin granules, where it was found to directly participate in (pro-)filaggrin processing. Consistent with the observation that ELA2 was hyperactive in skin from NS patients, transgenic mice overexpressing ELA2 in the granular layer of the epidermis displayed abnormal (pro-)filaggrin processing and impaired lipid lamellae structure, which are both observed in NS patients. These anomalies led to dehydration, implicating ELA2 in the skin barrier defect seen in NS patients. Thus, our work identifies ELA2 as a major new epidermal protease involved in essential pathways for skin barrier function. These results highlight the importance of the control of epidermal protease activity in skin homeostasis and designate ELA2 as a major protease driving the pathogenesis of NS.
Collapse
|
12
|
Moulson CL, Lin MH, White JM, Newberry EP, Davidson NO, Miner JH. Keratinocyte-specific expression of fatty acid transport protein 4 rescues the wrinkle-free phenotype in Slc27a4/Fatp4 mutant mice. J Biol Chem 2007; 282:15912-20. [PMID: 17401141 DOI: 10.1074/jbc.m701779200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FATP4 (fatty acid transport protein 4; also known as SLC27A4) is the most widely expressed member of a family of six long chain fatty acid transporters. FATP4 is highly expressed in enterocytes and has therefore been proposed to be a major importer of dietary fatty acids. Two independent mutations in Fatp4 cause mice to be born with thick, tight, shiny, "wrinkle-free" skin and a defective skin barrier; they die within hours of birth from dehydration and restricted movements. In contrast, induced keratinocyte-specific deficiency of FATP4 in adult mice causes only mild skin abnormalities. Therefore, whether the loss of FATP4 from skin or a systemic gestational metabolic defect causes the severe skin defects and neonatal lethality remain important unanswered questions. To investigate the basis for the phenotype, we first generated wild-type tetraploid/mutant diploid aggregates that should lead to rescue of any abnormalities caused by loss of FATP4 from the placenta. However, the skin phenotype was not ameliorated. We then generated transgenic mice expressing exogenous FATP4 either widely or specifically in suprabasal keratinocytes, and we bred the transgenes onto the Fatp4(-/-) background. Both modes of FATP4 expression led to rescue of the neonatally lethal skin defects, and the resulting mice were viable and fertile. Keratinocyte expression of an FATP4 variant with mutations in the acyl-CoA synthetase domain did not provide any degree of rescue. We conclude that expression of FATP4 with an intact acyl-CoA synthetase domain in suprabasal keratinocytes is necessary for normal skin development and that FATP4 functions in establishing the cornified envelope.
Collapse
Affiliation(s)
- Casey L Moulson
- Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
13
|
Fischer DF, Backendorf C. Identification of regulatory elements by gene family footprinting and in vivo analysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 104:37-64. [PMID: 17290818 DOI: 10.1007/10_027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gene families of recently duplicated but subsequently diverged genes provide an unique opportunity for comparative analysis of regulatory elements. We have studied the human SPRR gene family of small proline rich proteins involved in barrier function of stratified squamous epithelia. These genes are all expressed in normal human keratinocytes, but respond differently to environmental insults. Comparisons of the functional promoter regions allows the rapid identification of both conserved and of novel regulatory elements that appeared after gene duplication. Competitive electrophoretic mobility shift assays can be used to confirm their presence. Here we show the power of gene family footprinting by the identification of two novel elements in the SPRR3 promoter, not present in SPRR1A and SPRR2A. One of these elements binds a protein similar to GAAP-1, a pro-apoptotic activator of IRF-1 and p53. In vivo analysis shows that this element functions as an inhibitor of SPRR3 transcription. The second novel element functions as an activator of promoter activity and is characterized by its A/T rich sequence. The latter interacting protein indeed binds through contacts in the minor groove, and strikingly, depends on the presence of calcium for DNA interaction.
Collapse
Affiliation(s)
- David F Fischer
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
14
|
Xie Z, Chang S, Oda Y, Bikle DD. Hairless suppresses vitamin D receptor transactivation in human keratinocytes. Endocrinology 2006; 147:314-23. [PMID: 16269453 DOI: 10.1210/en.2005-1111] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vitamin D receptor (VDR) and its ligand 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] are required for normal keratinocyte differentiation. Both the epidermis and the hair follicle are disrupted in VDR-null mice. Hairless (Hr), a presumptive transcription factor with no known ligand, when mutated, disrupts hair follicle cycling similar to the effects of VDR mutations. Hr, like VDR, is found in the nuclei of keratinocytes in both epidermis and hair follicle. To investigate the potential interaction between Hr and VDR on keratinocyte differentiation, we examined the effect of Hr expression on vitamin D-responsive genes in normal human keratinocytes. Inhibition of Hr expression in keratinocytes potentiated the induction of vitamin D-responsive genes, including involucrin, transglutaminase, phospholipase C-gamma1, and 25-hydroxyvitamin D-24-hydroxylase (24-hydroxylase) by 1,25(OH)2D3. Overexpression of Hr in human keratinocytes suppressed the induction of these vitamin D-responsive genes by 1,25(OH)2D3. Coimmunoprecipitation, DNA mobility shift assays, and chromatin immunoprecipitation revealed that Hr binds to VDR in human keratinocytes. Hr binding to the VDR was eliminated by 1,25(OH)2D3, which recruited the coactivator vitamin D receptor-interacting protein 205 (DRIP205) to the VDR/vitamin D response element complex. These data indicate that Hr functions as a corepressor of VDR to block 1,25(OH)2D3 action on keratinocytes.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | | | |
Collapse
|
15
|
Baden HP, Champliaud MF, Sundberg JP, Viel A. Targeted deletion of the sciellin gene resulted in normal development and maturation. Genesis 2005; 42:219-28. [PMID: 16028229 DOI: 10.1002/gene.20133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sciellin, together with other precursor proteins, was cross-linked by transglutaminase 1 to form the cornified envelope, an essential component of the physical barrier of the epidermis and stratified squamous epithelia. To more fully understand the function of sciellin in cornified envelope formation, we generated sciellin null mice. The mice appeared normal in their development and maturation and there were no structural features that distinguished them from littermate controls. Isolated cornified envelopes appeared normal in structure and were not more fragile to mechanical stress. There was no evidence of decreased barrier function or altered expression of other cornified envelope components. Transgenic mice expressing the repeat domain appeared to have a normal phenotype, like the null, and did not alter endogenous sciellin expression. We conclude that sciellin null mice had no structural anomalies and the transgenic mice did not act as a dominant-negative mutation.
