1
|
Cao X, Jiang M, Guan Y, Li S, Duan C, Gong Y, Kong Y, Shao Z, Wu H, Yao X, Li B, Wang M, Xu H, Hao X. Trans-ancestry GWAS identifies 59 loci and improves risk prediction and fine-mapping for kidney stone disease. Nat Commun 2025; 16:3473. [PMID: 40216741 PMCID: PMC11992175 DOI: 10.1038/s41467-025-58782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Kidney stone disease is a multifactorial disease with increasing incidence worldwide. Trans-ancestry GWAS has become a popular strategy to dissect genetic structure of complex traits. Here, we conduct a large trans-ancestry GWAS meta-analysis on kidney stone disease with 31,715 cases and 943,655 controls in European and East Asian populations. We identify 59 kidney stone disease susceptibility loci, including 13 novel loci and show similar effects across populations. Using fine-mapping, we detect 1612 variants at these loci, and pinpoint 25 causal signals with a posterior inclusion probability >0.5 among them. At a novel locus, we pinpoint TRIOBP gene and discuss its potential link to kidney stone disease. We show that a cross-population polygenic risk score, PRS-CSxEAS&EUR, exhibits superior predictive performance for kidney stone disease than other polygenic risk scores constructed in our study. Relative to individuals in the third quintile of PRS-CSxEAS&EUR, those in the lowest and highest quintiles exhibit distinct kidney stone disease risks with odds ratios of 0.57 (0.51-0.63) and 1.83 (1.68-1.98), respectively. Our results suggest that kidney stone disease patients with higher polygenic risk scores are younger at onset. In summary, our study advances the understanding of kidney stone disease genetic architecture and improves its genetic predictability.
Collapse
Affiliation(s)
- Xi Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minghui Jiang
- Department of Neurology; Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunlong Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Duan
- Department of Urology, Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Urology, Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifan Kong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhonghe Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongji Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangyang Yao
- Department of Urology, Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Li
- Department of Urology, Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hua Xu
- Department of Urology, Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Zhou H, Guo G, Gao J, Duan H. Analysis of TRIOBP gene in non-syndromic deafness: A case report. Medicine (Baltimore) 2024; 103:e40435. [PMID: 39533558 PMCID: PMC11557095 DOI: 10.1097/md.0000000000040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
RATIONALE Through family investigation, the genetic map was drawn and audiological characteristics were analyzed. High-throughput sequencing was used to screen the deafness genes of the proband. Sanger sequencing was used to verify the suspected pathogenic sites in the family. PATIENT CONCERNS Identify the causes of hearing loss and treatment options. DIAGNOSES Bilateral moderate to severe sensorineural deafness. INTERVENTIONS After completing the examination, the patient was recommended to wear a hearing aid or do a cochlear implant, but the patient was not treated for personal reasons. OUTCOMES All 8 patients in this family were nonsyndromic deafness. The proband had a compound heterozygous mutation of c.A4484T/c.A4510G in the TRIOBP gene, and the patient II-6 had a heterozygous mutation of c.A4484T in the TRIOBP gene. A complex heterozygous mutation of TRIOBP gene c.A4510G/c.G59T was found in II-7, but no reports of pathogenicity of these mutations were found in relevant literatures and databases. In addition, patients II-6, III-4, and III-6 had heterozygous mutations of CHD7 gene c.T2615C and C.3202-5T >C, and patients II-6 and III-4 also had heterozygous mutations of CHD23 gene c.G5312A and c.C6250T. LESSONS In this study, a new locus of the TRIOBP gene was found, which enriched the gene mutant spectrum and clarified the pathogenic gene of the proband. However, the etiology of deafness in other members of the family needs to be further analyzed.
Collapse
Affiliation(s)
- Hong Zhou
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, P.R. China
| | - Gang Guo
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, P.R. China
| | - Jianjun Gao
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, P.R. China
| | - Hong Duan
- Department of Otolaryngology and Head and Neck Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, P.R. China
| |
Collapse
|
3
|
Rhim JW, Kim DK, Han JY, Park J. A sensorineural hearing loss harboring novel compound heterozygous variant in the TRIOBP gene: A case report. Heliyon 2024; 10:e36717. [PMID: 39296067 PMCID: PMC11408809 DOI: 10.1016/j.heliyon.2024.e36717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Background Autosomal recessive non-syndromic deafness-28 (DFNB28; OMIM #609823) specifically refers to prelingual sensorineural hearing loss (SNHL) resulting from homozygous or compound heterozygous mutations in the TRIO- and F-actin-binding protein, TRIOBP gene. In this report, we present a pediatric patient exhibiting novel compound heterozygous deleterious variants in the TRIOBP gene. Methods The auditory brainstem response result revealed both left- and right-sided deafness with a threshold of 20 dB normal hearing level in the proband. A comprehensive trio whole exome sequencing (WES) using the Celemics G-Mendeliome Whole Exome Sequencing Panel was employed. Results The WES analysis revealed compound heterozygous TRIOBP variants in the proband, namely c.1192_1195delCAACinsT/p.Gln398* classified as pathogenic and c.3661C > T/p.Arg1221Trp categorized as a variant of uncertain significance according to American College of Medical Genetics and Genomics guidelines. These variants are considered the most probable cause of the proband's SNHL. Conclusion TRIOBP isoforms are predominantly expressed in the inner ear, contributing to the formation of stereocilia rootlets. Further investigations are required to fully understand the phenotypic variability and establish the pathogenicity of the identified variant in relation to the TRIOBP gene and SNHL.
Collapse
Affiliation(s)
- Jung Woo Rhim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dong-Kee Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea, Seoul, 06591, Republic of Korea
| | - Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| |
Collapse
|
4
|
Wang L, Zhao W, Xia C, Ma S, Li Z, Wang N, Ding L, Wang Y, Cheng L, Liu H, Yang J, Li Y, Rosas I, Yu G. TRIOBP modulates β-catenin signaling by regulation of miR-29b in idiopathic pulmonary fibrosis. Cell Mol Life Sci 2023; 81:13. [PMID: 38157020 PMCID: PMC10756874 DOI: 10.1007/s00018-023-05080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and devastating lung disease of unknown etiology, described as the result of multiple cycles of epithelial cell injury and fibroblast activation. Despite this impressive increase in understanding, a therapy that reverses this form of fibrosis remains elusive. In our previous study, we found that miR-29b has a therapeutic effect on pulmonary fibrosis. However, its anti-fibrotic mechanism is not yet clear. Recently, our study identified that F-Actin Binding Protein (TRIOBP) is one of the target genes of miR-29b and found that deficiency of TRIOBP increases resistance to lung fibrosis in vivo. TRIOBP knockdown inhibited the proliferation of epithelial cells and attenuated the activation of fibroblasts. In addition, deficiency of Trio Rho Guanine Nucleotide Exchange Factor (TRIO) in epithelial cells and fibroblasts decreases susceptibility to lung fibrosis. TRIOBP interacting with TRIO promoted abnormal epithelial-mesenchymal crosstalk and modulated the nucleocytoplasmic translocation of β-catenin. We concluded that the miR-29b‒TRIOBP-TRIO-β-catenin axis might be a key anti-fibrotic axis in IPF to regulate lung regeneration and fibrosis, which may provide a promising treatment strategy for lung fibrosis.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Wenyu Zhao
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Cong Xia
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Ningdan Wang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Linke Ding
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Lianhui Cheng
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Huibing Liu
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Yajun Li
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Ivan Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China.
