1
|
Mor B, Gormez A, Demırcı B. The role of complement system in a gerbil model of cutaneous leishmaniasis. Mol Biochem Parasitol 2025; 262:111678. [PMID: 40180156 DOI: 10.1016/j.molbiopara.2025.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Leishmania species are intracellular protozoans responsible for causing both cutaneous and visceral infections. In recent years, the prevalence of leishmaniasis, a systemic and chronic disease, has been on the rise. Complement pathway mechanisms, part of the immune response of host organisms against Leishmania species, have not been fully revealed in leishmaniasis, which is very important for public health. This study aimed to explore the role of the complement system, an integral part of the immune response to Leishmania infections, in gerbil (Meriones unguiculatus) models of cutaneous leishmaniasis. This was achieved by assessing the expression levels of complement system genes (MBL-1, MBL-2, C2, and C3) and quantifying the protein levels of MBL-1, C2, and C3. Additionally, the study aimed to conduct biochemical tests, specifically measuring GSH and MDA levels, to detect oxidative stress in response to infection in gerbils. Finally, hematological analyses were performed to evaluate leukocyte counts in the blood. The expression of complement system genes and some complement system proteins were significantly increased in infected gerbils. Oxidative stress was evident, as indicated by reduced GSH levels and increased MDA levels. Additionally, a significant rise in leukocyte counts was observed as a consequence of the infection. The study concluded that complement system pathways are activated in cutaneous leishmaniasis infections. It was also determined that a thorough evaluation of genomic, proteomic, and immunopathological mechanisms is essential for understanding the pathogenesis of the disease.
Collapse
Affiliation(s)
- Baycan Mor
- Department of Molecular Biology and Genetics, Faculty of Science, Kafkas University, Kars 36100, Türkiye.
| | - Arzu Gormez
- Department of Biology, Faculty of Science, Dokuz Eylul University, Izmir 35390, Türkiye
| | - Berna Demırcı
- Department of Molecular Biology and Genetics, Faculty of Science, Kafkas University, Kars 36100, Türkiye
| |
Collapse
|
2
|
Carrara GMP, Souza-Silva GA, Reis TCBD, Alencar BCD, Boscardin SB, Kima PE, Stolf BS. Macrophage Protein Disulfide Isomerase Increases Infection by Leishmania amazonensis. Cell Biol Int 2025. [PMID: 40178024 DOI: 10.1002/cbin.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Leishmania spp. are protozoans with a digenetic life cycle responsible for causing tegumentary and visceral leishmaniasis. Leishmania (L.) amazonensis is the second most prevalent dermotropic species in Brazil. Infection in humans and other mammals takes place when phagocytes, mainly macrophages, uptake the parasite. Many proteins on the phagocytic cell surface participate in Leishmania phagocytosis. In this study, we evaluated the role of surface protein disulfide isomerase (PDI) in phagocytosis and infection of macrophages by L. amazonensis. PDI is the second most abundant chaperone in the endoplasmic reticulum. A unique study in the literature associated the presence of PDI on the macrophage surface with increased phagocytosis by Leishmania (L.) infantum (syn L. chagasi), the species most frequently associated with visceral leishmaniasis in the Americas. In the present work we evaluated L. amazonensis infections in transgenic FVB/NJ mice overexpressing PDI (TgPDIA1). We validated the presence of PDI on their macrophages surface by flow cytometry. We demonstrated that infection of macrophages pretreated with anti-PDI antibodies was lower compared to control cells. Accordingly, we showed that the overexpression of PDI increased the adhesion of parasites and infection of macrophages. We also demonstrated that macrophages overexpressing PDI internalize more zymosan particles. In vivo imaging of infections with luciferase-expressing parasites in wild-type and TgPDIA1 mice indicated that the overexpression of PDI was not associated with significant differences in footpad lesions and parasite burden, probably due to the ubiquitous overexpression of PDI and the roles of this molecule in other immune system functions.
Collapse
Affiliation(s)
- Guilherme M P Carrara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme A Souza-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Tania C B D Reis
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Bruna C D Alencar
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Silvia B Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Beatriz S Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Sellau J, Hansen CS, Gálvez RI, Linnemann L, Honecker B, Lotter H. Immunological clues to sex differences in parasitic diseases. Trends Parasitol 2024; 40:1029-1041. [PMID: 39379261 DOI: 10.1016/j.pt.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
The effect of sex on the prevalence and severity of parasitic diseases is an emerging area of research. Several factors underlie sex-based differences, including sociocultural influences that affect exposure to parasites, and physiological disparities linked to biological sex. Hence, human studies must be interpreted cautiously; however, studies conducted under controlled laboratory conditions are important to validate findings in humans. Such research can more effectively elucidate the role of sex-determining physiological factors (particularly their impact on immune responses), as well as the role of sex-specific differences in resistance to, or severity of, parasitic diseases. This review focuses on the overarching impact of biological sex variables on immunity. Both human and rodent experimental data are discussed, with a focus on selected protozoan and helminth infections.
Collapse
Affiliation(s)
- Julie Sellau
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Lara Linnemann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
4
|
Shubhrasmita Sahu S, Sarkar P, Chattopadhyay A. Quantitation of F-actin in cytoskeletal reorganization: Context, methodology and implications. Methods 2024; 230:44-58. [PMID: 39074540 DOI: 10.1016/j.ymeth.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
The actin cytoskeleton is involved in a large number of cellular signaling events in addition to providing structural integrity to the cell. Actin polymerization is a key event during cellular signaling. Although the role of actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, the reorganization of the actin cytoskeleton upon signaling has been rarely explored due to lack of suitable assays. Keeping in mind this lacuna, we developed a confocal microscopy based approach that relies on high magnification imaging of cellular F-actin, followed by image reconstruction using commercially available software. In this review, we discuss the context and relevance of actin quantitation, followed by a detailed hands-on approach of the methodology involved with specific points on troubleshooting and useful precautions. In the latter part of the review, we elucidate the method by discussing applications of actin quantitation from our work in several important problems in contemporary membrane biology ranging from pathogen entry into host cells, to GPCR signaling and membrane-cytoskeleton interaction. We envision that future discovery of cell-permeable novel fluorescent probes, in combination with genetically encoded actin-binding reporters, would allow real-time visualization of actin cytoskeleton dynamics to gain deeper insights into active cellular processes in health and disease.
Collapse
Affiliation(s)
- Subhashree Shubhrasmita Sahu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Department of Biochemistry, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
5
|
Manamperi NH, Edirisinghe NM, Wijesinghe H, Pathiraja L, Pathirana N, Wanasinghe VS, De Silva CG, Abeyewickreme W, Karunaweera ND. Proteome profiling of cutaneous leishmaniasis lesions due to dermotropic Leishmania donovani in Sri Lanka. Clin Proteomics 2024; 21:48. [PMID: 38969968 PMCID: PMC11225291 DOI: 10.1186/s12014-024-09499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Characterization of the host response in cutaneous leishmaniasis (CL) through proteome profiling has gained limited insights into leishmaniasis research compared to that of the parasite. The primary objective of this study was to comprehensively analyze the proteomic profile of the skin lesions tissues in patients with CL, by mass spectrometry, and subsequent validation of these findings through immunohistochemical methods. METHODS Eight lesion specimens from leishmaniasis-confirmed patients and eight control skin biopsies were processed for proteomic profiling by mass spectrometry. Formalin-fixed paraffin-embedded lesion specimens from thirty patients and six control skin specimens were used for Immunohistochemistry (IHC) staining. Statistical analyses were carried out using SPSS software. The chi-square test was used to assess the association between the degree of staining for each marker and the clinical and pathological features. RESULTS Sixty-seven proteins exhibited significant differential expression between tissues of CL lesions and healthy controls (p < 0.01), representing numerous enriched biological processes within the lesion tissue, as evident by both the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Among these, the integrated endoplasmic reticulum stress response (IERSR) emerges as a pathway characterized by the up-regulated proteins in CL tissues compared to healthy skin. Expression of endoplasmic reticulum (ER) stress sensors, inositol-requiring enzyme-1 (IRE1), protein kinase RNA-like ER kinase (PERK) and activating transcription factor 6 (ATF6) in lesion tissue was validated by immunohistochemistry. CONCLUSIONS In conclusion, proteomic profiling of skin lesions carried out as a discovery phase study revealed a multitude of probable immunological and pathological mechanisms operating in patients with CL in Sri Lanka, which needs to be further elaborated using more in-depth and targeted investigations. Further research exploring the intricate interplay between ER stress and CL pathophysiology may offer promising avenues for the development of novel diagnostic tools and therapeutic strategies in combating this disease.