Collapse
Affiliation(s)
- Howard P Baden
- Department of Dermatology, Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
16
|
Michalik L, Feige JN, Gelman L, Pedrazzini T, Keller H, Desvergne B, Wahli W. Selective expression of a dominant-negative form of peroxisome proliferator-activated receptor in keratinocytes leads to impaired epidermal healing. Mol Endocrinol 2005; 19:2335-48. [PMID: 15890673 DOI: 10.1210/me.2005-0068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Many nuclear hormone receptors are involved in the regulation of skin homeostasis. However, their role in the epithelial compartment of the skin in stress situations, such as skin healing, has not been addressed yet. The healing of a skin wound after an injury involves three major cell types: immune cells, which are recruited to the wound bed; dermal fibroblasts; and epidermal and hair follicle keratinocytes. Our previous studies have revealed important but nonredundant roles of PPARalpha and beta/delta in the reparation of the skin after a mechanical injury in the adult mouse. However, the mesenchymal or epithelial cellular compartment in which PPARalpha and beta/delta play a role could not be determined in the null mice used, which have a germ line PPAR gene invalidation. In the present work, the role of PPARalpha was studied in keratinocytes, using transgenic mice that express a PPARalpha mutant with dominant-negative (dn) activity specifically in keratinocytes. This dn PPARalpha lacks the last 13 C terminus amino acids, binds to a PPARalpha agonist, but is unable to release the nuclear receptor corepressor and to recruit the coactivator p300. When selectively expressed in keratinocytes of transgenic mice, dn PPARalphaDelta13 causes a delay in the healing of skin wounds, accompanied by an exacerbated inflammation. This phenotype, which is similar to that observed in PPARalpha null mice, strongly suggests that during skin healing, PPARalpha is required in keratinocytes rather than in other cell types.
Collapse
Affiliation(s)
- L Michalik
- Center for Integrative Genomics, National Center of Competence in Research Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
17
|
Flores AM, Li L, Aneskievich BJ. Isolation and functional analysis of a keratinocyte-derived, ligand-regulated nuclear receptor comodulator. J Invest Dermatol 2005; 123:1092-101. [PMID: 15610520 DOI: 10.1111/j.0022-202x.2004.23424.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Keratinocyte (KC) gene expression is regulated by members of the nuclear receptor (NR) superfamily including retinoic acid receptors, retinoid X receptors (RAR and RXR, respectively), and peroxisome proliferator activated receptors (PPAR). In addition to ligand, NR transcriptional activity is controlled by interaction with proteins, collectively known as coregulators, which function as corepressors or coactivators. To improve our understanding of coregulators expressed in epidermis, we screened a KC cDNA library for PPARalpha-interacting proteins. The screen yielded previously unknown proteins including one we named COPR1, for comodulator of PPAR and RXR. COPR1 and its longer variant COPR2 target the AF-2 domains of NR but exhibit quantitative differences in their functional interactions with RAR, RXRalpha and PPAR. They decrease but do not completely repress the activity of RXRalpha and PPARalpha because of a proline-acid-rich autonomous activation domain. An NR box motif contributes to but is not solely responsible for functional and physical association with RXRalpha. The activation domain, their relatively small size (COPR1, 26.9 kDa; COPR2, 32.4 kDa), and strict dependence on AF-2 for interaction distinguish COPR1 and COPR2 from the SMRT/NCoR type of corepressor and may represent a means of control that dampens rather than completely represses NR-mediated gene expression.
Collapse
Affiliation(s)
- Anthony M Flores
- Graduate Program in Toxicology, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | | | | |
Collapse
|
18
|
Cook PW, Brown JR, Cornell KA, Pittelkow MR. Suprabasal expression of human amphiregulin in the epidermis of transgenic mice induces a severe, early-onset, psoriasis-like skin pathology: expression of amphiregulin in the basal epidermis is also associated with synovitis. Exp Dermatol 2004; 13:347-56. [PMID: 15186320 DOI: 10.1111/j.0906-6705.2004.00183.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The expression of amphiregulin (AR) in the basal epidermis of transgenic mice [keratin 14 promoter AR gene (K14-ARGE)] has been previously shown to induce an early-onset and severe skin pathology, with many similarities to psoriasis. In this study, it is demonstrated that involucrin enhancer/promoter-dependent expression of human AR (INV-AR) in the suprabasal epidermis of transgenic mice also produces a cutaneous psoriasis-like phenotype. INV-AR mice possess a limited lifespan and scaling, papillomatous, erythematous skin with partial alopecia. INV-AR mouse histopathology also revealed epidermal hyperkeratosis, parakeratosis, acanthosis, and an exaggerated dermal vasculature. A dermal and epidermal infiltrate was also evident and consisted of both neutrophils and CD3(+) T lymphocytes. The histology of synovial joints in both the INV-AR mice and the K14-ARGE mice of our previous investigation was examined. The histologic examination revealed that 3-week-old INV-AR transgenic mice displayed normal knee joint histology, while 2- to 3-week-old K14-ARGE transgenic mice frequently displayed synovitis, as exemplified by the presence of a mixed leukocytic infiltration, increased vascularization, and enhanced deposition of fibrous matrix in the knee synovium. These results demonstrate that AR overexpression in both the basal and suprabasal epidermis of transgenic mice induces a phenotype that mimics cutaneous psoriasis, while basal AR expression is also associated with synovial inflammation, a precursor to the psoriasis-associated arthropathy, psoriatic arthritis. Collectively, the results implicate epidermal AR expression as a possible mediator of innate cutaneous immunity and epidermal proliferation and also as a potential trigger of both cutaneous psoriasis and psoriatic arthritis.
