1
|
Chen X, Wang B, Sarkar A, Huang Z, Ruiz NV, Yeung AT, Chen R, Han C. Phagocytosis-driven neurodegeneration through opposing roles of an ABC transporter in neurons and phagocytes. SCIENCE ADVANCES 2025; 11:eadr5448. [PMID: 40073145 PMCID: PMC11900885 DOI: 10.1126/sciadv.adr5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Lipid homeostasis is critical to neuronal survival. ATP-binding cassette A (ABCA) proteins are lipid transporters associated with neurodegenerative diseases. How ABCA transporters regulate lipid homeostasis in neurodegeneration is an outstanding question. Here we report that the Drosophila ABCA protein engulfment ABC transporter in the ovary (Eato) regulates phagocytosis-dependent neurodegeneration by playing opposing roles in neurons and phagocytes: In neurons, Eato prevents dendrites and axons from being attacked by neighboring phagocytes; in phagocytes, Eato sensitizes the cell for detecting neurons as engulfment targets. Thus, Eato deficiency in neurons alone causes phagocytosis-dependent neurite degeneration, but additional Eato loss from phagocytes suppresses the neurite degeneration. Mechanistically, Eato functions by removing the eat-me signal phosphatidylserine from the cell surface in both neurons and phagocytes. Multiple human and worm ABCA homologs can rescue Eato loss in phagocytes but not in neurons, suggesting both conserved and cell type-specific activities of ABCA proteins. These results imply possible mechanisms of neuron-phagocyte interactions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinchen Chen
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Nicolas Vergara Ruiz
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Strucinska K, Kneis P, Pennington T, Cizio K, Szybowska P, Morgan A, Weertman J, Lewis TL. Fis1 is required for the development of the dendritic mitochondrial network in pyramidal cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631801. [PMID: 39829888 PMCID: PMC11741399 DOI: 10.1101/2025.01.07.631801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mitochondrial ATP production and calcium buffering are critical for metabolic regulation and neurotransmission making the formation and maintenance of the mitochondrial network a critical component of neuronal health. Cortical pyramidal neurons contain compartment-specific mitochondrial morphologies that result from distinct axonal and dendritic mitochondrial fission and fusion profiles. We previously showed that axonal mitochondria are maintained at a small size as a result of high axonal mitochondrial fission factor (Mff) activity. However, loss of Mff activity had little effect on cortical dendritic mitochondria, raising the question of how fission/fusion balance is controlled in the dendrites. Thus, we sought to investigate the role of another fission factor, fission 1 (Fis1), on mitochondrial morphology, dynamics and function in cortical neurons. We knocked down Fis1 in cortical neurons both in primary culture and in vivo, and unexpectedly found that Fis1 depletion decreased mitochondrial length in the dendrites, without affecting mitochondrial size in the axon. Further, loss of Fis1 activity resulted in both increased mitochondrial motility and dynamics in the dendrites. These results argue Fis1 exhibits dendrite selectivity and plays a more complex role in neuronal mitochondrial dynamics than previously reported. Functionally, Fis1 loss resulted in reduced mitochondrial membrane potential, increased sensitivity to complex III blockade, and decreased mitochondrial calcium uptake during neuronal activity. The altered mitochondrial network culminated in elevated resting calcium levels that increased dendritic branching but reduced spine density. We conclude that Fis1 regulates morphological and functional mitochondrial characteristics that influence dendritic tree arborization and connectivity.
Collapse
Affiliation(s)
- Klaudia Strucinska
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Parker Kneis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Molecular Biology & Biochemistry Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Travis Pennington
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Katarzyna Cizio
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Patrycja Szybowska
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Joshua Weertman
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Tommy L Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Molecular Biology & Biochemistry Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
- Physiology Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| |
Collapse
|
3
|
Dayal AA, Parfenteva OI, Wang H, Gebreselase BA, Gyoeva FK, Alieva IB, Minin AA. Vimentin Intermediate Filaments Maintain Membrane Potential of Mitochondria in Growing Neurites. BIOLOGY 2024; 13:995. [PMID: 39765662 PMCID: PMC11726714 DOI: 10.3390/biology13120995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025]
Abstract
Neural precursor cells contain two types of intermediate filaments (IFs): neurofilaments consisting of three IV type proteins and vimentin belonging to the type III IF proteins that disappear at the later stages of differentiation. The involvement of vimentin in neurogenesis was demonstrated earlier; however, the role of its temporary expression in neurons is not clear. We showed that the vimentin IFs that interacted with mitochondria maintained their membrane potential at the appropriate level, and thus, ensured their proper function. We examined the dependence of the mitochondrial membrane potential on the expression of vimentin in a CAD catecholaminergic neuronal cell line that was actively dividing in full culture media but stopped growing and started developing neurites when the serum was removed. Using the CRISPR Cas9 system to knock out the vimentin gene in these cells, we investigated the impact of this on the mitochondrial membrane potential. Our data show that the deletion of the vimentin IFs led to a decrease in the level of the mitochondrial potential. When the vimentin network in these cells was reconstituted by transfection with a plasmid that encoded human protein, the level of the potential was restored. Interestingly, mutated vimentin with a disrupted mitochondria-binding site had no such effect. Our data point to vimentin as a possible target in some neurological pathologies.
Collapse
Affiliation(s)
- Alexander A. Dayal
- Institute of Protein Research, Russian Academy of Sciences, 119334 Moscow, Russia (I.B.A.)
| | - Olga I. Parfenteva
- Institute of Protein Research, Russian Academy of Sciences, 119334 Moscow, Russia (I.B.A.)
| | - Huiying Wang
- Institute of Protein Research, Russian Academy of Sciences, 119334 Moscow, Russia (I.B.A.)
| | - Blen Amare Gebreselase
- Institute of Protein Research, Russian Academy of Sciences, 119334 Moscow, Russia (I.B.A.)
| | - Fatima K. Gyoeva
- Institute of Protein Research, Russian Academy of Sciences, 119334 Moscow, Russia (I.B.A.)
| | - Irina B. Alieva
- Institute of Protein Research, Russian Academy of Sciences, 119334 Moscow, Russia (I.B.A.)
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexander A. Minin
- Institute of Protein Research, Russian Academy of Sciences, 119334 Moscow, Russia (I.B.A.)
| |
Collapse
|
4
|
Wang HD, Lv CL, Feng L, Guo JX, Zhao SY, Jiang P. The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions. Heliyon 2024; 10:e38959. [PMID: 39524893 PMCID: PMC11546156 DOI: 10.1016/j.heliyon.2024.e38959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Effective management of cellular components is essential for maintaining brain health, and studies have identified several crucial biological processes in the brain. Among these, autophagy and the role of exosomes in cellular communication are critical for brain health and disease. The interaction between autophagy and exosomes in the nervous system, as well as their contributions to brain damage, have garnered significant attention. This review summarizes that exosomes and their cargoes have been implicated in the autophagy process in the pathophysiology of nervous system diseases. Furthermore, the onset and progression of neurological disorders may be affected by autophagy regulation of the secretion and release of exosomes. These findings may provide new insights into the potential mechanism by which autophagy mediates different exosome secretion and release, as well as the valuable biomedical applications of exosomes in the prevention and treatment of various brain diseases by targeting autophagy.
Collapse
Affiliation(s)
- Hai-Dong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/Nanjing Medical University Kangda College First Affiliated Hospital/The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Chao-Liang Lv
- Department of Spine Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jin-Xiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Shi-Yuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
5
|
Nyström JH, Heikkilä TRH, Thapa K, Pulli I, Törnquist K, Toivola DM. Colonocyte keratins stabilize mitochondria and contribute to mitochondrial energy metabolism. Am J Physiol Gastrointest Liver Physiol 2024; 327:G438-G453. [PMID: 38860856 PMCID: PMC11427106 DOI: 10.1152/ajpgi.00220.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding, and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8-/-) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation, and blunted mitochondrial ketogenesis, the role of K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8-/- colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8-/- colonocyte mitochondria in vivo are smaller and rounder and that mitochondrial motility is increased in K8-/- Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared with controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8-/- Caco-2 cells and in vivo in K8-/- mouse colonocytes, and reexpression of K8 into K8-/- Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.NEW & NOTEWORTHY In this study, we show that colonocyte intermediate filament protein keratin 8 is important for stabilizing mitochondria and maintaining mitochondrial energy metabolism, as keratin 8-deficient colonocytes display smaller, rounder, and more motile mitochondria, diminished mitochondrial respiration, and altered Ca2+ dynamics. Changes in fusion-regulating proteins are rescued with reexpression of keratin 8. These alterations in colonocyte mitochondrial homeostasis contribute to keratin 8-associated colitis pathophysiology.
