1
|
Tsukamoto S, Mofrad MRK. Bridging scales in chromatin organization: Computational models of loop formation and their implications for genome function. J Chem Phys 2025; 162:054122. [PMID: 39918128 DOI: 10.1063/5.0232328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 05/08/2025] Open
Abstract
Chromatin loop formation plays a crucial role in 3D genome interactions, with misfolding potentially leading to irregular gene expression and various diseases. While experimental tools such as Hi-C have advanced our understanding of genome interactions, the biophysical principles underlying chromatin loop formation remain elusive. This review examines computational approaches to chromatin folding, focusing on polymer models that elucidate chromatin loop mechanics. We discuss three key models: (1) the multi-loop-subcompartment model, which investigates the structural effects of loops on chromatin conformation; (2) the strings and binders switch model, capturing thermodynamic chromatin aggregation; and (3) the loop extrusion model, revealing the role of structural maintenance of chromosome complexes. In addition, we explore advanced models that address chromatin clustering heterogeneity in biological processes and disease progression. The review concludes with an outlook on open questions and current trends in chromatin loop formation and genome interactions, emphasizing the physical and computational challenges in the field.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
- Molecular Biophysics and Integrative BioImaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Pai CP, Wang H, Seachrist DD, Agarwal N, Adams JA, Liu Z, Keri RA, Cao K, Schiemann WP, Kao HY. The PML1-WDR5 axis regulates H3K4me3 marks and promotes stemness of estrogen receptor-positive breast cancer. Cell Death Differ 2024; 31:768-778. [PMID: 38627584 PMCID: PMC11164886 DOI: 10.1038/s41418-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/30/2024] Open
Abstract
The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER+ breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer, and offer new insights into the unique roles of PML isoforms in breast cancer.
Collapse
Affiliation(s)
- Chun-Peng Pai
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Han Wang
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neel Agarwal
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Joshua A Adams
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Zhenghao Liu
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Departments of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kaixiang Cao
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - William P Schiemann
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hung-Ying Kao
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Kao HY, Pai CP, Wang H, Agarwal N, Adams J, Liu Z, Seachrist D, Keri R, Schiemann W. The PML1-WDR5 axis regulates H3K4me3 marks and promotes stemness of estrogen receptor-positive breast cancer. RESEARCH SQUARE 2023:rs.3.rs-3266720. [PMID: 37720048 PMCID: PMC10503857 DOI: 10.21203/rs.3.rs-3266720/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER + breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer and offer new insights into the unique roles of PML isoforms in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Joshua Adams
- Washington University School of Medicine in St. Louis
| | | | | | - Ruth Keri
- Cleveland Clinic Lerner Research Institute
| | | |
Collapse
|
4
|
Knoch TA. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization. Results Probl Cell Differ 2022; 70:495-549. [PMID: 36348120 DOI: 10.1007/978-3-031-06573-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The three-dimensional architecture of chromosomes, their arrangement, and dynamics within cell nuclei are still subject of debate. Obviously, the function of genomes-the storage, replication, and transcription of genetic information-has closely coevolved with this architecture and its dynamics, and hence are closely connected. In this work a scale-bridging framework investigates how of the 30 nm chromatin fibre organizes into chromosomes including their arrangement and morphology in the simulation of whole nuclei. Therefore, mainly two different topologies were simulated with corresponding parameter variations and comparing them to experiments: The Multi-Loop-Subcompartment (MLS) model, in which (stable) small loops form (stable) rosettes, connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending and excluded volume interactions. A spherical boundary potential simulated the confinement to nuclei with different radii. Simulated annealing and Brownian Dynamics methods were applied in a four-step decondensation procedure to generate from metaphase decondensated interphase configurations at thermodynamical equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes result in distinct subchromosomal domains visible in electron and confocal laser scanning microscopic images. In contrast, the big RW/GL loops lead to a mostly homogeneous chromatin distribution. Even small changes of the model parameters induced significant rearrangements of the chromatin morphology. The low overlap of chromosomes, arms, and subchromosomal domains observed in experiments agrees only with the MLS model. The chromatin density distribution in CLSM image stacks reveals a bimodal behaviour in agreement with recent experiments. Combination of these results with a variety of (spatial distance) measurements favour an MLS like model with loops and linkers of 63 to 126 kbp. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and is in disagreement with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist and are necessary for transport. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the diffusion of molecules, and other measurements. Also all other chromosome topologies can in principle be excluded. In summary, polymer simulations of whole nuclei compared to experimental data not only clearly favour only a stable loop aggregate/rosette like genome architecture whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus and hence can be used for understanding genome organization also in respect to diagnosis and treatment. This is in agreement with and also leads to a general novel framework of genome emergence, function, and evolution.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- Human Ecology and Complex Systems, German Society for Human Ecology (DGH), TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- TAK Renewable Energy UG, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
| |
Collapse
|
5
|
Knoch TA. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization. Semin Cell Dev Biol 2018; 90:19-42. [PMID: 30125668 DOI: 10.1016/j.semcdb.2018.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/10/2018] [Indexed: 01/28/2023]
Abstract
Despite all the efforts the three-dimensional higher-order architecture and dynamics in the cell nucleus are still debated. The regulation of genes, their transcription, replication, as well as differentiation in Eukarya is, however, closely connected to this architecture and dynamics. Here, an evaluation and review framework is setup to investigate the folding of a 30 nm chromatin fibre into chromosome territories by comparing computer simulations of two different chromatin topologies to experiments: The Multi-Loop-Subcompartment (MLS) model, in which small loops form rosettes connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop, rosette, and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending, and excluded volume interactions. A spherical boundary potential simulated the confinement by other chromosomes and the nuclear envelope. Monte Carlo and Brownian Dynamics methods were applied to generate chain configurations at thermodynamic equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes form distinct subchromosomal domains, compatible in size as those from light microscopic observations. In contrast, the big RW/GL loops lead to a more homogeneous chromatin distribution. Only the MLS model agrees with the low overlap of chromosomes, their arms, and subchromosomal domains found experimentally. A review of experimental spatial distance measurements between genomic markers labelled by FISH as a function of their genomic separation from different publications and comparison to simulated spatial distances also favours an MLS-like model with loops and linkers of 63 to 126 kbp. The chromatin folding topology also reduces the apparent persistence length of the chromatin fibre to a value significantly lower than the free solution persistence length, explaining the low persistence lengths found various experiments. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and disagrees with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the nuclear diffusion of molecules, as well as other experiments. In summary, this polymer simulation framework compared to experimental data clearly favours only a quasi-chromatin fibre forming a stable multi-loop aggregate/rosette like genome organization and dynamics whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, Dept. Cell Biology & Genetics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Ballarini F, Carante MP. Chromosome aberrations and cell death by ionizing radiation: Evolution of a biophysical model. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Carante MP, Ballarini F. Calculating Variations in Biological Effectiveness for a 62 MeV Proton Beam. Front Oncol 2016; 6:76. [PMID: 27092294 PMCID: PMC4822087 DOI: 10.3389/fonc.2016.00076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/21/2016] [Indexed: 11/17/2022] Open
Abstract
A biophysical model of radiation-induced cell death and chromosome aberrations [called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA)] was further developed and applied to therapeutic protons. The model assumes a pivotal role of DNA cluster damage, which can lead to clonogenic cell death following three main steps: (i) a DNA “cluster lesion” (CL) produces two independent chromosome fragments; (ii) fragment mis-rejoining within a threshold distance d gives rise to chromosome aberrations; (iii) certain aberration types (dicentrics, rings, and large deletions) lead to clonogenic inactivation. The yield of CLs and the probability, f, that a chromosome fragment remains un-rejoined even if other fragment(s) are present within d, were adjustable parameters. The model, implemented as a MC code providing simulated dose–responses directly comparable with experimental data, was applied to pristine and modulated Bragg peaks of the proton beam used to treat eye melanoma at INFN-LNS in Catania, Italy. Experimental survival curves for AG01522 cells exposed to the Catania beam were reproduced, supporting the model assumptions. Furthermore, cell death and chromosome aberrations at different depths along a spread-out Bragg peak (SOBP) dose profile were predicted. Both endpoints showed an increase along the plateau, and high levels of damage were found also beyond the distal dose fall-off, due to low-energy protons. Cell death and chromosome aberrations were also predicted for V79 cells, in the same irradiation scenario as that used for AG01522 cells. In line with other studies, this work indicated that assuming a constant relative biological effectiveness (RBE) along a proton SOBP may be sub-optimal. Furthermore, it provided qualitative and quantitative evaluations of the dependence of the beam effectiveness on the considered endpoint and dose. More generally, this work represents an example of therapeutic beam characterization avoiding the use of experimental RBE values, which can be source of uncertainties.