Collapse
Affiliation(s)
- Paul W Cook
- Department of Dermatology, The Oregon Health Sciences University, Portland, OR, USA.
| | | | | | | |
Collapse
|
19
|
Presland RB, Coulombe PA, Eckert RL, Mao-Qiang M, Feingold KR, Elias PM. Barrier function in transgenic mice overexpressing K16, involucrin, and filaggrin in the suprabasal epidermis. J Invest Dermatol 2004; 123:603-6. [PMID: 15304104 DOI: 10.1111/j.0022-202x.2004.23226.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Jaubert J, Patel S, Cheng J, Segre JA. Tetracycline-regulated transactivators driven by the involucrin promoter to achieve epidermal conditional gene expression. J Invest Dermatol 2004; 123:313-8. [PMID: 15245431 DOI: 10.1111/j.0022-202x.2004.23203.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To achieve conditional gene expression in the differentiated layers of the epidermis, we generated transgenic mice with the tetracycline-regulated transactivator proteins, tTA (tetracycline transactivator) and rtTA (reverse tetracycline transactivator), expressed from the human involucrin promoter. Interaction with tetracycline turns off or turns on the tTA and rtTA molecules, respectively, allowing for regulation of downstream target genes during development and postnatally. These transactivator lines were crossed with reporter mice driving LacZ expression from a tetracycline response element to analyze the specificity and levels of target gene expression. Quantitative beta-galactosidase experiments demonstrate a 30-fold induction, specific to epithelial tissues. Immunohistochemistry results illustrate that the beta-galactosidase staining follows that of endogenous involucrin expression. Induction initiates at embryonic day 14.5 with expression over the entire epidermal surface by E16.5. Together with other driver lines, expressing tetracycline transactivators in the mitotically active layers of the epidermis, these mice will allow investigators to specifically modulate expression of target genes to specific stages of epidermal differentiation.
Collapse
Affiliation(s)
- Jean Jaubert
- National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
21
|
Azuara-Liceaga E, Sandoval M, Corona M, Gariglio P, López-Bayghen E. The human involucrin gene is transcriptionally repressed through a tissue-specific silencer element recognized by Oct-2. Biochem Biophys Res Commun 2004; 318:361-71. [PMID: 15120610 DOI: 10.1016/j.bbrc.2004.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 11/16/2022]
Abstract
Involucrin is an important marker of epithelial differentiation which expression is upregulated just after basal cells are pushed into the suprabasal layer in stratified epithelia. Several transcription factors and regulatory elements had been described as responsible for turning on the gene. However, it is evident that in basal cell layer, additional mechanisms are involved in keeping the gene silent before the differentiation process starts. In this work, we located a potential transcriptional silencer in a 52bp sequence whose integrity is necessary for silencing the proximal enhancer promoter element (PEP) in multiplying keratinocytes. Octamer-binding sites were noticed in this fragment and the specific binding of Oct-2 transcription factor was detected. Oct-2 appears to be implicated in an epithelial-specific repression activity recorded only in keratinocytes and C33-A cell line. Overexpression of Oct-2 repressed the involucrin promoter activity in epithelial cells and in the presence of the silencer element.
Collapse
Affiliation(s)
- Elisa Azuara-Liceaga
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del I.P.N., Mexico D.F. 07000, Mexico
| | | | | | | | | |
Collapse
|
22
|
Kubo E, Fatma N, Sharma P, Shinohara T, Chylack LT, Akagi Y, Singh DP. Transactivation of involucrin, a marker of differentiation in keratinocytes, by lens epithelium-derived growth factor (LEDGF). J Mol Biol 2002; 320:1053-63. [PMID: 12126624 DOI: 10.1016/s0022-2836(02)00551-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human involucrin (hINV), first appears in the cytosol of keratinocytes and ultimately cross-linked to membrane proteins via transglutaminase and forms a protective barrier as an insoluble envelope beneath the plasma membrane. Although the function and evolution of involucrin is known, the regulation of its gene expression is not well understood. An analysis of the hINV gene sequence, upstream of the transcription start site (-534 to +1 nt) revealed the presence of potential sites for binding of lens epithelium-derived growth factor (LEDGF); stress response element (STRE; A/TGGGGA/T) and heat shock element (HSE; nGAAn). We reported earlier that LEDGF activates stress-associated genes by binding to these elements and elevates cellular resistance to various stresses. Here, gel-shift and super-shift assays confirm the binding of LEDGF to the DNA fragments containing HSEs and STREs that are present in the involucrin gene promoter. Furthermore, hINV promoter linked to CAT reporter gene, cotransfected in human corneal simian virus 40-transformed keratinocytes (HCK), was transactivated by LEDGF significantly. In contrast, the activity of hINV promoter bearing mutations at the WT1 (containing HSE and STRE), WT2 (containing STRE) and WT3 (containing STRE) binding sites was diminished. In addition, in HCK cell over-expressing LEDGF, the levels of hINV mRNA and hINV protein are increased by four to five-fold. LEDGF is inducible to oxidants. Cells treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate production of H(2)O(2), showed higher levels of LEDGF mRNA. Furthermore, our immunohistochemical studies revealed that hINV protein is found in the cytoplasm of HCK cells over-expressing LEDGF, but not detectable in the normal HCK cells or HCK cells transfected with vector. This regulation appears to be physiologically important, as over-expression of HCK with LEDGF increases the expression of the endogenous hINV gene and may provide new insight to understand the molecular mechanism of transcriptional regulation of this gene. LEDGF may play an important role in establishing an important barrier in corneal keratinocytes by maintaining epidermal turn-over rate, and protecting HCKs against stress.
