1
|
Karimi-Soflou R, Karkhaneh A, Shabani I. Size-adjustable self-assembled nanoparticles through microfluidic platform promotes neuronal differentiation of mouse embryonic stem cells. BIOMATERIALS ADVANCES 2022; 140:213056. [PMID: 35932661 DOI: 10.1016/j.bioadv.2022.213056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Neuronal differentiation from stem cells is one of the most potent therapeutic approaches for recovering neurological function in individuals with neurodegenerative disorders. Herein, an on-demand intracellular retinoic acid released nanoparticles with tunable size and accurately controlled physico-biological properties have been prepared for achieving efficient neuronal differentiation. The amphiphilic chitosan oligosaccharide-cholesterol copolymers were synthesized by varying cholesterol content and self-assembled into spherical micelle in a microfluidic chip with different flow rates. Notably, the results indicated that by increasing the lipophilicity of the chitosan chain as well as mixing rate, the size of micelles was decreased. Retinoic acid (RA) was efficiently encapsulated in the core of micelles. The retinoic acid-containing nanoparticles could escape lysosome, accumulate in the cytoplasm, and release payload with a sustained pattern. The cytotoxicity assay of free retinoic acid and retinoic acid-loaded formulations against P19 embryonic stem cells confirmed the desirable safety of micelles. The result obtained from the uptake study showed that internalization of micelles occurs predominantly via lipid-raft endocytosis in the presence of higher cholesterol content. Moreover, the intracellular RA release upregulated the expression levels of neuronal factors. The micelles described here offer a promising nanomedicine strategy for neuronal differentiation of stem cells.
Collapse
Affiliation(s)
- Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| |
Collapse
|
2
|
Minchiotti G, D’Aniello C, Fico A, De Cesare D, Patriarca EJ. Capturing Transitional Pluripotency through Proline Metabolism. Cells 2022; 11:cells11142125. [PMID: 35883568 PMCID: PMC9323356 DOI: 10.3390/cells11142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
In this paper, we summarize the current knowledge of the role of proline metabolism in the control of the identity of Embryonic Stem Cells (ESCs). An imbalance in proline metabolism shifts mouse ESCs toward a stable naïve-to-primed intermediate state of pluripotency. Proline-induced cells (PiCs), also named primitive ectoderm-like cells (EPLs), are phenotypically metastable, a trait linked to a rapid and reversible relocalization of E-cadherin from the plasma membrane to intracellular membrane compartments. The ESC-to-PiC transition relies on the activation of Erk and Tgfβ/Activin signaling pathways and is associated with extensive remodeling of the transcriptome, metabolome and epigenome. PiCs maintain several properties of naïve pluripotency (teratoma formation, blastocyst colonization and 3D gastruloid development) and acquire a few traits of primed cells (flat-shaped colony morphology, aerobic glycolysis metabolism and competence for primordial germ cell fate). Overall, the molecular and phenotypic features of PiCs resemble those of an early-primed state of pluripotency, providing a robust model to study the role of metabolic perturbations in pluripotency and cell fate decisions.
Collapse
|
3
|
Glover HJ, Shparberg RA, Morris MB. L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2490:11-24. [PMID: 35486235 DOI: 10.1007/978-1-0716-2281-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) can be grown under a variety of culture conditions as discrete cell states along the pluripotency continuum, ranging from the least mature "ground state" to being "primed" to differentiate. Cells along this continuum are demarcated by differences in gene expression, X chromosome inactivation, ability to form chimeras and epigenetic marks. We have developed a protocol to differentiate "naïve" mESCs to a "partially primed" state by adding the amino acid L-proline to self-renewal medium. These cells express the primitive ectoderm markers Dnmt3b and Fgf5, and are thus called early primitive ectoderm-like (EPL) cells. In addition to changes in gene expression, these cells undergo a morphological change to flattened, dispersed colonies, have an increased proliferation rate, and a predisposition to neural fate. EPL cells can be used to study the cell states along the pluripotency continuum, peri-implantation embryogenesis, and as a starting point for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Hannah J Glover
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Rachel A Shparberg
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michael B Morris
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
4
|
Agbay A, De La Vega L, Nixon G, Willerth S. Guggulsterone-releasing microspheres direct the differentiation of human induced pluripotent stem cells into neural phenotypes. ACTA ACUST UNITED AC 2018; 13:034104. [PMID: 29368696 DOI: 10.1088/1748-605x/aaaa77] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder, results from the loss of motor function when dopaminergic neurons (DNs) in the brain selectively degenerate. While pluripotent stem cells (PSCs) show promise for generating replacement neurons, current protocols for generating terminally differentiated DNs require a complicated cocktail of factors. Recent work demonstrated that a naturally occurring steroid called guggulsterone effectively differentiated PSCs into DNs, simplifying this process. In this study, we encapsulated guggulsterone into novel poly-ε-caprolactone-based microspheres and characterized its release profile over 44 d in vitro, demonstrating we can control its release over time. These guggulsterone-releasing microspheres were also successfully incorporated in human induced pluripotent stem cell-derived cellular aggregates under feeder-free and xeno-free conditions and cultured for 20 d to determine their effect on differentiation. All cultures stained positive for the early neuronal marker TUJ1 and guggulsterone microsphere-incorporated aggregates did not adversely affect neurite length and branching. Guggulsterone microsphere incorporated aggregates exhibited the highest levels of TUJ1 expression as well as high Olig 2 expression, an inhibitor of the STAT3 astrogenesis pathway previously known as a target for guggulsterone in cancer treatment. Together, this study represents an important first step towards engineered neural tissues consisting of guggulsterone microspheres and PSCs for generating DNs that could eventually be evaluated in a pre-clinical model of PD.
Collapse
Affiliation(s)
- Andrew Agbay
- Department of Neuroscience, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | | |
Collapse
|
5
|
Tan BSN, Kwek J, Wong CKE, Saner NJ, Yap C, Felquer F, Morris MB, Gardner DK, Rathjen PD, Rathjen J. Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture. PLoS One 2016; 11:e0163244. [PMID: 27723793 PMCID: PMC5056717 DOI: 10.1371/journal.pone.0163244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation.
