1
|
Cross-regulation of viral kinases with cyclin A secures shutoff of host DNA synthesis. Nat Commun 2020; 11:4845. [PMID: 32973148 PMCID: PMC7518283 DOI: 10.1038/s41467-020-18542-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Herpesviruses encode conserved protein kinases (CHPKs) to stimulate phosphorylation-sensitive processes during infection. How CHPKs bind to cellular factors and how this impacts their regulatory functions is poorly understood. Here, we use quantitative proteomics to determine cellular interaction partners of human herpesvirus (HHV) CHPKs. We find that CHPKs can target key regulators of transcription and replication. The interaction with Cyclin A and associated factors is identified as a signature of β-herpesvirus kinases. Cyclin A is recruited via RXL motifs that overlap with nuclear localization signals (NLS) in the non-catalytic N termini. This architecture is conserved in HHV6, HHV7 and rodent cytomegaloviruses. Cyclin A binding competes with NLS function, enabling dynamic changes in CHPK localization and substrate phosphorylation. The cytomegalovirus kinase M97 sequesters Cyclin A in the cytosol, which is essential for viral inhibition of cellular replication. Our data highlight a fine-tuned and physiologically important interplay between a cellular cyclin and viral kinases.
Collapse
|
2
|
A Cyclin-Binding Motif in Human SAMHD1 Is Required for Its HIV-1 Restriction, dNTPase Activity, Tetramer Formation, and Efficient Phosphorylation. J Virol 2018; 92:JVI.01787-17. [PMID: 29321329 DOI: 10.1128/jvi.01787-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) regulates intracellular deoxynucleoside triphosphate (dNTP) levels and functions as a retroviral restriction factor through its dNTP triphosphohydrolase (dNTPase) activity. Human SAMHD1 interacts with cell cycle regulatory proteins cyclin A2, cyclin-dependent kinase 1 (CDK1), and CDK2. This interaction mediates phosphorylation of SAMHD1 at threonine 592 (T592), which negatively regulates HIV-1 restriction. We previously reported that the interaction is mediated, at least in part, through a cyclin-binding motif (RXL, amino acids [aa] 451 to 453). To understand the role of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of RXL mutants and the effect on HIV-1 restriction. We found that the RXL mutation (R451A and L453A, termed RL/AA) disrupted SAMHD1 tetramer formation and abolished its dNTPase activity in vitro and in cells. Compared to wild-type (WT) SAMHD1, the RL/AA mutant failed to restrict HIV-1 infection and had reduced binding to cyclin A2. WT SAMHD1 and RL/AA mutant proteins were degraded by Vpx from HIV-2 but were not spontaneously ubiquitinated in the absence of Vpx. Analysis of proteasomal and autophagy degradation revealed that WT and RL/AA SAMHD1 protein levels were enhanced only when both pathways of degradation were simultaneously inhibited. Our results demonstrate that the RXL motif of human SAMHD1 is required for its HIV-1 restriction, tetramer formation, dNTPase activity, and efficient phosphorylation at T592. These findings identify a new functional domain of SAMHD1 important for its structural integrity, enzyme activity, phosphorylation, and HIV-1 restriction.IMPORTANCE SAMHD1 is the first mammalian dNTPase identified as a restriction factor that inhibits HIV-1 replication by decreasing the intracellular dNTP pool in nondividing cells, although the critical mechanisms regulating SAMHD1 function remain unclear. We previously reported that mutations of a cyclin-binding RXL motif in human SAMHD1 significantly affect protein expression levels, half-life, nuclear localization, and phosphorylation, suggesting an important role of this motif in modulating SAMHD1 functions in cells. To further understand the significance and mechanisms of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of the RXL motif mutation and its effect on HIV-1 restriction. Our results indicate that the RXL motif is critical for tetramer formation, dNTPase activity, and HIV-1 restriction. These findings help us understand SAMHD1 interactions with other host proteins and the mechanisms regulating SAMHD1 structure and functions in cells.
Collapse
|
3
|
Ye Q, Pang S, Zhang W, Guo X, Wang J, Zhang Y, Liu Y, Wu X, Jiang F. Therapeutic Targeting of RNA Polymerase I With the Small-Molecule CX-5461 for Prevention of Arterial Injury-Induced Neointimal Hyperplasia. Arterioscler Thromb Vasc Biol 2017; 37:476-484. [PMID: 28062495 DOI: 10.1161/atvbaha.116.308401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE RNA polymerase I (Pol I)-dependent rRNA synthesis is a determinant factor in ribosome biogenesis and thus cell proliferation. The importance of dysregulated Pol I activity in cardiovascular disease, however, has not been recognized. Here, we tested the hypothesis that specific inhibition of Pol I might prevent arterial injury-induced neointimal hyperplasia. APPROACH AND RESULTS CX-5461 is a novel selective Pol I inhibitor. Using this tool, we demonstrated that local inhibition of Pol I blocked balloon injury-induced neointima formation in rat carotid arteries in vivo. Neointimal development was associated with augmented rDNA transcriptional activity as evidenced by the increased phosphorylation of upstream binding factor-1. The beneficial effect of CX-5461 was mainly mediated by inducing G2/M cell cycle arrest of proliferating smooth muscle cells without obvious apoptosis. CX-5461 did not induce p53 stabilization but increased p53 phosphorylation and acetylation and activated the ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related (ATR) pathway. Inhibition of ATR, but not of ataxia telangiectasia mutated, abolished the cytostatic effect of CX-5461 and p53 phosphorylation. In addition, inhibition of p53 or knockdown of the p53 target GADD45 mimicked the effect of ATR inhibition. In vivo experiments showed that the levels of phospho-p53 and acetyl-p53, and activity of the ataxia telangiectasia mutated/ATR pathway were all augmented in CX-5461-treated vessels. CONCLUSIONS Pol I can be therapeutically targeted to inhibit the growth of neointima, supporting that Pol I is a novel biological target for preventing arterial restenosis. Mechanistically, Pol I inhibition elicited G2/M cell cycle arrest in smooth muscle cells via activation of the ATR-p53 axis.
Collapse
Affiliation(s)
- Qing Ye
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Shu Pang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Wenjing Zhang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Xiaotong Guo
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Jianli Wang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Yongtao Zhang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Yang Liu
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Xiao Wu
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Fan Jiang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.).
| |
Collapse
|
4
|
Bauer M, Cubizolles F, Schmidt A, Nigg EA. Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. EMBO J 2016; 35:2152-2166. [PMID: 27539480 PMCID: PMC5048348 DOI: 10.15252/embj.201694462] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022] Open
Abstract
Centrioles are essential for the formation of centrosomes and cilia. While numerical and/or structural centrosomes aberrations are implicated in cancer, mutations in centriolar and centrosomal proteins are genetically linked to ciliopathies, microcephaly, and dwarfism. The evolutionarily conserved mechanisms underlying centrosome biogenesis are centered on a set of key proteins, including Plk4, Sas-6, and STIL, whose exact levels are critical to ensure accurate reproduction of centrioles during cell cycle progression. However, neither the intracellular levels of centrosomal proteins nor their stoichiometry within centrosomes is presently known. Here, we have used two complementary approaches, targeted proteomics and EGFP-tagging of centrosomal proteins at endogenous loci, to measure protein abundance in cultured human cells and purified centrosomes. Our results provide a first assessment of the absolute and relative amounts of major components of the human centrosome. Specifically, they predict that human centriolar cartwheels comprise up to 16 stacked hubs and 1 molecule of STIL for every dimer of Sas-6. This type of quantitative information will help guide future studies of the molecular basis of centrosome assembly and function.
Collapse
Affiliation(s)
- Manuel Bauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Matsuda S, Kominato K, Koide-Yoshida S, Miyamoto K, Isshiki K, Tsuji A, Yuasa K. PCTAIRE kinase 3/cyclin-dependent kinase 18 is activated through association with cyclin A and/or phosphorylation by protein kinase A. J Biol Chem 2014; 289:18387-400. [PMID: 24831015 DOI: 10.1074/jbc.m113.542936] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PCTAIRE kinase 3 (PCTK3)/cyclin-dependent kinase 18 (CDK18) is an uncharacterized member of the CDK family because its activator(s) remains unidentified. Here we describe the mechanisms of catalytic activation of PCTK3 by cyclin A2 and cAMP-dependent protein kinase (PKA). Using a pulldown experiment with HEK293T cells, cyclin A2 and cyclin E1 were identified as proteins that interacted with PCTK3. An in vitro kinase assay using retinoblastoma protein as the substrate showed that PCTK3 was specifically activated by cyclin A2 but not by cyclin E1, although its activity was lower than that of CDK2. Furthermore, immunocytochemistry analysis showed that PCTK3 colocalized with cyclin A2 in the cytoplasm and regulated cyclin A2 stability. Amino acid sequence analysis revealed that PCTK3 contained four putative PKA phosphorylation sites. In vitro and in vivo kinase assays showed that PCTK3 was phosphorylated by PKA at Ser(12), Ser(66), and Ser(109) and that PCTK3 activity significantly increased via phosphorylation at Ser(12) by PKA even in the absence of cyclin A2. In the presence of cyclin A2, PCTK3 activity was comparable to CDK2 activity. We also found that PCTK3 knockdown in HEK293T cells induced polymerized actin accumulation in peripheral areas and cofilin phosphorylation. Taken together, our results provide the first evidence for the mechanisms of catalytic activation of PCTK3 by cyclin A2 and PKA and a physiological function of PCTK3.