Collapse
Affiliation(s)
- Nuwani H Manamperi
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | | | - Harshima Wijesinghe
- Department of Pathology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | | | | | - Vishmi Samudika Wanasinghe
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, USA
| | - Chamalka Gimhani De Silva
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, USA
| | - W Abeyewickreme
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| |
Collapse
|
6
|
Ferrante M, Leite BMM, Fontes LBC, Santos Moreira A, Nascimento de Almeida ÉM, Brodskyn CI, Lima IDS, dos Santos WLC, Pacheco LV, Cardoso da Silva V, dos Anjos JP, Guarieiro LLN, Landoni F, de Menezes JPB, Fraga DBM, Santos Júnior ADF, Veras PST. Pharmacokinetics, Dose-Proportionality, and Tolerability of Intravenous Tanespimycin (17-AAG) in Single and Multiple Doses in Dogs: A Potential Novel Treatment for Canine Visceral Leishmaniasis. Pharmaceuticals (Basel) 2024; 17:767. [PMID: 38931434 PMCID: PMC11206245 DOI: 10.3390/ph17060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
In the New World, dogs are considered the main reservoir of visceral leishmaniasis (VL). Due to inefficacies in existing treatments and the lack of an efficient vaccine, dog culling is one of the main strategies used to control disease, making the development of new therapeutic interventions mandatory. We previously showed that Tanespimycin (17-AAG), a Hsp90 inhibitor, demonstrated potential for use in leishmaniasis treatment. The present study aimed to test the safety of 17-AAG in dogs by evaluating plasma pharmacokinetics, dose-proportionality, and the tolerability of 17-AAG in response to a dose-escalation protocol and multiple administrations at a single dose in healthy dogs. Two protocols were used: Study A: four dogs received variable intravenous (IV) doses (50, 100, 150, 200, or 250 mg/m2) of 17-AAG or a placebo (n = 4/dose level), using a cross-over design with a 7-day "wash-out" period; Study B: nine dogs received three IV doses of 150 mg/m2 of 17-AAG administered at 48 h intervals. 17-AAG concentrations were determined by a validated high-performance liquid chromatographic (HPLC) method: linearity (R2 = 0.9964), intra-day precision with a coefficient of variation (CV) ≤ 8%, inter-day precision (CV ≤ 20%), and detection and quantification limits of 12.5 and 25 ng/mL, respectively. In Study A, 17-AAG was generally well tolerated. However, increased levels of liver enzymes-alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT)-and bloody diarrhea were observed in all four dogs receiving the highest dosage of 250 mg/m2. After single doses of 17-AAG (50-250 mg/m2), maximum plasma concentrations (Cmax) ranged between 1405 ± 686 and 9439 ± 991 ng/mL, and the area under the curve (AUC) plotting plasma concentration against time ranged between 1483 ± 694 and 11,902 ± 1962 AUC 0-8 h μg/mL × h, respectively. Cmax and AUC parameters were dose-proportionate between the 50 and 200 mg/m2 doses. Regarding Study B, 17-AAG was found to be well tolerated at multiple doses of 150 mg/m2. Increased levels of liver enzymes-ALT (28.57 ± 4.29 to 173.33 ± 49.56 U/L), AST (27.85 ± 3.80 to 248.20 ± 85.80 U/L), and GGT (1.60 ± 0.06 to 12.70 ± 0.50 U/L)-and bloody diarrhea were observed in only 3/9 of these dogs. After the administration of multiple doses, Cmax and AUC 0-48 h were 5254 ± 2784 μg/mL and 6850 ± 469 μg/mL × h in plasma and 736 ± 294 μg/mL and 7382 ± 1357 μg/mL × h in tissue transudate, respectively. In conclusion, our results demonstrate the potential of 17-AAG in the treatment of CVL, using a regimen of three doses at 150 mg/m2, since it presents the maintenance of high concentrations in subcutaneous interstitial fluid, low toxicity, and reversible hepatotoxicity.
Collapse
Affiliation(s)
- Marcos Ferrante
- Laboratory of Physiology and Pharmacology, Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil;
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Bruna Martins Macedo Leite
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Lívia Brito Coelho Fontes
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Alice Santos Moreira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Élder Muller Nascimento de Almeida
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Claudia Ida Brodskyn
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Isadora dos Santos Lima
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (I.d.S.L.); (W.L.C.d.S.)
| | - Washington Luís Conrado dos Santos
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (I.d.S.L.); (W.L.C.d.S.)
- Department of Pathology and Forensic Medicine, Bahia Medical School, Federal University of Bahia, Salvador 40110-906, Bahia, Brazil
| | - Luciano Vasconcellos Pacheco
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, Bahia, Brazil; (L.V.P.); (V.C.d.S.); (A.d.F.S.J.)
| | - Vagner Cardoso da Silva
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, Bahia, Brazil; (L.V.P.); (V.C.d.S.); (A.d.F.S.J.)
| | - Jeancarlo Pereira dos Anjos
- Integrated Campus of Manufacturing and Technology, SENAI CIMATEC University Center, Salvador 41650-010, Bahia, Brazil; (J.P.d.A.); (L.L.N.G.)
| | - Lílian Lefol Nani Guarieiro
- Integrated Campus of Manufacturing and Technology, SENAI CIMATEC University Center, Salvador 41650-010, Bahia, Brazil; (J.P.d.A.); (L.L.N.G.)
| | - Fabiana Landoni
- Department of Pharmacology, Faculty of Veterinary Science, National University of La Plata, Buenos Aires 1900, Argentina;
| | - Juliana P. B. de Menezes
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Deborah Bittencourt Mothé Fraga
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| | - Aníbal de Freitas Santos Júnior
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, Bahia, Brazil; (L.V.P.); (V.C.d.S.); (A.d.F.S.J.)
| | - Patrícia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| |
Collapse
|
7
|
Na J, Engwerda C. The role of CD4 + T cells in visceral leishmaniasis; new and emerging roles for NKG7 and TGFβ. Front Cell Infect Microbiol 2024; 14:1414493. [PMID: 38881737 PMCID: PMC11176485 DOI: 10.3389/fcimb.2024.1414493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Visceral leishmaniasis is a potentially devastating neglected tropical disease caused by the protozoan parasites Leishmania donovani and L. infantum (chagasi). These parasites reside in tissue macrophages and survive by deploying a number of mechanisms aimed at subverting the host immune response. CD4+ T cells play an important role in controlling Leishmania parasites by providing help in the form of pro-inflammatory cytokines to activate microbiocidal pathways in infected macrophages. However, because these cytokines can also cause tissue damage if over-produced, regulatory immune responses develop, and the balance between pro-inflammatory and regulatory CD4+ T cells responses determines the outcomes of infection. Past studies have identified important roles for pro-inflammatory cytokines such as IFNγ and TNF, as well as regulatory co-inhibitory receptors and the potent anti-inflammatory cytokine IL-10. More recently, other immunoregulatory molecules have been identified that play important roles in CD4+ T cell responses during VL. In this review, we will discuss recent findings about two of these molecules; the NK cell granule protein Nkg7 and the anti-inflammatory cytokine TGFβ, and describe how they impact CD4+ T cell functions and immune responses during visceral leishmaniasis.
Collapse
Affiliation(s)
- Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
8
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
9
|
Manamperi NH, Edirisinghe NM, Wijesinghe H, Pathiraja L, Pathirana N, Wanasinghe VS, de Silva CG, Abeyewickreme W, Karunaweera ND. Proteome profiling of cutaneous leishmaniasis lesions due to dermotropic Leishmania donovani in Sri Lanka. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574579. [PMID: 38260468 PMCID: PMC10802499 DOI: 10.1101/2024.01.07.574579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Characterization of the host response in cutaneous leishmaniasis (CL) through proteome profiling has gained limited insights in leishmaniasis research, in comparison to that of the parasite. The primary objective of this study was to comprehensively analyze the proteomic profile of the skin lesions tissues in patients with CL, by mass spectrometry, and subsequent validation of these findings through immunohistochemical methods. Sixty-seven proteins exhibited significant differential expression between tissues of CL lesions and healthy controls (p<0.01), representing numerous enriched biological processes within the lesion tissue, as evident by both the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. Among these, the integrated endoplasmic reticulum stress response (IERSR) emerges as a pathway characterized by the up-regulated proteins in CL tissues compared to healthy skin. Expression of endoplasmic reticulum (ER) stress sensors, inositol-requiring enzyme-1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6) in lesion tissue was validated by immunohistochemistry. In conclusion, proteomic profiling of skin lesions carried out as a discovery phase study revealed a multitude of probable immunological and pathological mechanisms operating in patients with CL in Sri Lanka, which needs to be further elaborated using more in-depth and targeted investigations.
Collapse
Affiliation(s)
- Nuwani H. Manamperi
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | | | - Harshima Wijesinghe
- Department of Pathology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | | | | | | | | | - W. Abeyewickreme
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| |
Collapse
|
10
|
Muhammed Hassan G, Zuhair Ali H, Muhammed Hussein W. Evaluation of IL-8, nitric oxide and macrophage inhibitory factor as clinical circulatory markers in patients with cutaneous leishmaniasis, before and during sodium stibogluconate treatment. Cytokine 2024; 173:156450. [PMID: 37988922 DOI: 10.1016/j.cyto.2023.156450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
The clinical spectrum of cutaneous leishmaniasis (CL), an intracellular parasitic pathogen, ranges from a single sore healing to chronic crusty lesions with a manifestation of treatment resistance. The complicated interaction between Leishmania bodies and the early immune response, including innate and adaptive mechanisms, determines the evolution of nodules. This study examined the levels of the chemoattractant interleukin 8 (IL-8), pro-inflammatory nitric oxide (NO), and immunoregulatory macrophage inhibitory factor (MIF) in the serum of subjects recently diagnosed with cutaneous leishmaniasis, in parallel with patients being monitored during consecutive sodium stibogluconate (Pentostam) treatment. A total of 161 serum samples of newly diagnosed individuals and patients undergoing pentostam injections were collected form an endemic area of Diyala, east central of Iraq. Sandwich ELISA was used to measure the level of IL-8, NO and MIF in the studied groups. Results of circulatory markers levels showed a considerable difference in all groups, with IL-8 being exceptionally higher in the first two groups of pretreated and dose-1 (191.5, 273.64) pg/ml respectively, while NO was found to be lower than in control subjects, particularly in the pretreated group (12.08 µmol/L) and MIF level was significantly higher in the pretreated group, which was (7.18 pg/ml). These findings can provide insights for distinction of disease phase and monitoring treatment efficacy along consecutive dosages, particularly in populations where CL is endemic.
Collapse
Affiliation(s)
- Ghuffran Muhammed Hassan
- Deptartment of Biology, College of Science, University of Baghdad, Al-Jaderiya Campus, Baghdad 10071, Iraq
| | - Hayder Zuhair Ali
- Deptartment of Biology, College of Science, University of Baghdad, Al-Jaderiya Campus, Baghdad 10071, Iraq.
| | | |
Collapse
|
11
|
Mor B, Görmez A, Demirci B. Immunopathological investigation of a gerbil model of cutaneous leishmaniasis. Acta Trop 2023; 246:106991. [PMID: 37479161 DOI: 10.1016/j.actatropica.2023.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Leishmaniasis, caused by Leishmania species (intracellular protozoans), is a chronic, systemic disease that causes skin (cutaneous) and internal organ infections (visceral). Its prevalence has increased in recent years. Leishmania species are considered important pathogens that affect public health. After infecting an individual, the pathogen disrupts the immune system, but, there are not enough studies on which immune mechanisms are affected. The aim of this study was to establish a Leishmania major infection model (the causative agent of cutaneous leishmaniasis) in gerbils (Meriones unguiculatus) and to investigate the immune response in this model by examining the expression of important inflammatory genes (IL-1β, IL-2, IL-6, IFN-ɣ and TNF-α). The presence of parasites was confirmed by microscopic examination of samples taken from the lesions and culture studies. The expression of inflammatory cytokine genes was significantly increased in infected gerbils. The changes indicated that both the Th1 and Th2 pathways are activated in cutaneous leishmaniasis infection. Hence, different immunopathological mechanisms should be evaluated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Baycan Mor
- Department of Molecular Biology and Genetics, Faculty of Science, Kafkas University, 36100, Kars, Türkiye.