Collapse
Affiliation(s)
- Joel H Nyström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Taina R H Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Keshav Thapa
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilari Pulli
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Donovan EJ, Agrawal A, Liberman N, Kalai JI, Adler AJ, Lamper AM, Wang HQ, Chua NJ, Koslover EF, Barnhart EL. Dendrite architecture determines mitochondrial distribution patterns in vivo. Cell Rep 2024; 43:114190. [PMID: 38717903 PMCID: PMC12046361 DOI: 10.1016/j.celrep.2024.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/08/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
Neuronal morphology influences synaptic connectivity and neuronal signal processing. However, it remains unclear how neuronal shape affects steady-state distributions of organelles like mitochondria. In this work, we investigated the link between mitochondrial transport and dendrite branching patterns by combining mathematical modeling with in vivo measurements of dendrite architecture, mitochondrial motility, and mitochondrial localization patterns in Drosophila HS (horizontal system) neurons. In our model, different forms of morphological and transport scaling rules-which set the relative thicknesses of parent and daughter branches at each junction in the dendritic arbor and link mitochondrial motility to branch thickness-predict dramatically different global mitochondrial localization patterns. We show that HS dendrites obey the specific subset of scaling rules that, in our model, lead to realistic mitochondrial distributions. Moreover, we demonstrate that neuronal activity does not affect mitochondrial transport or localization, indicating that steady-state mitochondrial distributions are hard-wired by the architecture of the neuron.
Collapse
Affiliation(s)
- Eavan J Donovan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Anamika Agrawal
- Department of Physics, University of California, San Diego, La Jolla, CA 92092, USA
| | - Nicole Liberman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jordan I Kalai
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Avi J Adler
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Adam M Lamper
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hailey Q Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Nicholas J Chua
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA 92092, USA
| | - Erin L Barnhart
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
7
|
Kar D, Kim YJ, Packer O, Clark ME, Cao D, Owsley C, Dacey DM, Curcio CA. Volume electron microscopy reveals human retinal mitochondria that align with reflective bands in optical coherence tomography [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:5512-5527. [PMID: 37854576 PMCID: PMC10581790 DOI: 10.1364/boe.501228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/20/2023]
Abstract
Mitochondria are candidate reflectivity signal sources in optical coherence tomography (OCT) retinal imaging. Here, we use deep-learning-assisted volume electron microscopy of human retina and in vivo imaging to map mitochondria networks in the outer plexiform layer (OPL), where photoreceptors synapse with second-order interneurons. We observed alternating layers of high and low mitochondrial abundance in the anatomical OPL and adjacent inner nuclear layer (INL). Subcellular resolution OCT imaging of human eyes revealed multiple reflective bands that matched the corresponding INL and combined OPL sublayers. Data linking specific mitochondria to defined bands in OCT may help improve clinical diagnosis and the evaluation of mitochondria-targeting therapies.
Collapse
Affiliation(s)
- Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Orin Packer
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dennis M. Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
9
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Canty JT, Hensley A, Aslan M, Jack A, Yildiz A. TRAK adaptors regulate the recruitment and activation of dynein and kinesin in mitochondrial transport. Nat Commun 2023; 14:1376. [PMID: 36914620 PMCID: PMC10011603 DOI: 10.1038/s41467-023-36945-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondrial transport along microtubules is mediated by Miro1 and TRAK adaptors that recruit kinesin-1 and dynein-dynactin. To understand how these opposing motors are regulated during mitochondrial transport, we reconstitute the bidirectional transport of Miro1/TRAK along microtubules in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin and enhances the motility of kinesin-1 activated by its cofactor MAP7. We find that TRAK adaptors that recruit both motors move towards kinesin-1's direction, whereas kinesin-1 is excluded from binding TRAK transported by dynein-dynactin, avoiding motor tug-of-war. We also test the predictions of the models that explain how mitochondrial transport stalls in regions with elevated Ca2+. Transport of Miro1/TRAK by kinesin-1 is not affected by Ca2+. Instead, we demonstrate that the microtubule docking protein syntaphilin induces resistive forces that stall kinesin-1 and dynein-driven motility. Our results suggest that mitochondrial transport stalls by Ca2+-mediated recruitment of syntaphilin to the mitochondrial membrane, not by disruption of the transport machinery.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Cancer Immunology, Genentech Inc., 1 DNA Way, 94080, South San Francisco, CA, USA.
| | - Andrew Hensley
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Merve Aslan
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Amanda Jack
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Physics Department, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
11
|
Baronti D, Tomov N, Hupp S, Mitchell TJ, Iliev AI. Dendritic spine loss deep in the neocortex and dendrite distortion with diffusion disturbances occur early in experimental pneumococcal meningitis. Front Neurosci 2023; 16:912445. [PMID: 36704002 PMCID: PMC9871924 DOI: 10.3389/fnins.2022.912445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Streptococcus pneumoniae (pneumococcus) meningitis is a serious disease with substantial lethality and long-term disability in survivors. Loss of synaptic staining in the superficial layers of the neocortex in rodent models and in humans, and pneumolysin (a major pneumococcal toxin)-dependent dendritic spine collapse in brain slices have been described. It remains unclear how deep in the neocortex more discrete changes are present, how soon after disease onset these changes occur, and whether other properties of dendrites are also affected. Methods Using a mouse model of pneumococcal meningitis, we studied changes in the neocortex shortly (3-6 h) after the onset of clinical symptoms via modified Golgi-Cox silver staining. Results Dendritic changes were present in areas with otherwise unchanged cell numbers and no signs of necrosis or other apparent neuronal pathology. Mature dendritic spines were reduced in the pyramidal neurons running through layers 1-5. Additionally, spine morphology changes (swelling, spine neck distortion), were also observed in the deeper layers 4 and 5 of the neocortex. Immature spines (filopodia) remained unchanged between groups, as well as the dendritic arborization of the analyzed neurons. In a third of the animals with meningitis, massive mechanical distortion of the primary dendrites of most of the pyramidal neurons through layers 1-5 was observed. This distortion was reproduced in acute brain slices after exposure to pneumolysin-containing bacterial lysates (S. pneumoniae D39 strain), but not to lysates of pneumolysin-deficient bacteria, which we explain by the tissue remodeling effect of the toxin. Experimental mechanical dendrite distortion in primary neural cultures demonstrated diminished FRAP diffusion of neuronally-expressed enhanced green fluorescent protein (eGFP), indicative of disturbed dendritic diffusion. Discussion Our work extends earlier knowledge of synaptic loss in the superficial cortical layers during meningitis to deeper layers. These changes occurred surprisingly early in the course of the disease, substantially limiting the effective therapeutic window. Methodologically, we demonstrate that the dendritic spine collapse readout is a highly reliable and early marker of neural damage in pneumococcal meningitis models, allowing for reduction of the total number of animals used per a group due to much lower variation among animals.
Collapse
Affiliation(s)
- Dario Baronti
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Nikola Tomov
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Sabrina Hupp
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Timothy J. Mitchell
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asparouh I. Iliev
- Institute of Anatomy, University of Bern, Bern, Switzerland,*Correspondence: Asparouh I. Iliev,
| |
Collapse
|
12
|
Gu Q, Duan K, Petralia RS, Wang YX, Li Z. BAX regulates dendritic spine development via mitochondrial fusion. Neurosci Res 2022; 182:25-31. [PMID: 35688289 PMCID: PMC9378631 DOI: 10.1016/j.neures.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
BAX is a Bcl-2 family protein acting on apoptosis. It also promotes mitochondrial fusion by interacting with the mitochondrial fusion protein Mitofusin (Mfn1 and Mfn2). Neuronal mitochondria are important for the development and modification of dendritic spines, which are subcellular compartments accommodating excitatory synapses in postsynaptic neurons. The abundance of dendritic mitochondria influences dendritic spine development. Mitochondrial fusion is essential for mitochondrial homeostasis. Here, we show that in the hippocampal neuron of BAX knockout mice, mitochondrial fusion is impaired, leading to decreases in mitochondrial length and total mitochondrial mass in dendrites. Notably, BAX knockout mice also have fewer dendritic spines and less cellular Adenosine 5'triphosphate (ATP) in dendrites. The spine and ATP changes are abolished by restoring mitochondria fusion via overexpressing Mfn1 and Mfn2. These findings indicate that BAX-mediated mitochondrial fusion in neurons is crucial for the development of dendritic spines and the maintenance of cellular ATP levels.