Collapse
Affiliation(s)
- Boon Siang Nicholas Tan
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
| | - Joly Kwek
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
| | - Chong Kum Edwin Wong
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
| | - Nicholas J. Saner
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
| | - Charlotte Yap
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Fernando Felquer
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Michael B. Morris
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - David K. Gardner
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
| | - Peter D. Rathjen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Joy Rathjen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Stem Cells Australia, The University of Melbourne, Parkville, Australia
- Australian Stem Cell Centre, Monash University, Clayton, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
6
|
Regulation of amino acid transporters in pluripotent cell populations in the embryo and in culture; novel roles for sodium-coupled neutral amino acid transporters. Mech Dev 2016; 141:32-39. [DOI: 10.1016/j.mod.2016.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022]
|
7
|
Miyamoto D, Ohno K, Hara T, Koga H, Nakazawa K. Effect of separation distance on the growth and differentiation of mouse embryoid bodies in micropatterned cultures. J Biosci Bioeng 2015; 121:105-110. [PMID: 26047736 DOI: 10.1016/j.jbiosc.2015.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/05/2023]
Abstract
Embryoid body (EB) culture has been widely used for in vitro differentiation of embryonic stem (ES) cells. Micropatterning of cultures is a promising technique for regulating EB development, because it allows for controlling the EB size and the distance between neighboring EBs. In this study, we examined the relationship of EB separation distance to their growth and differentiation using a micropatterned chip. The basic chip design consisted of 91 gelatin spots (300 μm in diameter) in a hexagonal arrangement on a glass substrate that served as the cell adhesion area; the region without gelatin spots was modified with polyethylene glycol to create the non-adhesion area. Two similar chips were fabricated with distances between gelatin spots of 500 and 1500 μm. Mouse ES cells adhered on the gelatin spots and then proliferated to form EBs. When the EB-EB distance was at 1500 μm, their size and the expression of developmental gene markers were almost the same for all EBs on the chip. This indicated that interference between neighboring EBs was avoided. In contrast, when the EB-EB distance was at 500 μm, the size of EBs located in the inside region of the chip was smaller than that in the outside region. Additionally, in the inside region, hepatic differentiation of EB cells was increased over cardiac and vascular differentiation. These results indicate that the distance between EBs is an important factor in the regulation of their growth and differentiation.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kyohei Ohno
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Takuya Hara
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Haruka Koga
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kohji Nakazawa
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
8
|
Slater JA, Zhou S, Puscheck EE, Rappolee DA. Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells Dev 2014; 23:3049-64. [PMID: 25144240 PMCID: PMC4267551 DOI: 10.1089/scd.2014.0157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/21/2014] [Indexed: 12/11/2022] Open
Abstract
Extracellular stresses influence transcription factor (TF) expression and therefore lineage identity in the peri-implantation mouse embryo and its stem cells. This potentially affects pregnancy outcome. To understand the effects of stress signaling during this critical period of pregnancy, we exposed cultured murine embryonic stem cells (mESCs) to hyperosmotic stress. We then measured stress-enzyme-dependent regulation of key pluripotency and lineage TFs. Hyperosmotic stress slowed mESC accumulation due to slowing of the cell cycle over 72 h, after a small apoptotic response within 12 h. Phosphoinositide 3-kinase (PI3K) enzymatic signaling was responsible for stem cell survival under stressed conditions. Stress initially triggered mESC differentiation after 4 h through MEK1, c-Jun N-terminal kinase (JNK), and PI3K enzymatic signaling, which led to proteasomal degradation of Oct4, Nanog, Sox2, and Rex1 TF proteins. Concurrent with this post-transcriptional effect was the decreased accumulation of potency TF mRNA transcripts. After 12-24 h of stress, cells adapted, cell cycle resumed, and Oct4 and Nanog mRNA and protein expression returned to approximately normal levels. The TF protein recovery was mediated by p38MAPK and PI3K signaling, as well as by MEK2 and/or MEK1. However, due to JNK signaling, Rex1 expression did not recover. Probing for downstream lineages revealed that although mESCs did not differentiate morphologically during 24 h of stress, they were primed to differentiate by upregulating markers of the first lineage differentiating from mESCs, extraembryonic endoderm. Thus, although two to three TFs that mark pluripotency recover expression by 24 h of stress, there is nonetheless sustained Rex1 suppression and a priming of mESCs for differentiation to the earliest lineage.
Collapse
Affiliation(s)
- Jill A. Slater
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sichang Zhou
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth Ella Puscheck
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Daniel A. Rappolee
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
9
|
Influence of culture pH on proliferation and cardiac differentiation of murine embryonic stem cells. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Goh HN, Rathjen PD, Familari M, Rathjen J. Endoderm complexity in the mouse gastrula is revealed through the expression of spink3. Biores Open Access 2014; 3:98-109. [PMID: 24940561 PMCID: PMC4048981 DOI: 10.1089/biores.2014.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endoderm formation in the mammalian embryo occurs first in the blastocyst, when the primitive endoderm and pluripotent cells resolve into separate lineages, and again during gastrulation, when the definitive endoderm progenitor population emerges from the primitive streak. The formation of the definitive endoderm can be modeled using pluripotent cell differentiation in culture. The differentiation of early primitive ectoderm-like (EPL) cells, a pluripotent cell population formed from embryonic stem (ES) cells, was used to identify and characterize definitive endoderm formation. Expression of serine peptidase inhibitor, Kazal type 3 (Spink3) was detected in EPL cell–derived endoderm, and in a band of endoderm immediately distal to the embryonic–extra-embryonic boundary in pregastrula and gastrulating embryos. Later expression marked a region of endoderm separating the yolk sac from the developing gut. In the embryo, Spink3 expression marked a region of endoderm comprising the distal visceral endoderm, as determined by an endocytosis assay, and the proximal region of the definitive endoderm. This region was distinct from the more distal definitive endoderm population, marked by thyrotropin-releasing hormone (Trh). Endoderm expressing either Spink3 or Trh could be formed during EPL cell differentiation, and the prevalence of these populations could be influenced by culture medium and growth factor addition. Moreover, further differentiation suggested that the potential of these populations differed. These approaches have revealed an unexpected complexity in the definitive endoderm lineage, a complexity that will need to be accommodated in differentiation protocols to ensure the formation of the appropriate definitive endoderm progenitor in the future.
Collapse
Affiliation(s)
- Hwee Ngee Goh
- Department of Zoology, University of Melbourne , Victoria, Australia
| | - Peter D Rathjen
- The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne , Victoria, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne , Victoria, Australia . ; The Menzies Research Institute Tasmania, University of Tasmania , Tasmania, Australia
| |
Collapse
|
11
|
The States of Pluripotency: Pluripotent Lineage Development in the Embryo and in the Dish. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/208067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pluripotent cell lineage of the embryo comprises a series of temporally and functionally distinct intermediary cell states, the epiblast precursor cell of the newly formed blastocyst, the epiblast population of the inner cell mass, and the early and late epiblast of the postimplantation embryo, referred to here as early and late primitive ectoderm. Pluripotent cell populations representative of the embryonic populations can be formed in culture. Although multiple pluripotent cell states are now recognised, little is known about the signals and pathways that progress cells from the epiblast precursor cell to the late primitive ectoderm in the embryo or in culture. The characterisation of cell states is most advanced in mouse where conditions for culturing distinct pluripotent cell states are well established and embryonic material is accessible. This review will focus on the pluripotent cell states present during embryonic development in the mouse and what is known of the mechanisms that regulate the progression of the lineage from the epiblast precursor cell and the ground state of pluripotency to the late primitive ectoderm present immediately prior to cell differentiation.
Collapse
|
12
|
A novel perfused rotary bioreactor for cardiomyogenesis of embryonic stem cells. Biotechnol Lett 2014; 36:947-60. [PMID: 24652542 DOI: 10.1007/s10529-014-1456-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Developments in bioprocessing technology play an important role for overcoming challenges in cardiac tissue engineering. To this end, our laboratory has developed a novel rotary perfused bioreactor for supporting three-dimensional cardiac tissue engineering. The dynamic culture environments provided by our novel perfused rotary bioreactor and/or the high-aspect rotating vessel produced constructs with higher viability and significantly higher cell numbers (up to 4 × 10(5) cells/bead) than static tissue culture flasks. Furthermore, cells in the perfused rotary bioreactor showed earlier gene expressions of cardiac troponin-T, α- and β-myosin heavy chains with higher percentages of cardiac troponin-I-positive cells and better uniformity of sacromeric α-actinin expression. A dynamic and perfused environment, as provided by this bioreactor, provides a superior culture performance in cardiac differentiation for embryonic stem cells particularly for larger 3D constructs.