Collapse
Affiliation(s)
- Shinya Matsuda
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Kyohei Kominato
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Shizuyo Koide-Yoshida
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Kenji Miyamoto
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Kinuka Isshiki
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Akihiko Tsuji
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Keizo Yuasa
- From the Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| |
Collapse
|
6
|
Bendris N, Lemmers B, Blanchard JM, Arsic N. Cyclin A2 mutagenesis analysis: a new insight into CDK activation and cellular localization requirements. PLoS One 2011; 6:e22879. [PMID: 21829545 PMCID: PMC3145769 DOI: 10.1371/journal.pone.0022879] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022] Open
Abstract
Cyclin A2 is essential at two critical points in the somatic cell cycle: during S phase, when it activates CDK2, and during the G2 to M transition when it activates CDK1. Based on the crystal structure of Cyclin A2 in association with CDKs, we generated a panel of mutants to characterize the specific amino acids required for partner binding, CDK activation and subcellular localization. We find that CDK1, CDK2, p21, p27 and p107 have overlapping but distinct requirements for association with this protein. Our data highlight the crucial importance of the N-terminal α helix, in conjunction with the α3 helix within the cyclin box, in activating CDK. Several Cyclin A2 mutants selectively bind to either CDK1 or CDK2. We demonstrate that association of Cyclin A2 to proteins such as CDK2 that was previously suggested as crucial is not a prerequisite for its nuclear localization, and we propose that the whole protein structure is involved.
Collapse
Affiliation(s)
- Nawal Bendris
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, Université Montpellier 2, Université Montpellier 1, Montpellier, France
| | - Bénédicte Lemmers
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, Université Montpellier 2, Université Montpellier 1, Montpellier, France
| | - Jean-Marie Blanchard
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, Université Montpellier 2, Université Montpellier 1, Montpellier, France
- * E-mail: (JMB); (NA)
| | - Nikola Arsic
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, Université Montpellier 2, Université Montpellier 1, Montpellier, France
- * E-mail: (JMB); (NA)
| |
Collapse
|
7
|
Hodeify R, Megyesi J, Tarcsafalvi A, Safirstein RL, Price PM. Protection of cisplatin cytotoxicity by an inactive cyclin-dependent kinase. Am J Physiol Renal Physiol 2010; 299:F112-20. [PMID: 20444741 DOI: 10.1152/ajprenal.00151.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cisplatin cytotoxicity is dependent on cyclin-dependent kinase 2 (Cdk2) activity in vivo and in vitro. A Cdk2 mutant (Cdk2-F80G) was designed in which the ATP-binding pocket was altered. When expressed in mouse kidney cells, this protein was kinase inactive, did not inhibit endogenous Cdk2, but protected from cisplatin. The mutant was localized in the cytoplasm, but when coexpressed with cyclin A, it was activated, localized to the nucleus, and no longer protected from cisplatin cytotoxicity. Cells exposed to cisplatin in the presence of the activated mutant had an apoptotic phenotype, and endonuclease G was released from mitochondria similar to that mediated by endogenous Cdk2. But unlike apoptosis mediated by wild-type Cdk2, cisplatin exposure of cells expressing the activated mutant did not cause cytochrome c release or significant caspase-3 activation. We conclude that cisplatin likely activates both caspase-dependent and -independent cell death, and Cdk2 is required for both pathways. The mutant-inactive Cdk2 protected from both death pathways, but after activation by excess cyclin A, caspase-independent cell death predominated.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|
8
|
Colin D, Gimazane A, Lizard G, Izard JC, Solary E, Latruffe N, Delmas D. Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer cells. Int J Cancer 2009; 124:2780-8. [DOI: 10.1002/ijc.24264] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
WANG YL, UHARA H, YAMAZAKI Y, NIKAIDO T, SAIDA T. Immunohistochemical detection of CDK4 and 9 16INK4proteins in cutaneous malignant melanoma. Br J Dermatol 2008. [DOI: 10.1111/j.1365-2133.1996.tb07612.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Tsang WY, Wang L, Chen Z, Sánchez I, Dynlacht BD. SCAPER, a novel cyclin A-interacting protein that regulates cell cycle progression. ACTA ACUST UNITED AC 2007; 178:621-33. [PMID: 17698606 PMCID: PMC2064469 DOI: 10.1083/jcb.200701166] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclin A/Cdk2 plays an important role during S and G2/M phases of the eukaryotic cell cycle, but the mechanisms by which it regulates cell cycle events are not fully understood. We have biochemically purified and identified SCAPER, a novel protein that specifically interacts with cyclin A/Cdk2 in vivo. Its expression is cell cycle independent, and it associates with cyclin A/Cdk2 at multiple phases of the cell cycle. SCAPER localizes primarily to the endoplasmic reticulum. Ectopic expression of SCAPER sequesters cyclin A from the nucleus and results specifically in an accumulation of cells in M phase of the cell cycle. RNAi-mediated depletion of SCAPER decreases the cytoplasmic pool of cyclin A and delays the G1/S phase transition upon cell cycle re-entry from quiescence. We propose that SCAPER represents a novel cyclin A/Cdk2 regulatory protein that transiently maintains this kinase in the cytoplasm. SCAPER could play a role in distinguishing S phase- from M phase-specific functions of cyclin A/Cdk2.
Collapse
Affiliation(s)
- William Y Tsang
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
11
|
Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA. Plk4-induced centriole biogenesis in human cells. Dev Cell 2007; 13:190-202. [PMID: 17681131 DOI: 10.1016/j.devcel.2007.07.002] [Citation(s) in RCA: 527] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/22/2007] [Accepted: 07/03/2007] [Indexed: 01/11/2023]
Abstract
We show that overexpression of Polo-like kinase 4 (Plk4) in human cells induces centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole. This provided an opportunity for dissecting centriole assembly and characterizing assembly intermediates. Critical components were identified and ordered into an assembly pathway through siRNA and localized through immunoelectron microscopy. Plk4, hSas-6, CPAP, Cep135, gamma-tubulin, and CP110 were required at different stages of procentriole formation and in association with different centriolar structures. Remarkably, hSas-6 associated only transiently with nascent procentrioles, whereas Cep135 and CPAP formed a core structure within the proximal lumen of both parental and nascent centrioles. Finally, CP110 was recruited early and then associated with the growing distal tips, indicating that centrioles elongate through insertion of alpha-/beta-tubulin underneath a CP110 cap. Collectively, these data afford a comprehensive view of the assembly pathway underlying centriole biogenesis in human cells.
Collapse
Affiliation(s)
- Julia Kleylein-Sohn
- Department of Cell Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Hochegger H, Dejsuphong D, Sonoda E, Saberi A, Rajendra E, Kirk J, Hunt T, Takeda S. An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. ACTA ACUST UNITED AC 2007; 178:257-68. [PMID: 17635936 PMCID: PMC2064445 DOI: 10.1083/jcb.200702034] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vertebrates Cdk1 is required to initiate mitosis; however, any functionality of this kinase during S phase remains unclear. To investigate this, we generated chicken DT40 mutants, in which an analog-sensitive mutant cdk1 as replaces the endogenous Cdk1, allowing us to specifically inactivate Cdk1 using bulky ATP analogs. In cells that also lack Cdk2, we find that Cdk1 activity is essential for DNA replication initiation and centrosome duplication. The presence of a single Cdk2 allele renders S phase progression independent of Cdk1, which suggests a complete overlap of these kinases in S phase control. Moreover, we find that Cdk1 inhibition did not induce re-licensing of replication origins in G2 phase. Conversely, inhibition during mitosis of Cdk1 causes rapid activation of endoreplication, depending on proteolysis of the licensing inhibitor Geminin. This study demonstrates essential functions of Cdk1 in the control of S phase, and exemplifies a chemical genetics approach to target cyclin-dependent kinases in vertebrate cells.