Collapse
Affiliation(s)
- E Kubo
- Center for Ophthalmic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Tu CL, Chang W, Bikle DD. The extracellular calcium-sensing receptor is required for calcium-induced differentiation in human keratinocytes. J Biol Chem 2001; 276:41079-85. [PMID: 11500521 DOI: 10.1074/jbc.m107122200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In cultured keratinocytes, the acute increase of the extracellular calcium concentration above 0.03 mM leads to a rapid increase in intracellular calcium concentration ([Ca(2+)]i) and inositol trisphosphate production and, subsequently, to the expression of differentiation-related genes. Previous studies demonstrated that human keratinocytes express the full-length extracellular calcium-sensing receptor (CaR) and an alternatively spliced variant lacking exon 5 and suggested their involvement in calcium regulation of keratinocyte differentiation. To understand the role of the CaR, we transfected keratinocytes with an antisense human CaR cDNA construct and examined its impact on calcium signaling and calcium-induced differentiation. The antisense CaR cDNA significantly reduced the protein level of endogenous CaRs. These cells displayed a marked reduction in the rise in [Ca(2+)]i in response to extracellular calcium or to NPS R-467, a CaR activator, whereas the ATP-evoked rise in [Ca(2+)]i was not affected. Calcium-induced inhibition of cell proliferation and calcium-stimulated expression of the differentiation markers involucrin and transglutaminase were also blocked by the antisense CaR cDNA. When cotransfected with luciferase reporter vectors containing either the involucrin or transglutaminase promoter, the antisense CaR cDNA suppressed the calcium-stimulated promoter activities. These results indicate that CaR is required for mediating calcium signaling and calcium-induced differentiation in keratinocytes.
Collapse
Affiliation(s)
- C L Tu
- Endocrine Unit, Veteran Affairs Medical Center and University of California, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
24
|
Xie Z, Bikle DD. Inhibition of 1,25-dihydroxyvitamin-D-induced keratinocyte differentiation by blocking the expression of phospholipase C-gamma1. J Invest Dermatol 2001; 117:1250-4. [PMID: 11710940 DOI: 10.1046/j.0022-202x.2001.01526.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Keratinocytes produce vitamin D3 and convert it to the most active form, 1,25-dihydroxyvitamin D3, which regulates keratinocyte proliferation and differentiation. Phospholipase C-gamma1 is the most abundant member of the phospholipase C family in keratinocytes and is induced by 1,25-dihydroxyvitamin D3. Therefore, phospholipase C-gamma1 might be important in the signaling pathway mediating 1,25-dihydroxyvitamin-D3-induced keratinocyte differentiation. To test this hypothesis, phospholipase C-gamma1 expression in human keratinocytes was reduced by transfecting the cells with an antisense phospholipase C-gamma1 construct and then evaluating the response of the keratinocyte differentiation markers involucrin and transglutaminase to 1,25-dihydroxyvitamin D3. The results showed that involucrin and transglutaminase protein and mRNA levels were markedly reduced in keratinocytes transfected by the antisense phospholipase C-gamma1 construct. Cotransfection of keratinocytes with the involucrin or transglutaminase promoter construct and the antisense phospholipase C-gamma1 construct showed decreased involucrin or transglutaminase promoter activity in response to 1,25-dihydroxyvitamin D3. To further investigate the mechanism by which phospholipase C-gamma1 regulates keratinocyte differentiation, the calcium and inositol triphosphate levels in keratinocytes transfected by the antisense phospholipase C-gamma1 construct were measured following 1,25-dihydroxyvitamin D3 administration. The increase in keratinocyte intracellular free calcium and inositol triphosphate levels following 1,25-dihydroxyvitamin D3 administration were markedly reduced by the transfection of the antisense phospholipase C-gamma1 construct. These studies indicate that phospholipase C-gamma1 plays a critical role in the signal transduction pathway mediating 1,25-dihydroxyvitamin-D3-induced keratinocyte differentiation at least in part by mediating the increase in inositol triphosphate production and intracellular calcium mobilization following 1,25-dihydroxyvitamin D3 administration.
Collapse
Affiliation(s)
- Z Xie
- Endocrine Unit, VA Medical Center, University of California, San Francisco, California 94121, USA.
| | | |
Collapse
|
25
|
Elias PM, Matsuyoshi N, Wu H, Lin C, Wang ZH, Brown BE, Stanley JR. Desmoglein isoform distribution affects stratum corneum structure and function. J Cell Biol 2001; 153:243-9. [PMID: 11309406 PMCID: PMC2169464 DOI: 10.1083/jcb.153.2.243] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Desmogleins are desmosomal cadherins that mediate cell-cell adhesion. In stratified squamous epithelia there are two major isoforms of desmoglein, 1 and 3, with different distributions in epidermis and mucous membrane. Since either desmoglein isoform alone can mediate adhesion, the reason for their differential distribution is not known. To address this issue, we engineered transgenic mice with desmoglein 3 under the control of the involucrin promoter. These mice expressed desmoglein 3 with the same distribution in epidermis as found in normal oral mucous membranes, while expression of other major differentiation molecules was unchanged. Although the nucleated epidermis appeared normal, the epidermal stratum corneum was abnormal with gross scaling, and a lamellar histology resembling that of normal mucous membrane. The mice died shortly after birth with severe dehydration, suggesting excessive transepidermal water loss, which was confirmed by in vitro and in vivo measurement. Ultrastructure of the stratum corneum showed premature loss of cohesion of corneocytes. This dysadhesion of corneocytes and its contribution to increased transepidermal water loss was confirmed by tape stripping. These data demonstrate that differential expression of desmoglein isoforms affects the major function of epidermis, the permeability barrier, by altering the structure of the stratum corneum.