Collapse
|
13
|
Hughes JN, Wong CKE, Lau KX, Rathjen PD, Rathjen J. Regulation of pluripotent cell differentiation by a small molecule, staurosporine. Differentiation 2014; 87:101-10. [PMID: 24582574 DOI: 10.1016/j.diff.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/16/2013] [Accepted: 01/07/2014] [Indexed: 12/25/2022]
Abstract
Research in the embryo and in culture has resulted in a sophisticated understanding of many regulators of pluripotent cell differentiation. As a consequence, protocols for the differentiation of pluripotent cells generally rely on a combination of exogenous growth factors and endogenous signalling. Little consideration has been given to manipulating other pathways to achieve pluripotent cell differentiation. The integrity of cell:cell contacts has been shown to influence lineage choice during pluripotent cell differentiation, with disruption of cell:cell contacts promoting mesendoderm formation and maintenance of cell:cell contacts resulting in the preferential formation of neurectoderm. Staurosporine is a broad spectrum inhibitor of serine/threonine kinases which has several effects on cell function, including interruption of cell:cell contacts, decreasing focal contact size, inducing epithelial to mesenchyme transition (EMT) and promoting cell differentiation. The possibility that staurosporine could influence lineage choice from pluripotent cells in culture was investigated. The addition of staurosporine to differentiating mouse EPL resulted in preferential formation of mesendoderm and mesoderm populations, and inhibited the formation of neurectoderm. Addition of staurosporine to human ES cells similarly induced primitive streak marker gene expression. These data demonstrate the ability of staurosporine to influence lineage choice during pluripotent cell differentiation and to mimic the effect of disrupting cell:cell contacts. Staurosporine induced mesendoderm in the absence of known inducers of formation, such as serum and BMP4. Staurosporine induced the expression of mesendoderm markers, including markers that were not induced by BMP4, suggesting it acted as a broad spectrum inducer of molecular gastrulation. This approach has identified a small molecule regulator of lineage choice with potential applications in the commercial development of ES cell derivatives, specifically as a method for forming mesendoderm progenitors or as a culture adjunct to prevent the formation of ectoderm progenitors during pluripotent cell differentiation.
Collapse
Affiliation(s)
- James Nicholas Hughes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Chong Kum Edwin Wong
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; Australian Stem Cell Centre, Monash University, Clayton, 3800 Victoria, Australia
| | - Kevin Xiuwen Lau
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; The Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia.
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria 3010 Australia; The Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
14
|
Taha MF, Javeri A, Kheirkhah O, Majidizadeh T, Khalatbary AR. Neural differentiation of mouse embryonic and mesenchymal stem cells in a simple medium containing synthetic serum replacement. J Biotechnol 2014; 172:1-10. [DOI: 10.1016/j.jbiotec.2013.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/17/2013] [Accepted: 11/29/2013] [Indexed: 01/23/2023]
|
15
|
Yap C, Goh HN, Familari M, Rathjen PD, Rathjen J. The formation of proximal and distal definitive endoderm populations in culture requires p38 MAPK activity. J Cell Sci 2014; 127:2204-16. [PMID: 24481813 DOI: 10.1242/jcs.134502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation. The roles of the p38 MAPK family in the formation of definitive endoderm were investigated using EPL cells and chemical inhibitors of p38 MAPK activity. These approaches define a role for p38 MAPK activity in the formation of the primitive streak and a second role in the formation of the definitive endoderm. Characterisation of the definitive endoderm populations formed from EPL cells demonstrates the formation of two distinct populations, defined by gene expression and ontogeny, that were analogous to the proximal and distal definitive endoderm populations of the embryo. Formation of the proximal definitive endoderm was found to require p38 MAPK activity and is correlated with molecular gastrulation, defined by the expression of brachyury (T). Distal definitive endoderm formation also requires p38 MAPK activity but can form when T expression is inhibited. Understanding lineage complexity will be a prerequisite for the generation of endoderm derivatives for commercial and clinical use.
Collapse
Affiliation(s)
- Charlotte Yap
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Hwee Ngee Goh
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia
| | - Peter David Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Victoria, 3010, Australia The Menzies Research Institute Tasmania, University of Tasmania, Tasmania, 7000, Australia
| |
Collapse
|
16
|
Sugiura S, Cha JM, Yanagawa F, Zorlutuna P, Bae H, Khademhosseini A. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels. J Tissue Eng Regen Med 2013; 10:690-9. [PMID: 24170301 DOI: 10.1002/term.1843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/16/2013] [Indexed: 12/17/2022]
Abstract
In this paper we report on the development of dynamically controlled three-dimensional (3D) micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analysed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures generated cells with higher expression of cardiac genes and proteins, as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner, the method presented in this study is useful for a range of cell-culture applications related to tissue engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shinji Sugiura
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Jae Min Cha
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Seoul, South Korea
| | - Fumiki Yanagawa
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pinar Zorlutuna
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Biomedical Engineering Program and Mechanical Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Hojae Bae
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul, South Korea
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
17
|
Nakazawa K, Yoshiura Y, Koga H, Sakai Y. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes. J Biosci Bioeng 2013; 116:628-33. [PMID: 23735328 DOI: 10.1016/j.jbiosc.2013.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 12/25/2022]
Abstract
Microwell chip culture is a promising technique for the generation of homogenous embryoid bodies (EBs). In this study, we focused on the relationship between microwell size and mouse EB properties. The basic chip design was 195 microwells in a triangular arrangement on a polymethylmethacrylate plate with a surface modified by polyethylene glycol to render it nonadhesive, and 4 similar chips were fabricated with microwell diameters of 400, 600, 800, and 1000 μm. The cell proliferation rate of EBs in larger microwells was higher than that of EBs in smaller microwells. The decrease in the expression levels of undifferentiated marker genes (Oct3/4 and Nanog) in larger microwells was faster than that in smaller microwells. The expression of hepatic (transthyretin and alpha-fetoprotein), cardiac (Nkx2.5 and alpha-myosin heavy chain), and vascular (fetal liver kinase-1; Flk1) markers in larger microwells was higher than that in smaller microwells. The expression levels of differentiation markers except Flk1 in the chip with a diameter of 1000 μm were similar to those in hanging drop culture. However, Flk1 expression in microwell chip was markedly lower than that in hanging drop culture, suggesting that microwell chip culture promotes differentiation of hepatic and cardiac lineages. Furthermore, glucose consumption and lactate production were higher in smaller microwells, suggesting that the culture proceeds under anaerobic conditions in smaller microwells. These results indicate that the difference in microwell size affects the proliferation and differentiation of embryonic stem cells, and that microwell culture is a promising technique to control EB properties.
Collapse
Affiliation(s)
- Kohji Nakazawa
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| | | | | | | |
Collapse
|
18
|
Kim J, Hwang YS, Chung AM, Chung BG, Khademhosseini A. Liver cell line derived conditioned medium enhances myofibril organization of primary rat cardiomyocytes. Mol Cells 2012; 34:149-58. [PMID: 22836944 PMCID: PMC3887817 DOI: 10.1007/s10059-012-0019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/29/2012] [Accepted: 06/21/2012] [Indexed: 11/26/2022] Open
Abstract
Cardiomyocytes are the fundamental cells of the heart and play an important role in engineering of tissue constructs for regenerative medicine and drug discovery. Therefore, the development of culture conditions that can be used to generate functional cardiomyocytes to form cardiac tissue may be of great interest. In this study, isolated neonatal rat cardiomyocytes were cultured with several culture conditions in vitro and characterized for cell proliferation, myofibril organization, and cardiac functionality by assessing cell morphology, immunocytochemical staining, and time-lapse confocal scanning microscopy. When cardiomyocytes were cultured in liver cell line derived conditioned medium without exogenous growth factors and cytokines, the cell proliferation increased, cell morphology was highly elongated, and subsequent myofibril organization was highly developed. These developed myofibril organization also showed high level of contractibility and synchronization, representing high functionality of cardiomyocytes. Interestingly, many of the known factors in hepatic conditioned medium, such as insulin-like growth factor II (IGFII), macrophage colony-stimulating factor (MCSF), leukemia inhibitory factor (LIF), did not show similar effects as the hepatic conditioned medium, suggesting the possibility of synergistic activity of the several soluble factors or the presence of unknown factors in hepatic conditioned medium. Finally, we demonstrated that our culture system could provide a potentially powerful tool for in vitro cardiac tissue organization and cardiac function study.