Collapse
Affiliation(s)
- Mario Pietro Carante
- Physics Department, University of Pavia, Pavia, Italy; Istituto Nazionale di Fisica Nucleare - Sezione di Pavia, Pavia, Italy
| | - Francesca Ballarini
- Physics Department, University of Pavia, Pavia, Italy; Istituto Nazionale di Fisica Nucleare - Sezione di Pavia, Pavia, Italy
| |
Collapse
|
8
|
Clements CS, Bikkul U, Ahmed MH, Foster HA, Godwin LS, Bridger JM. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization. Methods Mol Biol 2016; 1411:387-406. [PMID: 27147055 DOI: 10.1007/978-1-4939-3530-7_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The genome has a special relationship with the nuclear envelope in cells. Much of the genome is anchored at the nuclear periphery, tethered by chromatin binding proteins such nuclear lamins and other integral membrane proteins. Even though there are global assays such as DAM-ID or ChIP to assess what parts of the genome are associated with the nuclear envelope, it is also essential to be able to visualize regions of the genome in order to reveal their individual relationships with nuclear structures in single cells. This is executed by fluorescence in situ hybridization (FISH) in 2-dimensional flattened nuclei (2D-FISH) or 3-dimensionally preserved cells (3D-FISH) in combination with indirect immunofluorescence to reveal structural proteins. This chapter explains the protocols for 2D- and 3D-FISH in combination with indirect immunofluorescence and discusses options for image capture and analysis. Due to the nuclear envelope proteins being part of the non-extractable nucleoskeleton, we also describe how to prepare DNA halos through salt extraction and how they can be used to study genome behavior and association when combined with 2D-FISH.
Collapse
Affiliation(s)
- Craig S Clements
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Ural Bikkul
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Mai Hassan Ahmed
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Helen A Foster
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Lauren S Godwin
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | - Joanna M Bridger
- Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK.
| |
Collapse
|
9
|
Chakraborty S, Mehta I, Kulashreshtha M, Rao BJ. Quantitative analysis of chromosome localization in the nucleus. Methods Mol Biol 2015; 1228:223-33. [PMID: 25311133 DOI: 10.1007/978-1-4939-1680-1_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The spatial organization of the genome within the interphase nucleus is important for mediating genome functions. The radial organization of chromosome territories has been studied traditionally using two-dimensional fluorescence in situ hybridization (FISH) using labeled whole chromosome probes. Information from 2D-FISH images is analyzed quantitatively and is depicted in the form of the spatial distribution of chromosomes territories. However, to the best of our knowledge no open-access tools are available to delineate the position of chromosome territories from 2D-FISH images. In this chapter we present a methodology termed Image Analysis of Chromosomes for computing their localization (IMACULAT). IMACULAT is an open-access, automated tool that partitions the cell nucleus into shells of equal area or volume and computes the spatial distribution of chromosome territories.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India,
| | | | | | | |
Collapse
|
10
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
11
|
Zhang G, Jin L, Selzer ME. Assembly properties of lamprey neurofilament subunits and their expression after spinal cord transection. J Comp Neurol 2012; 519:3657-71. [PMID: 21618230 DOI: 10.1002/cne.22673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammals neurofilaments (NF) are formed by coassembly of three subunits: NFL, NFM, and NFH (light, medium, and heavy). It had been believed that lampreys have only one subunit, NF180. However, a previous study showed that NF180 could not self-assemble but could coassemble with rat NFL, suggesting the existence of additional NF subunits in lamprey. More recently, we cloned three additional NF subunits. These new subunits and NF180 have now been transfected in combinations into SW13cl.2Vim(-) cells, which lack endogenous cytoplasmic intermediate filaments. None of the subunits could self-assemble. No combination of NF subunits could form filaments in the absence of lamprey NFL (L-NFL). Assembly occurred at 28°C, but not at 37°C. L-NFL could form thick NF bundles with NF180 but not with NF132 and NF95, which formed only fine filamentous arrays. To determine which parts of the NF subunits are required for filament or bundle formation, we constructed deletion mutants of NF180 and cotransfected them with L-NFL. As with mammalian NF, only constructs with intact head and core domains could form filaments with L-NFL. However, the full length of NF180 was required to form NF bundles. As with NF180, in situ hybridization indicated that mRNA for L-NFL and NF132 was downregulated in identified reticulospinal neurons by 5 weeks after spinal cord transection, but was reexpressed at 10 weeks selectively in those neurons whose axons have a high probability of regenerating. This is consistent with a possible role of NFs in the mechanism of axon regeneration.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
12
|
Rouquette J, Cremer C, Cremer T, Fakan S. Functional nuclear architecture studied by microscopy: present and future. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:1-90. [PMID: 20630466 DOI: 10.1016/s1937-6448(10)82001-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells. New achievements offer the possibility to surpass the resolution limit of conventional light microscopy down to the nanometer scale and require improved bioinformatics tools able to handle the analysis of large amounts of data. In combination with the much higher resolution of electron microscopic methods, including ultrastructural cytochemistry, correlative microscopy of the same cells in their living and fixed state is the approach of choice to combine the advantages of different techniques. This will make possible future analyses of cell type- and species-specific differences of nuclear architecture in more detail and to put different models to critical tests.
Collapse
Affiliation(s)
- Jacques Rouquette
- Biocenter, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | |
Collapse
|
13
|
Harnicarová Horáková A, Bártová E, Kozubek S. Chromatin structure with respect to histone signature changes during cell differentiation. Cell Struct Funct 2010; 35:31-44. [PMID: 20424340 DOI: 10.1247/csf.09021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here, we would like to point out important milestones in the study of nuclear radial positioning and gene expression during differentiation processes. In addition, changes in the histone signature that significantly precede various differentiation pathways are reviewed. We address the regulatory functions of chromatin structure and histone epigenetic marks that give rise to gene expression patterns that are specific to distinct differentiation pathways. The functional relevance of nuclear architecture and epigenetic traits is preferentially discussed in the context of in vitro induced enterocytic differentiation and pluripotent or differentiated embryonic stem cells. We especially focus on the recapitulation of nuclear events that have been characterized for some genes and proto-oncogenes that are important for development and differentiation.