Collapse
Affiliation(s)
- Helfrid Hochegger
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Schick V, Majores M, Fassunke J, Engels G, Simon M, Elger CE, Becker AJ. Mutational and expression analysis of CDK1, cyclinA2 and cyclinB1 in epilepsy-associated glioneuronal lesions. Neuropathol Appl Neurobiol 2007; 33:152-62. [PMID: 17359356 DOI: 10.1111/j.1365-2990.2006.00788.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gangliogliomas and focal cortical dysplasias (FCDs) constitute glioneuronal lesions, which are frequently encountered in biopsy specimens of patients with pharmacoresistant focal epilepsy and relate to impaired differentiation and migration of neural precursors. However, their molecular pathogenesis and relationship are still largely enigmatic. Recent data suggest several components of the insulin-pathway, including TSC1 and TSC2 mutated in tuberous sclerosis complex (TSC), to be altered in gangliogliomas and FCD with Taylor type balloon cells (FCD(IIb)). The proteins tuberin (TSC2) and hamartin (TSC1) constitute a tumour suppressor mechanism involved in cell-cycle control. Hamartin and/or tuberin were reported to colocalize and/or interact with CDK1, cyclinB1 and cyclinA2 that are critically involved in cell-size and cell-growth control. Here, we have carried out mutational and expression analyses of CDK1, cyclinB1 and cyclinA2 in gangliogliomas and FCD(IIb). Mutational screening was performed by single-strand conformation polymorphism analysis in gangliogliomas (n = 20), FCD(IIb) (n = 35) and controls. CyclinB1 revealed a polymorphism (G to A, cDNA Position 966, GenBank: NM_031966) in exon 7 with similar frequencies in FCD(IIb), gangliogliomas and control specimens (FCD n = 9/35; gangliogliomas n = 5/20; control n = 20/100). We used real-time reverse transcription polymerase chain reaction to determine expression levels of CDK1, cyclinB1 and cyclinA2 in 10 FCD(IIb) and nine gangliogliomas compared with unaffected adjacent control tissue of the same patients. We observed significantly lower expression of CDK1 and cyclinA2 in FCD(IIb) vs. controls whereas no significant expression differences were present for CDK1, cyclinB1 and cyclinA2 in gangliogliomas. Our data strongly argue against mutational events of CDK1, cyclinB1 and cyclinA2 to play a role in gangliogliomas or FCD(IIb). However, a potential functional significance of lower expression for the cell-size and cell-cycle regulators CDK1 and cyclinA2 in FCD(IIb) composed of large dysplastic neurones and balloon cells needs to be further resolved.
Collapse
Affiliation(s)
- V Schick
- Department of Neuropathology, University of Bonn Medical Centre, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Selitrennik M, Duek L, Lotan R, Choder M. Nucleocytoplasmic shuttling of the Rpb4p and Rpb7p subunits of Saccharomyces cerevisiae RNA polymerase II by two pathways. EUKARYOTIC CELL 2006; 5:2092-103. [PMID: 17056745 PMCID: PMC1694818 DOI: 10.1128/ec.00288-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rpb4p and Rpb7p are subunits of the RNA polymerase II of Saccharomyces cerevisiae that form a dissociable heterodimeric complex. Whereas the only reported function of Rpb7p is related to transcription, Rpb4p has been found to also act in mRNA export and in the major mRNA decay pathway that operates in the cytoplasm, thus raising the possibility that Rpb4p links between the nuclear and cytoplasmic processes. Here we show that both Rpb4p and Rpb7p shuttle between the nucleus and the cytoplasm. Shuttling kinetics of the two proteins are similar as long as their interaction is possible, suggesting that they shuttle as a heterodimer. Under normal conditions, shuttling of Rpb4p and Rpb7p depends on ongoing transcription. However, during severe stresses of heat shock, ethanol, and starvation, the two proteins shuttle via a transcription-independent pathway. Thus, Rpb4p and Rpb7p shuttle via two pathways, depending on environmental conditions.
Collapse
Affiliation(s)
- Michael Selitrennik
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel 31096
| | | | | | | |
Collapse
|
15
|
An X, Zhang Z, Yang K, Huang M. Cotransport of the heterodimeric small subunit of the Saccharomyces cerevisiae ribonucleotide reductase between the nucleus and the cytoplasm. Genetics 2006; 173:63-73. [PMID: 16489218 PMCID: PMC1461425 DOI: 10.1534/genetics.105.055236] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis and is essential in DNA replication and repair. Cells have evolved complex mechanisms to modulate RNR activity during normal cell cycle progression and in response to genotoxic stress. A recently characterized mode of RNR regulation is DNA damage-induced RNR subunit redistribution. The RNR holoenzyme consists of a large subunit, R1, and a small subunit, R2. The Saccharomyces cerevisiae R2 is an Rnr2:Rnr4 heterodimer. Rnr2 generates a diferric-tyrosyl radical cofactor required for catalysis; Rnr4 facilitates cofactor assembly and stabilizes the resulting holo-heterodimer. Upon DNA damage, Rnr2 and Rnr4 undergo checkpoint-dependent, nucleus-to-cytoplasm redistribution, resulting in colocalization of R1 and R2. Here we present evidence that Rnr2 and Rnr4 are transported between the nucleus and the cytoplasm as one protein complex. Tagging either Rnr2 or Rnr4 with a nuclear export sequence causes cytoplasmic localization of both proteins. Moreover, mutations at the Rnr2:Rnr4 heterodimer interface can affect the localization of both proteins without disrupting the heterodimeric complex. Finally, the relocalization of Rnr4 appears to involve both active export and blockage of nuclear import. Our findings provide new insights into the mechanism of DNA damage-induced RNR subunit redistribution.
Collapse
Affiliation(s)
- Xiuxiang An
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
16
|
Hara KT, Oda S, Naito K, Nagata M, Schultz RM, Aoki F. Cyclin A2-CDK2 regulates embryonic gene activation in 1-cell mouse embryos. Dev Biol 2005; 286:102-13. [PMID: 16137671 DOI: 10.1016/j.ydbio.2005.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 11/29/2022]
Abstract
Recruitment of maternal mRNA in mice appears essential for embryonic gene activation (EGA) that is initiated in the 1-cell stage. The identity of which recruited mRNAs is responsible, however, is not known. We report here that recruitment of cyclin A2 mRNA may be critical for EGA. Cyclin A2 protein accumulates in pronuclei between 6 and 12 h after fertilization, the time when EGA is initiated. This cyclin A2 may be generated from maternally recruited cyclin A2 mRNA because its accumulation was inhibited by 3'-deoxyadenosine, which inhibits mRNA polyadenylation. When CDK2 activity or pronuclear accumulation of cyclin A2 was inhibited with CDK2 inhibitors or by microinjected siRNAs, respectively, DNA replication was not inhibited but the increase of transcriptional activity was prevented. In addition, microinjection of recombinant cyclin A2-CDK2 protein increased transcriptional activity. Cyclin A2-CDK2 is activated following egg activation, because an increase in phosphorylation of retinoblastoma protein was observed using antibodies that recognize site-specific phosphorylation catalyzed by this kinase and treatment with a CDK2 inhibitor or microinjection with cyclin A2 siRNAs prevented the increase in retinoblastoma protein phosphorylation. These results suggest that recruitment of maternal cyclin A2 mRNA following egg activation is linked to EGA.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cleavage Stage, Ovum/cytology
- Cleavage Stage, Ovum/drug effects
- Cleavage Stage, Ovum/metabolism
- Cyclin A/antagonists & inhibitors
- Cyclin A/genetics
- Cyclin A/metabolism
- Cyclin-Dependent Kinase 2/antagonists & inhibitors
- Cyclin-Dependent Kinase 2/metabolism
- Cycloheximide/pharmacology
- DNA, Complementary/genetics
- Deoxyadenosines/pharmacology
- Female
- Gene Expression Regulation, Developmental/drug effects
- In Vitro Techniques
- Mice
- Mice, Inbred ICR
- Pregnancy
- Protein Kinase Inhibitors/pharmacology
- Purines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Roscovitine
- Transcriptional Activation
Collapse
Affiliation(s)
- Kentaro T Hara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Shinryoiki-Seimei Building 302, 5-1-5, Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Liku ME, Nguyen VQ, Rosales AW, Irie K, Li JJ. CDK phosphorylation of a novel NLS-NES module distributed between two subunits of the Mcm2-7 complex prevents chromosomal rereplication. Mol Biol Cell 2005; 16:5026-39. [PMID: 16093348 PMCID: PMC1237101 DOI: 10.1091/mbc.e05-05-0412] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/26/2005] [Accepted: 08/02/2005] [Indexed: 11/11/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) use multiple mechanisms to block reassembly of prereplicative complexes (pre-RCs) at replication origins to prevent inappropriate rereplication. In Saccharomyces cerevisiae, one of these mechanisms promotes the net nuclear export of a pre-RC component, the Mcm2-7 complex, during S, G2, and M phases. Here we identify two partial nuclear localization signals (NLSs) on Mcm2 and Mcm3 that are each necessary, but not sufficient, for nuclear localization of the Mcm2-7 complex. When brought together in cis, however, the two partial signals constitute a potent NLS, sufficient for robust nuclear localization when fused to an otherwise cytoplasmic protein. We also identify a Crm1-dependent nuclear export signal (NES) adjacent to the Mcm3 NLS. Remarkably, the Mcm2-Mcm3 NLS and the Mcm3 NES are sufficient to form a transport module that recapitulates the cell cycle-regulated localization of the entire Mcm2-7 complex. Moreover, we show that CDK regulation promotes net export by phosphorylation of the Mcm3 portion of this module and that nuclear export of the Mcm2-7 complex is sufficient to disrupt replication initiation. We speculate that the distribution of partial transport signals among distinct subunits of a complex may enhance the specificity of protein localization and raises the possibility that previously undetected distributed transport signals are used by other multiprotein complexes.