| | - Arzu Görmez
- Department of Biology, Faculty of Science, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Berna Demirci
- Department of Molecular Biology and Genetics, Faculty of Science, Kafkas University, 36100, Kars, Türkiye
| |
Collapse
|
12
|
Liu L, He Y, Chang J. Efficacy of photodynamic therapy in cutaneous leishmaniasis: A systematic review. Photodiagnosis Photodyn Ther 2023; 43:103627. [PMID: 37245683 DOI: 10.1016/j.pdpdt.2023.103627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To systematically review the efficacy of photodynamic therapy (PDT) in the treatment of cutaneous leishmaniasis (CL). METHODS PubMed, Embase and Cochrane Library databases were searched for articles published by November 16, 2022, with no time restrictions. 'Cutaneous leishmaniasis' and 'photodynamic therapy' were searched using predefined search strings. INCLUSION CRITERIA (i) Randomized control trials; (ii) controlled clinical trials; (iii) case series; (iv) case reports; (v) participants were humans; (vi) clinical diagnosis was CL; (vii) treatment method used was PDT; and (viii) articles published in English. RESULTS In total, 303 articles were identified, including 14 papers meeting the criteria. The number of patients in each study ranged from 1 to 60 and the age ranged from 1 to 82 years. Aminolevulinic acid and methyl aminolevulinate were used as photosensitizers. Red light and sunlight were used as light sources. All reported satisfactory clinical effects. Side effects of treatment included burning sensation, pain and pigmentation after treatment. However, they were tolerable and temporary. The follow-up time ranged between 9 weeks and 24 months. A total of two patients recurred, but one did not recur after another round of PDT during the follow-up period. CONCLUSIONS The present study suggests that PDT is a safe and effective method for the treatment of CL, with tolerable side effects and good efficacy. As an alternative treatment method of CL, PDT has great potential. However, to verify the efficacy and specific mechanism of PDT for the optimal treatment strategy of CL, further research with larger sample sizes and longer follow-up times are needed.
Collapse
Affiliation(s)
- Lin Liu
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, China
| | - Yuexi He
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, China
| | - Jianmin Chang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
The enemy within: lipid asymmetry in intracellular parasite-host interactions. Emerg Top Life Sci 2023; 7:67-79. [PMID: 36820809 DOI: 10.1042/etls20220089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Eukaryotic pathogens with an intracellular parasitic lifestyle are shielded from extracellular threats during replication and growth. In addition to many nutrients, parasites scavenge host cell lipids to establish complex membrane structures inside their host cells. To counteract the disturbance of the host cell plasma membrane they have evolved strategies to regulate phospholipid asymmetry. In this review, the function and importance of lipid asymmetry in the interactions of intracellular protozoan parasites with the target and immune cells of the host are highlighted. The malaria parasite Plasmodium infects red blood cells and extensively refurbishes these terminally differentiated cells. Cholesterol depletion and an altered intracellular calcium ion homeostasis can lead to disruption in erythrocyte membrane asymmetry and increased exposure of phosphatidylserine (PS). Binding to the PS receptor on monocytes and macrophages results in phagocytosis and destruction of infected erythrocytes. Leishmania parasites display apoptotic mimicry by actively enhancing PS exposure on their surface to trigger increased infection of macrophages. In extracellular Toxoplasma gondii a P4-type ATPase/CDC50 co-chaperone pair functions as a flippase important for exocytosis of specialised secretory organelles. Identification and functional analysis of parasite lipid-translocating proteins, i.e. flippases, floppases, and scramblases, will be central for the recognition of the molecular mechanisms of parasite/host interactions. Ultimately, a better understanding of parasitic diseases, host immunity, and immune escape by parasites require more research on the dynamics of phospholipid bilayers of parasites and the infected host cell.
Collapse
|
14
|
Jamal F, Altaf I, Ahmed G, Asad S, Ahmad H, Zia Q, Azhar A, Farheen S, Shafi T, Karim S, Zubair S, Owais M. Amphotericin B Nano-Assemblies Circumvent Intrinsic Toxicity and Ensure Superior Protection in Experimental Visceral Leishmaniasis with Feeble Toxic Manifestation. Vaccines (Basel) 2023; 11:vaccines11010100. [PMID: 36679946 PMCID: PMC9866558 DOI: 10.3390/vaccines11010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
In spite of its high effectiveness in the treatment of both leishmaniasis as well as a range of fungal infections, the free form of the polyene antibiotic amphotericin B (AmB) does not entertain the status of the most preferred drug of choice in clinical settings. The high intrinsic toxicity of the principal drug could be considered the main impedance in the frequent medicinal use of this otherwise very effective antimicrobial agent. Taking into consideration this fact, the pharma industry has introduced many novel dosage forms of AmB to alleviate its toxicity issues. However, the limited production, high cost, requirement for a strict cold chain, and need for parenteral administration are some of the limitations that explicitly compel professionals to look for the development of an alternate dosage form of this important drug. Considering the fact that the nano-size dimensions of drug formulation play an important role in increasing the efficacy of the core drug, we employed a green method for the development of nano-assemblies of AmB (AmB-NA). The as-synthesized AmB-NA manifests desirable pharmacokinetics in the treated animals. The possible mechanistic insight suggested that as-synthesized AmB-NA induces necrosis-mediated cell death and severe mitochondrial dysfunction in L. donovani promastigotes by triggering depolarization of mitochondrial membrane potential. In vivo studies demonstrate a noticeable decline in parasite burden in the spleen, liver, and bone marrow of the experimental BALB/c mice host. In addition to successfully suppressing the Leishmania donovani, the as-formed AmB-NA formulation also modulates the host immune system with predominant Th1 polarization, a key immune defender that facilitates the killing of the intracellular parasite.
Collapse
Affiliation(s)
- Fauzia Jamal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Ishrat Altaf
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Ghufran Ahmed
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sheikh Asad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Hira Ahmad
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Qamar Zia
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Azhar
- Neat Meatt Biotech Private Limited, Bio-NEST-UDSC, University of Delhi (South Campus), New Delhi 110021, India
| | - Saba Farheen
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Taj Shafi
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Shabana Karim
- Department of Botany, Anugrah Narayan College, Patliputra University, Patna 800013, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
- Correspondence:
| |
Collapse
|
15
|
miRNA-21 regulates CD69 and IL-10 expression in canine leishmaniasis. PLoS One 2022; 17:e0265192. [PMID: 35324917 PMCID: PMC8947396 DOI: 10.1371/journal.pone.0265192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
Visceral leishmaniasis in humans is a chronic and fatal disease if left untreated. Canine leishmaniasis (CanL) is a severe public health problem because infected animals are powerful transmitters of the parasite to humans via phlebotomine vectors. Therefore, dogs are an essential target for control measures. Progression of canine infection is accompanied by failure of cellular immunity with reduction of circulating lymphocytes and increased cytokines that suppress macrophage function. Studies showed that the regulation of the effector function of macrophages and T cells appears to depend on miRNAs; miRNA-21 (miR-21) shows increased expression in splenic leukocytes of dogs with CanL and targets genes related to the immune response. Mimics and inhibitors of miR-21 were used in vitro to transfect splenic leukocytes from dogs with CanL. After transfection, expression levels of the proteins FAS, FASL, CD69, CCR7, TNF-α, IL-17, IFN-γ, and IL-10 were measured. FAS, FASL, CD69, and CCR7 expression levels decreased in splenic leukocytes from dogs with CanL. The miR-21 mimic decreased CD69 expression in splenic leukocytes from CanL and healthy groups. The miR-21 inhibitor decreased IL-10 levels in culture supernatants from splenic leukocytes in the CanL group. These findings suggest that miR-21 alters the immune response in CanL; therefore, miR-21 could be used as a possible therapeutic target for CanL.
Collapse
|
16
|
Reyes-Cruz EY, Limón-Flores AY, González-Mireles AF, Rodríguez-Serrato MA, López-Monteon A, Ramos-Ligonio A. Effect of immunosuppression by UV-B radiation on components of the innate immune response in skin lesions with Leishmania mexicana: Effect of UVB on the innate immune response in cutaneous infection by L. mexicana. Acta Trop 2022; 226:106272. [PMID: 34896324 DOI: 10.1016/j.actatropica.2021.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
Abstract
Cutaneous leishmaniasis is the most common form of leishmaniasis in humans, factors such as poverty, poor housing, inadequate domestic hygiene, malnutrition, mobility, and occupational exposure are risk factors associated with the condition, however, there are few studies focused on determining the immune mechanism involved in the resolution of cutaneous leishmaniasis caused by the species Leishmania mexicana, as well as possible environmental factors such as solar radiation, which could contribute to its establishment. through mechanisms immunosuppressants, of which to date is unknown. In this study, the effect of UV-B light was evaluated as a risk factor affecting components of the innate immune response 3 days after infection with L. mexicana. A delayed-type hypersensitivity reaction (DTH) was used to evaluate immunosuppression induced by UV-B light. Through a histological analysis, the skin lesions of the mice (Hematoxylin & Eosin) were evaluated, the presence of mast cells and their level of degranulation (toluidine blue staining), the presence of IL-10+ and MOMA2+ cells were analyzed by immunohistochemistry and finally, the cytokine profile was evaluated by qPCR in the skin lesions tissue. An alteration in the architecture of the tissue was observed, as well as a greater number of mast cells, both complete and degranulated, as well as an increase in IL-10+ and MOMA2+ cells in the skin lesions of the mice that were irradiated and subsequently infected, when compared with the lesions of infected mice (P> 0.0001), immunomodulation was also observed in the profile of cytokines expressed between both groups analyzed. This is the first study to demonstrate the effects of UV-B radiation on components of the innate immune response at short times of infection by L. mexicana.