Collapse
|
14
|
Bártová E, Horáková AH, Uhlírová R, Raska I, Galiová G, Orlova D, Kozubek S. Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments. J Histochem Cytochem 2009; 58:391-403. [PMID: 20026667 DOI: 10.1369/jhc.2009.955435] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nucleolus is a nuclear compartment that plays an important role in ribosome biogenesis. Some structural features and epigenetic patterns are shared between nucleolar and non-nucleolar compartments. For example, the location of transcriptionally active mRNA on extended chromatin loop species is similar to that observed for transcriptionally active ribosomal DNA (rDNA) genes on so-called Christmas tree branches. Similarly, nucleolus organizer region-bearing chromosomes located a distance from the nucleolus extend chromatin fibers into the nucleolar compartment. Specific epigenetic events, such as histone acetylation and methylation and DNA methylation, also regulate transcription of both rRNA- and mRNA-encoding loci. Here, we review the epigenetic mechanisms and structural features that regulate transcription of ribosomal and mRNA genes. We focus on similarities in epigenetic and structural regulation of chromatin in nucleoli and the surrounding non-nucleolar region and discuss the role of proteins, such as heterochromatin protein 1, fibrillarin, nucleolin, and upstream binding factor, in rRNA synthesis and processing.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Královopolská 135, CZ-612 65, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
15
|
The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma 2009; 118:647-63. [DOI: 10.1007/s00412-009-0225-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/24/2022]
|
16
|
Wachsmuth M, Caudron-Herger M, Rippe K. Genome organization: Balancing stability and plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2061-79. [DOI: 10.1016/j.bbamcr.2008.07.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 12/18/2022]
|
17
|
Macromolecular crowding and its potential impact on nuclear function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2100-7. [PMID: 18723053 DOI: 10.1016/j.bbamcr.2008.07.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/16/2008] [Accepted: 07/20/2008] [Indexed: 12/26/2022]
Abstract
It is well established, that biochemical reactions are dependent on pH, ionic strength, temperature and the concentration of reactants. However, the steric repulsion among bulky components of biological systems also affect biochemical behavior: The 'excluded volume effect of macromolecular crowding' drives bulky components into structurally compact organizations, increases their thermodynamic activities and slows down diffusion. The very special composition of the cell nucleus, which is packed with high-molecular chromatin, ribonucleo-particles and associated proteins, suggests that crowding-effects are part of nuclear functionality. Realizing that many nuclear processes, notably gene transcription, hnRNA splicing and DNA replication, use macromolecular machines, and taking into account that macromolecular crowding provides a cooperative momentum for the assembly of macromolecular complexes, we here elaborate why macromolecular crowding may be functionally important in supporting the statistical significance of nuclear activities.
Collapse
|
18
|
Kreplak L, Richter K, Aebi U, Herrmann H. Chapter 15 Electron Microscopy of Intermediate Filaments: Teaming up with Atomic Force and Confocal Laser Scanning Microscopy. Methods Cell Biol 2008; 88:273-97. [DOI: 10.1016/s0091-679x(08)00415-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Bryantsev A, Kurchashova S, Golyshev S, Polyakov V, Wunderink H, Kanon B, Budagova K, Kabakov A, Kampinga H. Regulation of stress-induced intracellular sorting and chaperone function of Hsp27 (HspB1) in mammalian cells. Biochem J 2007; 407:407-17. [PMID: 17650072 PMCID: PMC2275061 DOI: 10.1042/bj20070195] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro, small Hsps (heat-shock proteins) have been shown to have chaperone function capable of keeping unfolded proteins in a form competent for Hsp70-dependent refolding. However, this has never been confirmed in living mammalian cells. In the present study, we show that Hsp27 (HspB1) translocates into the nucleus upon heat shock, where it forms granules that co-localize with IGCs (interchromatin granule clusters). Although heat-induced changes in the oligomerization status of Hsp27 correlate with its phosphorylation and nuclear translocation, Hsp27 phosphorylation alone is not sufficient for effective nuclear translocation of HspB1. Using firefly luciferase as a heat-sensitive reporter protein, we demonstrate that HspB1 expression in HspB1-deficient fibroblasts enhances protein refolding after heat shock. The positive effect of HspB1 on refolding is completely diminished by overexpression of Bag-1 (Bcl-2-associated athanogene), the negative regulator of Hsp70, consistent with the idea of HspB1 being the substrate holder for Hsp70. Although HspB1 and luciferase both accumulate in nuclear granules after heat shock, our results suggest that this is not related to the refolding activity of HspB1. Rather, granular accumulation may reflect a situation of failed refolding where the substrate is stored for subsequent degradation. Consistently, we found 20S proteasomes concentrated in nuclear granules of HspB1 after heat shock. We conclude that HspB1 contributes to an increased chaperone capacity of cells by binding unfolded proteins that are hereby kept competent for refolding by Hsp70 or that are sorted to nuclear granules if such refolding fails.
Collapse
Affiliation(s)
- Anton L. Bryantsev
- *Department of Electron Microscopy, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Svetlana Yu. Kurchashova
- *Department of Electron Microscopy, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Sergey A. Golyshev
- *Department of Electron Microscopy, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Vladimir Yu. Polyakov
- *Department of Electron Microscopy, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Herman F. Wunderink
- †Department of Cell Biology, Section Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, 9791 AV, Groningen, The Netherlands
| | - Bart Kanon
- †Department of Cell Biology, Section Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, 9791 AV, Groningen, The Netherlands
| | - Karina R. Budagova
- ‡Department of Radiation Biochemistry, Medical Radiology Research Center, Obninsk, 249036, Russia
| | - Alexander E. Kabakov
- ‡Department of Radiation Biochemistry, Medical Radiology Research Center, Obninsk, 249036, Russia
| | - Harm H. Kampinga
- †Department of Cell Biology, Section Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, 9791 AV, Groningen, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Abstract
There are almost 1,300 entries for higher eukaryotes in the Nuclear Protein Database. The proteins' subcellular distribution patterns within interphase nuclei can be complex, ranging from diffuse to punctate or microspeckled, yet they all work together in a coordinated and controlled manner within the three-dimensional confines of the nuclear volume. In this review we describe recent advances in the use of quantitative methods to understand nuclear spatial organisation and discuss some of the practical applications resulting from this work.
Collapse
|
21
|
Funayama R, Ishikawa F. Cellular senescence and chromatin structure. Chromosoma 2007; 116:431-40. [PMID: 17579878 DOI: 10.1007/s00412-007-0115-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/27/2007] [Accepted: 05/27/2007] [Indexed: 12/26/2022]
Abstract
Cellular senescence is characterized by stable cell cycle arrest that is triggered by various forms of stress stimuli. Senescent cells show a series of morphological and physiological alterations including a flat and enlarged morphology, an increase in acidic beta-galactosidase activity, chromatin condensation, and changes in gene expression pattern. These features are not observed in proliferating cells or quiescent cells in vitro. Using these senescence markers, cellular senescence has been shown to occur in benign or premalignant lesions but not in malignant lesions and to act as a tumor-suppressing mechanism in vivo. The onset and maintenance of the senescent state are regulated by two tumor suppressor proteins, p53 and Rb, which mediate senescence signals through p38 mitogen-activated protein kinase and cyclin-dependent kinase inhibitors. Alterations of chromatin structure are believed to contribute to the irreversible nature of the senescent state. Senescent cells form characteristic heterochromatin structure called senescence-associated heterochromatic foci (SAHFs), which may repress the expression of proliferation-promoting genes, such as E2F target genes. Recent studies have provided molecular insights into the structure and the mechanism of SAHF formation. In this paper, we review the role of cellular senescence in tumor suppression in vivo and the molecular mechanism of stable growth arrest in senescent cells, focusing on the special form of heterochromatin, SAHFs.