Collapse
Affiliation(s)
- Peter M. Elias
- Department of Dermatology, University of California San Francisco, San Francisco, California 94143
| | - Norihisa Matsuyoshi
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hong Wu
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Chenyan Lin
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zhi Hong Wang
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Barbara E. Brown
- Department of Dermatology, University of California San Francisco, San Francisco, California 94143
| | - John R. Stanley
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
26
|
Abstract
BACKGROUND Tissue-specific promoters are becoming increasingly important in light of their effects on gene expression in gene therapy experiments. The regulation of gene expression may be as important as the delivery of the gene itself. OBJECTIVES To determine the effects of the involucrin (INV), keratin 14 (K14) and cytomegalovirus (CMV) promoters on the expression of the reporter gene beta-galactosidase. METHODS In vivo, plasmid DNA was introduced to BALB/c mice by gene gun. Skin biopsies were taken after 24 h for histology and beta-galactosidase staining. In tissue culture cells, plasmid DNA was introduced by transient transfection to cell lines 293 (transformed primary human embryonal kidney cells), NIH 3T3 (immortalized mouse fibroblasts) and human keratinocytes. Reporter gene expression was assayed by histochemical staining and chemiluminescence. RESULTS The K14 and INV promoter constructs showed beta-galactosidase gene expression only in the epidermis, while the CMV promoter showed gene expression in both the dermis and epidermis. In cell culture, the INV and K14 promoter constructs demonstrated significant beta-galactosidase expression in human keratinocytes, but minimal expression in 293 and NIH 3T3 cell types. CMV promoter constructs demonstrated significant expression in all cell types. CONCLUSIONS Gene expression can be regulated by different promoters both in vivo and in cell culture. Based on the physiological expression of the different promoters, gene expression can be restricted to certain cell types, tissues and skin layers.
Collapse
Affiliation(s)
- M T Lin
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S 10th Street, Suite 450 BLSB, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
27
|
Xie Z, Bikle DD. Phospholipase C-gamma1 is required for calcium-induced keratinocyte differentiation. J Biol Chem 1999; 274:20421-4. [PMID: 10400667 DOI: 10.1074/jbc.274.29.20421] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase C-gamma1 is the most abundant member of the phospholipase C family in keratinocytes and is induced by calcium. Phospholipase C-gamma1, therefore, may be involved in the signal transduction system leading to calcium regulation of keratinocyte differentiation. To test this hypothesis, expression of phospholipase C-gamma1 in human keratinocytes was blocked by transfecting cells with the antisense human phospholipase C-gamma1 cDNA construct. These cells demonstrated a dramatic reduction in phospholipase C-gamma1 protein level compared with the empty vector-transfected cells and a marked reduction in the mRNA and protein levels of the differentiation markers involucrin and transglutaminase following administration of calcium. Similarly, cotransfection of antisense phospholipase C-gamma1 constructs with a luciferase reporter vector containing involucrin or transglutaminase promoters led to a substantial reduction in calcium-stimulated involucrin and transglutaminase promoter activities. Similar results were seen following treatment with a specific phospholipase C inhibitor U73122. To determine whether phospholipase C-gamma1 regulated differentiation by controlling intracellular calcium, we examined the ability of antisense phospholipase C-gamma1 to block the calcium-induced rise in intracellular calcium and found that it could. These findings indicate that phospholipase C-gamma1 is a critical component of the signaling pathway mediating calcium regulation of keratinocyte differentiation via its mobilization of intracellular calcium.
Collapse
Affiliation(s)
- Z Xie
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California 94121, USA.
| | | |
Collapse
|
28
|
Polakowska RR, Graf B, Falciano V, LaCelle P. Transcription regulatory elements of the first intron control human transglutaminase type I gene expression in epidermal keratinocytes. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990601)73:3<355::aid-jcb7>3.0.co;2-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Fischer DF, van Drunen CM, Winkler GS, van de Putte P, Backendorf C. Involvement of a nuclear matrix association region in the regulation of the SPRR2A keratinocyte terminal differentiation marker. Nucleic Acids Res 1998; 26:5288-94. [PMID: 9826750 PMCID: PMC147987 DOI: 10.1093/nar/26.23.5288] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The small proline-rich protein genes ( SPRRs ) code for precursors of the cornified cell envelope, and are specifically expressed during keratinocyte terminal differentiation. The single intron of SPRR2A enhanced the activity of the SPRR2A promoter in transient transfection assays. This enhancement was position dependent, and did not function in combination with a heterologous promoter, indicating that the intron does not contain a classical enhancer, and that the enhancement was not due to the splicing reaction per se. Mild DNAse-I digestion of nuclei showed the SPRR2 genes to be tightly associated with the nuclear matrix, in contrast to the other cornified envelope precursor genes mapping to the same chromosomal location (epidermal differentiation complex). In vitro binding studies indicated that both the proximal promoter and the intron of SPRR2A are required for optimal association of this gene with nuclear matrices. Neither nuclear matrix association nor the relative transcriptional enhancement by the intron changed during keratinocyte differentiation. Apparently, the association of the SPRR2A gene with the nuclear matrix results in a general, differentiation-independent enhancement of gene expression.