| |
Collapse
|
5
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
6
|
Samardžija B, Juković M, Zaharija B, Renner É, Palkovits M, Bradshaw NJ. Co-Aggregation and Parallel Aggregation of Specific Proteins in Major Mental Illness. Cells 2023; 12:1848. [PMID: 37508512 PMCID: PMC10378145 DOI: 10.3390/cells12141848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Disrupted proteostasis is an emerging area of research into major depressive disorder. Several proteins have been implicated as forming aggregates specifically in the brains of subsets of patients with psychiatric illnesses. These proteins include CRMP1, DISC1, NPAS3 and TRIOBP-1. It is unclear, however, whether these proteins normally aggregate together in the same individuals and, if so, whether each protein aggregates independently of each other ("parallel aggregation") or if the proteins physically interact and aggregate together ("co-aggregation"). MATERIALS AND METHODS Post mortem insular cortex samples from major depressive disorder and Alzheimer's disease patients, suicide victims and control individuals had their insoluble fractions isolated and tested by Western blotting to determine which of these proteins are insoluble and, therefore, likely to be aggregating. The ability of the proteins to co-aggregate (directly interact and form common aggregate structures) was tested by systematic pairwise expression of the proteins in SH-SY5Y neuroblastoma cells, which were then examined by immunofluorescent microscopy. RESULTS Many individuals displayed multiple insoluble proteins in the brain, although not enough to imply interaction between the proteins. Cell culture analysis revealed that only a few of the proteins analyzed can consistently co-aggregate with each other: DISC1 with each of CRMP1 and TRIOBP-1. DISC1 was able to induce aggregation of full length TRIOBP-1, but not individual domains of TRIOBP-1 when they were expressed individually. CONCLUSIONS While specific proteins are capable of co-aggregating, and appear to do so in the brains of individuals with mental illness and potentially also with suicidal tendency, it is more common for such proteins to aggregate in a parallel manner, through independent mechanisms. This information aids in understanding the distribution of protein aggregates among mental illness patients and is therefore important for any future diagnostic or therapeutic approaches based on this aspect of mental illness pathology.
Collapse
Affiliation(s)
- Bobana Samardžija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Juković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Beti Zaharija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Éva Renner
- Human Brain Tissue Bank & Laboratory, Semmelweis University, 1094 Budapest, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank & Laboratory, Semmelweis University, 1094 Budapest, Hungary
| | | |
Collapse
|
7
|
Ochneva A, Zorkina Y, Abramova O, Pavlova O, Ushakova V, Morozova A, Zubkov E, Pavlov K, Gurina O, Chekhonin V. Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders. Int J Mol Sci 2022; 23:14498. [PMID: 36430976 PMCID: PMC9695177 DOI: 10.3390/ijms232214498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Mental disorders represent common brain diseases characterized by substantial impairments of social and cognitive functions. The neurobiological causes and mechanisms of psychopathologies still have not been definitively determined. Various forms of brain proteinopathies, which include a disruption of protein conformations and the formation of protein aggregates in brain tissues, may be a possible cause behind the development of psychiatric disorders. Proteinopathies are known to be the main cause of neurodegeneration, but much less attention is given to the role of protein impairments in psychiatric disorders' pathogenesis, such as depression and schizophrenia. For this reason, the aim of this review was to discuss the potential contribution of protein illnesses in the development of psychopathologies. The first part of the review describes the possible mechanisms of disruption to protein folding and aggregation in the cell: endoplasmic reticulum stress, dysfunction of chaperone proteins, altered mitochondrial function, and impaired autophagy processes. The second part of the review addresses the known proteins whose aggregation in brain tissue has been observed in psychiatric disorders (amyloid, tau protein, α-synuclein, DISC-1, disbindin-1, CRMP1, SNAP25, TRIOBP, NPAS3, GluA1, FABP, and ankyrin-G).
Collapse
Affiliation(s)
- Aleksandra Ochneva
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Pavlova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Konstantin Pavlov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Gurina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- National University of Science and Technology “MISiS”, Leninskiy Avenue 4, 119049 Moscow, Russia
| |
Collapse
|
8
|
Zaharija B, Odorčić M, Hart A, Samardžija B, Marreiros R, Prikulis I, Juković M, Hyde TM, Kleinman JE, Korth C, Bradshaw NJ. TRIOBP-1 Protein Aggregation Exists in Both Major Depressive Disorder and Schizophrenia, and Can Occur through Two Distinct Regions of the Protein. Int J Mol Sci 2022; 23:ijms231911048. [PMID: 36232351 PMCID: PMC9569677 DOI: 10.3390/ijms231911048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23). Strikingly, insoluble TRIOBP-1 is considerably more prevalent in both of these conditions than in controls, further implicating TRIOBP-1 aggregation in schizophrenia and indicating a role in major depressive disorder. These results were only seen using a high stringency insolubility assay (previously used to study DISC1 and other proteins), but not a lower stringency assay that would be expected to also detect functional, actin-bound TRIOBP-1. Previously, we have also determined that a region of 25 amino acids in the center of this protein is critical for its ability to form aggregates. Here we attempt to refine this further, through the expression of various truncated mutant TRIOBP-1 vectors in neuroblastoma cells and examining their aggregation. In this way, it was possible to narrow down the aggregation-critical region of TRIOBP-1 to just 8 amino acids (333–340 of the 652 amino acid-long TRIOBP-1). Surprisingly our results suggested that a second section of TRIOBP-1 is also capable of independently inducing aggregation: the optionally expressed 59 amino acids at the extreme N-terminus of the protein. As a result, the 597 amino acid long version of TRIOBP-1 (also referred to as “Tara” or “TAP68”) has reduced potential to form aggregates. The presence of insoluble TRIOBP-1 in brain samples from patients, combined with insight into the mechanism of aggregation of TRIOBP-1 and generation of an aggregation-resistant mutant TRIOBP-1 that lacks both these regions, will be of significant use in further investigating the mechanism and consequences of TRIOBP-1 aggregation in major mental illness.