Collapse
Affiliation(s)
- Ryo Funayama
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Kyoto, 606-8501, Japan
| | | |
Collapse
|
22
|
Mehta IS, Figgitt M, Clements CS, Kill IR, Bridger JM. Alterations to nuclear architecture and genome behavior in senescent cells. Ann N Y Acad Sci 2007; 1100:250-63. [PMID: 17460187 DOI: 10.1196/annals.1395.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The organization of the genome within interphase nuclei, and how it interacts with nuclear structures is important for the regulation of nuclear functions. Many of the studies researching the importance of genome organization and nuclear structure are performed in young, proliferating, and often transformed cells. These studies do not reveal anything about the nucleus or genome in nonproliferating cells, which may be relevant for the regulation of both proliferation and replicative senescence. Here, we provide an overview of what is known about the genome and nuclear structure in senescent cells. We review the evidence that nuclear structures, such as the nuclear lamina, nucleoli, the nuclear matrix, nuclear bodies (such as promyelocytic leukemia bodies), and nuclear morphology all become altered within growth-arrested or senescent cells. Specific alterations to the genome in senescent cells, as compared to young proliferating cells, are described, including aneuploidy, chromatin modifications, chromosome positioning, relocation of heterochromatin, and changes to telomeres.
Collapse
Affiliation(s)
- Ishita S Mehta
- Laboratory of Nuclear and Genomic Health, Centre for Cell and Chromosome Biology, Biosciences, School of Health Sciences and Social Care, Brunel University, West London, UB8 3PH, UK
| | | | | | | | | |
Collapse
|
23
|
Ihalainen TO, Niskanen EA, Jylhävä J, Turpeinen T, Rinne J, Timonen J, Vihinen-Ranta M. Dynamics and interactions of parvoviral NS1 protein in the nucleus. Cell Microbiol 2007; 9:1946-59. [PMID: 17419720 DOI: 10.1111/j.1462-5822.2007.00926.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nuclear positioning and dynamic interactions of viral proteins with nuclear substructures play essential roles during infection with DNA viruses. Visualization of the intranuclear interactions and motility of the parvovirus replication protein (NS1) in living cells gives insight into specific parvovirus protein-cellular structure interactions. Confocal analysis of highly synchronized infected Norden Laboratory Feline Kidney cells showed accumulation of nuclear NS1 in discrete interchromosomal foci. NS1 fused with enhanced yellow fluorescence protein (NS1-EYFP) provided a marker in live cells for dynamics of NS1 traced by photobleaching techniques. Fluorescence Recovery after Photobleaching suggested that the NS1 protein is not freely diffusing but undergoes transient interactions with nuclear compartments. Fluorescence Loss in Photobleaching demonstrated for the first time the shuttling of a parvoviral protein between the nucleus and the cytoplasm as assayed with NS1-EYFP. Finally, time-lapse imaging of infected cells revealed that the intranuclear distribution of NS1-EYFP evolves dramatically starting from the formation of NS1 foci and proceeding to a homogenous distribution extending throughout the nucleus.
Collapse
Affiliation(s)
- Teemu O Ihalainen
- Department of Biological and Environmental Science, NanoScience Center, University of Jyväskylä, Survontie 9, FI-40014 Jyväskylä, Finland
| | | | | | | | | | | | | |
Collapse
|
24
|
Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Küpper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T. Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 2006; 14:707-33. [PMID: 17115328 DOI: 10.1007/s10577-006-1086-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 11/28/2022]
Abstract
In spite of strong evidence that the nucleus is a highly organized organelle, a consensus on basic principles of the global nuclear architecture has not so far been achieved. The chromosome territory-interchromatin compartment (CT-IC) model postulates an IC which expands between chromatin domains both in the interior and the periphery of CT. Other models, however, dispute the existence of the IC and claim that numerous chromatin loops expand between and within CTs. The present study was undertaken to resolve these conflicting views. (1) We demonstrate that most chromatin exists in the form of higher-order chromatin domains with a compaction level at least 10 times above the level of extended 30 nm chromatin fibers. A similar compaction level was obtained in a detailed analysis of a particularly gene-dense chromosome region on HSA 11, which often expanded from its CT as a finger-like chromatin protrusion. (2) We further applied an approach which allows the experimental manipulation of both chromatin condensation and the width of IC channels in a fully reversible manner. These experiments, together with electron microscopic observations, demonstrate the existence of the IC as a dynamic, structurally distinct nuclear compartment, which is functionally linked with the chromatin compartment.
Collapse
Affiliation(s)
- Heiner Albiez
- Department of Biology II, LMU Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hoppe A, Beech SJ, Dimmock J, Leppard KN. Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption. J Virol 2006; 80:3042-9. [PMID: 16501113 PMCID: PMC1395473 DOI: 10.1128/jvi.80.6.3042-3049.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 01/03/2006] [Indexed: 12/12/2022] Open
Abstract
Nuclear domain 10 (ND10s), or promyelocytic leukemia protein (PML) nuclear bodies, are spherical nuclear structures that require PML proteins for their formation. Many viruses target these structures during infection. The E4 Orf3 protein of adenovirus 5 (Ad5) rearranges ND10s, causing PML to colocalize with Orf3 in nuclear tracks or fibers. There are six different PML isoforms (I to VI) present at ND10s, all sharing a common N terminus but with structural differences at their C termini. In this study, PML II was the only one of these six isoforms that was found to interact directly and specifically with Ad5 E4 Orf3 in vitro and in vivo; these results define a new Orf3 activity. Three of a series of 18 mutant Orf3 proteins were unable to interact with PML II; these were also unable to cause ND10 rearrangement. Moreover, in PML-null cells that contained neoformed ND10s comprising a single PML isoform, only ND10s formed of PML II were rearranged by Orf3. These data show that the interaction between Orf3 and PML II is necessary for ND10 rearrangement to occur. Finally, Orf3 was shown to self-associate in vitro. This activity was absent in mutant Orf3 proteins that were unable to form tracks and to bind PML II. Thus, Orf3 oligomerization may mediate the formation of nuclear tracks in vivo and may also be important for PML II binding.
Collapse
Affiliation(s)
- Anne Hoppe
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | |
Collapse
|
26
|
Ludwig Y, Schafer C, Kramer A, Albermann L, Oberleithner H, Shahin V. Hot Spot Formation in the Nuclear Envelope of Oocytes in Response to Steroids. Cell Physiol Biochem 2006; 17:181-92. [PMID: 16790994 DOI: 10.1159/000094123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A Glucocorticoid-sensitive cell rapidly responds to hormone stimulation with bidirectional exchange of specific macromolecules between cytosol and nucleus. Glucocorticoid-initiated macromolecules (GIMs) must overcome the nuclear envelope (NE) to enter or leave the nucleus. GIM translocation occurs through nuclear pore complexes (NPCs) that span the NE. We investigated the question whether transport of GIMs through NPCs occurs random or involves selected groups of NPCs (hot spots). Glucocorticoid receptors were expressed in Xenopus laevis oocytes and GIM transport was activated by triamcinolone acetonide, a potent synthetic glucocorticoid analogon. Glucocorticoid receptors associated with the NE and the chromatin were identified using western blot analysis and, at single molecule level, atomic force microscopy. Fluorescence-labeled dextran was used to describe passive NE permeability. We observed that after hormone injection (i) small GIMs, most likely GRs, localize within seconds on both sides of the NE. (ii) large GIMs, most likely ribonucleoproteins, localize within minutes on NPCs at the nucleoplasmic side (iii) both small and large GIMs accumulate on selected NPC clusters (iv) NE permeability transiently decreases when GIMs attach to NPCs. We conclude that GIM transport across the nuclear barrier does not randomly take place but is carried out by a selected population of NPCs.