Collapse
Affiliation(s)
- Jinseok Kim
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791,
Korea
| | - Yu-Shik Hwang
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701,
Korea
| | - Alice Mira Chung
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
| | - Bong Geun Chung
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
- Department of Bionano Engineering, Hanyang University, Ansan 426-791,
Korea
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139,
USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701,
Korea
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115,
USA
| |
Collapse
|
19
|
Vassilieva S, Goh HN, Lau KX, Hughes JN, Familari M, Rathjen PD, Rathjen J. A system to enrich for primitive streak-derivatives, definitive endoderm and mesoderm, from pluripotent cells in culture. PLoS One 2012; 7:e38645. [PMID: 22701686 PMCID: PMC3372479 DOI: 10.1371/journal.pone.0038645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/13/2012] [Indexed: 01/08/2023] Open
Abstract
Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.
Collapse
Affiliation(s)
- Svetlana Vassilieva
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Hwee Ngee Goh
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Kevin X. Lau
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - James N. Hughes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Mary Familari
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter D. Rathjen
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
- The Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
- The Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| |
Collapse
|
20
|
Modeling human hematopoietic cell development from pluripotent stem cells. Exp Hematol 2012; 40:601-11. [PMID: 22510344 DOI: 10.1016/j.exphem.2012.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 11/20/2022]
Abstract
Understanding the steps and cues that allow hematopoietic cells to be generated during development holds great clinical as well as biological interest. Analysis of these events in mice has provided many important insights into the processes involved, but features that might be unique to humans remain challenging to elucidate because they cannot be studied directly in vivo. Human embryonic stem or induced pluripotent stem cells offer attractive in vitro alternatives to analyze the process. Here we review recent efforts to develop defined and quantitative systems to address outstanding developmental questions against a background of what we know about the development of hematopoietic cells in the fetus and derived from mouse embryonic stem cells.
Collapse
|
21
|
Tan BSN, Lonic A, Morris MB, Rathjen PD, Rathjen J. The amino acid transporter SNAT2 mediates l-proline-induced differentiation of ES cells. Am J Physiol Cell Physiol 2011; 300:C1270-9. [DOI: 10.1152/ajpcell.00235.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is an increasing appreciation that amino acids can act as signaling molecules in the regulation of cellular processes through modulation of intracellular cell signaling pathways. In culture, embryonic stem (ES) cells can be differentiated to a second, pluripotent cell population, early primitive ectoderm-like cells in response to biological activities within the conditioned medium MEDII. The amino acid l-proline has been identified as a component of MEDII required for ES cell differentiation. Here, we define the primary l-proline transporter on ES and early primitive ectoderm-like cells as sodium-coupled neutral amino acid transporter 2 (SNAT2). SNAT2 uptake of l-proline can be inhibited by the addition of millimolar concentrations of other substrates. The addition of excess amino acids was used to regulate the uptake of l-proline by ES cells, and the effect on differentiation was analyzed. The ability of SNAT2 substrates, but not other amino acids, to prevent changes in morphology, gene expression, and differentiation kinetics suggested that l-proline uptake through SNAT2 was required for ES cell differentiation. These data reveal an unexpected role for amino acid uptake and the amino acid transporter SNAT2 in regulation of pluripotent cells in culture and provides a number of specific, inexpensive, and nontoxic culture additives with the potential to improve the quality of ES cell culture.
Collapse
Affiliation(s)
| | - Ana Lonic
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Michael B. Morris
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Peter D. Rathjen
- Department of Zoology, University of Melbourne, Melbourne, Victoria
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Melbourne, Victoria
| |
Collapse
|
22
|
Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering. Biomed Mater 2010; 5:062001. [PMID: 20924139 DOI: 10.1088/1748-6041/5/6/062001] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone.
Collapse
Affiliation(s)
- Jeong Min Seong
- Department of Preventive and Social Dentistry & Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Hattori F, Fukuda K. Strategies for ensuring that regenerative cardiomyocytes function properly and in cooperation with the host myocardium. Exp Mol Med 2010; 26:223-32. [PMID: 20164677 DOI: 10.1016/j.trre.2011.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 03/21/2011] [Accepted: 09/02/2011] [Indexed: 11/18/2022] Open
Abstract
In developed countries, in which people have nutrient-rich diets, convenient environments, and access to numerous medications, the disease paradigm has changed. Nowadays, heart failure is one of the major causes of death. In spite of this, the therapeutic efficacies of medications are generally unsatisfactory. Although whole heart transplantation is ideal for younger patients with heart failure, many patients are deemed to be unsuitable for this type of surgery due to complications and/or age. The need for therapeutic alternatives to heart transplantation is great. Regenerative therapy is a strong option. For this purpose, several cell sources have been investigated, including intrinsic adult stem or progenitor cells and extrinsic pluripotent stem cells. Most intrinsic stem cells seem to contribute to a regenerative environment via paracrine factors and/or angiogenesis, whereas extrinsic pluripotent stem cells are unlimited sources of cardiomyocytes. In this review, we summarize the various strategies for using regenerative cardiomyocytes including our recent progressions: non-genetic approaches for the purification of cardiomyocytes and efficient transplantation. We expect that use of intrinsic and extrinsic stem cells in combination will enhance therapeutic effectiveness.
Collapse
Affiliation(s)
- Fumiyuki Hattori
- Division of Cardiology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
24
|
Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips. J Biosci Bioeng 2010; 111:85-91. [PMID: 20863754 DOI: 10.1016/j.jbiosc.2010.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 12/20/2022]
Abstract
The proliferation and differentiation properties of embryoid bodies (EB) from mouse embryonic stem (ES) cells were compared under two microchip conditions: microwell chip and micropatterned chip. The microwell chip contained 270 microwells (diameter, 600 μm; depth, 600 μm) on a polymethylmethacrylate plate and was surface-modified with polyethylene glycol (PEG) to render it non-adhesive. The micropatterned chip contained 270 gelatin spots (diameter, 200 μm) as the cell adhesion area on a glass plate; the region lacking these spots was PEG-modified to render it non-adhesive. The ES cells spontaneously formed the EBs from cell aggregates in each microwell in the chip. In contrast, cells inoculated onto the patterned chip formed a monolayer on the gelatin spots and gradually proliferated to form EBs. The EBs in the patterned chip maintained the high cell growth rate and the expression of endoderm (TTR and AFP) and mesoderm (Nkx2.5, αMHC, Flk1, and PDGFRβ) markers was increased, and these cell properties were similar to the previous methods (hanging drop and round-bottomed 96-well plate cultures). In contrast, the proliferation of ES cells in the microwell chip was lower than in the patterned chip and previous methods, and the EB differentiation proceeded slowly and only formed a small amount of endoderm. These results indicate that the difference of EB generating process in the microchip cultures may affect to the proliferation and differentiation of ES cells, and the existence of microwell structure in the microchip downregulates the cell proliferation and the differentiated progress of ES cells.