Collapse
Affiliation(s)
- Beti Zaharija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Odorčić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Anja Hart
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Bobana Samardžija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Rita Marreiros
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Maja Juković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| | - Nicholas J. Bradshaw
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| |
Collapse
|
9
|
Kabahuma RI, Schubert W, Labuschagne C, Yan D, Pepper MS, Liu X. Elucidation of repeat motifs R1- and R2-related TRIOBP variants in autosomal recessive nonsyndromic hearing loss DFNB28 among indigenous South African individuals. Mol Genet Genomic Med 2022; 10:e2015. [PMID: 36029164 PMCID: PMC9544205 DOI: 10.1002/mgg3.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND DFNB28, a recessively inherited nonsyndromic form of deafness in humans, is caused by mutations in the TRIOBP gene (MIM #609761) on chromosome 22q13. Its protein TRIOBP helps to tightly bundle F-actin filaments, forming a rootlet that penetrates through the cuticular plate into the cochlear hair cell body. Repeat motifs R1 and R2, located in exon 7 of the TRIOBP-5 isoform, are the actin-binding domains. Deletion of both repeat motifs R1 and R2 results in complete disruption of both actin-binding and bundling activities, whereas deletion of the R2 motif alone retains F-actin bundling ability in stereocilia rootlets. METHODS Target sequencing, using a custom capture panel of 180 known and candidate genes associated with sensorineural hearing loss, bioinformatics processing, and data analysis were performed. Genesis 2.0 was used for variant filtering based on quality/score read depth and minor allele frequency (MAF) thresholds of 0.005 for recessive NSHL, as reported in population-based sequencing databases. All variants were reclassified based on the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines together with other variant interpretation guidelines for genetic hearing loss . Candidate variants were confirmed via Sanger sequencing according to standard protocols, using the ABIPRISM 3730 DNA Analyzer. DNA sequence analysis was performed with DNASTAR Lasergene software. RESULTS Candidate TRIOBP variants identified among 94 indigenous sub-Saharan African individuals were characterized through segregation analysis. Family TS005 carrying variants c.572delC, p.Pro191Argfs*50, and c.3510_3513dupTGCA, p.Pro1172Cysfs*13, demonstrated perfect cosegregation with the deafness phenotype. On the other hand, variants c.505C > A p.Asp168Glu and c.3636 T > A p.Leu1212Gln in the same family did not segregate with deafness and we have classified these variants as benign. A control family, TS067, carrying variants c.2532G > T p.Leu844Arg, c.2590C > A p.Asn867Lys, c.3484C > T p.Pro1161Leu, and c.3621 T > C p.Phe1187Leu demonstrated no cosegregation allowing us to classify these variants as benign. Together with published TRIOBP variants, the results showed that genotypes combining two truncating TRIOBP variants affecting repeat motifs R1 and R2 or R2 alone lead to a deafness phenotype, while a truncating variant affecting repeat motifs R1 and R2 or R2 alone combined with a missense variant does not. Homozygous truncating variants affecting repeat motif R2 cosegregate with the deafness phenotype. CONCLUSION While a single intact R1 motif may be adequate for actin-binding and bundling in the stereocilia of cochlear hair cells, our findings indicate that a truncated R2 motif in cis seems to be incompatible with normal hearing, either by interfering with the function of an intact R1 motif or through another as yet unknown mechanism. Our study also suggests that most heterozygous missense variants involving exon 7 are likely to be tolerated.
Collapse
Affiliation(s)
- Rosemary Ida Kabahuma
- Department of OtorhinolaryngologyUniversity of PretoriaPretoriaSouth Africa,Departments of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Wolf‐Dieter Schubert
- Departments of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural SciencesUniversity of PretoriaPretoriaSouth Africa
| | | | - Denise Yan
- Department of OtolaryngologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Xue‐Zhong Liu
- Department of OtolaryngologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
10
|
Unbalanced bidirectional radial stiffness gradients within the organ of Corti promoted by TRIOBP. Proc Natl Acad Sci U S A 2022; 119:e2115190119. [PMID: 35737845 PMCID: PMC9245700 DOI: 10.1073/pnas.2115190119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current understanding of cochlear mechanics assumes that stiffness of the cochlear partition varies only longitudinally along the cochlea. This work examines the stiffness of inner ear epithelium in individual cell types at the nanoscale level. We revealed unrecognized radial stiffness gradients of different magnitudes and opposite orientations within the epithelium. Remarkably, the observed bidirectional stiffness gradients are unbalanced between supporting and sensory cells. Deficiencies in deafness-associated Trio and F-actin binding protein (TRIOBP) caused diverse cytoskeletal ultrastructural remodeling in supporting and sensory cells and significantly diminishes the bidirectional radial stiffness gradients. These results demonstrate the complexity of the mechanical properties within the sensory epithelium and point to a hitherto unrecognized role of these gradients in sensitivity and frequency selectivity of hearing. Hearing depends on intricate morphologies and mechanical properties of diverse inner ear cell types. The individual contributions of various inner ear cell types into mechanical properties of the organ of Corti and the mechanisms of their integration are yet largely unknown. Using sub-100-nm spatial resolution atomic force microscopy (AFM), we mapped the Young’s modulus (stiffness) of the apical surface of the different cells of the freshly dissected P5–P6 cochlear epithelium from wild-type and mice lacking either Trio and F-actin binding protein (TRIOBP) isoforms 4 and 5 or isoform 5 only. Variants of TRIOBP are associated with deafness in human and in Triobp mutant mouse models. Remarkably, nanoscale AFM mapping revealed unrecognized bidirectional radial stiffness gradients of different magnitudes and opposite orientations between rows of wild-type supporting cells and sensory hair cells. Moreover, the observed bidirectional radial stiffness gradients are unbalanced, with sensory cells being stiffer overall compared to neighboring supporting cells. Deafness-associated TRIOBP deficiencies significantly disrupted the magnitude and orientation of these bidirectional radial stiffness gradients. In addition, serial sectioning with focused ion beam and backscatter scanning electron microscopy shows that a TRIOBP deficiency results in ultrastructural changes of supporting cell apical phalangeal microfilaments and bundled cortical F-actin of hair cell cuticular plates, correlating with messenger RNA and protein expression levels and AFM stiffness measurements that exposed a softening of the apical surface of the sensory epithelium in mutant mice. Altogether, this additional complexity in the mechanical properties of the sensory epithelium is hypothesized to be an essential contributor to frequency selectivity and sensitivity of mammalian hearing.
Collapse
|
11
|
Kim SJ, Woo Y, Kim HJ, Goo BS, Nhung TTM, Lee SA, Suh BK, Mun DJ, Kim JH, Park SK. Retinoic acid-induced protein 14 controls dendritic spine dynamics associated with depressive-like behaviors. eLife 2022; 11:77755. [PMID: 35467532 PMCID: PMC9068211 DOI: 10.7554/elife.77755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022] Open
Abstract
Dendritic spines are the central postsynaptic machinery that determines synaptic function. The F-actin within dendritic spines regulates their dynamic formation and elimination. Rai14 is an F-actin-regulating protein with a membrane-shaping function. Here, we identified the roles of Rai14 for the regulation of dendritic spine dynamics associated with stress-induced depressive-like behaviors. Rai14-deficient neurons exhibit reduced dendritic spine density in the Rai14+/- mouse brain, resulting in impaired functional synaptic activity. Rai14 was protected from degradation by complex formation with Tara, and accumulated in the dendritic spine neck, thereby enhancing spine maintenance. Concurrently, Rai14 deficiency in mice altered gene expression profile relevant to depressive conditions and increased depressive-like behaviors. Moreover, Rai14 expression was reduced in the prefrontal cortex of the mouse stress model, which was blocked by antidepressant treatment. Thus, we propose that Rai14-dependent regulation of dendritic spines may underlie the plastic changes of neuronal connections relevant to depressive-like behaviors.