Collapse
|
17
|
BARRETO ANNAL, ALONSO ARIADNEN, MORAES DANIELCDE, CURVELO JOSÉA, MIRANDA KILDARE, PORTELA MARISTELAB, FERREIRA-PEREIRA ANTÔNIO, SOUTO-PADRÓN THAIS, SOARES ROSANGELAMARIADEA. Anti-Leishmania amazonensis activity of the marine sponge Dercitus (Stoeba) latex (Porifera) from São Pedro and São Paulo Archipelago, Pernambuco, Brazil. AN ACAD BRAS CIENC 2022; 94:e20211090. [DOI: 10.1590/0001-3765202220211090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- ANNA L.S. BARRETO
- Universidade Federal do Rio de Janeiro, Brazil; Instituto Brasileiro de Medicina de Reabilitação (IBMR), Brazil
| | - ARIADNE N. ALONSO
- Universidade Federal do Rio de Janeiro, Brazil; Laboratório Richet Medicina Diagnóstica, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen YF, Yu SF, Wu CY, Wu N, Shen J, Shen J, Gao JM, Wen YZ, Hide G, Lai DH, Lun ZR. Innate Resistance to Leishmania amazonensis Infection in Rat Is Dependent on NOS2. Front Microbiol 2021; 12:733286. [PMID: 34777283 PMCID: PMC8586549 DOI: 10.3389/fmicb.2021.733286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmania infection causes diverse clinical manifestations in humans. The disease outcome is complicated by the combination of many host and parasite factors. Inbred mouse strains vary in resistance to Leishmania major but are highly susceptible to Leishmania amazonensis infection. However, rats are highly resistant to L. amazonensis infection due to unknown mechanisms. We use the inducible nitric oxide synthase (Nos2) gene knockout rat model (Nos2−/− rat) to investigate the role of NOS2 against leishmania infection in rats. Our results demonstrated that diversion toward the NOS2 pathway is the key factor explaining the resistance of rats against L. amazonensis infection. Rats deficient in NOS2 are susceptible to L. amazonensis infection even though their immune response to infection is still strong. Moreover, adoptive transfer of NOS2 competent macrophages into Nos2−/− rats significantly reduced disease development and parasite load. Thus, we conclude that the distinct L-arginine metabolism, observed in rat macrophages, is the basis of the strong innate resistance to Leishmania. These data highlight that macrophages from different hosts possess distinctive properties and produce different outcomes in innate immunity to Leishmania infections.
Collapse
Affiliation(s)
- Yun-Fu Chen
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si-Fei Yu
- Institute of Immunology and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chang-You Wu
- Institute of Immunology and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Na Wu
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jia Shen
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Juan Shen
- Institute of Immunology and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiang-Mei Gao
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Zi Wen
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - De-Hua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhao-Rong Lun
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| |
Collapse
|
19
|
Silva H, Liyanage A, Deerasinghe T, Chandrasekara V, Chellappan K, Karunaweera ND. Treatment failure to sodium stibogluconate in cutaneous leishmaniasis: A challenge to infection control and disease elimination. PLoS One 2021; 16:e0259009. [PMID: 34679130 PMCID: PMC8535432 DOI: 10.1371/journal.pone.0259009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
The first-line treatment for Leishmania donovani-induced cutaneous leishmaniasis (CL) in Sri Lanka is intra-lesional sodium stibogluconate (IL-SSG). Antimony failures in leishmaniasis is a challenge both at regional and global level, threatening the ongoing disease control efforts. There is a dearth of information on treatment failures to routine therapy in Sri Lanka, which hinders policy changes in therapeutics. Laboratory-confirmed CL patients (n = 201) who attended the District General Hospital Hambantota and Base Hospital Tangalle in southern Sri Lanka between 2016 and 2018 were included in a descriptive cohort study and followed up for three months to assess the treatment response of their lesions to IL-SSG. Treatment failure (TF) of total study population was 75.1% and the majority of them were >20 years (127/151,84%). Highest TF was seen in lesions on the trunk (16/18, 89%) while those on head and neck showed the least (31/44, 70%). Nodules were least responsive to therapy (27/31, 87.1%) unlike papules (28/44, 63.6%). Susceptibility to antimony therapy seemed age-dependant with treatment failure associated with factors such as time elapsed since onset to seeking treatment, number and site of the lesions. This is the first detailed study on characteristics of CL treatment failures in Sri Lanka. The findings highlight the need for in depth investigations on pathogenesis of TF and importance of reviewing existing treatment protocols to introduce more effective strategies. Such interventions would enable containment of the rapid spread of L.donovani infections in Sri Lanka that threatens the ongoing regional elimination drive.
Collapse
Affiliation(s)
- Hermali Silva
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | - Vasana Chandrasekara
- Department of Statistics & Computer Science, Faculty of Science, University of Kelaniya, Colombo, Sri Lanka
| | - Kalaivani Chellappan
- Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
20
|
Proteomic Analysis of Leishmania donovani Membrane Components Reveals the Role of Activated Protein C Kinase in Host-Parasite Interaction. Pathogens 2021; 10:pathogens10091194. [PMID: 34578226 PMCID: PMC8465321 DOI: 10.3390/pathogens10091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/05/2022] Open
Abstract
Visceral leishmaniasis (VL), mainly caused by the Leishmania donovani parasitic infection, constitutes a potentially fatal disease, for which treatment is primarily dependent on chemotherapy. The emergence of a resistant parasite towards current antileishmanial agents and increasing reports of relapses are the major concerns. Detailed research on the molecular interaction at the host-parasite interface may provide the identification of the parasite and the host-related factors operating during disease development. Genomic and proteomic studies highlighted several essential secretory and cytosolic proteins that play vital roles during Leishmania pathogenesis. The aim of this study was to identify membrane proteins from the Leishmania donovani parasite and the host macrophage that interact with each other using 2-DE/MALDI-TOF/MS. We identified membrane proteins including activated protein C kinase, peroxidoxin, small myristoylated protein 1 (SMP-1), and cytochrome C oxidase from the parasite, while identifying filamin A interacting protein 1(FILIP1) and β-actin from macrophages. We further investigated parasite replication and persistence within macrophages following the macrophage-amastigote model in the presence or absence of withaferin (WA), an inhibitor of activated C kinase. WA significantly reduced Leishmania donovani replication within host macrophages. This study sheds light on the important interacting proteins for parasite proliferation and virulence, and the establishment of infection within host cells, which can be targeted further to develop a strategy for chemotherapeutic intervention.
Collapse
|
21
|
Cabral FV, Souza THDS, Sellera FP, Fontes A, Ribeiro MS. Towards effective cutaneous leishmaniasis treatment with light-based technologies. A systematic review and meta-analysis of preclinical studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112236. [PMID: 34090038 DOI: 10.1016/j.jphotobiol.2021.112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 02/02/2023]
Abstract
Cutaneous leishmaniasis (CL) is a neglected disease that represents a serious global public health concern. We performed a systematic review with meta-analysis targeting the use of light-based therapies on CL in preclinical studies since they are essential to identify the benefits, challenges, and limitations of proposing new technologies to fight CL. We searched Pubmed and Web of Science to include original preclinical researches in English that used light-based technologies to fight CL. Inclusion criteria encompassed any animal model for CL induction, an untreated infected group as the comparator, reliable and consistent methodology to develop and treat CL, focus on an antimicrobial therapeutic approach, and data for lesion size and/or parasite load in the infection site. We identified eight eligible articles, and all of them used photodynamic therapy (PDT). For the meta-analysis, three studies were included regarding the parasite load in the infection site and four comprised the lesion size. No overall statistically significant differences were observed between untreated control and PDT groups for parasite load. Differently, PDT significantly reduced the lesion size regardless of the protocol used to treat CL (in mm, SMD: -1.90; 95% CI: -3.74 to -0.07, p = 0.04). This finding is particularly encouraging since CL promotes disfiguring lesions that profoundly affect the quality of life of patients. We conclude that PDT is a new promising technology able to be topically used against CL if applied in more than one session, making it a promising ally for the management of CL.
Collapse
Affiliation(s)
- Fernanda Viana Cabral
- Center for Lasers and Applications, Energy and Nuclear Research Institute (IPEN/CNEN), São Paulo, SP, Brazil
| | | | - Fábio Parra Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, SP, Brazil
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Martha Simões Ribeiro
- Center for Lasers and Applications, Energy and Nuclear Research Institute (IPEN/CNEN), São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Guerra PV, Andrade CM, Nunes IV, Gama BC, Tibúrcio R, Santos WLC, Azevedo VA, Tavares NM, Rebouças JDS, Maiolii TU, Faria AMC, Brodskyn CI. Oral Tolerance Induced by Heat Shock Protein 65-Producing Lactococcus lactis Mitigates Inflammation in Leishmania braziliensis Infection. Front Immunol 2021; 12:647987. [PMID: 34248935 PMCID: PMC8264454 DOI: 10.3389/fimmu.2021.647987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 12/05/2022] Open
Abstract
Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are evolutionarily preserved from bacteria to humans, highly expressed under inflammatory conditions and described as immunodominant antigens. Tolerance induced by the oral administration of Hsp65 is capable of suppressing inflammation and inducing differentiation in regulatory cells, and has been successfully demonstrated in several experimental models of autoimmune and inflammatory diseases. We initially administered recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order to verify its immunomodulatory potential in the inflammatory response arising from L. braziliensis. Using this experimental approach, we demonstrated that the oral administration of a recombinant L. lactis strain, which produces and secretes Hsp65 from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-α-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In addition, recombinant L. lactis administered 4 weeks after infection was observed to decrease lesion size, as well as the number of parasites, and produced a higher IL-10 production and decrease IFN-γ secretion. Together, these results indicate that Hsp65-producing L. lactis can be considered as an alternative candidate for treatment in both autoimmune diseases, as well as in chronic infections that cause inflammatory disease.
Collapse
Affiliation(s)
- Priscila Valera Guerra
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Curso de Medicina, Centro Universitário Christus, Fortaleza, Brazil
| | - Camila Mattos Andrade
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Ivanéia Valeriano Nunes
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Brena Cardoso Gama
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Rafael Tibúrcio
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Washington Luis Conrado Santos
- Laboratório de Patologia Estrutural e Molecular (LAPEM), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Departamento de Patologia e Medicina Legal Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Brazil
| | - Vasco Ariston Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biomédicas, Universidade Federal de Minais Gerais, Belo Horizonte, Brazil
| | - Natalia Machado Tavares
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Juliana de Souza Rebouças
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências da Saúde, Universidade de Pernambuco, Recife, Brazil
| | - Tatiani Uceli Maiolii
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia Ida Brodskyn
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| |
Collapse
|
23
|
Darzi F, Davoudian R, Nateghi Rostami M. Differential inflammatory responses associated with Leishmania major and L tropica in culture. Parasite Immunol 2021; 43:e12841. [PMID: 33914948 DOI: 10.1111/pim.12841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anthroponotic cutaneous leishmaniasis (ACL) due to Leishmania tropica and zoonotic CL (ZCL) due to L major have different clinical and epidemiological features. OBJECTIVES To determine whether pro-inflammatory cytokines are involved in diverse pathogenicity of Leishmania species causing CL. PATIENTS/METHODS The capacity of L major/L tropica to modulate expression of IL-1β, IL-8 (CXCL8), IFN-γ, TNF-α and MCP-1 (CCL2) in peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) was evaluated by real-time RT-PCR technique. RESULTS PBMCs from both ZCL and ACL cases expressed significantly higher IFN-γ (P < .001) and TNF-α (P < .05) compared with healthy controls (HC). PBMCs from ACL patients expressed significantly higher IL-1β and IL-8 compared with ZCL patients and HC when stimulated with live L major or L tropica promastigotes (P < .001). After 4 and 10 hours, L major-infected MDMs expressed significantly higher IFN-γ (P < .05), and after 10 hours, L tropica-infected MDMs expressed significantly higher IL-1β, IFN-γ and IL-8 compared with noninfected cells (P < .05). CONCLUSIONS This study shows differential parasite-mediated stimulations of the inflammatory response with L major vs L tropica ex vivo. Pro-inflammatory cytokines particularly IL-8 (CXCL8) and IL-1β might contribute in diverse clinical features of CL such as longer duration of lesion persistence in ACL patients.