Collapse
|
25
|
Zheng Z, de Iongh RU, Rathjen PD, Rathjen J. A requirement for FGF signalling in the formation of primitive streak-like intermediates from primitive ectoderm in culture. PLoS One 2010; 5:e12555. [PMID: 20838439 PMCID: PMC2933233 DOI: 10.1371/journal.pone.0012555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 08/06/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Embryonic stem (ES) cells hold considerable promise as a source of cells with therapeutic potential, including cells that can be used for drug screening and in cell replacement therapies. Differentiation of ES cells into the somatic lineages is a regulated process; before the promise of these cells can be realised robust and rational methods for directing differentiation into normal, functional and safe cells need to be developed. Previous in vivo studies have implicated fibroblast growth factor (FGF) signalling in lineage specification from pluripotent cells. Although FGF signalling has been suggested as essential for specification of mesoderm and endoderm in vivo and in culture, the exact role of this pathway remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Using a culture model based on early primitive ectoderm-like (EPL) cells we have investigated the role of FGF signalling in the specification of mesoderm. We were unable to demonstrate any mesoderm inductive capability associated with FGF1, 4 or 8 signalling, even when the factors were present at high concentrations, nor any enhancement in mesoderm formation induced by exogenous BMP4. Furthermore, there was no evidence of alteration of mesoderm sub-type formed with addition of FGF1, 4 or 8. Inhibition of endogenous FGF signalling, however, prevented mesoderm and favoured neural differentiation, suggesting FGF signalling was required but not sufficient for the differentiation of primitive ectoderm into primitive streak-like intermediates. The maintenance of ES cell/early epiblast pluripotent marker expression was also observed in cultures when FGF signalling was inhibited. CONCLUSIONS/SIGNIFICANCE FGF signalling has been shown to be required for the differentiation of primitive ectoderm to neurectoderm. This, coupled with our observations, suggest FGF signalling is required for differentiation of the primitive ectoderm into the germ lineages at gastrulation.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Department of Zoology, University of Melbourne, Parkville, Australia
| | - Robb U. de Iongh
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | - Peter D. Rathjen
- Department of Zoology, University of Melbourne, Parkville, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Parkville, Australia
| |
Collapse
|
26
|
Lenas P, Moos M, Luyten FP. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:395-422. [PMID: 19589040 DOI: 10.1089/ten.teb.2009.0461] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
Collapse
Affiliation(s)
- Petros Lenas
- Department of Biochemistry and Molecular Biology IV, Veterinary Faculty, Complutense University of Madrid , Madrid, Spain
| | | | | |
Collapse
|
27
|
Harvey NT, Hughes JN, Lonic A, Yap C, Long C, Rathjen PD, Rathjen J. Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci 2010; 123:1796-804. [PMID: 20427322 DOI: 10.1242/jcs.047530] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The formation and differentiation of multipotent precursors underlies the generation of cell diversity during mammalian development. Recognition and analysis of these transient cell populations has been hampered by technical difficulties in accessing them in vivo. In vitro model systems, based on the differentiation of embryonic stem (ES) cells, provide an alternative means of identifying and characterizing these populations. Using a previously established mouse ES-cell-based system that recapitulates the development of the ectoderm lineage we have identified a transient population that is consistent with definitive ectoderm. This previously unidentified progenitor occurs as a temporally discrete population during ES cell differentiation, and differs from the preceding and succeeding populations in gene expression and differentiation potential, with the unique ability to form surface ectoderm in response to BMP4 signalling.
Collapse
Affiliation(s)
- Nathan T Harvey
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Hughes JN, Dodge N, Rathjen PD, Rathjen J. A novel role for gamma-secretase in the formation of primitive streak-like intermediates from ES cells in culture. Stem Cells 2010; 27:2941-51. [PMID: 19750540 DOI: 10.1002/stem.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
gamma-Secretase is a membrane-associated protease with multiple intracellular targets, a number of which have been shown to influence embryonic development and embryonic stem (ES) cell differentiation. This paper describes the use of the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) to evaluate the role of gamma-secretase in the differentiation of pluripotent stem cells to the germ lineages. The addition of DAPT did not prevent the formation of primitive ectoderm-like cells from ES cells in culture. In contrast, the addition of DAPT during primitive ectoderm-like cell differentiation interfered with the ability of both serum and BMP4 to induce a primitive streak-like intermediate and resulted in the preferential formation of neurectoderm. Similarly, DAPT reduced the formation of primitive streak-like intermediates from differentiating human ES cells; the culture conditions used resulted in a population enriched in human surface ectoderm. These data suggest that gamma-secretase may form part of the general pathway by which mesoderm is specified within the primitive streak. The addition of an E-cadherin neutralizing antibody was able to partially reverse the effect of DAPT, suggesting that DAPT may be preventing the formation of primitive streak-like intermediates and promoting neurectoderm differentiation by stabilizing E-cadherin and preventing its proteolysis.
Collapse
Affiliation(s)
- James N Hughes
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|
29
|
Pistollato F, Persano L, Rampazzo E, Basso G. L-Proline as a modulator of ectodermal differentiation in ES cells. Focus on "L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 2010; 298:C979-81. [PMID: 20219949 DOI: 10.1152/ajpcell.00072.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Sakai Y, Yoshida S, Yoshiura Y, Mori R, Tamura T, Yahiro K, Mori H, Kanemura Y, Yamasaki M, Nakazawa K. Effect of microwell chip structure on cell microsphere production of various animal cells. J Biosci Bioeng 2010; 110:223-9. [PMID: 20547385 DOI: 10.1016/j.jbiosc.2010.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/18/2010] [Accepted: 01/31/2010] [Indexed: 01/06/2023]
Abstract
The formation of three-dimensional cell microspheres such as spheroids, embryoid bodies, and neurospheres has attracted attention as a useful culture technique. In this study, we investigated a technique for effective cell microsphere production by using specially prepared microchip. The basic chip design was a multimicrowell structure in triangular arrangement within a 100-mm(2) region in the center of a polymethylmethacrylate (PMMA) plate (24x24 mm(2)), the surface of which was modified with polyethylene glycol (PEG) to render it nonadhesive to cells. We also designed six similar chips with microwell diameters of 200, 300, 400, 600, 800, and 1000 microm to investigate the effect of the microwell diameter on the cell microsphere diameter. Rat hepatocytes, HepG2 cells, mouse embryonic stem (ES) cells, and mouse neural progenitor/stem (NPS) cells formed hepatocyte spheroids, HepG2 spheroids, embryoid bodies, and neurospheres, respectively, in the microwells within 5 days of culture. For all the cells, a single microsphere was formed in each microwell under all the chip conditions, and such microsphere configurations remained throughout the culture period. Furthermore, the microsphere diameters of each type of cell were strongly positively correlated with the microwell diameters of the chips, suggesting that microsphere diameter can be factitiously controlled by using different chip conditions. Thus, this chip technique is a promising cellular platform for tissue engineering or regenerative medicine research, pharmacological and toxicological studies, and fundamental studies in cell biology.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Life and Environment Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Washington JM, Rathjen J, Felquer F, Lonic A, Bettess MD, Hamra N, Semendric L, Tan BSN, Lake JA, Keough RA, Morris MB, Rathjen PD. L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 2010; 298:C982-92. [PMID: 20164384 DOI: 10.1152/ajpcell.00498.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of cell therapeutics from embryonic stem (ES) cells will require technologies that direct cell differentiation to specific somatic cell lineages in response to defined factors. The initial step in formation of the somatic lineages from ES cells, differentiation to an intermediate, pluripotent primitive ectoderm-like cell, can be achieved in vitro by formation of early primitive ectoderm-like (EPL) cells in response to a biological activity contained within the conditioned medium MEDII. Fractionation of MEDII has identified two activities required for EPL cell formation, an activity with a molecular mass of <3 kDa and a second, much larger species. Here, we have identified the low-molecular-weight activity as l-proline. An inhibitor of l-proline uptake, glycine, prevented the differentiation of ES cells in response to MEDII. Supplementation of the culture medium of ES cells with >100 M l-proline and some l-proline-containing peptides resulted in changes in colony morphology, cell proliferation, gene expression, and differentiation kinetics consistent with differentiation toward a primitive ectoderm-like cell. This activity appeared to be associated with l-proline since other amino acids and analogs of proline did not exhibit an equivalent activity. Activation of the mammalian target of rapamycin (mTOR) signaling pathway was found to be necessary but not sufficient for l-proline activity; addition of other activators of the mTOR signaling pathway failed to alter the ES cell phenotype. This is the first report describing a role for amino acids in the regulation of pluripotency and cell differentiation and identifies a novel role for the imino acid l-proline.