Collapse
Affiliation(s)
- Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyun Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
12
|
The RhoGEF Trio: A Protein with a Wide Range of Functions in the Vascular Endothelium. Int J Mol Sci 2021; 22:ijms221810168. [PMID: 34576329 PMCID: PMC8467920 DOI: 10.3390/ijms221810168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
Many cellular processes are controlled by small GTPases, which can be activated by guanine nucleotide exchange factors (GEFs). The RhoGEF Trio contains two GEF domains that differentially activate the small GTPases such as Rac1/RhoG and RhoA. These small RhoGTPases are mainly involved in the remodeling of the actin cytoskeleton. In the endothelium, they regulate junctional stabilization and play a crucial role in angiogenesis and endothelial barrier integrity. Multiple extracellular signals originating from different vascular processes can influence the activity of Trio and thereby the regulation of the forementioned small GTPases and actin cytoskeleton. This review elucidates how various signals regulate Trio in a distinct manner, resulting in different functional outcomes that are crucial for endothelial cell function in response to inflammation.
Collapse
|
13
|
The Role of HECT-Type E3 Ligase in the Development of Cardiac Disease. Int J Mol Sci 2021; 22:ijms22116065. [PMID: 34199773 PMCID: PMC8199989 DOI: 10.3390/ijms22116065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in medicine, cardiac disease remains an increasing health problem associated with a high mortality rate. Maladaptive cardiac remodeling, such as cardiac hypertrophy and fibrosis, is a risk factor for heart failure; therefore, it is critical to identify new therapeutic targets. Failing heart is reported to be associated with hyper-ubiquitylation and impairment of the ubiquitin–proteasome system, indicating an importance of ubiquitylation in the development of cardiac disease. Ubiquitylation is a post-translational modification that plays a pivotal role in protein function and degradation. In 1995, homologous to E6AP C-terminus (HECT) type E3 ligases were discovered. E3 ligases are key enzymes in ubiquitylation and are classified into three families: really interesting new genes (RING), HECT, and RING-between-RINGs (RBRs). Moreover, 28 HECT-type E3 ligases have been identified in human beings. It is well conserved in evolution and is characterized by the direct attachment of ubiquitin to substrates. HECT-type E3 ligase is reported to be involved in a wide range of human diseases and health. The role of HECT-type E3 ligases in the development of cardiac diseases has been uncovered in the last decade. There are only a few review articles summarizing recent advancements regarding HECT-type E3 ligase in the field of cardiac disease. This study focused on cardiac remodeling and described the role of HECT-type E3 ligases in the development of cardiac disease. Moreover, this study revealed that the current knowledge could be exploited for the development of new clinical therapies.
Collapse
|
14
|
Bircher JE, Koleske AJ. Trio family proteins as regulators of cell migration and morphogenesis in development and disease - mechanisms and cellular contexts. J Cell Sci 2021; 134:jcs248393. [PMID: 33568469 PMCID: PMC7888718 DOI: 10.1242/jcs.248393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The well-studied members of the Trio family of proteins are Trio and kalirin in vertebrates, UNC-73 in Caenorhabditis elegans and Trio in Drosophila Trio proteins are key regulators of cell morphogenesis and migration, tissue organization, and secretion and protein trafficking in many biological contexts. Recent discoveries have linked Trio and kalirin to human disease, including neurological disorders and cancer. The genes for Trio family proteins encode a series of large multidomain proteins with up to three catalytic activities and multiple scaffolding and protein-protein interaction domains. As such, Trio family proteins engage a wide array of cell surface receptors, substrates and interaction partners to coordinate changes in cytoskeletal regulatory and protein trafficking pathways. We provide a comprehensive review of the specific mechanisms by which Trio family proteins carry out their functions in cells, highlight the biological and cellular contexts in which they occur, and relate how alterations in these functions contribute to human disease.
Collapse
Affiliation(s)
- Josie E Bircher
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| | - Anthony J Koleske
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| |
Collapse
|
15
|
Korologou-Linden R, Leyden GM, Relton CL, Richmond RC, Richardson TG. Multi-omics analyses of cognitive traits and psychiatric disorders highlights brain-dependent mechanisms. Hum Mol Genet 2021; 32:ddab016. [PMID: 33481009 PMCID: PMC9990996 DOI: 10.1093/hmg/ddab016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023] Open
Abstract
Integrating findings from genome-wide association studies with molecular datasets can develop insight into the underlying functional mechanisms responsible for trait-associated genetic variants. We have applied the principles of Mendelian randomization (MR) to investigate whether brain-derived gene expression (n = 1194) may be responsible for mediating the effect of genetic variants on eight cognitive and psychological outcomes (attention deficit hyperactivity disorder (ADHD), Alzheimer's disease, bipolar disorder, depression, intelligence, insomnia, neuroticism and schizophrenia). Transcriptome-wide analyses identified 83 genes associated with at least one outcome (PBonferroni < 6.72 × 10-6), with multiple-trait colocalization also implicating changes to brain-derived DNA methylation at nine of these loci. Comparing effects between outcomes identified evidence of enrichment which may reflect putative causal relationships, such as an inverse relationship between genetic liability towards schizophrenia risk and cognitive ability in later life. Repeating these analyses in whole blood (n = 31 684), we replicated 58.2% of brain-derived effects (based on P < 0.05). Finally, we undertook phenome-wide evaluations at associated loci to investigate pleiotropic effects with 700 complex traits. This highlighted pleiotropic loci such as FURIN (initially implicated in schizophrenia risk (P = 1.05 × 10-7)) which had evidence of an effect on 28 other outcomes, as well as genes which may have a more specific role in disease pathogenesis (e.g. SLC12A5 which only provided evidence of an effect on depression (P = 7.13 × 10-10)). Our results support the utility of whole blood as a valuable proxy for informing initial target identification but also suggest that gene discovery in a tissue-specific manner may be more informative. Finally, non-pleiotropic loci highlighted by our study may be of use for therapeutic translational endeavours.