Collapse
Affiliation(s)
- Yvonne Ludwig
- Institute of Physiology II, University of Muenster, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Bártová E, Pacherník J, Harnicarová A, Kovarík A, Kovaríková M, Hofmanová J, Skalníková M, Kozubek M, Kozubek S. Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J Cell Sci 2005; 118:5035-46. [PMID: 16254244 DOI: 10.1242/jcs.02621] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of the histone deacetylase inhibitors (HDACi) trichostatin A (TSA) and sodium butyrate (NaBt) were studied in A549, HT29 and FHC human cell lines. Global histone hyperacetylation, leading to decondensation of interphase chromatin, was characterized by an increase in H3(K9) and H3(K4) dimethylation and H3(K9) acetylation. The levels of all isoforms of heterochromatin protein, HP1, were reduced after HDAC inhibition. The observed changes in the protein levels were accompanied by changes in their interphase patterns. In control cells, H3(K9) acetylation and H3(K4) dimethylation were substantially reduced to a thin layer at the nuclear periphery, whereas TSA and NaBt caused the peripheral regions to become intensely acetylated at H3(K9) and dimethylated at H3(K4). The dispersed pattern of H3(K9) dimethylation was stable even at the nuclear periphery of HDACi-treated cells. After TSA and NaBt treatment, the HP1 proteins were repositioned more internally in the nucleus, being closely associated with interchromatin compartments, while centromeric heterochromatin was relocated closer to the nuclear periphery. These findings strongly suggest dissociation of HP1 proteins from peripherally located centromeres in a hyperacetylated and H3(K4) dimethylated environment. We conclude that inhibition of histone deacetylases caused dynamic reorganization of chromatin in parallel with changes in its epigenetic modifications.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 2005; 114:212-29. [PMID: 16133352 DOI: 10.1007/s00412-005-0016-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/29/2005] [Accepted: 07/04/2005] [Indexed: 01/15/2023]
Abstract
Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.
Collapse
Affiliation(s)
- Helen A Foster
- Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge UB8 3PH, UK
| | | |
Collapse
|
29
|
Görisch SM, Lichter P, Rippe K. Mobility of multi-subunit complexes in the nucleus: accessibility and dynamics of chromatin subcompartments. Histochem Cell Biol 2005; 123:217-28. [PMID: 15830242 DOI: 10.1007/s00418-005-0752-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2004] [Indexed: 01/28/2023]
Abstract
The cell nucleus contains a number of mobile subnuclear organelles involved in RNA processing, transcriptional regulation and antiviral defence like Cajal and promyelocytic leukaemia (PML) bodies. It remains an open question how these bodies translocate to specific nuclear regions within the nucleus to exert their biological function. The mobility and localisation of macromolecules in the nucleus are closely related to the dynamic organisation and accessibility of chromatin. This relation has been studied with biologically inert fluorescent particles like dextrans, polystyrene nanospheres and inactive protein crystals formed by the Mx1-YFP fusion protein or other ectopically expressed proteins like vimentin. As reviewed here, properties of the chromatin environment can be identified from these experiments that determine the mobility of Cajal and PML bodies and other supramolecular complexes.
Collapse
Affiliation(s)
- Sabine M Görisch
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
Scheuermann MO, Murmann AE, Richter K, Görisch SM, Herrmann H, Lichter P. Characterization of nuclear compartments identified by ectopic markers in mammalian cells with distinctly different karyotype. Chromosoma 2005; 114:39-53. [PMID: 15776261 DOI: 10.1007/s00412-005-0336-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/23/2005] [Accepted: 02/23/2005] [Indexed: 12/11/2022]
Abstract
The functional organization of chromatin in cell nuclei is a fundamental question in modern cell biology. Individual chromosomes occupy distinct chromosome territories in interphase nuclei. Nuclear bodies localize outside the territories and colocalize with ectopically expressed proteins in a nuclear subcompartment, the interchromosomal domain compartment. In order to investigate the structure of this compartment in mammalian cells with distinctly different karyotypes, we analyzed human HeLa cells (3n+ = 71 chromosomes) and cells of two closely related muntjac species, the Chinese muntjac (2n = 46 chromosomes) and the Indian muntjac (2n = 6/7 chromosomes). The distribution of ectopically expressed intermediate filament proteins (vimentin and cytokeratins) engineered to contain a nuclear localization sequence (NLS) and a nuclear particle forming protein (murine Mx1) fused to a yellow fluorescent protein (YFP) was compared. The proteins were predominantly localized in regions with poor DAPI staining independent of the cells' karyotype. In contrast to NLS-vimentin, the NLS-modified cytokeratins were also found close to the nuclear periphery. In Indian muntjac cells, NLS-vimentin colocalized with Mx1-YFP as well as the NLS-cytokeratins. Since the distribution of the ectopically expressed protein markers is similar in cells with distinctly different chromosome numbers, the property of the delineated, limited compartment might indeed depend on chromatin organization.
Collapse
Affiliation(s)
- Markus O Scheuermann
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Bridger JM, Kalla C, Wodrich H, Weitz S, King JA, Khazaie K, Kräusslich HG, Lichter P. Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 2005; 302:180-93. [PMID: 15561100 DOI: 10.1016/j.yexcr.2004.07.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/30/2004] [Indexed: 12/15/2022]
Abstract
RNA polymerase II transcripts are confined to nuclear compartments. A detailed analysis of the nuclear topology of RNA from individual genes was performed for transcripts from the marker gene coding for chloramphenicol acetyltransferase, expressed at a high level from the HTLV-1 LTR promoter. The construct was transfected into A293 cells where the RNA was organized as an extensive reticular network. We also studied the RNA distribution from combinations of neighboring HIV and bacterial resistance genes that co-integrated within the genome of COS-7 cells-revealing spherical or track-like accumulations of RNA that were extensively branched. There were many nuclei with distinct but overlapping RNA accumulations. Since the coding genes localized at the overlapping points, the RNAs are synthesized at a common region and diverge. The correlation between the frequency of the separation of the transcripts and the physical distance of the respective genes suggests a subcompartmentalization in the microenvironment of genes on the basis of geometric parameters. Thus, the more distant the genes are on the same chromosome, the more likely they are confined to separated subcompartments of an extensive reticular system. Co-delineation of the RNA transcripts with Cajal bodies and chromosome territories indicated the organization of nuclear RNA transcripts in a reticular interchromosome domain compartment.
Collapse
Affiliation(s)
- Joanna M Bridger
- Abteilung Molekulare Genetik, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Scheuermann MO, Tajbakhsh J, Kurz A, Saracoglu K, Eils R, Lichter P. Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 2005; 301:266-79. [PMID: 15530862 DOI: 10.1016/j.yexcr.2004.08.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/03/2004] [Indexed: 01/29/2023]
Abstract
Knowledge about the functional impact of the topological organization of DNA sequences within interphase chromosome territories is still sparse. Of the few analyzed single copy genomic DNA sequences, the majority had been found to localize preferentially at the chromosome periphery or to loop out from chromosome territories. By means of dual-color fluorescence in situ hybridization (FISH), immunolabeling, confocal microscopy, and three-dimensional (3D) image analysis, we analyzed the intraterritorial and nuclear localization of 10 genomic fragments of different sequence classes in four different human cell types. The localization of three muscle-specific genes FLNA, NEB, and TTN, the oncogene BCL2, the tumor suppressor gene MADH4, and five putatively nontranscribed genomic sequences was predominantly in the periphery of the respective chromosome territories, independent from transcriptional status and from GC content. In interphase nuclei, the noncoding sequences were only rarely found associated with heterochromatic sites marked by the satellite III DNA D1Z1 or clusters of mammalian heterochromatin proteins (HP1alpha, HP1beta, HP1gamma). However, the nontranscribed sequences were found predominantly at the nuclear periphery or at the nucleoli, whereas genes tended to localize on chromosome surfaces exposed to the nuclear interior.