Collapse
Affiliation(s)
- Muluye E Liku
- Department of Biochemistry, University of California, San Francisco, CA 94143-2200, USA
| | | | | | | | | |
Collapse
|
18
|
Ekberg J, Holm C, Jalili S, Richter J, Anagnostaki L, Landberg G, Persson JL. Expression of cyclin A1 and cell cycle proteins in hematopoietic cells and acute myeloid leukemia and links to patient outcome. Eur J Haematol 2005; 75:106-15. [PMID: 16004607 DOI: 10.1111/j.1600-0609.2005.00473.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abnormal expression of several key regulators essential for G1/S transitions has been implicated in tumorigenesis. A critical role of cyclin A1 in the development of acute myeloid leukemia (AML) has previously been demonstrated in transgenic mice. Our present study focused on the expression and prognostic significance of cyclin A1 and a panel of cell cycle regulatory proteins including cyclin A2, cyclin B1, cyclin E, CDK1, CDK2, p21 and p27 in bone marrow samples from 40 patients with AML. Freshly isolated CD34+ hematopoietic cells and bone marrow samples from 10 healthy donors were also assessed for cell type- and subcellular-specific expression of the cell cycle regulatory proteins. The level of cyclin A1 expression was the only factor that showed a significant correlation with patient outcome. In log-rank test stratified by levels of cyclin A1 expression, patients with high levels of cyclin A1 had significantly worse overall survival (OS) (P = 0.012) compared to those with low levels. Further, patients with high levels of cyclin A1 had significantly lower disease-free survival (DFS) (P = 0.028). Multivariate analysis indicated that cyclin A1 protein expression was an independent prognostic factor for predicting DFS (P = 0.035) and OS (P = 0.045). No correlation between cyclin A1 expression and age was found. However, expression of cyclin A2, cyclin B1, cyclin E, CDK1, CDK2, p21 and p27 did not show prognostic significance in these AML patients.
Collapse
Affiliation(s)
- Jenny Ekberg
- Division of Pathology, Department of Laboratory Medicine, Lund University, University Hospital, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Hogarth C, Itman C, Jans DA, Loveland KL. Regulated nucleocytoplasmic transport in spermatogenesis: a driver of cellular differentiation? Bioessays 2005; 27:1011-25. [PMID: 16163727 DOI: 10.1002/bies.20289] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review explores the hypothesis that regulation of nucleocytoplasmic shuttling is a means of driving differentiation, using spermatogenesis as a model. The transition from undifferentiated spermatogonial stem cell to terminally differentiated spermatozoon is, at its most basic, a change in the repertoire of expressed genes. To effect this, the complement of nuclear proteins, such as transcription factors and chromatin remodelling components must change. Current knowledge of the nuclear proteins and nucleocytoplasmic transport machinery relevant to spermatogenesis is consolidated in this review, and their functional linkages are highlighted not only as a means of regulating nuclear protein composition, but also as a key mechanism regulating gene transcription and hence cell fate. Through this, we hypothesize that male germ cell differentiation is mediated through regulation of nuclear transport machinery components, and thereby of the access of critical factors to the nucleus. The importance of nucleocytoplasmic trafficking to male germ cell differentiation is discussed, using the sex-determining factors Sry and SOX9, cell cycle regulators, CREM and cofactors and the Smads as specific examples, together with the roles in gametogenesis for particular nuclear transport factors in Caenorhabditis elegans and Drosophila.
Collapse
Affiliation(s)
- Cathryn Hogarth
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | |
Collapse
|
20
|
Ekberg J, Landberg G, Holm C, Richter J, Wolgemuth DJ, Persson JL. Regulation of the cyclin A1 protein is associated with its differential subcellular localization in hematopoietic and leukemic cells. Oncogene 2004; 23:9082-9. [PMID: 15489899 DOI: 10.1038/sj.onc.1208090] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important role of the cell cycle regulatory protein cyclin A1 in the development of acute myeloid leukemia (AML) was previously demonstrated in a transgenic mouse model. We have now turned our attention to study specific aspects of the activity and subcellular distribution of cyclin A1 using bone marrow samples from normal donors and patients with AML, as well as leukemic cell lines. We show that the localization of cyclin A1 in normal hematopoietic cells is nuclear, whereas in leukemic cells from AML patients and cell lines, it is predominantly cytoplasmic. In leukemic cell lines treated with all-trans retinoic acid (ATRA), cyclin A1 localized to the nucleus. Further, there was a direct interaction between cyclin A1 and cyclin-dependent kinase 1, as well as a major ATRA receptor, RARalpha, in ATRA-treated cells but not in untreated leukemic cells. Our results indicate that the altered intracellular distribution of cyclin A1 in leukemic cells correlates with the status of the leukemic phenotype.
Collapse
Affiliation(s)
- Jenny Ekberg
- Division of Pathology, Department of Laboratory Medicine, Lund University, University Hospital, Malmö S-20502, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Dong Y, Chi SL, Borowsky AD, Fan Y, Weiss RH. Cytosolic p21Waf1/Cip1 increases cell cycle transit in vascular smooth muscle cells. Cell Signal 2004; 16:263-9. [PMID: 14636896 DOI: 10.1016/s0898-6568(03)00136-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intracellular localization of signaling proteins is critical in directing their interactions with both upstream and downstream signaling cascade components. While initially described as a cyclin kinase inhibitor, p21Waf1/Cip1 has since been shown to have bimodal effects on cell cycle progression and cell proliferation, and evidence is emerging that intracellular localization of this protein plays a role in directing its signaling properties by dictating its interactions with downstream molecules. Since we have previously demonstrated a pro-apoptotic and cell cycle inhibitory effect of p21 attenuation after transfection of antisense p21 oligodeoxynucleotides (ODN) in several cell lines, we asked whether cytosolic p21 mediates a positive effect on vascular smooth muscle (VSM) cell cycle transit. We now show that transfection of a nuclear-localization signal deficient (DeltaNLS) p21 construct into VSM cells results in increased cytosolic levels of p21 and causes increased cell cycle transit as measured by [3H]thymidine incorporation. Thus, at least in VSM cells, cytosolic localization of p21 is a means by which this signaling protein transmits pro-mitogenic signals to the proteins responsible for G1/S transition. Furthermore, compartmentalization of p21 may help explain the biphasic nature of p21 in a variety of cell types and may lead to therapeutic advances directed at modulating pathologic cell growth in vascular diseases and cancer.
Collapse
Affiliation(s)
- Yao Dong
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
22
|
Wang Z, Frederick J, Garabedian MJ. Deciphering the phosphorylation "code" of the glucocorticoid receptor in vivo. J Biol Chem 2002; 277:26573-80. [PMID: 12000743 DOI: 10.1074/jbc.m110530200] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucocorticoid receptor (GR) is phosphorylated at multiple serine residues in a hormone-dependent manner, yet progress on elucidating the function of GR phosphorylation has been hindered by the lack of a simple assay to detect receptor phosphorylation in vivo. We have produced antibodies that specifically recognize phosphorylation sites within human GR at Ser(203) and Ser(211). In the absence of hormone, the level of GR phosphorylation at Ser(211) was low compared with phosphorylation at Ser(203). Phosphorylation of both residues increased upon treatment with the GR agonist dexamethasone. Using a battery of agonists and antagonists, we found that the transcriptional activity of GR correlated with the amount of phosphorylation at Ser(211), suggesting that Ser(211) phosphorylation is a biomarker for activated GR in vivo. Mechanistically, the kinetics of Ser(203) and Ser(211) phosphorylation in response to hormone differed, with Ser(211) displaying a more robust and sustained phosphorylation relative to Ser(203). Analysis of GR immunoprecipitates with phospho-GR-specific antibodies indicated that the receptor was phosphorylated heterogeneously at Ser(203) in the absence of hormone, whereas in the presence of hormone, a subpopulation of receptors was phosphorylated at both Ser(203) and Ser(211). Interestingly, biochemical fractionation studies following hormone treatment indicated that the Ser(203)-phosphorylated form of the receptor was predominantly cytoplasmic, whereas Ser(211)-phosphorylated GR was found in the nucleus. Likewise, by immunofluorescence, Ser(203)-phosphorylated GR was located in the cytoplasm and perinuclear regions of the cell, but not in the nucleoplasm, whereas strong phospho-Ser(211) staining was evident in the nucleoplasm of hormone-treated cells. Our results suggest that differentially phosphorylated receptor species are located in unique subcellular compartments, likely modulating distinct aspects of receptor function.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Microbiology, Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
23
|
Jackman M, Kubota Y, den Elzen N, Hagting A, Pines J. Cyclin A- and cyclin E-Cdk complexes shuttle between the nucleus and the cytoplasm. Mol Biol Cell 2002; 13:1030-45. [PMID: 11907280 PMCID: PMC99617 DOI: 10.1091/mbc.01-07-0361] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 11/01/2001] [Accepted: 12/04/2001] [Indexed: 11/11/2022] Open
Abstract
Cyclins A and E and their partner cyclin-dependent kinases (Cdks) are key regulators of DNA synthesis and of mitosis. Immunofluorescence studies have shown that both cyclins are nuclear and that a proportion of cyclin A is localized to sites of DNA replication. However, recently, both cyclin A and cyclin E have been implicated as regulators of centrosome replication, and it is unclear when and where these cyclin-Cdks can interact with cytoplasmic substrates. We have used live cell imaging to study the behavior of cyclin/Cdk complexes. We found that cyclin A and cyclin E are able to regulate both nuclear and cytoplasmic events because they both shuttle between the nucleus and the cytoplasm. However, we found that there are marked differences in their shuttling behavior, which raises the possibility that cyclin/Cdk function could be regulated at the level of nuclear import and export. In the course of these experiments, we have also found that, contrary to published results, mutations in the hydrophobic patch of cyclin A do affect Cdk binding and nuclear import. This has implications for the role of the hydrophobic patch as a substrate selection motif.