Collapse
|
32
|
Meyn MA, Smithgall TE. Chemical genetics identifies c-Src as an activator of primitive ectoderm formation in murine embryonic stem cells. Sci Signal 2009; 2:ra64. [PMID: 19825829 DOI: 10.1126/scisignal.2000311] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple Src family kinases (SFKs) are present in murine embryonic stem (mES) cells. Whereas complete inhibition of SFK activity blocks mES cell differentiation, sole inhibition of the SFK member c-Yes induces differentiation. Thus, individual SFKs may have opposing roles in the regulation of mES cell fate. To test this possibility, we generated SFK mutants with engineered resistance to a nonselective SFK inhibitor. The presence of an inhibitor-resistant c-Src mutant, but not analogous mutants of Hck, Lck, c-Yes, or Fyn, reversed the differentiation block associated with inhibitor treatment, resulting in the formation of cells with properties of primitive ectoderm. These results show that distinct SFK signaling pathways regulate mES cell fate and demonstrate that the formation of primitive ectoderm is regulated by the activity of c-Src.
Collapse
Affiliation(s)
- Malcolm A Meyn
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA 15213-2536, USA.
| | | |
Collapse
|
33
|
Park H, Haynes CA, Nairn AV, Kulik M, Dalton S, Moremen K, Merrill AH. Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies. J Lipid Res 2009; 51:480-9. [PMID: 19786568 PMCID: PMC2817578 DOI: 10.1194/jlr.m000984] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceramides (Cers) are important in embryogenesis, but no comprehensive analysis of gene expression for Cer metabolism nor the Cer amounts and subspecies has been conducted with an often used model: mouse embryonic stem cells (mESCs) versus embroid bodies (EBs). Measuring the mRNA levels by quantitative RT-PCR and the amounts of the respective metabolites by LC-ESI/MS/MS, notable differences between R1 mESCs and EBs were: EBs have higher mRNAs for CerS1 and CerS3, which synthesize C18- and C>or=24-carbons dihydroceramides (DH)Cer, respectively; EBs have higher CerS2 (for C24:0- and C24:1-); and EBs have lower CerS5 + CerS6 (for C16-). In agreement with these findings, EBs have (DH)Cer with higher proportions of C18-, C24- and C26- and less C16-fatty acids, and longer (DH)Cer are also seen in monohexosyl Cers and sphingomyelins. EBs had higher mRNAs for fatty acyl-CoA elongases that produce C18-, C24-, and C26-fatty acyl-CoAs (Elovl3 and Elovl6), and higher amounts of these cosubstrates for CerS. Thus, these studies have found generally good agreement between genomic and metabolomic data in defining that conversion of mESCs to EBs is accompanied by a large number of changes in gene expression and subspecies distributions for both sphingolipids and fatty acyl-CoAs.
Collapse
Affiliation(s)
- Hyejung Park
- School of Biology & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Enhanced generation of hematopoietic cells from human hepatocarcinoma cell−stimulated human embryonic and induced pluripotent stem cells. Exp Hematol 2009; 37:924-36. [DOI: 10.1016/j.exphem.2009.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 11/22/2022]
|
35
|
Ghosh D, Yan X, Tian Q. Gene regulatory networks in embryonic stem cells and brain development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:182-91. [PMID: 19530135 DOI: 10.1002/bdrc.20149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carry great therapeutic potentials in regenerative medicine. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here, we discuss how the finite ESC components mediate the intriguing task of brain development and exhibit biomedical potentials to cure diverse neurological disorders.
Collapse
|
36
|
Hughes JN, Washington JM, Zheng Z, Lau XK, Yap C, Rathjen PD, Rathjen J. Manipulation of cell:cell contacts and mesoderm suppressing activity direct lineage choice from pluripotent primitive ectoderm-like cells in culture. PLoS One 2009; 4:e5579. [PMID: 19440553 PMCID: PMC2679147 DOI: 10.1371/journal.pone.0005579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 04/15/2009] [Indexed: 01/21/2023] Open
Abstract
In the mammal, the pluripotent cells of embryo differentiate and commit to either the mesoderm/endoderm lineages or the ectoderm lineage during gastrulation. In culture, the ability to direct lineage choice from pluripotent cells into the mesoderm/endoderm or ectoderm lineages will enable the development of technologies for the formation of highly enriched or homogenous populations of cells. Here we show that manipulation of cell:cell contact and a mesoderm suppressing activity in culture affects the outcome of pluripotent cell differentiation and when both variables are manipulated appropriately they can direct differentiation to either the mesoderm or ectoderm lineage. The disruption of cell:cell contacts and removal of a mesoderm suppressor activity results in the differentiation of pluripotent, primitive ectoderm-like cells to the mesoderm lineage, while maintenance of cell:cell contacts and inclusion, within the culture medium, of a mesoderm suppressing activity results in the formation of near homogenous populations of ectoderm. Understanding the contribution of these variables in lineage choice provides a framework for the development of directed differentiation protocols that result in the formation of specific cell populations from pluripotent cells in culture.
Collapse
Affiliation(s)
- James N. Hughes
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- The Australian Stem Cell Centre Monash University, Clayton, Victoria, Australia
| | - Jennifer M. Washington
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- The Australian Stem Cell Centre Monash University, Clayton, Victoria, Australia
| | - Zhiqiang Zheng
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Xiuwen K. Lau
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Charlotte Yap
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter D. Rathjen
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- The Australian Stem Cell Centre Monash University, Clayton, Victoria, Australia
- The Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
| | - Joy Rathjen
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
- The Australian Stem Cell Centre Monash University, Clayton, Victoria, Australia
- The Australian Research Council Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
37
|
Kang Y, Nagy JM, Polak JM, Mantalaris A. Proteomic Characterization of the Conditioned Media Produced by the Visceral Endoderm-Like Cell Lines HepG2 and END2: Toward a Defined Medium for the Osteogenic/Chondrogenic Differentiation of Embryonic Stem Cells. Stem Cells Dev 2009; 18:77-91. [DOI: 10.1089/scd.2008.0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yunyi Kang
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Judit M. Nagy
- Institute of Biomedical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Julia M. Polak
- Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | - Anthanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Tissue Engineering & Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Dickkopf (Dkk) 1 promotes the differentiation of mouse embryonic stem cells toward neuroectoderm. In Vitro Cell Dev Biol Anim 2008; 45:185-93. [PMID: 19057969 DOI: 10.1007/s11626-008-9157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 10/16/2008] [Indexed: 12/31/2022]
Abstract
Wnt signaling has been demonstrated to have extensive roles during embryogenesis. The Wnt family is highly conserved. In mice, there are 19 Wnt genes. Dickkopf (Dkk), through its interactions with Wnt co-receptors, low-density lipoprotein receptor-related protein (LRP), Frizzled and Kremen, can act as a negative regulator to block the Wnt-signaling pathway. There are four Dkk genes in the human genome, and three in that of the mouse. Dkk1 is involved in a variety of craniofacial developmental processes and behaves as a strong head inducer and limb regulator. Dkk1 mutant mice are embryonic-lethal. Here, we investigated the effects of Dkk1 on the differentiation of murine ESCs in both the ESC and embryoid body (EB) states. The results demonstrate that Dkk1 overexpression can initiate the differentiation program of ESCs toward neuroectoderm. We believe this finding can augment our understanding of mouse ESC differentiation.