Collapse
Affiliation(s)
- Roxanna Korologou-Linden
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Genevieve M Leyden
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| |
Collapse
|
16
|
Yao L, Shippy T, Li Y. Genetic analysis of the molecular regulation of electric fields-guided glia migration. Sci Rep 2020; 10:16821. [PMID: 33033380 PMCID: PMC7546725 DOI: 10.1038/s41598-020-74085-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
In a developing nervous system, endogenous electric field (EF) influence embryonic growth. We reported the EF-directed migration of both rat Schwann cells (SCs) and oligodendrocyte precursor cells (OPCs) and explored the molecular mechanism using RNA-sequencing assay. However, previous studies revealed the differentially expressed genes (DEGs) associated with EF-guided migration of SCs or OPCs alone. In this study, we performed joint differential expression analysis on the RNA-sequencing data from both cell types. We report a number of significantly enriched gene ontology (GO) terms that are related to the cytoskeleton, cell adhesion, and cell migration. Of the DEGs associated with these terms, nine up-regulated DEGs and 32 down-regulated DEGs showed the same direction of effect in both SCs and OPCs stimulated with EFs, while the remaining DEGs responded differently. Thus, our study reveals the similarities and differences in gene expression and cell migration regulation of different glial cell types in response to EF stimulation.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA.
| | - Teresa Shippy
- Bioinformatics Specialist, KSU Bioinformatics Center, Kansas State University, Manhattan, KS, 66506, USA
| | - Yongchao Li
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
| |
Collapse
|
17
|
Díaz-Díaz C, Baonza G, Martín-Belmonte F. The vertebrate epithelial apical junctional complex: Dynamic interplay between Rho GTPase activity and cell polarization processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183398. [DOI: 10.1016/j.bbamem.2020.183398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
|
18
|
Zhou B, Yu L, Wang Y, Shang W, Xie Y, Wang X, Han F. A novel mutation in TRIOBP gene leading to congenital deafness in a Chinese family. BMC MEDICAL GENETICS 2020; 21:121. [PMID: 32487028 PMCID: PMC7268695 DOI: 10.1186/s12881-020-01055-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
Background The autosomal recessive non-syndromic deafness DFNB28 is characterized by prelingual sensorineural hearing loss. The disease is related with mutations in TRIOBP (Trio- and F-actin-Binding Protein) gene, which has three transcripts referred to as TRIOBP-5, TRIOBP − 4 and TRIOBP-1. Among them, TRIOBP-5/− 4 are expressed in the inner ears and crucial for maintaining the structure and function of the stereocilia. Methods The proband is a 26-year-old Chinese female. She and her younger brother have being suffered from severe deafness since birth, whereas her parents, who are cousins, have normal communication ability. Hearing impairment of the two siblings was determined by pure tone audiometry. Whole Exome Sequencing (WES) was performed on the genomic DNA of the proband and Sanger sequencing was conducted on the DNA samples of the four family members. Results Tests of pure tone hearing thresholds showed a severe to profound symmetric hearing loss for the proband and her younger brother. Moreover, a novel TRIOBP c.1342C > T (p.Arg448*) variant was identified by WES in the DNA sample of the proband and confirmed by Sanger sequencing in DNA of the family members. Conclusions The TRIOBP c.1342C > T (p.Arg448*) variant is predicted to disrupt TRIOBP-5 and TRIOBP-4, which may lead to the congenital deafness. The results will broaden the spectrum of pathogenic variants in TRIOBP gene. The characteristics of deafness in the family imply that marriage between close relatives should be avoided.
Collapse
Affiliation(s)
- Bingxin Zhou
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China
| | - Lili Yu
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Yan Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China
| | - Wenjing Shang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China
| | - Yi Xie
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China
| | - Xiong Wang
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China. .,Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, P. R. China.
| |
Collapse
|
19
|
Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Mol Psychiatry 2019; 24:936-951. [PMID: 30089789 DOI: 10.1038/s41380-018-0133-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations. While visible deposits of aggregated protein have not yet been detected in CMI patients, we propose the existence of more subtle protein misassembly in these conditions, which form a continuum with the psychiatric phenotypes found in the early stages of many neurodegenerative conditions. Such proteinopathies need not rely on genetic variation. In a similar manner to the established aberrant neurotransmitter homeostasis in CMI, aberrant homeostasis of proteins is a functional statement that can only partially be explained by, but is certainly complementary to, genetic approaches. Here, we review evidence for aberrant proteostasis signatures from post mortem human cases, in vivo animal work, and in vitro analysis of candidate proteins misassembled in CMI. The five best-characterized proteins in this respect are currently DISC1, dysbindin-1, CRMP1, TRIOBP-1, and NPAS3. Misassembly of these proteins with inherently unstructured domains is triggered by extracellular stressors and thus provides a converging point for non-genetic causes of CMI.
Collapse
|
20
|
Katsuno T, Belyantseva IA, Cartagena-Rivera AX, Ohta K, Crump SM, Petralia RS, Ono K, Tona R, Imtiaz A, Rehman A, Kiyonari H, Kaneko M, Wang YX, Abe T, Ikeya M, Fenollar-Ferrer C, Riordan GP, Wilson EA, Fitzgerald TS, Segawa K, Omori K, Ito J, Frolenkov GI, Friedman TB, Kitajiri SI. TRIOBP-5 sculpts stereocilia rootlets and stiffens supporting cells enabling hearing. JCI Insight 2019; 4:128561. [PMID: 31217345 DOI: 10.1172/jci.insight.128561] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023] Open
Abstract
TRIOBP remodels the cytoskeleton by forming unusually dense F-actin bundles and is implicated in human cancer, schizophrenia, and deafness. Mutations ablating human and mouse TRIOBP-4 and TRIOBP-5 isoforms are associated with profound deafness, as inner ear mechanosensory hair cells degenerate after stereocilia rootlets fail to develop. However, the mechanisms regulating formation of stereocilia rootlets by each TRIOBP isoform remain unknown. Using 3 new Triobp mouse models, we report that TRIOBP-5 is essential for thickening bundles of F-actin in rootlets, establishing their mature dimensions and for stiffening supporting cells of the auditory sensory epithelium. The coiled-coil domains of this isoform are required for reinforcement and maintenance of stereocilia rootlets. A loss of TRIOBP-5 in mouse results in dysmorphic rootlets that are abnormally thin in the cuticular plate but have increased widths and lengths within stereocilia cores, and causes progressive deafness recapitulating the human phenotype. Our study extends the current understanding of TRIOBP isoform-specific functions necessary for life-long hearing, with implications for insight into other TRIOBPopathies.