Collapse
Affiliation(s)
- Fatemeh Darzi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
24
|
The thiol-based reduction of Bi(V) and Sb(V) anti-leishmanial complexes. J Inorg Biochem 2021; 221:111470. [PMID: 33971522 DOI: 10.1016/j.jinorgbio.2021.111470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 01/22/2023]
Abstract
Low molecular weight thiols including trypanothione and glutathione play an important function in the cellular growth, maintenance and reduction of oxidative stress in Leishmania species. In particular, parasite specific trypanothione has been established as a prime target for new anti-leishmania drugs. Previous studies into the interaction of the front-line Sb(V) based anti-leishmanial drug meglumine antimoniate with glutathione, have demonstrated that a reduction pathway may be responsible for its effective and selective nature. The new suite of organometallic complexes, of general formula [MAr3(O2CR)2] (M = Sb or Bi) have been shown to have potential as new selective drug candidates. However, their behaviour towards the critical thiols glutathione and trypanothione is still largely unknown. Using NMR spectroscopy and mass spectrometry we have examined the interaction of the analogous Sb(V) and Bi(V) organometallic complexes, [SbPh3(O2CCH2(C6H4CH3))2] S1 and [BiPh3(O2CCH2(C6H4CH3))2] B1, with the trifluoroacetate (TFA) salt of trypanothione and L-glutathione. In the presence of trypanothione or glutathione at the clinically relevant pH of 4-5 for Leishmania amastigotes, both complexes undergo facile and rapid reduction, with no discernible difference. However, at a higher pH (6-7), the complexes behave quite differently towards glutathione. The Bi(V) complex is again reduced rapidly but the Sb(V) complex undergoes slow reduction over 8 h (t1/2 = 54 min.) These results give the first insights into why the highly oxidising Bi(V) complexes display low selectivity in their cytotoxicity towards leishmanial and mammalian cells, while the Sb(V) complexes show good selectivity.
Collapse
|
25
|
Shams M, Nourmohammadi H, Basati G, Adhami G, Majidiani H, Azizi E. Leishmanolysin gp63: Bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
26
|
Isolation of intact Leishmania amazonensis large parasitophorous vacuoles from infected macrophages by density gradient fractionation. Exp Parasitol 2020; 218:107989. [PMID: 32941888 DOI: 10.1016/j.exppara.2020.107989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 11/23/2022]
Abstract
As the causative agent of hard-to-treat diffuse cutaneous leishmaniasis, Leishmania (L.) amazonensis persists in the host organism sheltered within large Parasitophorous Vacuoles (PVs) formed mainly in macrophages. In the present study, I present a simple and efficient method for L. amazonensis PV isolation. Isolated PVs are intact as demonstrated by the conservation of lysosomal probes loaded into PVs before the procedure. The method is useful for studies aiming at a complete and accurate molecular profile of these structures, to better understand the biogenesis of this pathogen-containing vacuole and its implication in parasite persistence and in leishmaniasis pathogenesis.
Collapse
|
27
|
Aghaei M, Khanahmad H, Aghaei S, Hosseini SM, Farahmand M, Hejazi SH. Evaluation of transgenic Leishmania infantum expressing mLLO-BAX-SMAC in the apoptosis of the infected macrophages in vitro and in vivo. Parasite Immunol 2020; 42:e12726. [PMID: 32367588 DOI: 10.1111/pim.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Leishmaniasis is an important infectious disease that develops because of escaping parasite from the host immune system or preventing host macrophages apoptosis. Recently, the development of transgenic methods and the manipulation of the parasite genome has provided many advantages. So, in this study, the effect of the transgenic Leishmania infantum expressing mLLO-BAX-SMAC proteins was examined in accelerating host cell apoptosis. METHOD The entire coding sequence of designed codon-optimized mLLO-Bax-Smac was cloned in the pLexyNeo2 vector and integrated downstream of the 18srRNA locus of L infantum genome by homologous recombination. Next, the expression of mLLO-BAX-SMAC fusion protein was evaluated by the Western blotting technique and the pathogenesis of transgenic parasite was surveyed in vitro and in vivo. RESULTS The results of PCR and Western blot confirmed proper integration and expression of mLLO-Bax-Smac sequence into the 18srRNA locus of L infantum. Flow cytometry showed accelerating apoptosis of transgenic Leishmania-infected macrophages compared to wild-type parasite. Also, transgenic parasites were less virulent as a fewer parasitic burden was found in the spleen and liver of transgenic-infected mice compared to the control. CONCLUSION The data suggested that the transgenic L infantum expressing BAX-SMAC can be used as an experimental model for developing vaccination against leishmaniasis.
Collapse
Affiliation(s)
- Maryam Aghaei
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Aghaei
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sayed Mohsen Hosseini
- Department of Biostatistics & Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Farahmand
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Mehri P, Pashazadeh-Panahi P, Hasanzadeh M, Razmi N. An innovative genosensor for the monitoring of Leishmania spp sequence using binding of pDNA to cDNA based on Cit-AgNPs. Heliyon 2020; 6:e04638. [PMID: 32904219 PMCID: PMC7452400 DOI: 10.1016/j.heliyon.2020.e04638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/25/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis considered as the most crucial epidemic-prone diseases according to the World Health Organization. Early diagnoses and therapy of Leishmania infection is a great challenge since, it has no symptom and is resistance to drugs. Therefore, there is an urgent need for sensitive and precise detection of this pathogen. In this study, a new method was developed for optical biosensing of Leishmania spp sequence based on hybridization of Citrate capped Ag nanoparticles bonded to specific single stranded DNA probe of Leishmania spp. Aggregation of the Citrate capped Ag nanoparticles in the existence or lack of a cDNA sequence of Leishmania, cause eye catching and considerable significant alter in the UV-vis. The obtained low limit of quantification (LLOQ) of was achieved as 1ZM. Based on experimental results in optimum conditions, quick bioanalysis of Leishmania spp sequence was performed (2 min). So, this probe can be used for the clinical diagnosis of this pathogen and infection disease.
Collapse
Affiliation(s)
- Parina Mehri
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Pashazadeh-Panahi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Razmi
- Department of Science and Technology, Physics, Electronics and Mathematics Linköping University, Sweden
| |
Collapse
|
29
|
Capelli-Peixoto J, Mule SN, Tano FT, Palmisano G, Stolf BS. Proteomics and Leishmaniasis: Potential Clinical Applications. Proteomics Clin Appl 2019; 13:e1800136. [PMID: 31347770 DOI: 10.1002/prca.201800136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. They are endemic in 98 countries, affect around 12 million people worldwide and may present several distinct clinical forms. Unfortunately, there are only a few drugs available for treatment of leishmaniasis, which are toxic and not always effective. Different parasite species and different clinical forms require optimization of the treatment or more specific therapies, which are not available. The emergence of resistance is also a matter of concern. Besides, diagnosis can sometimes be complicated due to atypical manifestations and associations with other pathologies. In this review, proteomic data are presented and discussed in terms of their application in important issues in leishmaniasis such as parasite resistance to chemotherapy, diagnosis of active disease in patients and dogs, markers for different clinical forms, identification of virulence factors, and their potential use in vaccination. It is shown that proteomics has contributed to the discovery of potential biomarkers for prognosis, diagnosis, therapeutics, monitoring of disease progression, treatment follow-up and identification of vaccine candidates for specific diseases. However, the authors believe its capabilities have not yet been fully explored for routine clinical analysis for several reasons, which will be presented in this review.
Collapse
Affiliation(s)
- Janaína Capelli-Peixoto
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Fabia Tomie Tano
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Soni B, Singh S. Cytokine Milieu in Infectious Disease: A Sword or a Boon? J Interferon Cytokine Res 2019; 40:24-32. [PMID: 31553263 DOI: 10.1089/jir.2019.0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytokines have a myriad role in an infectious disease, whether being pathogenic, bacterial, or viral. All proinflammatory and anti-inflammatory cytokine biological function are dependent on its concentration, followed by combination with the other cytokines and the stage of the disease. Plasticity in switching off from one phenotype to the other of these regulatory mediators in congruence with the traditional concept of inhibitory and stimulatory effects on immune system is dealt with. This review highlights the dual functionality of some of these cytokines and cytokine-based immunotherapy.