Collapse
|
39
|
Lee JH, Lee EJ, Lee CH, Park JH, Han JY, Lim JM. Requirement of leukemia inhibitory factor for establishing and maintaining embryonic stem cells in mice. Fertil Steril 2008; 92:1133-1140. [PMID: 18829014 DOI: 10.1016/j.fertnstert.2008.07.1733] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 06/23/2008] [Accepted: 07/09/2008] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To evaluate the necessity of leukemia inhibitory factor (LIF) in establishing and self-renewing embryonic stem cells (ESCs). DESIGN Prospective animal model study. SETTING Gamete and Stem Cell Biotechnology Laboratory, Seoul National University, Korea. ANIMAL(S) F1 hybrid B6D2F1 mice. INTERVENTION(S) Inner cell mass (ICM) cells of blastocysts were cultured or commercially available ESCs were maintained in LIF-free or LIF-containing medium on mouse embryonic fibroblast (MEF) feeder. MAIN OUTCOME MEASURE(S) Cell morphology, LIF concentration, and mRNA expression. RESULT(S) The MEFs themselves secreted 146.5-175.3 pg/mL LIF in LIF-free medium. The ICM cells formed ESC-like colonies on MEF feeder, and E14 and R1 ESCs were successfully maintained in LIF-free medium. Expression of the genes either mediating LIF function or regulating stemness was not altered significantly, and change in the growth of ESCs was not prominent in LIF-free medium. Neither mRNA expression of differentiation-related genes nor differentiation into embryoid body was changed in the ESCs. CONCLUSION(S) Addition of LIF to culture medium is not necessary for establishing ICM-derived ESC-like colonies in the presence of fibroblast monolayer, and established ESCs can be maintained in an LIF-free medium.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Eun Ju Lee
- Clinical Research Institute, Seoul National University, Seoul, Korea
| | - Chae Hyun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jun Hong Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea; Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Korea.
| |
Collapse
|
40
|
Johnson B, Shindo N, Rathjen P, Rathjen J, Keough R. Understanding pluripotency--how embryonic stem cells keep their options open. Mol Hum Reprod 2008; 14:513-20. [DOI: 10.1093/molehr/gan048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
41
|
Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 2008; 135:909-18. [PMID: 18263842 DOI: 10.1242/dev.017400] [Citation(s) in RCA: 419] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass (ICM) and the epiblast, and have been suggested to be a homogeneous population with characteristics intermediate between them. These cells express Oct3/4 and Rex1 genes, which have been used as markers to indicate the undifferentiated state of ES cells. Whereas Oct3/4 is expressed in totipotent and pluripotent cells in the mouse life cycle, Rex1 expression is restricted to the ICM, and is downregulated in pluripotent cell populations in the later stages, i.e. the epiblast and primitive ectoderm (PrE). To address whether ES cells comprise a homogeneous population equivalent to a certain developmental stage of pluripotent cells or a heterogeneous population composed of cells corresponding to various stages of differentiation, we established knock-in ES cell lines in which genes for fluorescent proteins were inserted into the Rex1 and Oct3/4 gene loci to visualize the expression of these genes. We found that undifferentiated ES cells included at least two different populations, Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells. The Rex1(-)/Oct3/4(+) and Rex1(+)/Oct3/4(+) populations could convert into each other in the presence of LIF. In accordance with our assumption that Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells have characteristics similar to those of ICM and early-PrE cells, Rex1(+)/Oct3/4(+) cells predominantly differentiated into primitive ectoderm and contributed to chimera formation, whereas Rex1(-)/Oct3/4(+) cells differentiated into cells of the somatic lineage more efficiently than non-fractionated ES cells in vitro and showed poor ability to contribute to chimera formation. These results confirmed that undifferentiated ES cell culture contains subpopulations corresponding to ICM, epiblast and PrE.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Laboratory for Pluripotent Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chu-o-ku, Kobe, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
42
|
Hwang YS, Bishop AE, Polak JM, Mantalaris A. EnhancedIn vitro chondrogenic differentiation of murine embryonic stem cells. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Atwood JA, Cheng L, Alvarez-Manilla G, Warren NL, York WS, Orlando R. Quantitation by isobaric labeling: applications to glycomics. J Proteome Res 2007; 7:367-74. [PMID: 18047270 DOI: 10.1021/pr070476i] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The study of glycosylation patterns (glycomics) in biological samples is an emerging field that can provide key insights into cell development and pathology. A current challenge in the field of glycomics is to determine how to quantify changes in glycan expression between different cells, tissues, or biological fluids. Here we describe a novel strategy, quantitation by isobaric labeling (QUIBL), to facilitate comparative glycomics. Permethylation of a glycan with (13)CH 3I or (12)CH 2DI generates a pair of isobaric derivatives, which have the same nominal mass. However, each methylation site introduces a mass difference of 0.002922 Da. As glycans have multiple methylation sites, the total mass difference for the isobaric pair allows separation and quantitation at a resolution of approximately 30000 m/Delta m. N-Linked oligosaccharides from a standard glycoprotein and human serum were used to demonstrate that QUIBL facilitates relative quantitation over a linear dynamic range of 2 orders of magnitude and permits the relative quantitation of isomeric glycans. We applied QUIBL to quantitate glycomic changes associated with the differentiation of murine embryonic stem cells to embryoid bodies.
Collapse
Affiliation(s)
- James A Atwood
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602-4712, USA
| | | | | | | | | | | |
Collapse
|
44
|
Coleman B, de Silva MG, Shepherd RK. Concise Review: The Potential of Stem Cells for Auditory Neuron Generation and Replacement. Stem Cells 2007; 25:2685-94. [PMID: 17656641 DOI: 10.1634/stemcells.2007-0393] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sensory hair cells in the mammalian cochlea are sensitive to many insults including loud noise, ototoxic drugs, and ageing. Damage to these hair cells results in deafness and sets in place a number of irreversible changes that eventually result in the progressive degeneration of auditory neurons, the target cells of the cochlear implant. Techniques designed to preserve the density and integrity of auditory neurons in the deafened cochlea are envisaged to provide improved outcomes for cochlear implant recipients. This review examines the potential of embryonic stem cells to generate new neurons for the deafened mammalian cochlea, including the directed differentiation of stem cells toward a sensory neural lineage and the engraftment of exogenous stem cells into the deafened auditory system. Although still in its infancy the aim of this therapy is to restore a critical number of auditory neurons, thereby improving the benefits derived from a cochlear implant.