Collapse
Affiliation(s)
- Mark Jackman
- Wellcome/Cancer Research U.K. (London) Institute and Department of Zoology, University of Cambridge, Cambridge, United Kingdom CB2 1QR.
| | | | | | | | | |
Collapse
|
24
|
Faivre J, Frank-Vaillant M, Poulhe R, Mouly H, Jessus C, Bréchot C, Sobczak-Thépot J. Centrosome overduplication, increased ploidy and transformation in cells expressing endoplasmic reticulum-associated cyclin A2. Oncogene 2002; 21:1493-500. [PMID: 11896577 DOI: 10.1038/sj.onc.1205215] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/21/2001] [Accepted: 11/28/2001] [Indexed: 11/09/2022]
Abstract
Cyclin A2 is predominantly, but not exclusively, localized in the nucleus from G1/S transition onwards. It is degraded when cells enter mitosis after nuclear envelope breakdown. We previously showed that a fusion protein (S2A) between the hepatitis B virus (HBV) surface antigen protein and a non-degradable fragment of human cyclin A2 (Delta152) resides in the endoplasmic reticulum membranes, escapes degradation and transforms normal rat fibroblasts. The present study investigates whether cytoplasmic cyclin A2 may play a role in oncogenesis. We show that the sequestration of non-degradable cyclin A2-Delta152 by a cellular ER targeting domain (PRL-A2) leads to cell transformation when coexpressed with activated Ha-ras. REF52 cells constitutively expressing PRL-A2 are found to have a high incidence of multinucleate giant cells, polyploidy and abnormal centrosome numbers, giving rise to the nucleation of multipolar spindles. Injection of these cells into athymic nude mice causes tumors, even in the absence of a cooperating Ha-ras oncogene. These results demonstrate that, independently of any viral context, an intracellular redistribution of non-degradable cyclin A2 is capable of deregulating the normal cell cycle to the point where it promotes aneuploidy and cancer.
Collapse
Affiliation(s)
- Jamila Faivre
- INSERM U370, Institut Pasteur/Necker, Faculté de Médecine Necker, 75015 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Catania MG, Mischel PS, Vinters HV. Hamartin and tuberin interaction with the G2/M cyclin-dependent kinase CDK1 and its regulatory cyclins A and B. J Neuropathol Exp Neurol 2001; 60:711-23. [PMID: 11444800 DOI: 10.1093/jnen/60.7.711] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tuberous sclerosis (TSC) is a multi-system disorder characterized by hamartomatous tumors and abnormal brain development, with multiple foci of disrupted neuronal migration and giant dysmorphic neurons within cortical tubers. TSC is associated with mutations in 2 genes, TSC1 and TSC2, which encode hamartin and tuberin, respectively. The functions of these proteins have yet to be determined. Recently, the Drosophila homologue of TSC2, gigas, has been shown to be required for the G2/M transition of the cell cycle. However, the mechanism of this action remains unknown. Because the cyclin-dependent kinase CDK1 forms a complex with cyclin B1 to trigger the G2/M transition, we hypothesized that tuberin interacts with CDK1 to regulate its activity. In the study reported in this paper, we have used co-immunoprecipitation and confocal microscopy to demonstrate that tuberin interacts with and co-localizes with CDK1 and its binding partner cyclin B1 in multiple cell types. We also demonstrate that hamartin interacts with CDK1 and cyclin B1. We further present evidence that tuberin interacts with the other regulatory subunit of CDK1, cyclin A. These findings suggest a direct role for tuberin and hamartin in modulating the activity of CDK1 during G2 and the G2/M transition. This is the first description of a role for both tuberin and hamartin in a common cellular function, providing a potential mechanism for the identical clinicopathologic manifestations that result when either of these proteins are inactivated.
Collapse
Affiliation(s)
- M G Catania
- Department of Pathology & Laboratory Medicine UCLA Medical Center, Los Angeles, California 90095-1732, USA
| | | | | |
Collapse
|
26
|
Abstract
Cyclin-dependent kinase (CDK) activity is essential for eukaryotic cell cycle events. Multiple cyclins activate CDKs in all eukaryotes, but it is unclear whether multiple cyclins are really required for cell cycle progression. It has been argued that cyclins may predominantly act as simple enzymatic activators of CDKs; in opposition to this idea, it has been argued that cyclins might target the activated CDK to particular substrates or inhibitors. Such targeting might occur through a combination of factors, including temporal expression, protein associations, and subcellular localization.
Collapse
Affiliation(s)
- M E Miller
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
27
|
MHC class II and c-kit expression allows rapid enrichment of T-cell progenitors from total bone marrow cells. Blood 2000. [DOI: 10.1182/blood.v96.12.3988.h8003988_3988_3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell progenitors in the embryonic bone marrow express the tyrosine kinase receptor c-kit. RR5, an anti-MHC class II β chain monoclonal antibody, subdivides this c-kit positive population. Intrathymic transfer experiments showed that most of the T-cell progenitors belong to the MHC class II+/c-kit+ bone marrow population in the embryo and young adult. On transplantation, these bone marrow progenitors lose this expression and differentiate into CD4 CD8 T lymphocytes. In contrast, erythroid progenitors are restricted to the MHC class II−/c-kit+ population. The MHC class II+/c-kit+ pro-T cells are metabolically active, because they stain brightly with rhodamin 123. Their cyclin A and B expression level suggests that they are in the mitotic phase of the cell cycle. Thus, we define an easy sorting protocol, which allows enrichment of T-cell progenitors from total bone marrow hemopoietic cells.
Collapse
|
28
|
Lang S, Hartner A, Sterzel RB, Schöcklmann HO. Requirement of cyclin D1 in mesangial cell mitogenesis. J Am Soc Nephrol 2000; 11:1398-1408. [PMID: 10906153 DOI: 10.1681/asn.v1181398] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract. Hyperplasia of mesangial cells (MC) is a frequent finding in glomerulonephritis. The control and function of cyclin D1, a regulator of cell cycle progression, in MC proliferation in vivo and in vitro were investigated. In a rat model of mesangioproliferative glomerulonephritis, increases in the number of cyclin D1-positive MC nuclei were prominent on day 5 of the disease, preceding the peak of MC hyperplasia. In growth-arrested rat MC in culture, mitogenic stimulation with serum or platelet-derived growth factor (PDGF) led to rapid increases in cyclin D1 protein expression. Transforming growth factor-beta1 inhibited PDGF induction of cyclin D1 protein at 12 h. In an examination of the subcellular distribution of cyclin D1, it was observed that stimulation of MC with PDGF for 6 h caused translocation of cyclin D1 from the cytoplasm into the nucleus. Coincubation with PDGF and transforming growth factor-beta1 completely inhibited this effect, without altering the cellular cyclin D1 protein abundance at that time point. To test whether reduction of cyclin D1 protein levels was sufficient to inhibit mitogenesis, MC were transfected with antisense oligonucleotides (ODN) complementary to rat cyclin D1 mRNA. Antisense ODN against cyclin D1 reduced the serum- or PDGF-induced protein expression of cyclin D1 to 27 or 10% of control levels, respectively. These inhibitory effects were correlated with diminished cyclin-dependent kinase 4 activity. Antisense ODN against cyclin D1 also decreased the PDGF-induced increase in p21(Waf-1) protein levels. The MC proliferation caused by serum or PDGF was markedly inhibited by antisense ODN against cyclin D1, as measured by [(3)H]thymidine uptake and cell counts. It is concluded that increased cyclin D1 protein expression of MC is required for MC proliferation. Targeting cyclin D1 expression may represent an effective means to inhibit MC proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- Stefan Lang
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Hartner
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R Bernd Sterzel
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
29
|
Lindeman B, Skarpen E, Oksvold MP, Huitfeldt HS. The carcinogen 2-acetylaminofluorene inhibits activation and nuclear accumulation of cyclin-dependent kinase 2 in growth-induced rat liver. Mol Carcinog 2000. [DOI: 10.1002/(sici)1098-2744(200003)27:3<190::aid-mc6>3.0.co;2-n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Miller ME, Cross FR. Distinct subcellular localization patterns contribute to functional specificity of the Cln2 and Cln3 cyclins of Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:542-55. [PMID: 10611233 PMCID: PMC85127 DOI: 10.1128/mcb.20.2.542-555.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The G(1) cyclins of budding yeast drive cell cycle initiation by different mechanisms, but the molecular basis of their specificity is unknown. Here we test the hypothesis that the functional specificity of G(1) cyclins is due to differential subcellular localization. As shown by indirect immunofluorescence and biochemical fractionation, Cln3p localization appears to be primarily nuclear, with the most obvious accumulation of Cln3p to the nuclei of large budded cells. In contrast, Cln2p localizes to the cytoplasm. We were able to shift localization patterns of truncated Cln3p by the addition of nuclear localization and nuclear export signals, and we found that nuclear localization drives a Cln3p-like functional profile, while cytoplasmic localization leads to a partial shift to a Cln2p-like functional profile. Therefore, forcing Cln3p into a Cln2p-like cytoplasmic localization pattern partially alters the functional specificity of Cln3p toward that of Cln2p. These results suggest that there are CLN-dependent cytoplasmic and nuclear events important for cell cycle initiation. This is the first indication of a cytoplasmic function for a cyclin-dependent kinase. The data presented here support the idea that cyclin function is regulated at the level of subcellular localization and that subcellular localization contributes to the functional specificity of Cln2p and Cln3p.