Collapse
Affiliation(s)
- Bhavnita Soni
- Department of Pathogenesis and Cellular Response, National Centre for Cell Science, Pune, India
| | - Shailza Singh
- Department of Pathogenesis and Cellular Response, National Centre for Cell Science, Pune, India
| |
Collapse
|
31
|
Kumar GA, Karmakar J, Mandal C, Chattopadhyay A. Leishmania donovani Internalizes into Host Cells via Caveolin-mediated Endocytosis. Sci Rep 2019; 9:12636. [PMID: 31477757 PMCID: PMC6718660 DOI: 10.1038/s41598-019-49007-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
Leishmania donovani is an intracellular protozoan parasite that causes visceral leishmaniasis, a major cause of mortality and morbidity worldwide. The host plasma membrane serves as the portal of entry for Leishmania to gain access to the cellular interior. Although several host cell membrane receptors have been shown to be involved in the entry of Leishmania donovani into host cells, the endocytic pathway involved in the internalization of the parasite is not known. In this work, we explored the endocytic pathway involved in the entry of Leishmania donovani into host macrophages, utilizing specific inhibitors against two major pathways of internalization, i.e., clathrin- and caveolin-mediated endocytosis. We show that pitstop 2, an inhibitor for clathrin-mediated endocytosis, does not affect the entry of Leishmania donovani promastigotes into host macrophages. Interestingly, a significant reduction in internalization was observed upon treatment with genistein, an inhibitor for caveolin-mediated endocytosis. These results are supported by a similar trend in intracellular amastigote load within host macrophages. These results suggest that Leishmania donovani utilizes caveolin-mediated endocytosis to internalize into host cells. Our results provide novel insight into the mechanism of phagocytosis of Leishmania donovani into host cells and assume relevance in the development of novel therapeutics against leishmanial infection.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Joyshree Karmakar
- CSIR-Indian Institute of Chemical Biology, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Chitra Mandal
- CSIR-Indian Institute of Chemical Biology, Raja S.C. Mullick Road, Kolkata, 700 032, India.
| | | |
Collapse
|
32
|
Protein phosphatase 1 of Leishmania donovani exhibits conserved catalytic residues and pro-inflammatory response. Biochem Biophys Res Commun 2019; 516:770-776. [DOI: 10.1016/j.bbrc.2019.06.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022]
|
33
|
Khayeka-Wandabwa C, Zhou G, Magak NG, Choge JK, Kemei WK, Makwali JA, Karani LW, Kisavi MP, Ndulu JV, Anjili CO. Combined chemotherapy manifest less severe immunopathology effects in helminth-protozoa comorbidity. Exp Parasitol 2019; 204:107728. [PMID: 31348915 DOI: 10.1016/j.exppara.2019.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Co-infection with Leishmania major and Schistosoma mansoni may have significant consequences for disease progression, severity and subsequent transmission dynamics. Pentavalent antimonials and Praziquantel (PZQ) are used as first line of treatment for Leishmania and Schistosoma infections respectively. However, there is limited insight on how combined therapy with the standard drugs impacts the host in comorbidity. The study aimed to determine the efficacy of combined chemotherapy using Pentostam (P) and PZQ in murine model co-infected with L. major and S. mansoni. METHODS A 3 × 4 factorial design with three parasite infection groups (Lm, Sm, Lm + Sm to represent L. major, S. mansoni and L. major + S. mansoni respectively) and four treatment regimens [P, PZQ, P + PZQ, and PBS designating Pentostam (GlaxoSmithKline UK), Praziquantel (Biltricide®, Bayer Ag. Leverkusen, Germany), Pentostam + Praziquantel and Phosphate buffered saline] as factors was applied. RESULTS Significant changes were observed in the serum Interferon gamma (IFN-γ), and Macrophage inflammatory protein-one alpha (MIP-1α) levels among various treatment groups between week 8 and week 10 (p < 0.05). There was increased IFN-γ in the L. major infected mice subjected to PZQ and PBS, and in L. major + S. mansoni infected BALB/c mice treated with P + PZQ. Subsequently, MIP-1α levels increased significantly in both the L. major infected mice under PZQ and PBS and in L. major + S. mansoni infected BALB/c mice undergoing concurrent chemotherapy with P + PZQ between 8 and 10 weeks (p < 0.05). In the comorbidity, simultaneous chemotherapy resulted in less severe histopathological effects in the liver. CONCLUSION It was evident, combined first line of treatment is a more effective strategy in managing co-infection of L. major and S. mansoni. The findings denote simultaneous chemotherapy compliments immunomodulation in the helminth-protozoa comorbidity hence, less severe pathological effects following the parasites infection. Recent cases of increased incidences of polyparasitism in vertebrates call for better ways to manage co-infections. The findings presented necessitate intrinsic biological interest on examining optimal combined chemotherapeutic agents strategies in helminth-protozoa concomitance and the related infections abatement trends vis-a-vis host-parasite relationships.
Collapse
Affiliation(s)
- Christopher Khayeka-Wandabwa
- School of Pharmaceutical Science and Technology (SPST), Health Science Platform, Tianjin University, Tianjin, 300072, China; Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840, Nairobi, 00200, Kenya.
| | - Guan Zhou
- School of Pharmaceutical Science and Technology (SPST), Health Science Platform, Tianjin University, Tianjin, 300072, China.
| | | | - Joseph K Choge
- University of Kabianga, P.O. Box 2030, Kericho, 20200, Kenya.
| | - William Kipchirchir Kemei
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya.
| | - Judith Alice Makwali
- Department of Biological Science, University of Eldoret, P.O Box 1125, Eldoret, 30100, Kenya.
| | | | - Mutila Phoebe Kisavi
- School of Health Science, Machakos University, Kenya; Public Health Intervention Research Group, The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, NSW 2052 Australia.
| | - James V Ndulu
- African Population and Health Research Center (APHRC), P .O. Box 10787-00100, Nairobi, Kenya.
| | - Christopher O Anjili
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840, Nairobi, 00200, Kenya.
| |
Collapse
|
34
|
Toor IS, Rückerl D, Mair I, Thomson A, Rossi AG, Newby DE, Allen JE, Gray GA. Enhanced monocyte recruitment and delayed alternative macrophage polarization accompanies impaired repair following myocardial infarction in C57BL/6 compared to BALB/c mice. Clin Exp Immunol 2019; 198:83-93. [PMID: 31119724 PMCID: PMC6718279 DOI: 10.1111/cei.13330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of the innate immune response following myocardial infarction (MI) is essential for infarct repair. Preclinical models of MI commonly use C57BL/6 mice, which have a type 1‐dominant immune response, whereas other mouse strains such as BALB/c mice have a type 2‐dominant immune response. We compared C57BL/6 and BALB/c mice to investigate whether predisposition towards a proinflammatory phenotype influences the dynamics of the innate immune response to MI and associated infarct healing and the risk of cardiac rupture. MI was induced by permanent coronary artery ligation in 12–15‐week‐old male wild‐type BALB/c and C57BL/6 mice. Prior to MI, C57BL/6 mice had a lower proportion of CD206+ anti‐inflammatory macrophages in the heart and an expanded blood pool of proinflammatory Ly6Chigh monocytes in comparison to BALB/c mice. The systemic inflammatory response in C57BL/6 mice following MI was more pronounced, with greater peripheral blood Ly6Chigh monocytosis, splenic Ly6Chigh monocyte mobilization and myeloid cell infiltration of pericardial adipose tissue. This led to an increased and prolonged macrophage accumulation, as well as delayed transition towards anti‐inflammatory macrophage polarization in the infarct zone and surrounding tissues of C57BL/6 mice. These findings accompanied a higher rate of mortality due to cardiac rupture in C57BL/6 mice compared with BALB/c mice. We conclude that lower post‐MI survival of C57BL/6 mice over BALB/c mice is mediated in part by a more pronounced and prolonged inflammatory response. Outcomes in BALB/c mice highlight the therapeutic potential of modulating resolution of the innate immune response following MI for the benefit of successful infarct healing.
Collapse
Affiliation(s)
- I S Toor
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - D Rückerl
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Edinburgh, UK
| | - I Mair
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - A Thomson
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - D E Newby
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - J E Allen
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Edinburgh, UK
| | - G A Gray
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Pessoa CC, Reis LC, Ramos-Sanchez EM, Orikaza CM, Cortez C, de Castro Levatti EV, Badaró ACB, Yamamoto JUDS, D’Almeida V, Goto H, Mortara RA, Real F. ATP6V0d2 controls Leishmania parasitophorous vacuole biogenesis via cholesterol homeostasis. PLoS Pathog 2019; 15:e1007834. [PMID: 31199856 PMCID: PMC6594656 DOI: 10.1371/journal.ppat.1007834] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/26/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
V-ATPases are part of the membrane components of pathogen-containing vacuoles, although their function in intracellular infection remains elusive. In addition to organelle acidification, V-ATPases are alternatively implicated in membrane fusion and anti-inflammatory functions controlled by ATP6V0d2, the d subunit variant of the V-ATPase complex. Therefore, we evaluated the role of ATP6V0d2 in the biogenesis of pathogen-containing vacuoles using ATP6V0d2 knock-down macrophages infected with the protozoan parasite Leishmania amazonensis. These parasites survive within IFNγ/LPS-activated inflammatory macrophages, multiplying in large/fusogenic parasitophorous vacuoles (PVs) and inducing ATP6V0d2 upregulation. ATP6V0d2 knock-down decreased macrophage cholesterol levels and inhibited PV enlargement without interfering with parasite multiplication. However, parasites required ATP6V0d2 to resist the influx of oxidized low-density lipoprotein (ox-LDL)-derived cholesterol, which restored PV enlargement in ATP6V0d2 knock-down macrophages by replenishing macrophage cholesterol pools. Thus, we reveal parasite-mediated subversion of host V-ATPase function toward cholesterol retention, which is required for establishing an inflammation-resistant intracellular parasite niche.
Collapse
Affiliation(s)
- Carina Carraro Pessoa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Luiza Campos Reis
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brasil
| | - Eduardo Milton Ramos-Sanchez
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brasil
| | - Cristina Mary Orikaza
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Cristian Cortez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
| | | | - Ana Carolina Benites Badaró
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | - Vânia D’Almeida
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Hiro Goto
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brasil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Fernando Real
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
36
|
PAS domain-containing phosphoglycerate kinase deficiency in Leishmania major results in increased autophagosome formation and cell death. Biochem J 2019; 476:1303-1321. [PMID: 30988012 DOI: 10.1042/bcj20190041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
Per-Arnt-Sim (PAS) domains are structurally conserved and present in numerous proteins throughout all branches of the phylogenetic tree. Although PAS domain-containing proteins are major players for the adaptation to environmental stimuli in both prokaryotic and eukaryotic organisms, these types of proteins are still uncharacterized in the trypanosomatid parasites, Trypanosome and Leishmania In addition, PAS-containing phosphoglycerate kinase (PGK) protein is uncharacterized in the literature. Here, we report a PAS domain-containing PGK (LmPAS-PGK) in the unicellular pathogen Leishmania The modeled structure of N-terminal of this protein exhibits four antiparallel β sheets centrally flanked by α helices, which is similar to the characteristic signature of PAS domain. Activity measurements suggest that acidic pH can directly stimulate PGK activity. Localization studies demonstrate that the protein is highly enriched in the glycosome and its presence can also be seen in the lysosome. Gene knockout, overexpression and complement studies suggest that LmPAS-PGK plays a fundamental role in cell survival through autophagy. Furthermore, the knockout cells display a marked decrease in virulence when host macrophage and BALB/c mice were infected with them. Our work begins to clarify how acidic pH-dependent ATP generation by PGK is likely to function in cellular adaptability of Leishmania.