Collapse
Affiliation(s)
- Markus O Scheuermann
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Nalepa G, Harper JW. Visualization of a highly organized intranuclear network of filaments in living mammalian cells. CELL MOTILITY AND THE CYTOSKELETON 2004; 59:94-108. [PMID: 15362113 DOI: 10.1002/cm.20023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
For 30 years, the mammalian cell nucleus has been hypothesized to contain a filamentous framework, the nuclear matrix or karyoskeleton, which regulates nuclear structure and function. However, such an organized network of filaments has never been observed in living cells. Here we show that human Cdc14B phosphatase in living cells tightly associates with long filaments that begin at the nucleolar periphery and extend to the nuclear envelope, frequently making close connections with nuclear pore complexes. We demonstrate that Cdc14B contains a bipartite signal that directs it to the intranuclear filaments, and we also detect a small amount of Cdc14B on interphase and mitotic centrosomes. Furthermore, we show that Cdc14B is critical for the maintenance of proper nuclear structure together with polo-like kinase Plk1. This work provides the first direct evidence for the existence of an intranuclear filamentous framework in living mammalian cells and implicates Cdc14B in the control of mammalian nuclear architecture.
Collapse
Affiliation(s)
- Grzegorz Nalepa
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
34
|
Wang J, Shiels C, Sasieni P, Wu PJ, Islam SA, Freemont PS, Sheer D. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. ACTA ACUST UNITED AC 2004; 164:515-26. [PMID: 14970191 PMCID: PMC2171989 DOI: 10.1083/jcb.200305142] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The promyelocytic leukemia (PML) protein is aggregated into nuclear bodies that are associated with diverse nuclear processes. Here, we report that the distance between a locus and its nearest PML body correlates with the transcriptional activity and gene density around the locus. Genes on the active X chromosome are more significantly associated with PML bodies than their silenced homologues on the inactive X chromosome. We also found that a histone-encoding gene cluster, which is transcribed only in S-phase, is more strongly associated with PML bodies in S-phase than in G0/G1 phase of the cell cycle. However, visualization of specific RNA transcripts for several genes showed that PML bodies were not themselves sites of transcription for these genes. Furthermore, knock-down of PML bodies by RNA interference did not preferentially change the expression of genes closely associated with PML bodies. We propose that PML bodies form in nuclear compartments of high transcriptional activity, but they do not directly regulate transcription of genes in these compartments.
Collapse
Affiliation(s)
- Jayson Wang
- Human Cytogenetics Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, England, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Windoffer R, Wöll S, Strnad P, Leube RE. Identification of novel principles of keratin filament network turnover in living cells. Mol Biol Cell 2004; 15:2436-48. [PMID: 15004233 PMCID: PMC404035 DOI: 10.1091/mbc.e03-09-0707] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally assumed that turnover of the keratin filament system occurs by exchange of subunits along its entire length throughout the cytoplasm. We now present evidence that a circumscribed submembranous compartment is actually the main site for network replenishment. This conclusion is based on the following observations in living cells synthesizing fluorescent keratin polypeptides: 1) Small keratin granules originate in close proximity to the plasma membrane and move toward the cell center in a continuous motion while elongating into flexible rod-like fragments that fuse with each other and integrate into the peripheral KF network. 2) Recurrence of fluorescence after photobleaching is first seen in the cell periphery where keratin filaments are born that translocate subsequently as part of the network toward the cell center. 3) Partial keratin network reformation after orthovanadate-induced disruption is restricted to a distinct peripheral zone in which either keratin granules or keratin filaments are transiently formed. These findings extend earlier investigations of mitotic cells in which de novo keratin network formation was shown to originate from the cell cortex. Taken together, our results demonstrate that the keratin filament system is not homogeneous but is organized into temporally and spatially distinct subdomains. Furthermore, the cortical localization of the regulatory cues for keratin filament turnover provides an ideal way to adjust the epithelial cytoskeleton to dynamic cellular processes.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
37
|
Görisch SM, Richter K, Scheuermann MO, Herrmann H, Lichter P. Diffusion-limited compartmentalization of mammalian cell nuclei assessed by microinjected macromolecules. Exp Cell Res 2003; 289:282-94. [PMID: 14499629 DOI: 10.1016/s0014-4827(03)00265-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to investigate the accessibility of the nucleoplasm for macromolecules with different physical properties, we microinjected FITC-conjugated dextrans of different sizes as well as anionic FITC-dextrans and FITC-poly-L-lysine into mammalian cell nuclei. Small dextrans displayed a homogeneous nuclear distribution. With increasing molecular mass (42 to 2500 kDa), FITC-dextrans were progressively excluded from chromatin regions, accumulating in and thereby outlining an apparently extended interchromatin space. Anionic FITC-dextrans (500 kDa) showed complete exclusion from labeled chromatin regions, while the positively charged FITC-poly-L-lysine was to some extent present within the chromatin regions. Moreover, the FITC-poly-L-lysine preferentially localized at the nuclear periphery. We also found a size-dependent exclusion of FITC-dextrans from nucleoli regions, while the FITC-poly-L-lysine accumulated in the nucleoli. Thus, the distinct and restricted nuclear accessibility for macromolecules is dependent on molecule size and electrical charge.
Collapse
Affiliation(s)
- Sabine M Görisch
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:83-175. [PMID: 12641211 DOI: 10.1016/s0074-7696(05)23003-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
39
|
Loidl J. Chromosomes of the budding yeast Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:141-96. [PMID: 12503849 DOI: 10.1016/s0074-7696(02)22014-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitotic chromosomes of the baker's yeast, Saccharomyces cerevisiae, cannot be visualized by standard cytological methods. Only the study of meiotic bivalents and the synaptonemal complex and the visualization of chromosome-sized DNA molecules on pulsed-field gels have provided some insight into chromosome structure and behavior. More recently, advanced techniques such as in situ hybridization, the illumination of chromosomal loci by GFP-tagged DNA-binding proteins, and immunostaining of chromosomal proteins have promoted our knowledge about yeast chromosomes. These novel cytological approaches in combination with the yeast's advanced biochemistry and genetics have produced a great wealth of information on the interplay between molecular and cytological processes and have strengthened the role of yeast as a leading cell biological model organism. Recent cytological studies have revealed much about the chromosomal organization in interphase nuclei and have contributed significantly to our current understanding of chromosome condensation, sister chromatid cohesion, and centromere orientation in mitosis. Moreover, important details about the biochemistry and ultrastructure of meiotic pairing and recombination have been revealed by combined cytological and molecular approaches. This article covers several aspects of yeast chromosome structure, including their organization within interphase nuclei and their behavior during mitosis and meiosis.
Collapse
Affiliation(s)
- Josef Loidl
- Institute of Botany, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
40
|
Haigis KM, Dove WF. A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Nat Genet 2003; 33:33-9. [PMID: 12447373 DOI: 10.1038/ng1055] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 10/24/2002] [Indexed: 11/08/2022]
Abstract
In mammals, loss of APC/Apc gatekeeper function initiates intestinal tumorigenesis. Several different mechanisms have been shown or proposed to mediate functional loss of APC/Apc: mutation in APC/Apc, non-disjunction, homologous somatic recombination and epigenetic silencing. The demonstration that, in the C57BL/6 (B6) Apc(Min/+) mouse model of inherited intestinal cancer, loss of Apc function can occur by loss of heterozygosity (LOH) through somatic recombination between homologs presents an opportunity to search for polymorphisms in the homologous somatic recombination pathway. We report that the Robertsonian translocation Rb(7.18)9Lub (Rb9) suppresses the multiplicity of intestinal adenomas in this mouse model. As the copy number of Rb9 increases, the association with the interphase nucleolus of the rDNA repeats centromeric to the Apc locus on Chromosome 18 is increasingly disrupted. Our analysis shows that homologous somatic recombination is the principal pathway for LOH in adenomas in B6 Apc(Min/+) mice. These studies provide additional evidence that neoplastic growth can initiate in the complete absence of canonical genomic instability.