Collapse
Affiliation(s)
- M E Miller
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
31
|
Yang J, Kornbluth S. All aboard the cyclin train: subcellular trafficking of cyclins and their CDK partners. Trends Cell Biol 1999; 9:207-10. [PMID: 10354564 DOI: 10.1016/s0962-8924(99)01577-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progression through the cell cycle is governed by the periodic activation and inactivation of cyclin-dependent kinase complexes (CDK-cyclins). Although the enzymatic activity of these complexes is regulated tightly, it has recently been demonstrated that an additional facet of cell-cycle control involves the modulation of CDK-cyclin subcellular localization. Recent discoveries include the identification of nuclear transport factors responsible for ferrying some of the CDK-cyclins in and out of the nucleus, the demonstration that phosphorylation can regulate these transport processes and the establishment of potential links between cell-cycle checkpoints and the control of CDK-cyclin subcellular localization.
Collapse
Affiliation(s)
- J Yang
- Dept of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3686, C366 LSRC, Durham, NC 27710, USA
| | | |
Collapse
|
32
|
Moore JD, Yang J, Truant R, Kornbluth S. Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol 1999; 144:213-24. [PMID: 9922449 PMCID: PMC2132890 DOI: 10.1083/jcb.144.2.213] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/1998] [Revised: 12/08/1998] [Indexed: 11/22/2022] Open
Abstract
Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence-containing protein, binding to the alpha adaptor subunit of the importin-alpha/beta heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-beta that is distinct from that used to bind importin-alpha.
Collapse
Affiliation(s)
- J D Moore
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
33
|
Bastians H, Townsley FM, Ruderman JV. The cyclin-dependent kinase inhibitor p27(Kip1) induces N-terminal proteolytic cleavage of cyclin A. Proc Natl Acad Sci U S A 1998; 95:15374-81. [PMID: 9860976 PMCID: PMC28050 DOI: 10.1073/pnas.95.26.15374] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Progression through the cell cycle is regulated in part by the sequential activation and inactivation of cyclin-dependent kinases (CDKs). Many signals arrest the cell cycle through inhibition of CDKs by CDK inhibitors (CKIs). p27(Kip1) (p27) was first identified as a CKI that binds and inhibits cyclin A/CDK2 and cyclin E/CDK2 complexes in G1. Here we report that p27 has an additional property, the ability to induce a proteolytic activity that cleaves cyclin A, yielding a truncated cyclin A lacking the mitotic destruction box. Other CKIs (p15(Ink4b), p16(Ink4a), p21(Cip1), and p57(Kip2)) do not induce cleavage of cyclin A; other cyclins (cyclin B, D1, and E) are not cleaved by the p27-induced protease activity. The C-terminal half of p27, which is dispensable for its kinase inhibitory activity, is required to induce cleavage. Mechanistically, p27 does not appear to cause cleavage through direct interaction with cyclin/CDK complexes. Instead, it activates a latent protease that, once activated, does not require the continuing presence of p27. Mutation of cyclin A at R70 or R71, residues at or very close to the cleavage site, blocks cleavage. Noncleavable mutants are still recognized by the anaphase-promoting complex/cyclosome pathway responsible for ubiquitin-dependent proteolysis of mitotic cyclins, indicating that the p27-induced cleavage of cyclin A is part of a separate pathway. We refer to this protease as Tsap (pTwenty-seven- activated protease).
Collapse
Affiliation(s)
- H Bastians
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
34
|
Taulés M, Rius E, Talaya D, López-Girona A, Bachs O, Agell N. Calmodulin is essential for cyclin-dependent kinase 4 (Cdk4) activity and nuclear accumulation of cyclin D1-Cdk4 during G1. J Biol Chem 1998; 273:33279-86. [PMID: 9837900 DOI: 10.1074/jbc.273.50.33279] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although it is known that calmodulin is involved in G1 progression, the calmodulin-dependent G1 events are not well understood. We have analyzed here the role of calmodulin in the activity, the expression, and the intracellular location of proteins involved in G1 progression. The addition of anti-calmodulin drugs to normal rat kidney cells in early G1 inhibited cyclin-dependent kinase 4 (Cdk4) and Cdk2 activities, as well as retinoblastoma protein phosphorylation. Protein levels of cdk4, cyclin D1, cyclin D2, cyclin E, p21, and p27 were not affected after CaM inhibition, whereas decreases in the amount of cyclin A and Cdc2 were observed. The decrease of Cdk4 activity was due neither to changes in its association to cyclin D1 nor to changes in the amount of p21 or p27 bound to cyclin D1-Cdk4 complexes. Calmodulin inhibition also produced a translocation of nuclear cyclin D1 and Cdk4 to the cytoplasm. This translocation could be responsible for the decreased Cdk4 activity upon calmodulin inhibition. Immunoprecipitation, calmodulin affinity chromatography, and direct binding experiments indicated that calmodulin associates with Cdk4 and cyclin D1 through a calmodulin-binding protein. The facts that Hsp90 interacts with Cdk4 and that its inhibition induced Cdk4 and cyclin D1 translocation to the cytoplasm point to Hsp90 as a good candidate for being the calmodulin-binding protein involved in the nuclear accumulation of Cdk4 and cyclin D1.
Collapse
Affiliation(s)
- M Taulés
- Department of Cell Biology, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Jacobs HW, Knoblich JA, Lehner CF. Drosophila Cyclin B3 is required for female fertility and is dispensable for mitosis like Cyclin B. Genes Dev 1998; 12:3741-51. [PMID: 9851980 PMCID: PMC317254 DOI: 10.1101/gad.12.23.3741] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/1998] [Accepted: 08/11/1998] [Indexed: 11/25/2022]
Abstract
Cyclin B3 has been conserved during higher eukaryote evolution as evidenced by its identification in chicken, nematodes, and insects. We demonstrate that Cyclin B3 is present in addition to Cyclins A and B in mitotically proliferating cells and not detectable in endoreduplicating tissues of Drosophila embryos. Cyclin B3 is coimmunoprecipitated with Cdk1(Cdc2) but not with Cdk2(Cdc2c). It is degraded abruptly during mitosis like Cyclins A and B. In contrast to these latter cyclins, which accumulate predominantly in the cytoplasm during interphase, Cyclin B3 is a nuclear protein. Genetic analyses indicate functional redundancies. Double and triple mutant analyses demonstrate that Cyclins A, B, and B3 cooperate to regulate mitosis, but surprisingly single mutants reveal that neither Cyclin B3 nor Cyclin B is required for mitosis. However, both are required for female fertility and Cyclin B also for male fertility.
Collapse
Affiliation(s)
- H W Jacobs
- Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
36
|
Schulman BA, Lindstrom DL, Harlow E. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci U S A 1998; 95:10453-8. [PMID: 9724724 PMCID: PMC27915 DOI: 10.1073/pnas.95.18.10453] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/1998] [Indexed: 11/18/2022] Open
Abstract
An important question in the cell cycle field is how cyclin-dependent kinases (cdks) target their substrates. We have studied the role of a conserved hydrophobic patch on the surface of cyclin A in substrate recognition by cyclin A-cdk2. This hydrophobic patch is approximately 35A away from the active site of cdk2 and contains the MRAIL sequence conserved among a number of mammalian cyclins. In the x-ray structure of cyclin A-cdk2-p27, this hydrophobic patch contacts the RNLFG sequence in p27 that is common to a number of substrates and inhibitors of mammalian cdks. We find that mutation of this hydrophobic patch on cyclin A eliminates binding to proteins containing RXL motifs without affecting binding to cdk2. This docking site is critical for cyclin A-cdk2 phosphorylation of substrates containing RXL motifs, but not for phosphorylation of histone H1. Impaired substrate binding by the cyclin is the cause of the defect in RXL substrate phosphorylation, because phosphorylation can be rescued by restoring a cyclin A-substrate interaction in a heterologous manner. In addition, the conserved hydrophobic patch is important for cyclin A function in cells, contributing to cyclin A's ability to drive cells out of the G1 phase of the cell cycle. Thus, we define a mechanism by which cyclins can recruit substrates to cdks, and our results support the notion that a high local concentration of substrate provided by a protein-protein interaction distant from the active site is critical for phosphorylation by cdks.