Collapse
Affiliation(s)
- Qinhua Gu
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaizheng Duan
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Li
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Pozo Devoto VM, Onyango IG, Stokin GB. Mitochondrial behavior when things go wrong in the axon. Front Cell Neurosci 2022; 16:959598. [PMID: 35990893 PMCID: PMC9389222 DOI: 10.3389/fncel.2022.959598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Axonal homeostasis is maintained by processes that include cytoskeletal regulation, cargo transport, synaptic activity, ionic balance, and energy supply. Several of these processes involve mitochondria to varying degrees. As a transportable powerplant, the mitochondria deliver ATP and Ca2+-buffering capabilities and require fusion/fission to maintain proper functioning. Taking into consideration the long distances that need to be covered by mitochondria in the axons, their transport, distribution, fusion/fission, and health are of cardinal importance. However, axonal homeostasis is disrupted in several disorders of the nervous system, or by traumatic brain injury (TBI), where the external insult is translated into physical forces that damage nervous tissue including axons. The degree of damage varies and can disconnect the axon into two segments and/or generate axonal swellings in addition to cytoskeletal changes, membrane leakage, and changes in ionic composition. Cytoskeletal changes and increased intra-axonal Ca2+ levels are the main factors that challenge mitochondrial homeostasis. On the other hand, a proper function and distribution of mitochondria can determine the recovery or regeneration of the axonal physiological state. Here, we discuss the current knowledge regarding mitochondrial transport, fusion/fission, and Ca2+ regulation under axonal physiological or pathological conditions.
Collapse
Affiliation(s)
- Victorio M. Pozo Devoto
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Isaac G. Onyango
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
| | - Gorazd B. Stokin
- Translational Neuroscience and Ageing Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czechia
- Division of Neurology, University Medical Centre, Ljubljana, Slovenia
- Department of Neurosciences, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
14
|
Harbauer AB, Schneider A, Wohlleber D. Analysis of Mitochondria by Single-Organelle Resolution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:1-16. [PMID: 35303775 DOI: 10.1146/annurev-anchem-061020-111722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular organelles are highly specialized compartments with distinct functions. With the increasing resolution of detection methods, it is becoming clearer that same organelles may have different functions or properties not only within different cell populations of a tissue but also within the same cell. Dysfunction or altered function affects the organelle itself and may also lead to malignancies or undesirable cell death. To understand cellular function or dysfunction, it is therefore necessary to analyze cellular components at the single-organelle level. Here, we review the recent advances in analyzing cellular function at single-organelle resolution using high-parameter flow cytometry or multicolor confocal microscopy. We focus on the analysis of mitochondria, as they are organelles at the crossroads of various cellular signaling pathways and functions. However, most of the applied methods/technologies are transferable to any other organelle, such as the endoplasmic reticulum, lysosomes, or peroxisomes.
Collapse
Affiliation(s)
- Angelika B Harbauer
- Max Planck Institute of Neurobiology, Martinsried, Germany;
- Institute of Neuronal Cell Biology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Annika Schneider
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| |
Collapse
|
15
|
Petersen MH, Willert CW, Andersen JV, Madsen M, Waagepetersen HS, Skotte NH, Nørremølle A. Progressive Mitochondrial Dysfunction of Striatal Synapses in R6/2 Mouse Model of Huntington's Disease. J Huntingtons Dis 2022; 11:121-140. [PMID: 35311711 DOI: 10.3233/jhd-210518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder characterized by synaptic dysfunction and loss of white matter volume especially in the striatum of the basal ganglia and to a lesser extent in the cerebral cortex. Studies investigating heterogeneity between synaptic and non-synaptic mitochondria have revealed a pronounced vulnerability of synaptic mitochondria, which may lead to synaptic dysfunction and loss. OBJECTIVE As mitochondrial dysfunction is a hallmark of HD pathogenesis, we investigated synaptic mitochondrial function from striatum and cortex of the transgenic R6/2 mouse model of HD. METHODS We assessed mitochondrial volume, ROS production, and antioxidant levels as well as mitochondrial respiration at different pathological stages. RESULTS Our results reveal that striatal synaptic mitochondria are more severely affected by HD pathology than those of the cortex. Striatal synaptosomes of R6/2 mice displayed a reduction in mitochondrial mass coinciding with increased ROS production and antioxidants levels indicating prolonged oxidative stress. Furthermore, synaptosomal oxygen consumption rates were significantly increased during depolarizing conditions, which was accompanied by a marked increase in mitochondrial proton leak of the striatal synaptosomes, indicating synaptic mitochondrial stress. CONCLUSION Overall, our study provides new insight into the gradual changes of synaptic mitochondrial function in HD and suggests compensatory mitochondrial actions to maintain energy production in the HD brain, thereby supporting that mitochondrial dysfunction do indeed play a central role in early disease progression of HD.
Collapse
Affiliation(s)
- Maria Hvidberg Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Madsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Henning Skotte
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Harbauer AB, Hees JT, Wanderoy S, Segura I, Gibbs W, Cheng Y, Ordonez M, Cai Z, Cartoni R, Ashrafi G, Wang C, Perocchi F, He Z, Schwarz TL. Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron 2022; 110:1516-1531.e9. [PMID: 35216662 PMCID: PMC9081165 DOI: 10.1016/j.neuron.2022.01.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/25/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023]
Abstract
PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane proteins synaptojanin 2 binding protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are required for tethering Pink1 mRNA to mitochondria via an RNA-binding domain in SYNJ2. This neuron-specific adaptation for the local translation of PINK1 provides distal mitochondria with a continuous supply of PINK1 for the activation of mitophagy.
Collapse
Affiliation(s)
- Angelika B Harbauer
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Straße 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology, Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - J Tabitha Hees
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Simone Wanderoy
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Inmaculada Segura
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Ludwig-Maximilians-Universität München, Department of Cellular Physiology Biomedical Center Munich - BMC, Großhaderner Str. 9, 82152 Martinsried, Germany
| | - Whitney Gibbs
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yiming Cheng
- Munich Cluster of Systems Neurology, Feodor-Lynen-Straße 17, 81377 Munich, Germany; Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Munich, Germany
| | - Martha Ordonez
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Zerong Cai
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Romain Cartoni
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ghazaleh Ashrafi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Fabiana Perocchi
- Institute of Neuronal Cell Biology, Technical University of Munich, Biedersteiner Straße 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology, Feodor-Lynen-Straße 17, 81377 Munich, Germany; Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Munich, Germany
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Torres AK, Jara C, Park-Kang HS, Polanco CM, Tapia D, Alarcón F, de la Peña A, Llanquinao J, Vargas-Mardones G, Indo JA, Inestrosa NC, Tapia-Rojas C. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1391-1414. [PMID: 34719499 DOI: 10.3233/jad-215139] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-β (Aβ) peptide. The amyloid hypothesis proposes that Aβ accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aβ-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aβ accumulation or if is a consequence of it. Aβ promotes mitochondrial failure. However, amyloid β precursor protein (AβPP) could be cleaved in the mitochondria producing Aβ peptide. Mitochondrial-produced Aβ could interact with newly formed ones or with Aβ that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aβ toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Diego Tapia
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Fabián Alarcón
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Adely de la Peña
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Jesus Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Gabriela Vargas-Mardones
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Javiera A Indo
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| |
Collapse
|
18
|
Murali Mahadevan H, Hashemiaghdam A, Ashrafi G, Harbauer AB. Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson's Disease. Adv Biol (Weinh) 2021; 5:e2100663. [PMID: 34382382 DOI: 10.1002/adbi.202100663] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria are the main suppliers of neuronal adenosine triphosphate and play a critical role in brain energy metabolism. Mitochondria also serve as Ca2+ sinks and anabolic factories and are therefore essential for neuronal function and survival. Dysregulation of neuronal bioenergetics is increasingly implicated in neurodegenerative disorders, particularly Parkinson's disease. This review describes the role of mitochondria in energy metabolism under resting conditions and during synaptic transmission, and presents evidence for the contribution of neuronal mitochondrial dysfunction to Parkinson's disease.