Collapse
Affiliation(s)
- D F Fischer
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Efimova T, LaCelle P, Welter JF, Eckert RL. Regulation of human involucrin promoter activity by a protein kinase C, Ras, MEKK1, MEK3, p38/RK, AP1 signal transduction pathway. J Biol Chem 1998; 273:24387-95. [PMID: 9733728 DOI: 10.1074/jbc.273.38.24387] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Involucrin is a marker of keratinocyte terminal differentiation. Our previous studies show that involucrin mRNA levels are increased by the keratinocyte differentiating agent, 12-O-tetradecanoylphorbol-13-acetate (TPA) (Welter, J. F., Crish, J. F., Agarwal, C., and Eckert, R. L. (1995) J. Biol. Chem. 270, 12614-12622). We now study the signaling cascade responsible for this regulation. Protein kinase C and tyrosine kinase inhibitors inhibit both the TPA-dependent mRNA increase and the TPA-dependent increase in hINV promoter activity. The relevant response element is located within the promoter proximal regulatory region and includes an AP1 site, AP1-1. Co-transfection of the hINV promoter with dominant negative forms of Ras, MEKK1, MEK1, MEK7, MEK3, p38/RK, and c-Jun inhibit the TPA-dependent increase. Wild type MEKK1 enhances promoter activity and the activity can be inhibited by dominant negative MEKK1, MEK1, MEK7, MEK3, p38/RK, and c-Jun. In contrast, wild type Raf-1, ERK1, ERK2, MEK4, or JNK1 produced no change in activity and the dominant negative forms of these kinases failed to suppress TPA-dependent transcription. Treatment with an S6 kinase (S6K) inhibitor, or transfection with constitutively active S6K produced relatively minor changes in promoter activity, ruling out a regulatory role for S6K. These results suggest that activation of involucrin transcription involves a pathway that includes protein kinase C, Ras, MEKK1, MEK3, and p38/RK. Additional pathways that transfer MEKK1 activation via MEK1 and MEK7 also may function, but the downstream targets of these kinases need to be identified. AP1 transcription factors appear to be the ultimate target of this regulation.
Collapse
Affiliation(s)
- T Efimova
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | |
Collapse
|
31
|
Xie Z, Bikle DD. Differential regulation of vitamin D responsive elements in normal and transformed keratinocytes. J Invest Dermatol 1998; 110:730-3. [PMID: 9579536 DOI: 10.1046/j.1523-1747.1998.00175.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Squamous cell carcinomas (SCC) derived from human epidermis fail to differentiate normally under the influence of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] despite the presence of the vitamin D receptor. Previous studies from our laboratory showed that phospholipase C-gamma1 (PLC-gamma1) was upregulated transcriptionally by 1,25(OH)2D3 in normal human keratinocytes, and a vitamin D responsive element (VDRE) in its promoter region has been identified. To examine the inducibility of human PLC-gamma1 transcription by 1,25(OH)2D3 and/or retinoic acid in SCC cell lines, we transiently transfected SCC4 and SCC12B2 cells with human PLC-gamma1 promoter-luciferase constructs containing the VDRE and tested the response of these constructs to 1,25(OH)2D3 and/or all-trans retinoic acid. The induction of the human PLC-gamma1 VDRE by 1,25(OH)2D3 was synergistic with all-trans retinoic acid in normal human keratinocytes, but none of the constructs was induced by 1,25(OH)2D3 and/or all-trans retinoic acid in SCC4 and SCC12B2 cells. In contrast, the construct containing the VDRE of the human 24-hydroxylase gene was induced several fold by 1,25(OH)2D3 in normal human keratinocytes and by both 1,25(OH)2D3 and all-trans retinoic acid in SCC4 and SCC12B2 cells. DNA mobility shift assays showed that both the vitamin D receptor and the retinoic acid receptor in SCC4 and SCC12B2 cells bound the human PLC-gamma1 VDRE similarly to that seen in normal keratinocytes. The data indicate that the VDRE in the human PLC-gamma1 gene is not functional in SCC4 and SCC12B2 cells, unlike normal human keratinocytes, even though vitamin D receptors bind normally to it. Failure of transcriptional control of the PLC-gamma1 gene by 1,25(OH)2D3 suggests the lack of a cofactor(s) linking the VDRE to the transcriptional machinery.
Collapse
Affiliation(s)
- Z Xie
- Endocrine Unit, VA Medical Center, University of California, San Francisco 94121, USA
| | | |
Collapse
|
32
|
Abstract
The human keratinocyte line SCC-9 has been used as a model for arsenate-induced perturbations of differentiation. Growth of these cells in 10 microM arsenate permitted the cultures to reach confluence, but prevented expression of 6 markers of suprabasal differentiation (involucrin, loricrin, filaggrin, spr 1, keratin 1 and keratin 10) as assayed by Northern blotting. By contrast, only slight alterations in mRNA levels were observed for one differentiation marker (keratinocyte transglutaminase) and for keratin 5, keratin 14, AP2 or glyceraldehyde phosphate dehydrogenase. The transition metal oxyanions vanadate and chromate had essentially the same suppressive effect on these markers as arsenate, while chronic treatment with tetradecanoylphorbol acetate was generally less effective in suppressing differentiation. To determine whether the previously observed arsenate-mediated alteration in AP1 and AP2 activities could account for the suppression of involucrin, a promoter analysis was conducted. Putative AP1 and AP2 response elements were identified in regions important for transcriptional activity of the 5'-flanking DNA. Mutations in two AP1 sites and one AP2 site were observed to decrease promoter activity significantly, and in combination, to reduce it to approximately 10% of that conferred by the native sequence. These results lend support to the working hypothesis that arsenate suppresses involucrin expression, and, more generally, keratinocyte programming, by altering the transcription factors AP1 and AP2.