Collapse
|
37
|
Rivera-Fernández I, Argueta-Donohué J, Wilkins-Rodríguez AA, Gutiérrez-Kobeh L. Effect of Two Different Isolates of Leishmania mexicana in the Production of Cytokines and Phagocytosis by Murine Dendritic Cells. J Parasitol 2019. [DOI: 10.1645/17-158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ilse Rivera-Fernández
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México. Juan Badiano no. 1. Col. Belisario Domínguez, sección XVI, cp 14080, Ciudad de México, México
| | - Jesús Argueta-Donohué
- Instituto Nacional de Psiquiatría, Calzada México-Xochimilco 101, Huipulco, cp 14370 Ciudad de México, México
| | - Arturo A. Wilkins-Rodríguez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México. Juan Badiano no. 1. Col. Belisario Domínguez, sección XVI, cp 14080, Ciudad de México, México
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México. Juan Badiano no. 1. Col. Belisario Domínguez, sección XVI, cp 14080, Ciudad de México, México
| |
Collapse
|
38
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
39
|
Abstract
Visceral leishmaniasis, a fatal disease if not treated, is caused by Leishmania parasites. This disease might be overlooked in the Middle East because of limited awareness and low incidence. We report 5 patients who died of visceral leishmaniasis in Lebanon and make recommendations to improve faster diagnosis and treatment.
Collapse
|
40
|
Galgamuwa LS, Sumanasena B, Iddawela D, Wickramasinghe S, Yatawara L. Assessment of intralesional cytokine profile of cutaneous leishmaniasis caused by Leishmania donovani in Sri Lanka. BMC Microbiol 2019; 19:14. [PMID: 30642262 PMCID: PMC6332851 DOI: 10.1186/s12866-018-1384-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cytokines play a vital role in the host immune response to infection by initiating the healing process and/or accelerating the progression of the disease in cutaneous leishmaniasis (CL). Very little evidence is available on cytokine profiles and their regulatory function in CL patients in Sri Lanka. The aim of this study was to determine the cytokine expression pattern of IFN-γ, IL-4, IL-11 and IL-12p40 in CL patients and in healthy volunteers. Patients with suspected CL lesions attending to the Dermatology Clinic at the Anuradhapura Teaching Hospital were included in the study. Reverse transcription real time polymerase chain reaction (real-time RT-PCR) was performed to determine the relative expression level of target cytokines. Expression levels were quantified by 2- ∆∆CT equation. RESULTS The expression of cytokines IFN-γ, IL-4, IL-11 and IL-12p40 were significantly higher in CL patients compared to healthy volunteers (p < 0.05). There was a significant association between the expression of IFN-γ and the duration of the lesion (p = 0.021). Wet CL lesions showed significantly higher expression of IL-4, IL-11 and IL-12p40 (p = 0.039, 0.018 and 0.021 respectively) compared to dry lesions. Papulo-nodular lesions showed significantly high expression of IFN-γ (p = 0.023). However, cytokine expression was not significantly associated with the number, size and the locations of lesions. CONCLUSIONS The expression levels of all cytokines tested in the present study were significantly (p < 0.05) high in CL patients. Th1 response (IFN-γ and IL-12p40) had higher expression levels compared to Th2 (IL-4) and IL-11 in CL patients.
Collapse
Affiliation(s)
| | - Buthsiri Sumanasena
- Anuradhapura Teaching Hospital, Harischandra Mawatha, Anuradhapura, Sri Lanka
| | - Devika Iddawela
- Department of Parasitology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400 Sri Lanka
| | - Susiji Wickramasinghe
- Department of Parasitology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400 Sri Lanka
| | - Lalani Yatawara
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, 20400 Sri Lanka
| |
Collapse
|
41
|
Mishra A, Sundaravadivel P, Tripathi SK, Jha RK, Badrukhiya J, Basak N, Anerao I, Sharma A, Idowu AE, Mishra A, Pandey S, Kumar U, Singh S, Nizamuddin S, Tupperwar NC, Jha AN, Thangaraj K. Variations in macrophage migration inhibitory factor gene are not associated with visceral leishmaniasis in India. J Infect Public Health 2019; 12:380-387. [PMID: 30611734 DOI: 10.1016/j.jiph.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/24/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The host genetic factors play important role in determining the outcome of visceral leishmaniasis (VL). Macrophage migration inhibitory factor (MIF) is an important host cytokine, which is a key regulator of innate immune system. Genetic variants in MIF gene have been found to be associated with several inflammatory and infectious diseases. Role of MIF is well documented in leishmaniasis diseases, including Indian visceral leishmaniasis, where elevated level of serum MIF has been associated with VL phenotypes. However, there was no genetic study to correlate MIF variants in VL, therefore, we aimed to study the possible association of three reported MIF gene variants -794 CATT, -173G > C and non-coding RNA gene LOC284889 in Indian VL phenotype. METHODS Study subjects comprised of 214 VL patients along with ethnically and demographically matched 220 controls from VL endemic regions of Bihar state in India. RESULTS We found no significant difference between cases and controls in allelic, genotypic and haplotype frequency of the markers analysed [-794 CATT repeats (χ2=0.86; p=0.35; OR=0.85; 95% CI=0.61-1.19); -173 G>C polymorphism (χ2=1.11; p=0.29; OR=0.83; 95% CI=0.59-1.16); and LOC284889 (χ2=0.78; p=0.37; OR=0.86; 95% CI=0.61-1.20)]. CONCLUSION Since we did not find any significant differences between case and control groups, we conclude that sequencing of complete MIF gene and extensive study on innate and adaptive immunity genes may help in identifying genetic variations that are associated with VL susceptibility/resistance among Indians.
Collapse
Affiliation(s)
- Anshuman Mishra
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India; Vinoba Bhave Research Institute, Allahabad, India; Institute of Advanced Materials, Linkoping, Sweden
| | | | | | - Rajan Kumar Jha
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Nipa Basak
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research, India
| | - Isha Anerao
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Akshay Sharma
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ajayi Ebenezer Idowu
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India; Osun State University, Oshogbo, Nigeria
| | | | | | - Umesh Kumar
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sakshi Singh
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Aditya Nath Jha
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India; Sickle Cell Institute Chhattisgarh, Raipur, India
| | | |
Collapse
|
42
|
Sellau J, Groneberg M, Lotter H. Androgen-dependent immune modulation in parasitic infection. Semin Immunopathol 2018; 41:213-224. [PMID: 30353258 DOI: 10.1007/s00281-018-0722-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Parasitic infections modulate the immune system of the host, resulting in either immune tolerance or the induction of pro-inflammatory defense mechanisms against the pathogen. In both cases, sex hormones are involved in the regulation of the immune response, as they are present in the systemic circulation and can act on a wide variety of cell types, including immune cells. Men and women have a different milieu of sex hormones, and these hormones play a role in determining immune responses to parasitic infections. Men, who have higher plasma levels of androgens than women, are generally more susceptible to parasitic infections. Many immune cells express the androgen receptor (AR), and the immunologic functions of these cells can be modulated by androgens. In this review, we will highlight the immune cell types that are sensitive to male steroid hormones and describe their roles during three parasitic diseases, amebiasis, leishmaniasis, and helminthiasis.
Collapse
Affiliation(s)
- Julie Sellau
- Department of Molecular Biology and Immunology, Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany.
| | - Marie Groneberg
- Department of Molecular Biology and Immunology, Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Hannelore Lotter
- Department of Molecular Biology and Immunology, Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| |
Collapse
|
43
|
Suman SS, Amit A, Singh KP, Gupta P, Equbal A, Kumari A, Topno RK, Ravidas V, Pandey K, Bimal S, Das P, Ali V. Cytosolic tryparedoxin of Leishmania donovani modulates host immune response in visceral leishmaniasis. Cytokine 2018; 108:1-8. [DOI: 10.1016/j.cyto.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/28/2018] [Accepted: 03/10/2018] [Indexed: 11/24/2022]
|
44
|
Živanović V, Semini G, Laue M, Drescher D, Aebischer T, Kneipp J. Chemical Mapping of Leishmania Infection in Live Cells by SERS Microscopy. Anal Chem 2018; 90:8154-8161. [DOI: 10.1021/acs.analchem.8b01451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vesna Živanović
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Strasse 5-9, 12489 Berlin, Germany
| | | | | | | | | | - Janina Kneipp
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Strasse 5-9, 12489 Berlin, Germany
| |
Collapse
|
45
|
Anversa L, Tiburcio MGS, Richini-Pereira VB, Ramirez LE. Human leishmaniasis in Brazil: A general review. ACTA ACUST UNITED AC 2018; 64:281-289. [PMID: 29641786 DOI: 10.1590/1806-9282.64.03.281] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/06/2017] [Indexed: 11/22/2022]
Abstract
Leishmaniasis is a disease with ample clinical spectrum and epidemiological diversity and is considered a major public health problem. This article presents an overview of the transmission cycles, host-parasite interactions, clinical, histological and immunological aspects, diagnosis and treatment of various forms of the human disease.