Collapse
Affiliation(s)
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Angelika Bettina Harbauer
- Max-Planck-Institute for Neurobiology, 82152, Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, 80333, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
19
|
Faitg J, Lacefield C, Davey T, White K, Laws R, Kosmidis S, Reeve AK, Kandel ER, Vincent AE, Picard M. 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Rep 2021; 36:109509. [PMID: 34380033 PMCID: PMC8423436 DOI: 10.1016/j.celrep.2021.109509] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
The brain's ability to process complex information relies on the constant supply of energy through aerobic respiration by mitochondria. Neurons contain three anatomically distinct compartments-the soma, dendrites, and projecting axons-which have different energetic and biochemical requirements, as well as different mitochondrial morphologies in cultured systems. In this study, we apply quantitative three-dimensional electron microscopy to map mitochondrial network morphology and complexity in the mouse brain. We examine somatic, dendritic, and axonal mitochondria in the dentate gyrus and cornu ammonis 1 (CA1) of the mouse hippocampus, two subregions with distinct principal cell types and functions. We also establish compartment-specific differences in mitochondrial morphology across these cell types between young and old mice, highlighting differences in age-related morphological recalibrations. Overall, these data define the nature of the neuronal mitochondrial network in the mouse hippocampus, providing a foundation to examine the role of mitochondrial morpho-function in the aging brain.
Collapse
Affiliation(s)
- Julie Faitg
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Kathryn White
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Stylianos Kosmidis
- Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Department of Neuroscience, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eric R Kandel
- New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Department of Neuroscience, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Martin Picard
- New York State Psychiatric Institute, New York, NY 10032, USA; Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, The Merritt Center and Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
A Natural Botanical Product, Resveratrol, Effectively Suppresses Vesicular Stomatitis Virus Infection In Vitro. PLANTS 2021; 10:plants10061231. [PMID: 34204270 PMCID: PMC8234721 DOI: 10.3390/plants10061231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Numerous natural phytochemicals such as resveratrol are acknowledged as potent botanical agents in regulating immune responses. However, it is less understood whether such immunomodulatory phytochemicals are appropriate for use as direct treatments in veterinary viral diseases. In the present study, we investigated the efficacy of resveratrol in suppressing vesicular stomatitis virus (VSV) infection. Outbreaks of VSV can cause massive economic loss in poultry and livestock husbandry farming, and VSV treatment is in need of therapeutic development. We utilized a recombinant VSV that expresses green fluorescent protein (GFP) to measure viral replication in cells treated with resveratrol. Our findings revealed that resveratrol treatment affords a protective effect, shown by increased viability and reduced viral replication, as indicated by a reduction in fluorescent signals. Additionally, we found that resveratrol inhibition of VSV infection occurs via suppression of the caspase cascade. Structural analysis also indicated that resveratrol potentially interacts with the active sites of caspase-3 and -7, facilitating antiviral activity. The potential effect of resveratrol on reducing VSV infection in vitro suggests that resveratrol should be further investigated as a potential veterinary therapeutic or prophylactic agent.
Collapse
|
21
|
Maynard KR, Collado-Torres L, Weber LM, Uytingco C, Barry BK, Williams SR, Catallini JL, Tran MN, Besich Z, Tippani M, Chew J, Yin Y, Kleinman JE, Hyde TM, Rao N, Hicks SC, Martinowich K, Jaffe AE. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci 2021; 24:425-436. [PMID: 33558695 PMCID: PMC8095368 DOI: 10.1038/s41593-020-00787-0] [Citation(s) in RCA: 522] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
We used the 10x Genomics Visium platform to define the spatial topography of gene expression in the six-layered human dorsolateral prefrontal cortex. We identified extensive layer-enriched expression signatures and refined associations to previous laminar markers. We overlaid our laminar expression signatures on large-scale single nucleus RNA-sequencing data, enhancing spatial annotation of expression-driven clusters. By integrating neuropsychiatric disorder gene sets, we showed differential layer-enriched expression of genes associated with schizophrenia and autism spectrum disorder, highlighting the clinical relevance of spatially defined expression. We then developed a data-driven framework to define unsupervised clusters in spatial transcriptomics data, which can be applied to other tissues or brain regions in which morphological architecture is not as well defined as cortical laminae. Last, we created a web application for the scientific community to explore these raw and summarized data to augment ongoing neuroscience and spatial transcriptomics research ( http://research.libd.org/spatialLIBD ).
Collapse
Affiliation(s)
- Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Lukas M Weber
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Brianna K Barry
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Joseph L Catallini
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary Besich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | | | | | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
22
|
Mechanisms and roles of mitochondrial localisation and dynamics in neuronal function. Neuronal Signal 2020; 4:NS20200008. [PMID: 32714603 PMCID: PMC7373250 DOI: 10.1042/ns20200008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/23/2023] Open
Abstract
Neurons are highly polarised, complex and incredibly energy intensive cells, and their demand for ATP during neuronal transmission is primarily met by oxidative phosphorylation by mitochondria. Thus, maintaining the health and efficient function of mitochondria is vital for neuronal integrity, viability and synaptic activity. Mitochondria do not exist in isolation, but constantly undergo cycles of fusion and fission, and are actively transported around the neuron to sites of high energy demand. Intriguingly, axonal and dendritic mitochondria exhibit different morphologies. In axons mitochondria are small and sparse whereas in dendrites they are larger and more densely packed. The transport mechanisms and mitochondrial dynamics that underlie these differences, and their functional implications, have been the focus of concerted investigation. Moreover, it is now clear that deficiencies in mitochondrial dynamics can be a primary factor in many neurodegenerative diseases. Here, we review the role that mitochondrial dynamics play in neuronal function, how these processes support synaptic transmission and how mitochondrial dysfunction is implicated in neurodegenerative disease.
Collapse
|
23
|
Santuy A, Turégano-López M, Rodríguez JR, Alonso-Nanclares L, DeFelipe J, Merchán-Pérez A. A Quantitative Study on the Distribution of Mitochondria in the Neuropil of the Juvenile Rat Somatosensory Cortex. Cereb Cortex 2019; 28:3673-3684. [PMID: 30060007 PMCID: PMC6132283 DOI: 10.1093/cercor/bhy159] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a key role in energy production and calcium buffering, among many other functions. They provide most of the energy required by neurons, and they are transported along axons and dendrites to the regions of higher energy demands. We have used focused ion beam milling and scanning electron microscopy (FIB/SEM) to obtain stacks of serial sections from the somatosensory cortex of the juvenile rat. We have estimated the volume fraction occupied by mitochondria and their distribution between dendritic, axonal, and nonsynaptic processes. The volume fraction of mitochondria increased from layer I (4.59%) to reach its maximum in layer IV (7.74%) and decreased to its minimum in layer VI (4.03%). On average, 44% of mitochondrial volume was located in dendrites, 15% in axons and 41% in nonsynaptic elements. Given that dendrites, axons, and nonsynaptic elements occupied 38%, 23%, and 39% of the neuropil, respectively, it can be concluded that dendrites are proportionally richer in mitochondria with respect to axons, supporting the notion that most energy consumption takes place at the postsynaptic side. We also found a positive correlation between the volume fraction of mitochondria located in neuronal processes and the density of synapses.
Collapse
Affiliation(s)
- A Santuy
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - M Turégano-López
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - J R Rodríguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - L Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - J DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - A Merchán-Pérez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
24
|
Dietz JV, Bohovych I, Viana MP, Khalimonchuk O. Proteolytic regulation of mitochondrial dynamics. Mitochondrion 2019; 49:289-304. [PMID: 31029640 DOI: 10.1016/j.mito.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Spatiotemporal changes in the abundance, shape, and cellular localization of the mitochondrial network, also known as mitochondrial dynamics, are now widely recognized to play a key role in mitochondrial and cellular physiology as well as disease states. This process involves coordinated remodeling of the outer and inner mitochondrial membranes by conserved dynamin-like guanosine triphosphatases and their partner molecules in response to various physiological and stress stimuli. Although the core machineries that mediate fusion and partitioning of the mitochondrial network have been extensively characterized, many aspects of their function and regulation are incompletely understood and only beginning to emerge. In the present review we briefly summarize current knowledge about how the key mitochondrial dynamics-mediating factors are regulated via selective proteolysis by mitochondrial and cellular proteolytic machineries.