Collapse
Affiliation(s)
- D J Kachinskas
- Department of Environmental Toxicology, University of California, Davis 95616-8588, USA
| | | | | | | |
Collapse
|
33
|
Xie Z, Bikle DD. Cloning of the human phospholipase C-gamma1 promoter and identification of a DR6-type vitamin D-responsive element. J Biol Chem 1997; 272:6573-7. [PMID: 9045685 DOI: 10.1074/jbc.272.10.6573] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 5'-flanking region of the human phospholipase C-gamma1 gene was isolated from a human P1 genomic DNA library. The S1-nuclease mapping and primer extension analysis revealed that there is a single transcriptional start site located at 135 bases upstream from the translation start codon in the human phospholipase C-gamma1 gene. DNA sequence analysis showed that the sequence around the transcriptional start site is very GC-rich and has no TATA box. The fragment +135 to -877 in the 5'-flanking region of the human phospholipase C-gamma1 gene was subcloned into a luciferase reporter vector. The chimeric gene produced a high level of luciferase activity and responded to 1,25-(OH)2D3 in transiently transfected human keratinocytes. Deletion and mutation studies of the fragment +135 to -877 demonstrated a vitamin D-responsive element that contains a motif arranged as two direct repeats separated by 6 bases (DR6), AGGTCAgaccacTGGACA, located between -786 and -803 base pairs. Incubation of the oligonucleotide containing the DR6 with keratinocyte nuclear extracts produced a specific protein-DNA complex that shifted to a higher molecular weight form upon the addition of an antibody specific to the 1,25-(OH)2D3 receptor. Therefore, the 5'-flanking region of the human phospholipase C-gamma1 gene confers promoter activity and contains a DR6-type vitamin D-responsive element that mediates, at least in part, the enhanced expression of this gene in human keratinocytes by 1, 25-(OH)2D3.
Collapse
Affiliation(s)
- Z Xie
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California 94121, USA
| | | |
Collapse
|
34
|
Dale BA, Presland RB, Lewis SP, Underwood RA, Fleckman P. Transient expression of epidermal filaggrin in cultured cells causes collapse of intermediate filament networks with alteration of cell shape and nuclear integrity. J Invest Dermatol 1997; 108:179-87. [PMID: 9008231 DOI: 10.1111/1523-1747.ep12334205] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Filaggrin is an intermediate filament-associated protein (IFAP) that aggregates epidermal keratin filaments in vitro and is thought to perform a similar function during terminal differentiation in vivo. To test this function in living cells, we transiently expressed constructs encoding human filaggrin in both simple epithelial cells (COS-7) and rat keratinocytes. Scanning laser confocal microscopy showed that filaggrin-positive cells had collapsed keratin and vimentin intermediate filament (IF) networks, and that filaggrin partially co-localized with the IF networks. Filaggrin was also detected diffusely in the cytoplasm and nucleus. In contrast, when profilaggrin-like constructs, containing five filaggrin domains separated by the linker sequences, were expressed in cultured cells, immunoreactive granules formed. This finding is reminiscent of the insoluble nature of native profilaggrin that accumulates in keratohyalin granules in vivo, suggesting that the linker peptides (present in profilaggrin but not filaggrin) are important for granule formation. Cells expressing filaggrin also displayed disruption of the nucleus and the nuclear envelope; they rounded up and lost attachment to the substratum, in contrast to control cells over-expressing beta-galactosidase. This functional test of filaggrin in living cells supports its role in the reorganization and packing of keratin IF in epidermal differentiation. Moreover, the observed effects on cell morphology and nuclear integrity suggest that filaggrin may contribute to the form of apoptosis associated with terminal differentiation in epidermis.
Collapse
Affiliation(s)
- B A Dale
- Department of Oral Biology, University of Washington, Seattle 98195-7132, USA
| | | | | | | | | |
Collapse
|
35
|
LaPres JJ, Hudson LG. Identification of a functional determinant of differentiation-dependent expression in the involucrin gene. J Biol Chem 1996; 271:23154-60. [PMID: 8798509 DOI: 10.1074/jbc.271.38.23154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Involucrin is an integral component of the cornified envelope which is a characteristic feature of the differentiated keratinocyte. Involucrin expression is tightly linked to the onset of differentiation and first expressed in the immediate suprabasal layers of the epidermis. We have identified a transcriptional response element within the distal 5'-flanking region of the involucrin gene which contributes to differentiation-dependent expression. Deletion of this site impairs differentiation-dependent promoter activity in transient transfection analysis, and conversely, this region imparts differentiation-dependent expression to a heterologous promoter. The identified site bears sequence similarity to several AP2-like response elements identified in keratinocyte-specific genes and binds a protein complex (keratinocyte differentiation factor, KDF-1) which is distinct from AP2 by several criteria. The migration of KDF-1 is distinct from AP2 in electrophoretic mobility shift assays, KDF-1 is antigenically unrelated to AP2 since AP2 specific antibodies do not supershift the KDF-1-DNA complex and KDF-1 is poorly competed by oligonucleotides representing consensus AP2 recognition sequences. In addition, the KDF-1 complex is not detected in nuclear extracts derived from human dermal fibroblasts or an enriched population of basal keratinocytes. These findings provide insights to the underlying basis of differentiation-dependent expression of a keratinocyte specific gene.