Collapse
Affiliation(s)
- Tatsuya Katsuno
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Alexander X Cartagena-Rivera
- Section on Auditory Mechanics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| | - Shawn M Crump
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Kazuya Ono
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Risa Tona
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Atteeq Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, Riken Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, Riken Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, Riken Center for Biosystems Dynamics Research, Kobe, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA.,Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Gavin P Riordan
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Elisabeth A Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Tracy S Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Kohei Segawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Juichi Ito
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Shin-Ichiro Kitajiri
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
21
|
Kruse K, Lee QS, Sun Y, Klomp J, Yang X, Huang F, Sun MY, Zhao S, Hong Z, Vogel SM, Shin JW, Leckband DE, Tai LM, Malik AB, Komarova YA. N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability. J Cell Biol 2018; 218:299-316. [PMID: 30463880 PMCID: PMC6314553 DOI: 10.1083/jcb.201802076] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/10/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023] Open
Abstract
This work describes a role for endothelial N-cadherin in the regulation of endothelial permeability in the brain and lung. N-cadherin adhesions formed between endothelial cells and pericytes increase the abundance of VE-cadherin at adherens junctions through the RhoGEF Trio-dependent activation of RhoA and Rac1. Vascular endothelial (VE)–cadherin forms homotypic adherens junctions (AJs) in the endothelium, whereas N-cadherin forms heterotypic adhesion between endothelial cells and surrounding vascular smooth muscle cells and pericytes. Here we addressed the question whether both cadherin adhesion complexes communicate through intracellular signaling and contribute to the integrity of the endothelial barrier. We demonstrated that deletion of N-cadherin (Cdh2) in either endothelial cells or pericytes increases junctional endothelial permeability in lung and brain secondary to reduced accumulation of VE-cadherin at AJs. N-cadherin functions by increasing the rate of VE-cadherin recruitment to AJs and induces the assembly of VE-cadherin junctions. We identified the dual Rac1/RhoA Rho guanine nucleotide exchange factor (GEF) Trio as a critical component of the N-cadherin adhesion complex, which activates both Rac1 and RhoA signaling pathways at AJs. Trio GEF1-mediated Rac1 activation induces the recruitment of VE-cadherin to AJs, whereas Trio GEF2-mediated RhoA activation increases intracellular tension and reinforces Rac1 activation to promote assembly of VE-cadherin junctions and thereby establish the characteristic restrictive endothelial barrier.
Collapse
Affiliation(s)
- Kevin Kruse
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Quinn S Lee
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Ying Sun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Jeff Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Xiaoyan Yang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Fei Huang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Mitchell Y Sun
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Shuangping Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Zhigang Hong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Jae-Won Shin
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, Chicago, IL
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| | - Yulia A Komarova
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
22
|
Braga V. Signaling by Small GTPases at Cell-Cell Junctions: Protein Interactions Building Control and Networks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028746. [PMID: 28893858 DOI: 10.1101/cshperspect.a028746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells.
Collapse
Affiliation(s)
- Vania Braga
- Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
23
|
Tasaki S, Gaiteri C, Mostafavi S, Yu L, Wang Y, De Jager PL, Bennett DA. Multi-omic Directed Networks Describe Features of Gene Regulation in Aged Brains and Expand the Set of Genes Driving Cognitive Decline. Front Genet 2018; 9:294. [PMID: 30140277 PMCID: PMC6095043 DOI: 10.3389/fgene.2018.00294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/13/2018] [Indexed: 01/10/2023] Open
Abstract
Multiple aspects of molecular regulation, including genetics, epigenetics, and mRNA collectively influence the development of age-related neurologic diseases. Therefore, with the ultimate goal of understanding molecular systems associated with cognitive decline, we infer directed interactions among regulatory elements in the local regulatory vicinity of individual genes based on brain multi-omics data from 413 individuals. These local regulatory networks (LRNs) capture the influences of genetics and epigenetics on gene expression in older adults. LRNs were confirmed through correspondence to known transcription biophysics. To relate LRNs to age-related neurologic diseases, we then incorporate common neuropathologies and measures of cognitive decline into this framework. This step identifies a specific set of largely neuronal genes, such as STAU1 and SEMA3F, predicted to control cognitive decline in older adults. These predictions are validated in separate cohorts by comparison to genetic associations for general cognition. LRNs are shared through www.molecular.network on the Rush Alzheimer’s Disease Center Resource Sharing Hub (www.radc.rush.edu).
Collapse
Affiliation(s)
- Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Sara Mostafavi
- Department of Statistics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, United States.,Cell Circuits Program, Broad Institute, Cambridge, MA, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
24
|
Wang H, Pardeshi LA, Rong X, Li E, Wong KH, Peng Y, Xu RH. Novel Variants Identified in Multiple Sclerosis Patients From Southern China. Front Neurol 2018; 9:582. [PMID: 30140248 PMCID: PMC6094994 DOI: 10.3389/fneur.2018.00582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune and demyelinating disease. Genome-wide association studies have shown that MS is associated with many genetic variants in some human leucocyte antigen genes and other immune-related genes, however, those studies were mostly specific to Caucasian populations. We attempt to address whether the same associations are also true for Asian populations by conducting whole-exome sequencing on MS patients from southern China. Methods: Genomic DNA was extracted from the peripheral blood mononucleocytes of 8 MS patients and 26 healthy controls and followed by exome sequencing. Results: In total, 41,227 variants were found to have moderate to high impact on their protein products. After filtering per allele frequencies according to known database, 17 variants with the allele frequency <1% or variants with undetermined frequency were identified to be unreported and have significantly different frequencies between the MS patients and healthy controls. After validation via Sanger sequencing, one rare variant located in exon 7 of TRIOBP (Chr22: 37723520G>T, Ala322Ser, rs201693690) was found to be a novel missense variant. Conclusion: MS in southern China may have association with unique genetic variants, our data suggest TRIOBP as a potential novel risk gene.
Collapse
Affiliation(s)
- Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Taipa, Macau
| | | | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
25
|
Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja WK, Cheng J, Rueda R, Kritskiy O, Abdurrob F, Peng Z, Milo B, Yu CJ, Elmsaouri S, Dey D, Ko T, Yankner BA, Tsai LH. APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer's Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron 2018; 98:1141-1154.e7. [PMID: 29861287 PMCID: PMC6023751 DOI: 10.1016/j.neuron.2018.05.008] [Citation(s) in RCA: 643] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/03/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