Collapse
Affiliation(s)
- Jonathan V Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, United States of America; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
25
|
Son T, Lee D, Lee C, Moon G, Ha GE, Lee H, Kwak H, Cheong E, Kim D. Superlocalized Three-Dimensional Live Imaging of Mitochondrial Dynamics in Neurons Using Plasmonic Nanohole Arrays. ACS NANO 2019; 13:3063-3074. [PMID: 30802028 DOI: 10.1021/acsnano.8b08178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigated the transport of neuronal mitochondria using superlocalized near-fields with plasmonic nanohole arrays (PNAs). Compared to traditional imaging techniques, PNAs create a massive array of superlocalized light beams and allow 3D mitochondrial dynamics to be sampled and extracted almost in real time. In this work, mitochondrial fluorescence excited by the PNAs was captured by an optical microscope using dual objective lenses, which produced superlocalized dynamics while minimizing light scattering by the plasmonic substrate. It was found that mitochondria move with an average velocity 0.33 ± 0.26 μm/s, a significant part of which, by almost 50%, was contributed by the movement along the depth axis ( z-axis). Mitochondrial positions were acquired with superlocalized precision (σ x = 5.7 nm and σ y = 11.8 nm) in the lateral plane and σ z = 78.7 nm in the z-axis, which presents an enhancement by 12.7-fold in resolution compared to confocal fluorescence microscopy. The approach is expected to serve as a way to provide 3D information on molecular dynamics in real time.
Collapse
|
26
|
Kang JJ, Guo B, Liang WH, Lam CS, Wu SX, Huang XF, Wong-Riley MTT, Fung ML, Liu YY. Daily acute intermittent hypoxia induced dynamic changes in dendritic mitochondrial ultrastructure and cytochrome oxidase activity in the pre-Bötzinger complex of rats. Exp Neurol 2018; 313:124-134. [PMID: 30586594 DOI: 10.1016/j.expneurol.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/18/2018] [Indexed: 12/29/2022]
Abstract
Mitochondria, as primary energy generators and Ca2+ biosensor, are dynamically coupled to neuronal activities, and thus play a role in neuroplasticity. Here we report that respiratory neuroplasticity induced by daily acute intermittent hypoxia (dAIH) evoked adaptive changes in the ultrastructure and postsynaptic distribution of mitochondria in the pre-Bötzinger complex (pre-BötC). The metabolic marker of neuronal activity, cytochrome c oxidase (CO), and dendritic mitochondria were examined in pre-BötC neurons of adult Sprague-Dawley rats preconditioned with dAIH, which is known to induce long-term facilitation (LTF) in respiratory neural activities. We performed neurokinin 1 receptor (NK1R) pre-embedding immunocytochemistry to define pre-BötC neurons, in combination with CO histochemistry, to depict ultrastructural alterations and CO activity in dendritic mitochondria. We found that the dAIH challenge significantly increased CO activity in pre-BötC neurons. Darkly CO-reactive mitochondria at postsynaptic sites in the dAIH group were much more prevalent than those in the normoxic control. In addition, the length and area of mitochondria were significantly increased in the dAIH group, implying a larger surface area of cristae for ATP generation. There was a fine, structural remodeling, notably enlarged and branching mitochondria or tapered mitochondria extending into dendritic spines. Mitochondrial cristae were mainly in parallel-lamellar arrangement, indicating a high efficiency of energy generation. Moreover, flocculent or filament-like elements were noted between the mitochondria and the postsynaptic membrane. These morphological evidences, together with increased CO activity, demonstrate that dendritic mitochondria in the pre-BötC responded dynamically to respiratory plasticity. Hence, plastic neuronal changes are closely coupled to active mitochondrial bioenergetics, leading to enhanced energy production and Ca2+ buffering that may drive the LTF expression.
Collapse
Affiliation(s)
- Jun-Jun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Baolin Guo
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Wei-Hua Liang
- Department of Pathology and Pathophysiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Chun-Sing Lam
- School of Biomedical Sciences, The University of Hong Kong, PR China
| | - Sheng-Xi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiao-Feng Huang
- Department of Pathology and Pathophysiology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Man-Lung Fung
- School of Biomedical Sciences, The University of Hong Kong, PR China.
| | - Ying-Ying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
27
|
Lewis TL, Kwon SK, Lee A, Shaw R, Polleux F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat Commun 2018; 9:5008. [PMID: 30479337 PMCID: PMC6258764 DOI: 10.1038/s41467-018-07416-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
Neurons display extreme degrees of polarization, including compartment-specific organelle morphology. In cortical, long-range projecting, pyramidal neurons (PNs), dendritic mitochondria are long and tubular whereas axonal mitochondria display uniformly short length. Here we explored the functional significance of maintaining small mitochondria for axonal development in vitro and in vivo. We report that the Drp1 'receptor' Mitochondrial fission factor (MFF) is required for determining the size of mitochondria entering the axon and then for maintenance of their size along the distal portions of the axon without affecting their trafficking properties, presynaptic capture, membrane potential or ability to generate ATP. Strikingly, this increase in presynaptic mitochondrial size upon MFF downregulation augments their capacity for Ca2+ ([Ca2+]m) uptake during neurotransmission, leading to reduced presynaptic [Ca2+]c accumulation, decreased presynaptic release and terminal axon branching. Our results uncover a novel mechanism controlling neurotransmitter release and axon branching through fission-dependent regulation of presynaptic mitochondrial size.
Collapse
Affiliation(s)
- Tommy L Lewis
- Department of Neuroscience, Columbia University, New York, NY, 10032, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, 10032, USA.,Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Seok-Kyu Kwon
- Department of Neuroscience, Columbia University, New York, NY, 10032, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, 10032, USA.,Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Annie Lee
- Department of Neuroscience, Columbia University, New York, NY, 10032, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, 10032, USA
| | - Reuben Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, 10032, USA. .,Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, 10032, USA. .,Kavli Institute for Brain Science at Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
28
|
Rumora AE, LoGrasso G, Haidar JA, Dolkowski JJ, Lentz SI, Feldman EL. Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res 2018; 60:58-70. [PMID: 30442656 DOI: 10.1194/jlr.m086843] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Dyslipidemia associated with T2D leads to diabetic neuropathy, a complication characterized by sensory neuronal dysfunction and peripheral nerve damage. Sensory dorsal root ganglion (DRG) neurons are dependent on axonal mitochondrial energy production facilitated by mitochondrial transport mechanisms that distribute mitochondria throughout the axon. Because long-chain saturated FAs (SFAs) damage DRG neurons and medium-chain SFAs are reported to improve neuronal function, we evaluated the impact of SFA chain length on mitochondrial trafficking, mitochondrial function, and apoptosis. DRG neurons were exposed to SFAs with C12:0-C18:0 chain lengths and evaluated for changes in mitochondrial trafficking, mitochondrial polarization, and apoptosis. DRG neurons treated with C16:0 and C18:0 SFAs showed a significant decrease in the percentage of motile mitochondria and velocity of mitochondrial trafficking, whereas C12:0 and C14:0 SFAs had no impact on motility. Treatment with C16:0 and C18:0 SFAs exhibited mitochondrial depolarization correlating with impaired mitochondrial motility; the C12:0- and C14:0-treated neurons retained mitochondrial polarization. The reduction in mitochondrial trafficking and function in C16:0- and C18:0-treated DRG neurons correlated with apoptosis that was blocked in C12:0 and C14:0 SFA treatments. These results suggest that SFA chain length plays an important role in regulating axonal mitochondrial trafficking and function in DRG neurons.
Collapse
Affiliation(s)
- Amy E Rumora
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Giovanni LoGrasso
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Julia A Haidar
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Justin J Dolkowski
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Stephen I Lentz
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Eva L Feldman
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
29
|
Preston G, Kirdar F, Kozicz T. The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder. J Inherit Metab Dis 2018; 41:585-596. [PMID: 29594645 DOI: 10.1007/s10545-018-0168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Post-traumatic stress disorder remains the most significant psychiatric condition associated with exposure to a traumatic event, though rates of traumatic event exposure far outstrip incidence of PTSD. Mitochondrial dysfunction and suboptimal mitochondrial function have been increasingly implicated in several psychopathologies, and recent genetic studies have similarly suggested a pathogenic role of mitochondria in PTSD. Mitochondria play a central role in several physiologic processes underlying PTSD symptomatology, including abnormal fear learning, brain network activation, synaptic plasticity, steroidogenesis, and inflammation. Here we outline several potential mechanisms by which inherited (genetic) or acquired (environmental) mitochondrial dysfunction or suboptimal mitochondrial function, may contribute to PTSD symptomatology and increase susceptibility to PTSD. The proposed pathogenic role of mitochondria in the pathophysiology of PTSD has important implications for prevention and therapy, as antidepressants commonly prescribed for patients with PTSD have been shown to inhibit mitochondrial function, while alternative therapies shown to improve mitochondrial function may prove more efficacious.