Collapse
Affiliation(s)
- J J LaPres
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
36
|
Lopez-Bayghen E, Vega A, Cadena A, Granados SE, Jave LF, Gariglio P, Alvarez-Salas LM. Transcriptional analysis of the 5'-noncoding region of the human involucrin gene. J Biol Chem 1996; 271:512-20. [PMID: 8550612 DOI: 10.1074/jbc.271.1.512] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human involucrin whose gene transcription is directed by a 2456-nucleotide (nt) 5'-noncoding region is a structural component of the epithelial cornified layer. Transient transfection assays demonstrated that this region is transcriptionally active in multiplying keratinocytes and is enhanced by 2 mM CaCl2 treatment. Calcium-independent transcriptional activity and the interaction with the AP-1 transcriptional factor was located on the proximal part (nt -159 to -1) of the 5'-noncoding region. However, CaCl2 responsiveness was mapped to a distal 1185-nt fragment (nt -2456 to -1272). Moreover, this fragment potentiated the Herpes simplex thymidine kinase promoter in normal keratinocytes and is responsive to calcium treatment in a cell type-specific manner. Interestingly, the absence of a 491-nt fragment located between the two enhancer domains (nt -651 to -160) resulted in transcriptional activation in multiplying keratinocytes. This fragment interacts with AP-1 and the YY1 transcriptional silencer. It is concluded that human involucrin 5'-noncoding region contains at least three regulatory domains, a distal CaCl2-responsive enhancer, a putative transcriptional silencer (that interacts with AP-1 and YY1), and a proximal enhancer/promoter (that interacts with AP-1). Thus, this study demonstrates the presence of particular transcriptional factors can potentially regulate the human involucrin expression.
Collapse
Affiliation(s)
- E Lopez-Bayghen
- Departamento de Genetica y Biologia Molecular, Centro de Investigacion y Estudios Avanzados del Instituto Politecnico Nacional, Mexico, Distrito Federal, Mexico
| | | | | | | | | | | | | |
Collapse
|
37
|
Eckert RL, Welter JF. Transcription factor regulation of epidermal keratinocyte gene expression. Mol Biol Rep 1996; 23:59-70. [PMID: 8983019 DOI: 10.1007/bf00357073] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The epidermis is a tissue that undergoes a very complex and tightly controlled differentiation program. The elaboration of this program is generally flawless, resulting in the production of an effective protective barrier for the organism. Many of the genes expressed during keratinocyte differentiation are expressed in a coordinate manner; this suggests that common regulatory models may emerge. The simplest model envisions a 'common regulatory element' that is possessed by all genes that are regulated together (e.g., involucrin and transglutaminase type 1). Studies to date, however, have not identified any such elements and, if anything, the available studies suggest that appropriate expression of each gene is achieved using sometime subtly and sometime grossly different mechanisms. Recent studies indicate that a variety of transcription factors (AP1, AP2, POU domain. Sp1, STAT factors) are expressed in the epidermis and, in many cases, multiple members of several families are present (e.g., AP1 and POU domain factors). The simultaneous expression of multiple members of a single transcription factor family provides numerous opportunities for complex regulation. Some studies suggest that specific members of these families interact with specific keratinocyte genes. The best studied of these families in epidermis is the AP1 family of factors. All of the known AP1 factors are expressed in epidermis [52] and each is expressed in a specific spatial pattern that suggests the potential to regulate multiple genes. It will be important to determine the role of each of these members in regulating keratinocyte gene expression. Finally, information is beginning to emerge regarding signal transduction in keratinocytes. Some of the early events in signal transduction have been identified (e.g., PLC and PKC activation, etc.) and some of the molecular targets of these pathways (e.g., AP1 transcription factors) are beginning to be identified. Eventually we can expect to elucidation of all of the steps between the interaction of the stimulating agent with its receptor and the activation of target gene expression.
Collapse
Affiliation(s)
- R L Eckert
- Department of Physiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
38
|
Gandarillas A, Watt FM. The 5' noncoding region of the mouse involucrin gene: comparison with the human gene and genes encoding other cornified envelope precursors. Mamm Genome 1995; 6:680-2. [PMID: 8535084 DOI: 10.1007/bf00352383] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A Gandarillas
- Keratinocyte Laboratory, Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
39
|
Takahashi H, Kobayashi H, Matsuo S, Iizuka H. Repression of involucrin gene expression by transcriptional enhancer factor 1 (TEF-1). Arch Dermatol Res 1995; 287:740-6. [PMID: 8554386 DOI: 10.1007/bf01105799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Involucrin is one of the precursor proteins of keratinocyte cornified envelope that is formed beneath the inner surface of the cell membrane during terminal differentiation. Although involucrin is specifically expressed in the upper squamous cells of the epidermis, the precise regulatory mechanism of involucrin gene expression remains unknown. Transcriptional enhancer factor 1 (TEF-1), which binds to SV40 enhancer, is a nuclear protein expressed in various types of cells including keratinocytes. Immunohistochemical study has revealed that TEF-1 protein is highly expressed on the basal cell layer of the epidermis. To examine the possible regulatory mechanism of involucrin gene expression by TEF-1 protein, we analysed involucrin promoter activity of the INV-CAT vector, which was constructed by connecting the 5' upstream region of the involucrin gene (-801 bp upstream from the transcription start site and downstream including the untranslated first exon) to the chloramphenicol acetyltransferase (CAT) reporter gene. The INV-CAT vector was transfected to SV40-transformed human keratinocytes (SVHK). Cotransfection of the TEF-1 expression vector significantly repressed INV-CAT promoter activity in a dose-dependent manner. The repression was also observed by transfection of the GAL4-TEF-1 vector, which was constructed by replacement of the TEF-1 DNA binding domain by the GAL4 activator domain. This suggests that TEF-1-induced repression is due to interference/squelching of a limiting transcriptional intermediary factor that is essential for involucrin expression.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Takahashi
- Department of Dermatology, Asahikawa Medical College, Japan
| | | | | | | |
Collapse
|