The apolipoprotein E4 (APOE4) variant is the single greatest genetic risk factor for sporadic Alzheimer's disease (sAD). However, the cell-type-specific functions of APOE4 in relation to AD pathology remain understudied. Here, we utilize CRISPR/Cas9 and induced pluripotent stem cells (iPSCs) to examine APOE4 effects on human brain cell types. Transcriptional profiling identified hundreds of differentially expressed genes in each cell type, with the most affected involving synaptic function (neurons), lipid metabolism (astrocytes), and immune response (microglia-like cells). APOE4 neurons exhibited increased synapse number and elevated Aβ42 secretion relative to isogenic APOE3 cells while APOE4 astrocytes displayed impaired Aβ uptake and cholesterol accumulation. Notably, APOE4 microglia-like cells exhibited altered morphologies, which correlated with reduced Aβ phagocytosis. Consistently, converting APOE4 to APOE3 in brain cell types from sAD iPSCs was sufficient to attenuate multiple AD-related pathologies. Our study establishes a reference for human cell-type-specific changes associated with the APOE4 variant. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yuan-Ta Lin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinsoo Seo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather M Feldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hsin-Lan Wen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hugh P Cam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeta Gjoneska
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Waseem K Raja
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jemmie Cheng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard Rueda
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatema Abdurrob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhuyu Peng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Blerta Milo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chung Jong Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
| | - Sara Elmsaouri
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dilip Dey
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bruce A Yankner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Park S, Lee H, Kim M, Park J, Kim SH, Park J. Emerging roles of TRIO and F-actin-binding protein in human diseases. Cell Commun Signal 2018; 16:29. [PMID: 29890989 PMCID: PMC5996455 DOI: 10.1186/s12964-018-0237-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
TRIO and F-actin-binding protein (TRIOBP) also referred to as Tara, was originally isolated as a cytoskeleton remodeling protein. TRIOBP-1 is important for regulating F-actin filament reorganization. TRIOBP variants are broadly classified as variant-1 or − 4 and do not share exons. TRIOBP variant-5 contains all exons. Earlier studies indicated that TRIOBP-4/5 mutation is a pivotal element of autosomal recessive nonsyndromic hearing loss. However, recent studies provide clues that TRIOBP variants are associated with other human diseases including cancer and brain diseases. In this review, recent functional studies focusing on TRIOBP variants and its possible disease models are described.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hyunji Lee
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Minhee Kim
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Jisoo Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| | - Jongsun Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
27
|
Peraldo-Neia C, Ostano P, Cavalloni G, Pignochino Y, Sangiolo D, De Cecco L, Marchesi E, Ribero D, Scarpa A, De Rose AM, Giuliani A, Calise F, Raggi C, Invernizzi P, Aglietta M, Chiorino G, Leone F. Transcriptomic analysis and mutational status of IDH1 in paired primary-recurrent intrahepatic cholangiocarcinoma. BMC Genomics 2018; 19:440. [PMID: 29871612 PMCID: PMC5989353 DOI: 10.1186/s12864-018-4829-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Effective target therapies for intrahepatic cholangiocarcinoma (ICC) have not been identified so far. One of the reasons may be the genetic evolution from primary (PR) to recurrent (REC) tumors. We aim to identify peculiar characteristics and to select potential targets specific for recurrent tumors. Eighteen ICC paired PR and REC tumors were collected from 5 Italian Centers. Eleven pairs were analyzed for gene expression profiling and 16 for mutational status of IDH1. For one pair, deep mutational analysis by Next Generation Sequencing was also carried out. An independent cohort of patients was used for validation. Results Two class-paired comparison yielded 315 differentially expressed genes between REC and PR tumors. Up-regulated genes in RECs are involved in RNA/DNA processing, cell cycle, epithelial to mesenchymal transition (EMT), resistance to apoptosis, and cytoskeleton remodeling. Down-regulated genes participate to epithelial cell differentiation, proteolysis, apoptotic, immune response, and inflammatory processes. A 24 gene signature is able to discriminate RECs from PRs in an independent cohort; FANCG is statistically associated with survival in the chol-TCGA dataset. IDH1 was mutated in the RECs of five patients; 4 of them displayed the mutation only in RECs. Deep sequencing performed in one patient confirmed the IDH1 mutation in REC. Conclusions RECs are enriched for genes involved in EMT, resistance to apoptosis, and cytoskeleton remodeling. Key players of these pathways might be considered druggable targets in RECs. IDH1 is mutated in 30% of RECs, becoming both a marker of progression and a target for therapy. Electronic supplementary material The online version of this article (10.1186/s12864-018-4829-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Peraldo-Neia
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy. .,Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy.
| | - P Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - G Cavalloni
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy
| | - Y Pignochino
- Department of Oncology, University of Turin, Torino, Italy
| | - D Sangiolo
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Torino, Italy
| | - L De Cecco
- Functional Genomics and Bioinformatics, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - E Marchesi
- Functional Genomics and Bioinformatics, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - D Ribero
- Division of Hepatobilio-Pancreatic and Colorectal Surgery, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, Candiolo, Italy
| | - A Scarpa
- ARC-Net Research Centre and Department of Diagnostics and Public Health - Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - A M De Rose
- Hepatobiliary Surgery Unit, Gemelli Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - A Giuliani
- Department of Health's Sciences and Medicine "V. Tiberio", University of Molise, Campobasso, Italy
| | - F Calise
- Hepatobiliary and Liver Transplant Unit, Cardarelli Hospital, Naples, Italy
| | - C Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - P Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.,UOC di Gastroenterologia, Azienda Ospedaliera San Gerardo, Monza, Italy
| | - M Aglietta
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Torino, Italy
| | - G Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - F Leone
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy. .,Department of Oncology, University of Turin, Torino, Italy.
| |
Collapse
|
28
|
Siebert L, Staton ME, Headrick S, Lewis M, Gillespie B, Young C, Almeida RA, Oliver SP, Pighetti GM. Genome-wide association study identifies loci associated with milk leukocyte phenotypes following experimental challenge with Streptococcus uberis. Immunogenetics 2018; 70:553-562. [PMID: 29862454 DOI: 10.1007/s00251-018-1065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/25/2018] [Indexed: 01/09/2023]
Abstract
Mastitis is a detrimental disease in the dairy industry that decreases milk quality and costs upwards of $2 billion annually. Often, mastitis results from bacteria entering the gland through the teat opening. Streptococcus uberis is responsible for a high percentage of subclinical and clinical mastitis. Following an intramammary experimental challenge with S. uberis on Holstein cows (n = 40), milk samples were collected and somatic cell counts (SCC) were determined by the Dairy Herd Improvement Association Laboratory. Traditional genome-wide association studies (GWAS) have utilized test day SCC or SCC lactation averages to identify loci of interest. Our approach utilizes SCC collected following a S. uberis experimental challenge to generate three novel phenotypes: (1) area under the curve (AUC) of SCC for 0-7 days and (2) 0-28 days post-challenge; and (3) when SCC returned to below 200,000 cells/mL post-challenge (< 21 days, 21-28 days, or > 28 days). Polymorphisms were identified using Illumina's BovineSNP50 v2 DNA BeadChip. Associations were tested using Plink software and identified 16 significant (p < 1.0 × 10-4) single-nucleotide polymorphisms (SNPs) across the phenotypes. Most significant SNPs were in genes linked to cell signaling, migration, and apoptosis. Several have been recognized in relation to infectious processes (ATF7, SGK1, and PACRG), but others less so (TRIO, GLRA1, CELSR2, TIAM2, CPE). Further investigation of these genes and their roles in inflammation (e.g., SCC) can provide potential targets that influence resolution of mammary gland infection. Likewise, further investigation of the identified SNP with mastitis and other disease phenotypes can provide greater insight to the potential of these SNP as genetic markers.