Collapse
Affiliation(s)
- Graeme Preston
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Faisal Kirdar
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Anatomy, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
30
|
Zhang L, Trushin S, Christensen TA, Tripathi U, Hong C, Geroux RE, Howell KG, Poduslo JF, Trushina E. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis 2018; 114:1-16. [PMID: 29477640 PMCID: PMC5926207 DOI: 10.1016/j.nbd.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/03/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibition of mitochondrial axonal trafficking by amyloid beta (Aβ) peptides has been implicated in early pathophysiology of Alzheimer's Disease (AD). Yet, it remains unclear whether the loss of motility inevitably induces the loss of mitochondrial function, and whether restoration of axonal trafficking represents a valid therapeutic target. Moreover, while some investigations identify Aβ oligomers as the culprit of trafficking inhibition, others propose that fibrils play the detrimental role. We have examined the effect of a panel of Aβ peptides with different mutations found in familial AD on mitochondrial motility in primary cortical mouse neurons. Peptides with higher propensity to aggregate inhibit mitochondrial trafficking to a greater extent with fibrils inducing the strongest inhibition. Binding of Aβ peptides to the plasma membrane was sufficient to induce trafficking inhibition where peptides with reduced plasma membrane binding and internalization had lesser effect on mitochondrial motility. We also found that Aβ peptide with Icelandic mutation A673T affects axonal trafficking of mitochondria but has very low rates of plasma membrane binding and internalization in neurons, which could explain its relatively low toxicity. Inhibition of mitochondrial dynamics caused by Aβ peptides or fibrils did not instantly affect mitochondrial bioenergetic and function. Our results support a mechanism where inhibition of axonal trafficking is initiated at the plasma membrane by soluble low molecular weight Aβ species and is exacerbated by fibrils. Since trafficking inhibition does not coincide with the loss of mitochondrial function, restoration of axonal transport could be beneficial at early stages of AD progression. However, strategies designed to block Aβ aggregation or fibril formation alone without ensuring the efficient clearance of soluble Aβ may not be sufficient to alleviate the trafficking phenotype.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Trace A Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Courtney Hong
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Kyle G Howell
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Joseph F Poduslo
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
31
|
Melkov A, Abdu U. Regulation of long-distance transport of mitochondria along microtubules. Cell Mol Life Sci 2018; 75:163-176. [PMID: 28702760 PMCID: PMC11105322 DOI: 10.1007/s00018-017-2590-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
Abstract
Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor-mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.
Collapse
Affiliation(s)
- Anna Melkov
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel.
| |
Collapse
|
32
|
Lehigh KM, West KM, Ginty DD. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses. Cell Rep 2017; 19:86-100. [PMID: 28380365 DOI: 10.1016/j.celrep.2017.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/10/2017] [Accepted: 03/07/2017] [Indexed: 11/17/2022] Open
Abstract
Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.
Collapse
Affiliation(s)
- Kathryn M Lehigh
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Neuroscience Training Program, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine M West
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Chen F, Ardalan M, Elfving B, Wegener G, Madsen TM, Nyengaard JR. Mitochondria Are Critical for BDNF-Mediated Synaptic and Vascular Plasticity of Hippocampus following Repeated Electroconvulsive Seizures. Int J Neuropsychopharmacol 2017; 21:291-304. [PMID: 29228215 PMCID: PMC5838811 DOI: 10.1093/ijnp/pyx115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Electroconvulsive therapy is a fast-acting and efficient treatment of depression used in the clinic. The underlying mechanism of its therapeutic effect is still unclear. However, recovery of synaptic connections and synaptic remodeling is thought to play a critical role for the clinical efficacy obtained from a rapid antidepressant response. Here, we investigated the relationship between synaptic changes and concomitant nonneuronal changes in microvasculature and mitochondria and its relationship to brain-derived neurotrophic factor level changes after repeated electroconvulsive seizures, an animal model of electroconvulsive therapy. METHODS Electroconvulsive seizures or sham treatment was given daily for 10 days to rats displaying a genetically driven phenotype modelling clinical depression: the Flinders Sensitive and Resistant Line rats. Stereological principles were employed to quantify numbers of synapses and mitochondria, and the length of microvessels in the hippocampus. The brain-derived neurotrophic factor protein levels were quantified with immunohistochemistry. RESULTS In untreated controls, a lower number of synapses and mitochondria was accompanied by shorter microvessels of the hippocampus in "depressive" phenotype (Flinders Sensitive Line) compared with the "nondepressed" phenotype (Flinders Resistant Line). Electroconvulsive seizure administration significantly increased the number of synapses and mitochondria, and length of microvessels both in Flinders Sensitive Line-electroconvulsive seizures and Flinders Resistant Line-electroconvulsive seizures rats. In addition, the amount of brain-derived neurotrophic factor protein was significantly increased in Flinders Sensitive Line and Flinders Resistant Line rats after electroconvulsive seizures. Furthermore, there was a significant positive correlation between brain-derived neurotrophic factor level and mitochondria/synapses. CONCLUSION Our results indicate that rapid and efficient therapeutic effect of electroconvulsive seizures may be related to synaptic plasticity, accompanied by brain-derived neurotrophic factor protein level elevation and mitochondrial and vascular support.
Collapse
Affiliation(s)
- Fenghua Chen
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Correspondence: Fenghua Chen, MD, PhD, Department of Clinical Medicine, Translational Neuropsychiatry Unit, Skovagervej 2, building 14K, 0.15, 8240 Risskov, Denmark ()
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark,Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa,Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Gregers Wegener
- AUGUST Centre, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | | | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Beckervordersandforth R. Mitochondrial Metabolism-Mediated Regulation of Adult Neurogenesis. Brain Plast 2017; 3:73-87. [PMID: 29765861 PMCID: PMC5928529 DOI: 10.3233/bpl-170044] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The life-long generation of new neurons from radial glia-like neural stem cells (NSCs) is achieved through a stereotypic developmental sequence that requires precise regulatory mechanisms to prevent exhaustion or uncontrolled growth of the stem cell pool. Cellular metabolism is the new kid on the block of adult neurogenesis research and the identity of stage-specific metabolic programs and their impact on neurogenesis turns out to be an emerging research topic in the field. Mitochondrial metabolism is best known for energy production but it contains a great deal more. Mitochondria are key players in a variety of cellular processes including ATP synthesis through functional coupling of the electron transport chain and oxidative phosphorylation, recycling of hydrogen carriers, biosynthesis of cellular building blocks, and generation of reactive oxygen species that can modulate signaling pathways in a redox-dependent fashion. In this review, I will discuss recent findings describing stage-specific modulations of mitochondrial metabolism within the adult NSC lineage, emphasizing its importance for NSC self-renewal, proliferation of neural stem and progenitor cells (NSPCs), cell fate decisions, and differentiation and maturation of newborn neurons. I will furthermore summarize the important role of mitochondrial dysfunction in tissue regeneration and ageing, suggesting it as a potential therapeutic target for regenerative medicine practice.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
35
|
Jackson JG, Robinson MB. Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. Glia 2017; 66:1213-1234. [PMID: 29098734 DOI: 10.1002/glia.23252] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022]
Abstract
Astrocytes are the major glial cell in the central nervous system. These polarized cells possess numerous processes that ensheath the vasculature and contact synapses. Astrocytes play important roles in synaptic signaling, neurotransmitter synthesis and recycling, control of nutrient uptake, and control of local blood flow. Many of these processes depend on local metabolism and/or energy utilization. While astrocytes respond to increases in neuronal activity and metabolic demand by upregulating glycolysis and glycogenolysis, astrocytes also possess significant capacity for oxidative (mitochondrial) metabolism. Mitochondria mediate energy supply and metabolism, cellular survival, ionic homeostasis, and proliferation. These organelles are dynamic structures undergoing extensive fission and fusion, directed movement along cytoskeletal tracts, and degradation. While many of the mechanisms underlying the dynamics of these organelles and their physiologic roles have been characterized in neurons and other cells, the roles that mitochondrial dynamics play in glial physiology is less well understood. Recent work from several laboratories has demonstrated that mitochondria are present within the fine processes of astrocytes, that their movement is regulated, and that they contribute to local Ca2+ signaling within the astrocyte. They likely play a role in local ATP production and metabolism, particularly that of glutamate. Here we will review these and other findings describing the mechanism by which mitochondrial dynamics are regulated in astrocytes, how mitochondrial dynamics might influence astrocyte and brain metabolism, and draw parallels to mitochondrial dynamics in neurons. Additionally, we present new analyses of the size, distribution, and dynamics of mitochondria in astrocytes performed using in vivo using 2-photon microscopy.