Collapse
Affiliation(s)
- B A Schulman
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
37
|
Affiliation(s)
- J Pines
- Wellcome/CRC Institute, Cambridge, UK.
| |
Collapse
|
38
|
Wu L, Osmani SA, Mirabito PM. A role for NIMA in the nuclear localization of cyclin B in Aspergillus nidulans. J Cell Biol 1998; 141:1575-87. [PMID: 9647650 PMCID: PMC2133011 DOI: 10.1083/jcb.141.7.1575] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Revised: 05/08/1998] [Indexed: 02/08/2023] Open
Abstract
NIMA promotes entry into mitosis in late G2 by some mechanism that is after activation of the Aspergillus nidulans G2 cyclin-dependent kinase, NIMXCDC2/NIMECyclin B. Here we present two independent lines of evidence which indicate that this mechanism involves control of NIMXCDC2/NIMECyclin B localization. First, we found that NIMECyclin B localized to the nucleus and the nucleus-associated organelle, the spindle pole body, in a NIMA-dependent manner. Analysis of cells from asynchronous cultures, synchronous cultures, and cultures arrested in S or G2 showed that NIMECyclin B was predominantly nuclear during interphase, with maximal nuclear accumulation in late G2. NIMXCDC2 colocalized with NIMECyclin B in G2 cells. Although inactivation of NIMA using either the nimA1 or nimA5 temperature-sensitive mutations blocked cells in G2, NIMXCDC2/NIMECyclin B localization was predominantly cytoplasmic rather than nuclear. Second, we found that nimA interacts genetically with sonA, which is a homologue of the yeast nucleocytoplasmic transporter GLE2/RAE1. Mutations in sonA were identified as allele-specific suppressors of nimA1. The sonA1 suppressor alleviated the nuclear division and NIMECyclin B localization defects of nimA1 cells without markedly increasing NIMXCDC2 or NIMA kinase activity. These results indicate that NIMA promotes the nuclear localization of the NIMXCDC2/ NIMECyclin B complex, by a process involving SONA. This mechanism may be involved in coordinating the functions of NIMXCDC2 and NIMA in the regulation of mitosis.
Collapse
Affiliation(s)
- L Wu
- Henry Hood Research Program, Weis Center for Research, Pennsylvania State University College of Medicine, Danville, Pennsylvania 17822-2617, USA
| | | | | |
Collapse
|
39
|
Yang N, Higuchi O, Mizuno K. Cytoplasmic localization of LIM-kinase 1 is directed by a short sequence within the PDZ domain. Exp Cell Res 1998; 241:242-52. [PMID: 9633533 DOI: 10.1006/excr.1998.4053] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
LIM-containing protein kinase 1 (LIMK1) is a serine/threonine kinase with a structure composed of two LIM domains, a PDZ domain, and a protein kinase domain. We examined the subcellular localization of LIMK1 and its variously deleted mutants in HeLa cells by transfection with these cDNAs. Immunofluorescence analysis revealed that the full-length LIMK1 and its mutants deleted with LIM domain or protein kinase domain preferentially localized in the cytoplasm, while the mutants deleted with the PDZ domain or a 52 amino acid region (B region) within the PDZ domain localized mainly in the nucleus. When the normally nuclear cyclin A was fused with the PDZ domain or the B region of LIMK1, it was localized in the cytoplasm of transfected cells. The corresponding region of the PDZ domain of postsynaptic density protein (PSD)-95 had no such function. Additionally, the PDZ domain of LIMK1 had no potential to bind to the C-terminal S/TXV peptides, to which the PSD-95 PDZ domain can bind. Taken together these results suggest that the PDZ domain, particularly the B region, of LIMK1 has a specific function to localize the protein in the cytoplasm. When glutathione S-transferase (GST) fused with the PDZ domain of LIMK1 (GST-PDZ) or GST-PDZ deleted with the B region (GST-PDZ delta B) was microinjected into the nucleus of COS cells, GST-PDZ was almost completely excluded from the nucleus within 30 min, whereas GST-PDZ delta B remained in the nucleus. These findings suggest that the B region of LIMK1 probably has nuclear export signal activity.
Collapse
Affiliation(s)
- N Yang
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
40
|
Kishimoto T, Okumura E. In vivo regulation of the entry into M-phase: initial activation and nuclear translocation of cyclin B/Cdc2. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:241-9. [PMID: 9552419 DOI: 10.1007/978-1-4615-5371-7_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cyclin B/Cdc2 complex, Cdc2 kinase governs M-phase. Although the intracomplex modification for its activation in vitro has been described extensively, its regulation in vivo is not so well explained so far. In this article, we will focus on the intracellular regulation of the cyclin B/Cdc2 activity, in particular, how it is initially activated in vivo, how its nuclear translocation is executed specifically at the onset of M-phase, and how the activation and the nuclear translocation are coordinated in the cell. These concerted regulations may determine the appropriate timing for the initiation of M-phase.
Collapse
Affiliation(s)
- T Kishimoto
- Laboratory of Cell and Developmental Biology, Faculty of Biosciences and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
41
|
Abstract
The cell cycle is driven by the sequential activation of a family of cyclin-dependent kinases (cdk), which phosphorylate and activate proteins that execute events critical to cell cycle progression. In mammalian cells cdk2-cyclin A has a role in S phase. Many replication proteins are potential substrates for this cdk kinase, suggesting that initiation, elongation and checkpoint control of replication could all be regulated by cdk2. The association of PCNA, a replication protein, with cdk-cyclins during G-1 to S phase transition and with cdk-cyclin inhibitors, adds an interesting complexity to regulation of DNA replication.
Collapse
Affiliation(s)
- R Fotedar
- Institut de Biologie Structurale J.-P. Ebel, Grenoble, France
| | | |
Collapse
|
42
|
Desdouets C, Sobczak-Thépot J, Murphy M, Bréchot C. Cyclin A: function and expression during cell proliferation. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:115-23. [PMID: 9552357 DOI: 10.1007/978-1-4615-1809-9_9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclin A is a key regulatory protein which, in mammalian cells, is involved in both S phase and the G2/M transition of the cell cycle through its association with distinct cdks. Several lines of evidence have also implicated cyclin A in carcinogenesis. Our review concentrates on the role of cyclin A in S phase, in the S/G2 transition and in human carcinogenesis; it will also discuss the transcriptional regulation of cyclin A gene.
Collapse
|
43
|
Brott BK, Pinsky BA, Erikson RL. Nlk is a murine protein kinase related to Erk/MAP kinases and localized in the nucleus. Proc Natl Acad Sci U S A 1998; 95:963-8. [PMID: 9448268 PMCID: PMC18639 DOI: 10.1073/pnas.95.3.963] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular-signal regulated kinases/microtubule-associated protein kinases (Erk/MAPKs) and cyclin-directed kinases (Cdks) are key regulators of many aspects of cell growth and division, as well as apoptosis. We have cloned a kinase, Nlk, that is a murine homolog of the Drosophila nemo (nmo) gene. The Nlk amino acid sequence is 54. 5% similar and 41.7% identical to murine Erk-2, and 49.6% similar and 38.4% identical to human Cdc2. It possesses an extended amino-terminal domain that is very rich in glutamine, alanine, proline, and histidine. This region bears similarity to repetitive regions found in many transcription factors. Nlk is expressed as a 4. 0-kb transcript at high levels in adult mouse brain tissue, with low levels in other tissues examined, including lung, where two smaller transcripts of 1.0 and 1.5 kb are expressed as well. A 4.0-kb Nlk message is also present during embryogenesis, detectable at day E10. 5, reaching maximal steady state levels at day E12.5, and then decreasing. Nlk transiently expressed in COS7 cells is a 60-kDa kinase detectable by its ability to autophosphorylate. Mutation of the ATP-binding Lys-155 to methionine abolishes its ability to autophosphorylate, as does mutation of a putative activating threonine in kinase domain VIII, to valine, aspartic, or glutamic acid. Subcellular fractionation indicates that 60-70% of Nlk is localized to the nucleus, whereas 30-40% of Nlk is cytoplasmic. Immunofluorescence microscopy confirms that Nlk resides predominantly in the nucleus. Nlk and Nmo may be the first members of a family of kinases with homology to both Erk/MAPKs and Cdks.