Collapse
Affiliation(s)
- Kevin M Haigis
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin-Madison, 1400 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
41
|
Dreger CK, König AR, Spring H, Lichter P, Herrmann H. Investigation of nuclear architecture with a domain-presenting expression system. J Struct Biol 2002; 140:100-15. [PMID: 12490158 DOI: 10.1016/s1047-8477(02)00540-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated the topogenic properties of the nucleus by ectopic expression of chimeric proteins consisting of a NLS-modified cytoplasmic filament-forming protein, Xenopus laevis vimentin, and domains of inner nuclear membrane proteins. Whereas the "carrier" without cargo, the NLS-vimentin alone, is deposited in a few nuclear body-type structures (J.M. Bridger, H. Herrmann, C. Münkel, P. Lichter, J. Cell Sci., 111, 1241-1253), the distribution is entirely changed upon coupling with the evolutionarily conserved domain of the lamin B tail, the entire lamin B tail, the amino-terminal nucleoplasmic segment of the lamin B receptor (LBR), and the LEM domain of emerin, respectively. Remarkably, every individual chimeric protein exhibits a completely different distribution. Therefore, we assume that the chimeric parts are specifically recognized by factors engaged in nucleus-specific topogenesis. Thus, the conserved domain of the lamin B tail results in the formation of many small accumulations spread all over the nucleus. The chimera with the complete lamin B tail is deposited in short fibrillar aggregates within the nucleus. It does not mediate the integration of the chimeric protein into the nuclear membrane in cultured cells, indicating that the lamin tail alone is not sufficient to direct the integration of a protein into the lamina in vivo. In contrast, in the nuclear assembly system of Xenopus laevis the recombinant NLS-vimentin-lamin tail protein is concentrated at the nuclear membrane. The LBR chimera is arranged in a "beaded-chain"-type fashion, quite different from the more random deposition of NLS-vimentin alone. To our surprise, the LEM domain of emerin induces the retention of most of the chimeric proteins within the cytoplasm. Hence, it appears to be engaged in a strong cytoplasmic interaction that overrides the nuclear localization signal. Finally, the lamin chimera with the conserved part of the lamin B tail is shown to recruit LBR to the nuclear vimentin bodies and, vice versa, the LBR chimera attracts lamin B in transfected cells, thereby demonstrating their bona fide interaction in vivo.
Collapse
Affiliation(s)
- Christine K Dreger
- Division for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
42
|
Shiels C, Islam SA, Vatcheva R, Sasieni P, Sternberg MJ, Freemont PS, Sheer D. PML bodies associate specifically with the MHC gene cluster in interphase nuclei. J Cell Sci 2001; 114:3705-16. [PMID: 11707522 DOI: 10.1242/jcs.114.20.3705] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies are nuclear multi-protein domains. The observations that viruses transcribe their genomes adjacent to PML bodies and that nascent RNA accumulates at their periphery suggest that PML bodies function in transcription. We have used immuno-FISH in primary human fibroblasts to determine the 3D spatial organisation of gene-rich and gene-poor chromosomal regions relative to PML bodies. We find a highly non-random association of the gene-rich major histocompatibilty complex (MHC) on chromosome 6 with PML bodies. This association is specific for the centromeric end of the MHC and extends over a genomic region of at least 1.6 megabases. We also show that PML association is maintained when a subsection of this region is integrated into another chromosomal location. This is the first demonstration that PML bodies have specific chromosomal associations and supports a model for PML bodies as part of a functional nuclear compartment.
Collapse
Affiliation(s)
- C Shiels
- Human Cytogenetics Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Hase ME, Kuznetsov NV, Cordes VC. Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol Biol Cell 2001; 12:2433-52. [PMID: 11514627 PMCID: PMC58605 DOI: 10.1091/mbc.12.8.2433] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tpr is a protein component of nuclear pore complex (NPC)-attached intranuclear filaments. Secondary structure predictions suggest a bipartite structure, with a large N-terminal domain dominated by heptad repeats (HRs) typical for coiled-coil--forming proteins. Proposed functions for Tpr have included roles as a homo- or heteropolymeric architectural element of the nuclear interior. To gain insight into Tpr's ultrastructural properties, we have studied recombinant Tpr segments by circular dichroism spectroscopy, chemical cross-linking, and rotary shadowing electron microscopy. We show that polypeptides of the N-terminal domain homodimerize in vitro and represent alpha-helical molecules of extended rod-like shape. With the use of a yeast two-hybrid approach, arrangement of the coiled-coil is found to be in parallel and in register. To clarify whether Tpr can self-assemble further into homopolymeric filaments, the full-length protein and deletion mutants were overexpressed in human cells and then analyzed by confocal immunofluorescence microscopy, cell fractionation, and immuno-electron microscopy. Surplus Tpr, which does not bind to the NPC, remains in a soluble state of approximately 7.5 S and occasionally forms aggregates of entangled molecules but neither self-assembles into extended linear filaments nor stably binds to other intranuclear structures. Binding to the NPC is shown to depend on the integrity of individual HRs; amino acid substitutions within these HRs abrogate NPC binding and render the protein soluble but do not abolish Tpr's general ability to homodimerize. Possible contributions of Tpr to the structural organization of the nuclear periphery in somatic cells are discussed.
Collapse
Affiliation(s)
- M E Hase
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | |
Collapse
|
44
|
Ottolenghi A, Ballarini F, Biaggi M. Modelling chromosomal aberration induction by ionising radiation: the influence of interphase chromosome architecture. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:369-382. [PMID: 11642299 DOI: 10.1016/s0273-1177(01)00004-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Several advances have been achieved in the knowledge of nuclear architecture and functions during the last decade, thus allowing the identification of interphase chromosome territories and sub-chromosomal domains (e.g. arm and band domains). This is an important step in the study of radiation-induced chromosome aberrations; indeed, the coupling between track-structure simulations and reliable descriptions of the geometrical properties of the target is one of the main tasks in modelling aberration induction by radiation, since it allows one to clarify the role of the initial positioning of two DNA lesions in determining their interaction probability. In the present paper, the main recent findings on nuclear and chromosomal architecture are summarised. A few examples of models based on different descriptions of interphase chromosome organisation (random-walk models, domain models and static models) are presented, focussing on how the approach adopted in modelling the target nuclei and chromosomes can influence the simulation of chromosomal aberration yields. Each model is discussed by taking into account available experimental data on chromosome aberration induction and/or interphase chromatin organisation. Preliminary results from a mechanistic model based on a coupling between radiation track-structure features and explicitly-modelled, non-overlapping chromosome territories are presented.