Collapse
Affiliation(s)
- Bryony Coleman
- Department of Otolaryngology, University of Melbourne, East Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
45
|
Nairn AV, Kinoshita-Toyoda A, Toyoda H, Xie J, Harris K, Dalton S, Kulik M, Pierce JM, Toida T, Moremen KW, Linhardt RJ. Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J Proteome Res 2007; 6:4374-87. [PMID: 17915907 DOI: 10.1021/pr070446f] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glycosaminoglycans (GAGs) play a critical role in binding and activation of growth factors involved in cell signaling critical for developmental biology. The biosynthetic pathways for GAGs have been elucidated over the past decade and now analytical methodology makes it possible to determine GAG composition in as few as 10 million cells. A glycomics approach was used to examine GAG content, composition, and the level of transcripts encoding for GAG biosynthetic enzymes as murine embryonic stem cells (mESCs) differentiate to embryoid bodies (EBs) and to extraembryonic endodermal cells (ExE) to better understand the role of GAGs in stem cell differentiation. Hyaluronan synthesis was enhanced by 13- and 24-fold, most likely due to increased expression of hyaluronan synthase-2. Chondroitin sulfate (CS)/dermatan sulfate (DS) synthesis was enhanced by 4- and 6-fold, and heparan sulfate (HS) synthesis was enhanced by 5- and 8-fold following the transition from mESC to EB and ExE. Transcripts associated with the synthesis of the early precursors were largely unaltered, suggesting other factors account for enhanced GAG synthesis. The composition of both CS/DS and HS also changed upon differentiation. Interestingly, CS type E and highly sulfated HS both increase as mESCs differentiate to EBs and ExE. Differentiation was also accompanied by enhanced 2-sulfation in both CS/DS and HS families. Transcript levels for core proteins generally showed increases or remained constant upon mESC differentiation. Finally, transcripts encoding selected enzymes and isoforms, including GlcNAc-4,6-O-sulfotransferase, C5-epimerases, and 3-O-sulfotransferases involved in late GAG biosynthesis, were also enriched. These biosynthetic enzymes are particularly important in introducing GAG fine structure, essential for intercellular communication, cell adhesion, and outside-in signaling. Knowing the changes in GAG fine structure should improve our understanding the biological properties of differentiated stem cells.
Collapse
Affiliation(s)
- Alison V Nairn
- Complex Carbohydrate Research Center and the University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Masaki H, Nishida T, Kitajima S, Asahina K, Teraoka H. Developmental pluripotency-associated 4 (DPPA4) localized in active chromatin inhibits mouse embryonic stem cell differentiation into a primitive ectoderm lineage. J Biol Chem 2007; 282:33034-42. [PMID: 17855347 DOI: 10.1074/jbc.m703245200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because embryonic stem (ES) cells can proliferate indefinitely in an undifferentiated state and differentiate into various cell types, ES cells are expected to be useful for cell replacement therapy and basic research on early embryogenesis. Although molecular mechanisms of ES cell self-renewal have been studied, many uncharacterized genes expressed in ES cells remain to be clarified. Developmental pluripotency associated 4 (Dppa4) is one such gene highly expressed in both ES cells and early embryos. Here, we investigated the role of Dppa4 in mouse ES cell self-renewal and differentiation. We generated Dppa4-overexpressing ES cells under the control of tetracycline. Dppa4 overexpression suppressed cell proliferation and formation of embryoid bodies and caused massive cell death in differentiating ES cells. Quantitative reverse transcription-PCR analysis showed that Dppa4 overexpression does not support ES cell self-renewal but partially inhibits ES cell differentiation. Suppression of Dppa4 expression by short hairpin RNA induced ES cell differentiation into a primitive ectoderm lineage. DPPA4 protein was localized in the ES cell nucleus associated with chromatin. Micrococcal nuclease digestion analysis and immunocytochemistry revealed that DPPA4 is associated with transcriptionally active chromatin. These findings indicate that DPPA4 is a nuclear factor associated with active chromatin and that it regulates differentiation of ES cells into a primitive ectoderm lineage.
Collapse
Affiliation(s)
- Hisaharu Masaki
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Abstract
The mammalian blastocyst is the source of the most pluripotent stem cells known: embryonic stem (ES) cells. However, ES cells are not totipotent; in mouse chimeras, they do not contribute to extra-embryonic cell types of the trophectoderm (TE) and primitive endoderm (PrE) lineages. Understanding the genetic pathways that control pluripotency v. extra-embryonic lineage restriction is key to understanding not only normal embryonic development, but also how to reprogramme adult cells to pluripotency. The trophectoderm and primitive endoderm lineages also provide the first signals that drive patterned differentiation of the pluripotent epiblast cells of the embryo. My laboratory has produced permanent mouse cell lines from both the TE and the PrE, termed trophoblast stem (TS) and eXtra-embryonic ENdoderm (XEN) cells. We have used these cells to explore the genetic and molecular hierarchy of lineage restriction and identify the key factors that distinguish the ES cell v. the TS or XEN cell fate. The major molecular pathways of lineage commitment defined in mouse embryos and stem cells are probably conserved across mammalian species, but more comparative studies of lineage development in embryos of non-rodent mammals will likely yield interesting differences in terms of timing and details.
Collapse
Affiliation(s)
- Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
48
|
Bentz K, Molcanyi M, Hess S, Schneider A, Hescheler J, Neugebauer E, Schaefer U. Neural differentiation of embryonic stem cells is induced by signalling from non-neural niche cells. Cell Physiol Biochem 2007; 18:275-86. [PMID: 17167232 DOI: 10.1159/000097674] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Embryonic stem cell (ESC) transplantation offers new therapeutic strategies for neurodegenerative diseases and injury. However, the mechanisms underlying integration and differentiation of engrafted ESCs are poorly understood. This study elucidates the influence of exogenous signals on ESC differentiation using in vitro modelling of non-stem/stem cell interactions. METHODS Murine ESCs were co-cultured with endothelial cells and astrocytes or conditioned medium obtained from endothelial or astrocyte cultures. After 7 days of co-culture isolated RNA was analysed using RT-PCR for the expression of pluripotency marker oct-4, neural progenitor marker nestin, and neurofilament (NFL), an early marker of neuronal lineage commitment. The presence of the glial cell surface marker A2B5 was determined in ESCs by flow cytometry. RESULTS Neuronal differentiation was inhibited in ESCs when grown in close vicinity to cerebral endothelial or glial cells. Under these conditions, ESC differentiation was predominantly directed towards a glial fate. However, treatment of ESCs with endothelial cell- or astrocyte-conditioned medium promoted neuronal as well as glial differentiation. CONCLUSION Our results indicate that ESC fate is determined by endothelial and glial cells that comprise the environmental niche of these stem cells in vivo. The direction of differentiation processes appears to be dependent on humoral factors secreted by adjacent cell lines.
Collapse
Affiliation(s)
- Kristine Bentz
- Institute of Developmental Genetics, GSF - National Research Centre for Environment and Health, Munich/Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Hwang YS, Kang Y, Mantalaris A. Directing embryonic stem cell differentiation into osteogenic chondrogenic lineagein vitro. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931798] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Gossrau G, Thiele J, Konang R, Schmandt T, Brüstle O. Bone morphogenetic protein-mediated modulation of lineage diversification during neural differentiation of embryonic stem cells. Stem Cells 2007; 25:939-49. [PMID: 17218404 DOI: 10.1634/stemcells.2006-0299] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ES cells) can give rise to a broad spectrum of neural cell types. The biomedical application of ES cells will require detailed knowledge on the role of individual factors modulating fate specification during in vitro differentiation. Bone morphogenetic proteins (BMPs) are known to exert a multitude of diverse differentiation effects during embryonic development. Here, we show that exposure to BMP2 at distinct stages of neural ES cell differentiation can be used to promote specific cell lineages. During early ES cell differentiation, BMP2-mediated inhibition of neuroectodermal differentiation is associated with an increase in mesoderm and smooth muscle differentiation. In fibroblast growth factor 2-expanded ES cell-derived neural precursors, BMP2 supports the generation of neural crest phenotypes, and, within the neuronal lineage, promotes distinct subtypes of peripheral neurons, including cholinergic and autonomic phenotypes. BMP2 also exerts a density-dependent promotion of astrocyte differentiation at the expense of oligodendrocyte formation. Experiments involving inhibition of the serine threonine kinase FRAP support the notion that these effects are mediated via the JAK/STAT pathway. The preservation of diverse developmental BMP2 effects in differentiating ES cell cultures provides interesting prospects for the enrichment of distinct neural phenotypes in vitro.
Collapse
Affiliation(s)
- Gudrun Gossrau
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn and Hertie Foundation, Bonn, Germany
| | | | | | | | | |
Collapse
|