Collapse
Affiliation(s)
- Joshua G Jackson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104.,Departments of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104.,Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
36
|
Silvander JSG, Kvarnström SM, Kumari-Ilieva A, Shrestha A, Alam CM, Toivola DM. Keratins regulate β-cell mitochondrial morphology, motility, and homeostasis. FASEB J 2017; 31:4578-4587. [PMID: 28666985 DOI: 10.1096/fj.201700095r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Loss of the epithelial intermediate filament protein keratin 8 (K8) in murine β cells leads to irregular insulin vesicles and decreased insulin levels. Because mitochondria are central in glucose-stimulated insulin secretion, the relationship between keratins and β-cell mitochondrial function and morphology was investigated. β cells in murine K8-knockout (K8-/-) islets of Langerhans have increased numbers of mitochondria, which are rounder and have diffuse cristae, as seen by electron microscopy. The mitochondrial network in primary cultured K8-/- β cells is more fragmented compared with K8+/+ mitochondria, correlating with decreased levels of mitofusin 2 and the mitofusin 2- and keratin-binding protein trichoplein. K8-/- β-cell mitochondria have decreased levels of total and mitochondrial cytochrome c, which correlates with a reduction in electron transport complexes I and IV. This provokes loss of mitochondrial membrane potential and reduction of ATP and insulin amount, as seen in K8-/- β cells. Mitochondria in K8 wild-type β cells and MIN6 insulinoma cells overexpressing K8 and 18 are more stationary compared with mitochondria in keratin-deficient cells. In conclusion, keratins, likely through trichoplein-mitofusin interactions, regulate both structural and dynamic functions of β-cell mitochondria, which could have implications for downstream insulin secretion.-Silvander, J. S. G., Kvarnström, S. M., Kumari-Ilieva, A., Shrestha, A., Alam, C. M., Toivola, D. M. Keratins regulate β-cell mitochondrial morphology, motility, and homeostasis.
Collapse
Affiliation(s)
- Jonas S G Silvander
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sofie M Kvarnström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Angeli Kumari-Ilieva
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Anup Shrestha
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Catharina M Alam
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
37
|
Haziza S, Mohan N, Loe-Mie Y, Lepagnol-Bestel AM, Massou S, Adam MP, Le XL, Viard J, Plancon C, Daudin R, Koebel P, Dorard E, Rose C, Hsieh FJ, Wu CC, Potier B, Herault Y, Sala C, Corvin A, Allinquant B, Chang HC, Treussart F, Simonneau M. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. NATURE NANOTECHNOLOGY 2017; 12:322-328. [PMID: 27893730 DOI: 10.1038/nnano.2016.260] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/24/2016] [Indexed: 05/24/2023]
Abstract
Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.
Collapse
Affiliation(s)
- Simon Haziza
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Nitin Mohan
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Yann Loe-Mie
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | | | - Sophie Massou
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Marie-Pierre Adam
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Xuan Loc Le
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Julia Viard
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Christine Plancon
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Centre National de Génotypage, 91057 Evry, France
| | - Rachel Daudin
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Pascale Koebel
- Institut de génétique et de biologie moléculaire et cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Emilie Dorard
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Christiane Rose
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Feng-Jen Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Chih-Che Wu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou Hsien 545, Taiwan
| | - Brigitte Potier
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Yann Herault
- Institut de génétique et de biologie moléculaire et cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Carlo Sala
- Neuroscience Institute, CNR, 20129 Milano, Italy
| | - Aiden Corvin
- Department of Psychiatry, Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Bernadette Allinquant
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - François Treussart
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
| | - Michel Simonneau
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France
- Centre de Psychiatrie et Neurosciences, INSERM U894, Université Paris-Descartes, 75014 Paris, France
- Department of Biology, ENS Cachan, Université Paris-Saclay, 94235 Cachan, France
| |
Collapse
|
38
|
Abstract
Mitochondria are among a cell's most vital organelles. They not only produce the majority of the cell's ATP but also play a key role in Ca2+ buffering and apoptotic signaling. While proper allocation of mitochondria is critical to all cells, it is particularly important for the highly polarized neurons. Because mitochondria are mainly synthesized in the soma, they must be transported long distances to be distributed to the far-flung reaches of the neuron-up to 1 m in the case of some human motor neurons. Furthermore, damaged mitochondria can be detrimental to neuronal health, causing oxidative stress and even cell death, therefore the retrograde transport of damaged mitochondria back to the soma for proper disposal, as well as the anterograde transport of fresh mitochondria from the soma to repair damage, are equally critical. Intriguingly, errors in mitochondrial transport have been increasingly implicated in neurological disorders. Here, we describe how to investigate mitochondrial transport in three complementary neuronal systems: cultured induced pluripotent stem cell-derived neurons, cultured rat hippocampal and cortical neurons, and Drosophila larval neurons in vivo. These models allow us to uncover the molecular and cellular mechanisms underlying transport issues that may occur under physiological or pathological conditions.
Collapse
|
39
|
Loss O, Stephenson FA. Developmental changes in trak-mediated mitochondrial transport in neurons. Mol Cell Neurosci 2017; 80:134-147. [PMID: 28300646 PMCID: PMC5400476 DOI: 10.1016/j.mcn.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 01/23/2017] [Accepted: 03/09/2017] [Indexed: 01/04/2023] Open
Abstract
Previous studies established that the kinesin adaptor proteins, TRAK1 and TRAK2, play an important role in mitochondrial transport in neurons. They link mitochondria to kinesin motor proteins via a TRAK acceptor protein in the mitochondrial outer membrane, the Rho GTPase, Miro. TRAKs also associate with enzyme, O-linked N-acetylglucosamine transferase (OGT), to form a quaternary, mitochondrial trafficking complex. A recent report suggested that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons whereas TRAK2 controls mitochondrial transport in dendrites. However, it is not clear whether the function of any of these proteins is exclusive to axons or dendrites and if their mechanisms of action are conserved between different neuronal populations and also, during maturation. Here, a comparative study was carried out into TRAK-mediated mitochondrial mobility in axons and dendrites of hippocampal and cortical neurons during maturation in vitro using a shRNA gene knockdown approach. It was found that in mature hippocampal and cortical neurons, TRAK1 predominantly mediates axonal mitochondrial transport whereas dendritic transport is mediated via TRAK2. In young, maturing neurons, TRAK1 and TRAK2 contribute similarly in mitochondrial transport in both axons and dendrites in both neuronal types. These findings demonstrate maturation regulation of mitochondrial transport which is conserved between at least two distinct neuronal subtypes. Mitochondrial transport and velocity changes during neuronal maturation. TRAK1 and TRAK2 contribute to transport in axons and dendrites of immature neurons. In mature neurons TRAK1 controls axonal mitochondrial transport. In mature neurons TRAK2 controls dendritic mitochondrial transport.
Collapse
Affiliation(s)
- Omar Loss
- School of Pharmacy University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - F Anne Stephenson
- School of Pharmacy University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
40
|
Smith HL, Bourne JN, Cao G, Chirillo MA, Ostroff LE, Watson DJ, Harris KM. Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP. eLife 2016; 5. [PMID: 27991850 PMCID: PMC5235352 DOI: 10.7554/elife.15275] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day 15 (P15) and adult rat hippocampus that had undergone theta-burst stimulation to produce long-term potentiation (TBS-LTP) and compared them to control or no stimulation. At 30 and 120 min after TBS-LTP, vesicles were decreased only in presynaptic boutons that contained mitochondria at P15, and vesicle decrement was greatest in adult boutons containing mitochondria. Presynaptic mitochondrial cristae were widened, suggesting a sustained energy demand. Thus, mitochondrial proximity reflected enhanced vesicle mobilization well after potentiation reached asymptote, in parallel with the apparently silent addition of new dendritic spines at P15 or the silent enlargement of synapses in adults. DOI:http://dx.doi.org/10.7554/eLife.15275.001
Collapse
Affiliation(s)
- Heather L Smith
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus, Aurora, United States
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Michael A Chirillo
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Linnaea E Ostroff
- Center for Neural Science, New York University, Washington, New York
| | - Deborah J Watson
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| |
Collapse
|
41
|
Chen M, Li Y, Yang M, Chen X, Chen Y, Yang F, Lu S, Yao S, Zhou T, Liu J, Zhu L, Du S, Wu JY. A new method for quantifying mitochondrial axonal transport. Protein Cell 2016; 7:804-819. [PMID: 27225265 PMCID: PMC5084152 DOI: 10.1007/s13238-016-0268-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named "MitoQuant". This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.