Collapse
Affiliation(s)
- A Ottolenghi
- Dipartimento di Fisica--Universita di Milano and INFN--Sezione di Milano, via Celoria 16, 20133 Milano, Italy
| | | | | |
Collapse
|
45
|
Visser AE, Jaunin F, Fakan S, Aten JA. High resolution analysis of interphase chromosome domains. J Cell Sci 2000; 113 ( Pt 14):2585-93. [PMID: 10862716 DOI: 10.1242/jcs.113.14.2585] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome territories need to be well defined at high resolution before functional aspects of chromosome organization in interphase can be explored. To visualize chromosomes by electron microscopy (EM), the DNA of Chinese hamster fibroblasts was labeled in vivo with thymidine analogue BrdU. Labeled chromosomes were then segregated during several cell cycles to obtain nuclei containing only 2 to 3 labeled chromosomes. Subsequent immunocytochemical detection of BrdU allowed analysis by EM of chromosome territories and subchromosomal domains in well preserved nuclei. Our results provide the first high resolution visualization of chromosomes in interphase nuclei. We show that chromosome domains are either separated from one another by interchromatin space or are in close contact with no or little intermingling of their DNA. This demonstrates that, while chromosomes form discrete territories, chromatin of adjacent chromosomes may be in contact in limited regions, thus implying chromosome-chromosome interactions. Chromosomes are organized as condensed chromatin with dispersed chromatin extending into the interchromatin space that is largely devoid of DNA. The interchromatin space, which is known to be involved in various nuclear functions, forms interconnecting channels running through and around chromosome territories. Functional implications of this organization are discussed.
Collapse
Affiliation(s)
- A E Visser
- Academic Medical Center, University of Amsterdam, Center for Microscopical Research, Department of Cell Biology and Histology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
46
|
|
47
|
Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 2000; 113 ( Pt 9):1565-76. [PMID: 10751148 DOI: 10.1242/jcs.113.9.1565] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large-scale chromatin organization of the major histocompatibility complex and other regions of chromosome 6 was studied by three-dimensional image analysis in human cell types with major differences in transcriptional activity. Entire gene clusters were visualized by fluorescence in situ hybridization with multiple locus-specific probes. Individual genomic regions showed distinct configurations in relation to the chromosome 6 terrritory. Large chromatin loops containing several megabases of DNA were observed extending outwards from the surface of the domain defined by the specific chromosome 6 paint. The frequency with which a genomic region was observed on an external chromatin loop was cell type dependent and appeared to be related to the number of active genes in that region. Transcriptional up-regulation of genes in the major histocompatibility complex by interferon-gamma led to an increase in the frequency with which this large gene cluster was found on an external chromatin loop. Our data are consistent with an association between large-scale chromatin organization of specific genomic regions and their transcriptional status.
Collapse
Affiliation(s)
- E V Volpi
- Human Cytogenetics Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wasser M, Chia W. The EAST protein of drosophila controls an expandable nuclear endoskeleton. Nat Cell Biol 2000; 2:268-75. [PMID: 10806477 DOI: 10.1038/35010535] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The high degree of structural order inside the nucleus suggests the existence of an internal nucleoskeleton. Our studies on the east gene of Drosophila, using the larval salivary gland polytene nucleus as a model, demonstrate the involvement of an extrachromosomal nuclear structure in modulating nuclear architecture. EAST, a novel ubiquitous protein, the product of the east (enhanced adult sensory threshold) locus, is localized to an extrachromosomal domain of the nucleus. Nuclear levels of EAST are increased in response to heat shock. Increase in nuclear EAST, whether caused by heat shock or by transgenic overexpression, results in the expansion of the extrachromosomal domain labelled by EAST, with a concomitant increase in the spacing between chromosomes. Moreover, EAST functions to promote the preferential accumulation of the proteins CP60 and actin in extrachromosomal regions of the nucleus. We propose that EAST mediates the assembly of an expandable nuclear endoskeleton which, through alterations of its volume, can modulate the spatial arrangement of chromosomes.
Collapse
Affiliation(s)
- M Wasser
- Institute of Molecular and Cell Biology, National University of Singapore.
| | | |
Collapse
|
49
|
Maul GG, Negorev D, Bell P, Ishov AM. Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 2000; 129:278-87. [PMID: 10806078 DOI: 10.1006/jsbi.2000.4239] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nuclear domain 10 (ND10), also referred to as PML bodies or PODs, are discrete interchromosomal accumulations of several proteins including PML and Sp100. We describe here developments in the visualization of ND10 and the mechanism of ND10 assembly made possible by the identification of proteins that are essential for this process using cell lines that lack individual ND10-associated proteins. PML is critical for the proper localization of all other ND10-associated proteins under physiological conditions. Introducing PML into a PML -/- cell line by transient expression or fusion with PML-producing cells recruited ND10-associated proteins into de novo formed ND10, attesting to its essential nature in ND10 formation. This recruitment includes Daxx, a protein that can bind PML and is highly enriched in condensed chromatin in the absence of PML. The segregation of Daxx from condensed chromatin to ND10 by increased accumulation of Sentrin/SUMO-1 modified PML suggests the presence of a variable equilibrium between these two nuclear sites. These findings identify the basic requirements for ND10 formation and suggest a dynamic mechanism for protein recruitment to these nuclear domains controlled by the SUMO-1 modification state of PML. Additional adapter proteins are suggested to exist by the behavior of Sp100, and Sp100 will provide the basis for their identification. Further information about the dynamic balance of proteins between ND10 and the actual site of functional activity of these proteins will establish whether ND10 function as homeostatic regulators or only in storage of excess proteins destined for turnover.
Collapse
Affiliation(s)
- G G Maul
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
50
|
Reichenzeller M, Burzlaff A, Lichter P, Herrmann H. In vivo observation of a nuclear channel-like system: evidence for a distinct interchromosomal domain compartment in interphase cells. J Struct Biol 2000; 129:175-85. [PMID: 10806067 DOI: 10.1006/jsbi.2000.4224] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the interchromosomal domain compartment in living cells by transfecting cDNA coding for Xenopus vimentin, engineered to contain a nuclear localization signal (NLS), coupled to the green fluorescent protein. In human vimentin-free SW13 cells, this chimeric protein was deposited in body-like "dots" both at 37 degrees C, the nonpermissive temperature for assembly of the amphibian vimentin, and 28 degrees C, the optimal temperature for Xenopus vimentin assembly, indicating that the chimeric protein was assembly incompetent. However, when transfected into a subclone stably expressing Xenopus NLS-vimentin (SW13-SC), the chimeric protein incorporated, as a fluorescent tracer, into the structures formed by NLS-vimentin and allowed us to visualize the outgrowth of the vimentin fibers after a temperature shift to 28 degrees C in living cells. In particular, we followed the time-dependent outgrowth of fibers from nuclear dots, first connecting two dots each and with time three and more, eventually generating a spatially restricted fiber system consisting of few loop-like arrays traversing the nucleus. Virtually identical results were obtained when the temperature was lowered only to 30 and 32 degrees C, respectively. An engineered human NLS-vimentin, without need for temperature shift, formed seemingly identical patterns of nuclear fibrils at 37 degrees C in three additionally transfected human cell lines: MCF-7, PLC, and HeLa. When the epithelial cytokeratin pair 8 and 18 was expressed in the nucleus via an engineered NLS in the cytokeratin 18 gene, more network-like, extended filament arrays were generated. Notably, in cotransfection experiments with Xenopus NLS-vimentin, we observed that the formation of these cytokeratin networks at 37 degrees C initiated from dots that nearly entirely colocalized with the aggregated amphibian NLS-vimentin. After a shift to 28 degrees C, extending Xenopus NLS-vimentin and cytokeratin filaments frequently followed the same path through the nucleus. These data indicate that interphase cells contain a seemingly equivalent, accessible interchromosomal space.
Collapse
Affiliation(s)
- M Reichenzeller
- Division of Cell Biology, Biomedical Structure Analysis Group, Division of Molecular Organization of Complex Genomes, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | | | | | | |
Collapse
|