Collapse
Affiliation(s)
- B K Brott
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
44
|
Li Z, Hromchak R, Bloch A. Differential expression of proteins regulating cell cycle progression in growth vs. differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1356:149-59. [PMID: 9150273 DOI: 10.1016/s0167-4889(96)00172-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The level of various G1 cyclins and cyclin-dependent kinases (cdks) present in the nuclei of synchronized ML-1 human myeloblastic leukemia cells was determined as a function of time after initiation of cell growth with insulin-like growth factor-1 (IGF-1) and transferrin (Tf), and following induction of differentiation with transforming growth factor-beta1 (TGF-beta1). Cyclin E and cdk2 were expressed at relatively high levels in the nuclei of proliferation-stimulated cells, whereas cyclin D1 and cdk5 were expressed at comparably high levels in the nuclei of differentiation-induced cells. In the nuclear extracts from proliferation-stimulated cells, cyclin E complexed specifically with cdk2, whereas in nuclear extracts from differentiation-induced cells, cyclin D1 bound specifically to cdk5. Increased cyclin E/cdk2 expression was accompanied by increased DNA synthesis, whereas increased cyclin D1/cdk5 levels correlated with decreased DNA synthesis. In both growth- and differentiation-induced cells, cyclin D2 expression preceded the expression of cyclin D3, and a significantly larger amount of these cyclins was present in differentiation- as compared to proliferation-induced cells. In contrast, cdk4 and cdk6 were present at similar levels in the nuclear extracts from both growth- and differentiation-induced cells. These data show that, in ML-1 cells, the proliferation-associated progression from G1 to S, as well as the differentiation-associated transit from G1 to maturation is accompanied by the expression of specific cyclin/cdk pairs, comprising cdk2/cyclin E in growth and cdk5/cyclin D1 in differentiation.
Collapse
Affiliation(s)
- Z Li
- Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
45
|
Heitz F, Morris MC, Fesquet D, Cavadore JC, Dorée M, Divita G. Interactions of cyclins with cyclin-dependent kinases: a common interactive mechanism. Biochemistry 1997; 36:4995-5003. [PMID: 9125522 DOI: 10.1021/bi962349y] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The formation of cdk-cyclin complexes has been investigated at the molecular level and quantified using spectroscopic approaches. In the absence of phosphorylation, cdk2, cdc2, and cdk7 form highly stable complexes with their "natural" cyclin partners with dissociation constants in the nanomolar range. In contrast, nonphosphorylated cdc2-cyclin H, cdk2-cyclin H, and cdk7-cyclin A complexes present a 25-fold lower stability. On the basis of both the structure of the cdk2-cyclin A complex and on our kinetic results, we suggest that interaction of any cyclin with any cdk involves the same hydrophobic contacts and induces a marked conformational change in the catalytic cleft of the cdks. Although cdks bind ATP strongly, they remain in a catalytically inactive conformation. In contrast, binding of the cyclin induces structural rearrangements which result in the selective reorientation of ATP, a concomitant 3-fold increase in its affinity, and a 5-fold decrease of its release from the active site of cdks.
Collapse
Affiliation(s)
- F Heitz
- Centre de Recherches de Biochimie Macromoleculaire, CNRS, Montpellier, France
| | | | | | | | | | | |
Collapse
|
46
|
Knauf JA, Pendergrass SH, Marrone BL, Strniste GF, MacInnes MA, Park MS. Multiple nuclear localization signals in XPG nuclease. Mutat Res 1996; 363:67-75. [PMID: 8632779 DOI: 10.1016/0921-8777(95)00062-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report here evidence for the mechanism of nuclear localization of XPG nuclease in human cells. Several candidate nuclear localization signal (NLS) peptides have been proposed for XPG protein. We have identified XPG peptides containing functional NLS and a potential nuclear retention signal (NRS) using in situ immunofluorescene localization of transiently expressed beta-galactosidase fusion proteins. Two XPG regions with putative NLS [amino acid (AA) coordinates: NLS-B (AA 1057-1074) and NLS-C (AA 1171-1185)] were each shown to independently localize the beta-gal extensively (> 80%) to the nucleus of HeLa cells. The C-terminus peptide containing NLS-C, an NLS conserved evolutionarily between yeasts and humans, also directed sub-localization of beta-galactosidase to intranuclear foci reminiscent of native XPG protein, as well as to peri-nucleolar regions. Peptides in the putative XPG 'NLS domain' (AA approximately 1051-1185) apparently function in concert for nuclear localization and also for retention of XPG in nuclear matrix-associated foci. Evidence presented elsewhere (Park et al., 1995) indicates that the peptide containing NLS-C (AA 1146-1185) also regulates the dynamic localization of XPG in the nucleus following UV-irradiation.
Collapse
Affiliation(s)
- J A Knauf
- Life Sciences Division, Los Alamos National Laboratory, NM 87545, USA
| | | | | | | | | | | |
Collapse
|
47
|
Desdouets C, Ory C, Matesic G, Soussi T, Bréchot C, Sobczak-Thépot J. ATF/CREB site mediated transcriptional activation and p53 dependent repression of the cyclin A promoter. FEBS Lett 1996; 385:34-8. [PMID: 8641461 DOI: 10.1016/0014-5793(96)00330-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclin A is a pivotal regulatory protein which, in mammalian cells, is involved in the S phase of the cell cycle. Transcription of the human cyclin A gene is cell cycle regulated through tight control of its promoter. We have previously shown that the ATF/CREB site, present in the cyclin A promoter, mediates transcriptional regulation by cAMP responsive element binding proteins. The main goal of the present study was to investigate whether this site is involved in transcriptional regulation of the gene. We have constructed stable NIH-3T3 cell lines that express the luciferase reporter gene under the control of normal or mutated versions of the cyclin A promoter. We show that the ATF/CREB is required to achieve maximal levels of transcription from the cyclin A promoter starting in late G1. We also show that down-regulation of the cyclin A promoter by p53 does not implicate a direct binding of p53 to its cognate consensus sequence but occurs probably by interference with trans-activating factors. This result suggests that p53 can interfere with transcription of the cyclin A gene, in the absence of a TATA sequence in the promoter.
Collapse
|
48
|
Müllner EW, Dolznig H, Beug H. Cell cycle regulation and erythroid differentiation. Curr Top Microbiol Immunol 1996; 212:175-94. [PMID: 8934819 DOI: 10.1007/978-3-642-80057-3_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E W Müllner
- Institute of Molecular Biology, Vienna Biocenter, Austria
| | | | | |
Collapse
|
49
|
Brown NR, Noble ME, Endicott JA, Garman EF, Wakatsuki S, Mitchell E, Rasmussen B, Hunt T, Johnson LN. The crystal structure of cyclin A. Structure 1995; 3:1235-47. [PMID: 8591034 DOI: 10.1016/s0969-2126(01)00259-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Eukaryotic cell cycle progression is regulated by cyclin dependent protein kinases (CDKs) whose activity is regulated by association with cyclins and by reversible phosphorylation. Cyclins also determine the subcellular location and substrate specificity of CDKs. Cyclins exhibit diverse sequences but all share homology over a region of approximately 100 amino acids, termed the cyclin box. From the determination of the structure of cyclin A, together with results from biochemical and genetic analyses, we can identify which parts of the cyclin molecular may contribute to cyclin A structure and function. RESULTS We have solved the crystal structure, at 2.0 A resolution, of an active recombinant fragment of bovine cyclin A, cyclin A-3, corresponding to residues 171-432 of human cyclin A. The cyclin box has an alpha-helical fold comprising five alpha helices. This fold is repeated in the C-terminal region, although this region shares negligible sequence similarity with the cyclin box. CONCLUSIONS Analysis of residues that are conserved throughout the A, B, and E cyclins identifies two exposed clusters of residues, one of which has recently been shown to be involved in the association with human CDK2. The second cluster may identify another site of cyclin A-protein interaction. Comparison of the structure of the unbound cyclin with the structure of cyclin A complexed with CDK2 reveals that cyclin A does not undergo any significant conformational changes on complex formation. Threading analysis shows that the cyclin-box fold is consistent with the sequences of the transcription factor TFIIB and other functionally related proteins. The structural results indicate a role for the cyclin-box fold both as a template for the cyclin family and as a generalised adaptor molecule in the regulation of transcription.
Collapse
Affiliation(s)
- N R Brown
- Laboratory of Molecular Biophysics, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Passage through the cell cycle requires the successive activation of different cyclin-dependent protein kinases (CDKs). These enzymes are controlled by transient associations with cyclin regulatory subunits, binding of inhibitory polypeptides and reversible phosphorylation reactions. To promote progression towards DNA replication, CDK/cyclin complexes phosphorylate proteins required for the activation of genes involved in DNA synthesis, as well as components of the DNA replication machinery. Subsequently, a different set of CDK/cyclin complexes triggers the phosphorylation of numerous proteins to promote the profound structural reorganizations that accompany the entry of cells into mitosis. At present, much research is focused on elucidating the links between CDK/cyclin complexes and signal transduction pathways controlling cell growth, differentiation and death. In future, a better understanding of the cell cycle machinery and its deregulation during oncogenesis may provide novel opportunities for the diagnostic and therapeutic management of cancer and other proliferation-related diseases.
Collapse
Affiliation(s)
- E A Nigg
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| |
Collapse
|