Collapse
Affiliation(s)
- Mengmeng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yang Li
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China.
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Mengxue Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yemeng Chen
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Fan Yang
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Sheng Lu
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Shengyu Yao
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Timothy Zhou
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jianghong Liu
- State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhu
- State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sidan Du
- School of Electronic Science & Engineering, Nanjing University, Nanjing, 210093, China
| | - Jane Y Wu
- State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
42
|
Griggs RB, Yermakov LM, Susuki K. Formation and disruption of functional domains in myelinated CNS axons. Neurosci Res 2016; 116:77-87. [PMID: 27717670 DOI: 10.1016/j.neures.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
Abstract
Communication in the central nervous system (CNS) occurs through initiation and propagation of action potentials at excitable domains along axons. Action potentials generated at the axon initial segment (AIS) are regenerated at nodes of Ranvier through the process of saltatory conduction. Proper formation and maintenance of the molecular structure at the AIS and nodes are required for sustaining conduction fidelity. In myelinated CNS axons, paranodal junctions between the axolemma and myelinating oligodendrocytes delineate nodes of Ranvier and regulate the distribution and localization of specialized functional elements, such as voltage-gated sodium channels and mitochondria. Disruption of excitable domains and altered distribution of functional elements in CNS axons is associated with demyelinating diseases such as multiple sclerosis, and is likely a mechanism common to other neurological disorders. This review will provide a brief overview of the molecular structure of the AIS and nodes of Ranvier, as well as the distribution of mitochondria in myelinated axons. In addition, this review highlights important structural and functional changes within myelinated CNS axons that are associated with neurological dysfunction.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| |
Collapse
|
43
|
Rui Y, Zheng JQ. Amyloid β oligomers elicit mitochondrial transport defects and fragmentation in a time-dependent and pathway-specific manner. Mol Brain 2016; 9:79. [PMID: 27535553 PMCID: PMC4989350 DOI: 10.1186/s13041-016-0261-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Small oligomeric forms of amyloid-β (Aβ) are believed to be the culprit for declined brain functions in AD in part through their impairment of neuronal trafficking and synaptic functions. However, the precise cellular actions of Aβ oligomers and underlying mechanisms in neurons remain to be fully defined. Previous studies have identified mitochondria as a major target of Aβ toxicity contributing to early cognitive decline and memory loss in neurodegenerative diseases including Alzheimer’s disease (AD). In this study, we report that Aβ oligomers acutely elicit distinct effects on the transport and integrity of mitochondria. We found that acute exposure of hippocampal neurons to Aβ oligomers from either synthetic peptides or AD brain homogenates selectively impaired fast transport of mitochondria without affecting the movement of late endosomes and lysosomes. Extended exposure of hipoocampal neurons to Aβ oligomers was found to result in mitochondrial fragmentation. While both mitochondrial effects induced by Aβ oligomers can be abolished by the inhibition of GSK3β, they appear to be independent from each other. Aβ oligomers impaired mitochondrial transport through HDAC6 activation whereas the fragmentation involved the GTPase Drp-1. These results show that Aβ oligomers can acutely disrupt mitochondrial transport and integrity in a time-dependent and pathway-specific manner. These findings thus provide new insights into Aβ-induced mitochondrial defects that may contribute to neuronal dysfunction and AD pathogenesis.
Collapse
Affiliation(s)
- Yanfang Rui
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
44
|
Ferrari F, Villa RF. The Neurobiology of Depression: an Integrated Overview from Biological Theories to Clinical Evidence. Mol Neurobiol 2016; 54:4847-4865. [DOI: 10.1007/s12035-016-0032-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
|
45
|
Sainath R, Ketschek A, Grandi L, Gallo G. CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation. Dev Neurobiol 2016; 77:454-473. [PMID: 27429169 DOI: 10.1002/dneu.22420] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) inhibit the formation of axon collateral branches. The regulation of the axonal cytoskeleton and mitochondria are important components of the mechanism of branching. Actin-dependent axonal plasticity, reflected in the dynamics of axonal actin patches and filopodia, is greatest along segments of the axon populated by mitochondria. It is reported that CSPGs partially depolarize the membrane potential of axonal mitochondria, which impairs the dynamics of the axonal actin cytoskeleton and decreases the formation and duration of axonal filopodia, the first steps in the mechanism of branching. The effects of CSPGs on actin cytoskeletal dynamics are specific to axon segments populated by mitochondria. In contrast, CSPGs do not affect the microtubule content of axons, or the localization of microtubules into axonal filopodia, a required step in the mechanism of branch formation. It is also reported that CSPGs decrease the mitochondria-dependent axonal translation of cortactin, an actin associated protein involved in branching. Finally, the inhibitory effects of CSPGs on axon branching, actin cytoskeletal dynamics and the axonal translation of cortactin are reversed by culturing neurons with acetyl-l-carnitine, which promotes mitochondrial respiration. Collectively these data indicate that CSPGs impair mitochondrial function in axons, an effect which contributes to the inhibition of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Rajiv Sainath
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| | - Andrea Ketschek
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| | - Leah Grandi
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| | - Gianluca Gallo
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Mitochondrial traffic jams in Alzheimer's disease - pinpointing the roadblocks. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1909-17. [PMID: 27460705 DOI: 10.1016/j.bbadis.2016.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 12/24/2022]
Abstract
The vigorous axonal transport of mitochondria, which serves to distribute these organelles in a dynamic and non-uniform fashion, is crucial to fulfill neuronal energetic requirements allowing the maintenance of neurons structure and function. Particularly, axonal transport of mitochondria and their spatial distribution among the synapses are directly correlated with synaptic activity and integrity. Despite the basis of Alzheimer's disease (AD) remains enigmatic, axonal pathology and synaptic dysfunction occur prior the occurrence of amyloid-β (Aβ) deposition and tau aggregation, the two classical hallmarks of this devastating neurodegenerative disease. Importantly, the early stages of AD are marked by defects on axonal transport of mitochondria as denoted by the abnormal accumulation of mitochondria within large swellings along dystrophic and degenerating neuritis. Within this scenario, this review is devoted to identify the molecular "roadblocks" underlying the abnormal axonal transport of mitochondria and consequent synaptic "starvation" and neuronal degeneration in AD. Understanding the molecular nature of defective mitochondrial transport may provide a new avenue to counteract AD pathology.
Collapse
|
47
|
Abstract
Neurons demand vast and vacillating supplies of energy. As the key contributors of this energy, as well as primary pools of calcium and signaling molecules, mitochondria must be where the neuron needs them, when the neuron needs them. The unique architecture and length of neurons, however, make them a complex system for mitochondria to navigate. To add to this difficulty, mitochondria are synthesized mainly in the soma, but must be transported as far as the distant terminals of the neuron. Similarly, damaged mitochondria-which can cause oxidative stress to the neuron-must fuse with healthy mitochondria to repair the damage, return all the way back to the soma for disposal, or be eliminated at the terminals. Increasing evidence suggests that the improper distribution of mitochondria in neurons can lead to neurodegenerative and neuropsychiatric disorders. Here, we will discuss the machinery and regulatory systems used to properly distribute mitochondria in neurons, and how this knowledge has been leveraged to better understand neurological dysfunction.
Collapse
Affiliation(s)
- Meredith M Course
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
48
|
Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function. Cells 2016; 5:cells5030030. [PMID: 27399781 PMCID: PMC5040972 DOI: 10.3390/cells5030030] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases.
Collapse
|
49
|
Britt DJ, Farías GG, Guardia CM, Bonifacino JS. Mechanisms of Polarized Organelle Distribution in Neurons. Front Cell Neurosci 2016; 10:88. [PMID: 27065809 PMCID: PMC4814528 DOI: 10.3389/fncel.2016.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule- and/or actin-based mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains.
Collapse
Affiliation(s)
- Dylan J Britt
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Ginny G Farías
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
50
|
Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders. Neural Plast 2016; 2016:3985063. [PMID: 26885402 PMCID: PMC4738951 DOI: 10.1155/2016/3985063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR). GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.
Collapse
|