Collapse
Affiliation(s)
- Laís Anversa
- Biomedical Sciences Core - Instituto Adolfo Lutz, Centro de Laboratório Regional de Bauru, Bauru, SP, Brazil
| | | | | | - Luis Eduardo Ramirez
- Department of Immunology, Microbiology and Parasitology, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
46
|
de Rezende E, Kawahara R, Peña MS, Palmisano G, Stolf BS. Quantitative proteomic analysis of amastigotes from Leishmania (L.) amazonensis LV79 and PH8 strains reveals molecular traits associated with the virulence phenotype. PLoS Negl Trop Dis 2017; 11:e0006090. [PMID: 29176891 PMCID: PMC5720813 DOI: 10.1371/journal.pntd.0006090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/07/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Leishmaniasis is an antropozoonosis caused by Leishmania parasites that affects around 12 million people in 98 different countries. The disease has different clinical forms, which depend mainly on the parasite genetics and on the immunologic status of the host. The promastigote form of the parasite is transmitted by an infected female phlebotomine sand fly, is internalized by phagocytic cells, mainly macrophages, and converts into amastigotes which replicate inside these cells. Macrophages are important cells of the immune system, capable of efficiently killing intracellular pathogens. However, Leishmania can evade these mechanisms due to expression of virulence factors. Different strains of the same Leishmania species may have different infectivity and metastatic phenotypes in vivo, and we have previously shown that analysis of amastigote proteome can give important information on parasite infectivity. Differential abundance of virulence factors probably accounts for the higher virulence of PH8 strain parasites shown in this work. In order to test this hypothesis, we have quantitatively compared the proteomes of PH8 and LV79 lesion-derived amastigotes using a label-free proteomic approach. METHODOLOGY/PRINCIPAL FINDINGS In the present work, we have compared lesion development by L. (L.) amazonensis PH8 and LV79 strains in mice, showing that they have different virulence in vivo. Viability and numbers of lesion-derived amastigotes were accordingly significantly different. Proteome profiles can discriminate parasites from the two strains and several proteins were differentially expressed. CONCLUSIONS/SIGNIFICANCE This work shows that PH8 strain is more virulent in mice, and that lesion-derived parasites from this strain are more viable and more infective in vitro. Amastigote proteome comparison identified GP63 as highly expressed in PH8 strain, and Superoxide Dismutase, Tryparedoxin Peroxidase and Heat Shock Protein 70 as more abundant in LV79 strain. The expression profile of all proteins and of the differential ones precisely classified PH8 and LV79 samples, indicating that the two strains have proteins with different abundances and that proteome profiles correlate with their phenotypes.
Collapse
Affiliation(s)
- Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauricio S. Peña
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Beatriz S. Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
47
|
Manamperi NH, Oghumu S, Pathirana N, de Silva MVC, Abeyewickreme W, Satoskar AR, Karunaweera ND. In situ immunopathological changes in cutaneous leishmaniasis due to Leishmania donovani. Parasite Immunol 2017; 39. [PMID: 28112425 DOI: 10.1111/pim.12413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
Abstract
Cutaneous leishmaniasis in Sri Lanka is a newly established parasitic disease caused by the usually visceralizing Leishmania donovani. Skin lesions manifest as non-itchy, non-tender papules, nodules or ulcers. In situ cytokine expression provides clues for immunopathogenesis of this localized form of disease. Skin biopsies from 58 patients were analyzed for histological appearance and in situ cytokine expression of T-helper 1 (Th1) and T-helper 2 (Th2) cytokines, namely interferon (IFN)-γ, interleukin (IL)-12A, tumor necrosis factor (TNF)-α, IL-4 and IL-10 by real-time RT-PCR. Significant up-regulation of the Th1 cytokine IFN-γ and down-regulation of the Th2 cytokine IL-4 were seen in patients compared to healthy controls. Significantly elevated tissue expression of IFN-γ and TNF-α was seen in lesions that presented later than 6 months from the time of onset, while IL-4 expression was more prominent in lesions that responded poorly to antimony therapy. A prominent Th1 response appears to support resolving of lesions, whereas a Th2-biased milieu tends to favor poor responsiveness to antimony and delayed lesion healing in L. donovani infections in Sri Lanka.
Collapse
Affiliation(s)
- N H Manamperi
- Faculty of Medicine, Department of Parasitology, University of Kelaniya, Ragama, Sri Lanka
| | - S Oghumu
- Department of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
| | - N Pathirana
- Department of Dermatology, Army Hospital, Colombo, Sri Lanka
| | - M V C de Silva
- Faculty of Medicine, Department of Pathology, University of Colombo, Colombo, Sri Lanka
| | - W Abeyewickreme
- Faculty of Medicine, Department of Parasitology, University of Kelaniya, Ragama, Sri Lanka
| | - A R Satoskar
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - N D Karunaweera
- Faculty of Medicine, Department of Parasitology, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
48
|
Semini G, Aebischer T. Phagosome proteomics to study Leishmania's intracellular niche in macrophages. Int J Med Microbiol 2017; 308:68-76. [PMID: 28927848 DOI: 10.1016/j.ijmm.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
49
|
Villa-Pulgarín JA, Gajate C, Botet J, Jimenez A, Justies N, Varela-M RE, Cuesta-Marbán Á, Müller I, Modolell M, Revuelta JL, Mollinedo F. Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Negl Trop Dis 2017; 11:e0005805. [PMID: 28829771 PMCID: PMC5568728 DOI: 10.1371/journal.pntd.0005805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Background Leishmaniasis is the world’s second deadliest parasitic disease after malaria, and current treatment of the different forms of this disease is far from satisfactory. Alkylphospholipid analogs (APLs) are a family of anticancer drugs that show antileishmanial activity, including the first oral drug (miltefosine) for leishmaniasis and drugs in preclinical/clinical oncology trials, but their precise mechanism of action remains to be elucidated. Methodology/Principal findings Here we show that the tumor cell apoptosis-inducer edelfosine was the most effective APL, as compared to miltefosine, perifosine and erucylphosphocholine, in killing Leishmania spp. promastigotes and amastigotes as well as tumor cells, as assessed by DNA breakdown determined by flow cytometry. In studies using animal models, we found that orally-administered edelfosine showed a potent in vivo antileishmanial activity and diminished macrophage pro-inflammatory responses. Edelfosine was also able to kill Leishmania axenic amastigotes. Edelfosine was taken up by host macrophages and killed intracellular Leishmania amastigotes in infected macrophages. Edelfosine accumulated in tumor cell mitochondria and Leishmania kinetoplast-mitochondrion, and led to mitochondrial transmembrane potential disruption, and to the successive breakdown of parasite mitochondrial and nuclear DNA. Ectopic expression of Bcl-XL inhibited edelfosine-induced cell death in both Leishmania parasites and tumor cells. We found that the cytotoxic activity of edelfosine against Leishmania parasites and tumor cells was associated with a dramatic recruitment of FOF1-ATP synthase into lipid rafts following edelfosine treatment in both parasites and cancer cells. Raft disruption and specific FOF1-ATP synthase inhibition hindered edelfosine-induced cell death in both Leishmania parasites and tumor cells. Genetic deletion of FOF1-ATP synthase led to edelfosine drug resistance in Saccharomyces cerevisiae yeast. Conclusions/Significance The present study shows that the antileishmanial and anticancer actions of edelfosine share some common signaling processes, with mitochondria and raft-located FOF1-ATP synthase being critical in the killing process, thus identifying novel druggable targets for the treatment of leishmaniasis. Leishmaniasis is a major health problem worldwide, and can result in loss of human life or a lifelong stigma because of bodily scars. According to World Health Organization, leishmaniasis is considered as an emerging and uncontrolled disease, and its current treatment is far from ideal, with only a few drugs available that could lead to drug resistance or cause serious side-effects. Here, we have found that mitochondria and raft-located FOF1-ATPase synthase are efficient druggable targets, through which an ether lipid named edelfosine exerts its antileishmanial action. Edelfosine effectively kills Leishmania spp. promastigotes and amastigotes. Our experimental animal models demonstrate that oral administration of edelfosine exerts a potent antileishmanial activity, while inhibits macrophage pro-inflammatory responses. Our results show that both Leishmania and tumor cells share mitochondria and raft-located FOF1-ATPase synthase as major druggable targets in leishmaniasis and cancer therapy. These data, showing a potent antileishmanial activity of edelfosine and unveiling its mechanism of action, together with the inhibition of the inflammatory responses elicited by macrophages, suggest that the ether lipid edelfosine is a promising oral drug for leishmaniasis, and highlight mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Janny A Villa-Pulgarín
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Javier Botet
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Alberto Jimenez
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Nicole Justies
- Department of Cellular Immunology, Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Rubén E Varela-M
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Álvaro Cuesta-Marbán
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Ingrid Müller
- Department of Medicine, Section of Immunology, St. Mary's Campus, Imperial College London, London, United Kingdom
| | - Manuel Modolell
- Department of Cellular Immunology, Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - José L Revuelta
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
50
|
Argueta-Donohué J, Wilkins-Rodríguez AA, Aguirre-García M, Gutiérrez-Kobeh L. Differential phagocytosis of Leishmania mexicana promastigotes and amastigotes by monocyte-derived dendritic cells. Microbiol Immunol 2017; 60:369-81. [PMID: 26399218 DOI: 10.1111/1348-0421.12325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/28/2022]
Abstract
Leishmania species are dimorphic protozoan parasites that live and replicate in the gut of sand flies as promastigotes or in mammalian hosts as amastigotes. Different immune cells, including DCs, and receptors differ in their involvement in phagocytosis of promastigotes and amastigotes and in recognition of different Leishmania species. In the case of L. mexicana, differences in phagocytosis of promastigotes and amastigotes by DCs and participation of C-type lectin receptors (CLRs) have not been established. In the present study, flow cytometry and confocal microscopy were used to investigate the phagocytosis by monocyte-derived dendritic cells (moDCs) of L. mexicana promastigotes and amastigotes in the presence or absence of immune serum during various periods of time. Blocking antibodies against mannose receptors and DC-SIGN were used to explore the participation of these receptors in the phagocytosis of L. mexicana by moDC. The major differences in interactions of L. mexicana promastigotes and amastigotes with moDC were found to occur within the first 3 hr, during which phagocytosis of promastigotes predominated as compared with opsonization of promastigotes and amastigotes. However, after 6 hr of incubation, opsonized promastigotes were preferentially phagocytosed as compared with unopsonized promastigotes and amastigotes and after 24 hr of incubation there were no differences in the phagocytosis of promastigotes and amastigotes. Finally, after 3 hr incubation, DC-SIGN was involved in the phagocytosis of promastigotes, but not of amastigotes.
Collapse
Affiliation(s)
- Jesús Argueta-Donohué
- Experimental Medicine Research Unit, School of Medicine, National Autonomous University of Mexico, Dr. Balmis 148 Col. Doctores, Mexico City 06726, Mexico
| | - Arturo A Wilkins-Rodríguez
- Experimental Medicine Research Unit, School of Medicine, National Autonomous University of Mexico, Dr. Balmis 148 Col. Doctores, Mexico City 06726, Mexico
| | - Magdalena Aguirre-García
- Experimental Medicine Research Unit, School of Medicine, National Autonomous University of Mexico, Dr. Balmis 148 Col. Doctores, Mexico City 06726, Mexico
| | - Laila Gutiérrez-Kobeh
- Experimental Medicine Research Unit, School of Medicine, National Autonomous University of Mexico, Dr. Balmis 148 Col. Doctores, Mexico City 06726, Mexico
| |
Collapse
|