Collapse
Affiliation(s)
- Lydia Siebert
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN, 37996, USA
| | - Susan Headrick
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Mark Lewis
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Barbara Gillespie
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Charles Young
- Zoetis, 100 Campus Drive, Florham Park, NJ, 07932, USA
| | - Raul A Almeida
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA
| | - Stephen P Oliver
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA.,AgResearch, The University of Tennessee, 2621 Morgan Circle, Knoxville, TN, 37996, USA
| | - Gina M Pighetti
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
29
|
Wang H, Li K, Mei Y, Huang X, Li Z, Yang Q, Yang H. Sp1 Suppresses miR-3178 to Promote the Metastasis Invasion Cascade via Upregulation of TRIOBP. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:1-11. [PMID: 30195749 PMCID: PMC6023786 DOI: 10.1016/j.omtn.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp1) plays an important role in invasion-metastasis cascade. Sp1 regulation on protein coding genes has been extensively investigated; however, little is known about its regulation on protein non-coding genes. In this study, miR-3178 is reported as a novel target of Sp1 in multiple cancer cell models. Sp1 functions as its transcriptional suppressor as evidenced by luciferase reporter and chromatin immunoprecipitation (ChIP) assays. In line with the pro-metastatic role of Sp1, miR-3178 exerts anti-metastasis function. Overexpression of miR-3178 inhibits both migration and invasion of highly metastatic prostate, lung, and breast cancer cells whereas antagonizing miR-3178 promotes those events in their lowly metastatic counterparts. The in vivo study demonstrates that miR-3178 suppresses the tail vein inoculated prostate cancer cells to form colonies in lung, lymph node, and liver of BALB/c nude mice. miR-3178 directly targets the 3′ UTR of TRIOBP-1 and TRIOBP-5, two isoforms of TRIOBP expressed in prostate, lung, and breast cancer cells. Overexpression of TRIOBP-1 could rescue miR-3178 inhibition on cell migration and invasion. Collectively, our findings reveal the regulatory axis of Sp1/miR-3178/TRIOBP in metastasis cascade. Our results suggest miR-3178 as a promising application to suppress metastasis in Sp1-overexpressed cancers.
Collapse
Affiliation(s)
- Hui Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yu Mei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zhenglin Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Qingzhu Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
30
|
Jones DK, Johnson AC, Roti Roti EC, Liu F, Uelmen R, Ayers RA, Baczko I, Tester DJ, Ackerman MJ, Trudeau MC, Robertson GA. Localization and functional consequences of a direct interaction between TRIOBP-1 and hERG proteins in the heart. J Cell Sci 2018; 131:jcs.206730. [PMID: 29507111 DOI: 10.1242/jcs.206730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
Reduced levels of the cardiac human (h)ERG ion channel protein and the corresponding repolarizing current IKr can cause arrhythmia and sudden cardiac death, but the underlying cellular mechanisms controlling hERG surface expression are not well understood. Here, we identified TRIOBP-1, an F-actin-binding protein previously associated with actin polymerization, as a putative hERG-interacting protein in a yeast-two hybrid screen of a cardiac library. We corroborated this interaction by performing Förster resonance energy transfer (FRET) in HEK293 cells and co-immunoprecipitation in HEK293 cells and native cardiac tissue. TRIOBP-1 overexpression reduced hERG surface expression and current density, whereas reducing TRIOBP-1 expression via shRNA knockdown resulted in increased hERG protein levels. Immunolabeling in rat cardiomyocytes showed that native TRIOBP-1 colocalized predominantly with myosin-binding protein C and secondarily with rat ERG. In human stem cell-derived cardiomyocytes, TRIOBP-1 overexpression caused intracellular co-sequestration of hERG signal, reduced native IKr and disrupted action potential repolarization. Ca2+ currents were also somewhat reduced and cell capacitance was increased. These findings establish that TRIOBP-1 interacts directly with hERG and can affect protein levels, IKr magnitude and cardiac membrane excitability.
Collapse
Affiliation(s)
- David K Jones
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Ashley C Johnson
- Department of Physiology, University of Maryland School of Medicine, 660 W. Redwood St., Baltimore, MD 21201, USA
| | - Elon C Roti Roti
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Fang Liu
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Rebecca Uelmen
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Rebecca A Ayers
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged 6720, Hungary
| | - David J Tester
- Department of Cardiovascular Diseases, Division of Heart Rhythm Service, Mayo Clinic, Rochester, NY 55905, USA
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Division of Heart Rhythm Service, Mayo Clinic, Rochester, NY 55905, USA
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine, 660 W. Redwood St., Baltimore, MD 21201, USA
| | - Gail A Robertson
- Department of Neuroscience, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison SMPH, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| |
Collapse
|
31
|
Maier M, Baldwin C, Aoudjit L, Takano T. The Role of Trio, a Rho Guanine Nucleotide Exchange Factor, in Glomerular Podocytes. Int J Mol Sci 2018; 19:ijms19020479. [PMID: 29415466 PMCID: PMC5855701 DOI: 10.3390/ijms19020479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 12/16/2022] Open
Abstract
Nephrotic syndrome is a kidney disease featured by heavy proteinuria. It is caused by injury to the specialized epithelial cells called “podocytes” within the filtration unit of the kidney, glomerulus. Previous studies showed that hyperactivation of the RhoGTPase, Rac1, in podocytes causes podocyte injury and glomerulosclerosis (accumulation of extracellular matrix in the glomerulus). However, the mechanism by which Rac1 is activated during podocyte injury is unknown. Trio is a guanine nucleotide exchange factor (GEF) known to activate Rac1. By RNA-sequencing, we found that Trio mRNA is abundantly expressed in cultured human podocytes. Trio mRNA was also significantly upregulated in humans with minimal change disease and focal segmental glomerulosclerosis, two representative causes of nephrotic syndrome. Reduced expression of Trio in cultured human podocytes decreased basal Rac1 activity, cell size, attachment to laminin, and motility. Furthermore, while the pro-fibrotic cytokine, transforming growth factor β1 increased Rac1 activity in control cells, it decreases Rac1 activity in cells with reduced Trio expression. This was likely due to simultaneous activation of the Rac1-GTPase activation protein, CdGAP. Thus, Trio is important in the basal functions of podocytes and may also contribute to glomerular pathology, such as sclerosis, via Rac1 activation.
Collapse
Affiliation(s)
- Mirela Maier
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Cindy Baldwin
- Division of Nephrology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Lamine Aoudjit
- Division of Nephrology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Tomoko Takano
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
- Division of Nephrology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
32
|
Lee H, Kim M, Park J, Tran Q, Hong Y, Cho H, Park S, Hong S, Brazil DP, Kim SH, Park J. The roles of TRIO and F-actin-binding protein in glioblastoma cells. Mol Med Rep 2018; 17:4540-4546. [PMID: 29363730 PMCID: PMC5802229 DOI: 10.3892/mmr.2018.8458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/12/2018] [Indexed: 01/11/2023] Open
Abstract
TRIO and F-actin-binding protein (TrioBP), which was initially discovered as a binding partner of Trio and F-actin, is a critical factor associated with hearing loss in humans. However, the function of TrioBP in cancer has not been investigated. In the present study, TrioBP expression was indicated to be highly elevated in U87-MG and U343-MG cells. Furthermore, the TrioBP mRNA expression level was markedly increased in U87-MG and U251-MG cells compared with that in cerebral cortex cells, as determined by deep sequencing. Comprehensive analysis of a public TCGA dataset confirmed that TrioBP expression is elevated in patients with glioblastoma. In summary, the present data indicate that TrioBP expression is increased in glioblastoma cell lines and in patients with glioma, suggesting that TrioBP has potential as a diagnostic marker or therapeutic agent for glioma.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Minhee Kim
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Jisoo Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Quangdon Tran
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Youngeun Hong
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Hyeonjeong Cho
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Sungjin Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon, Gyeonggi‑do 21999, Republic of Korea
| | - Derek P Brazil
- Centre for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Chungcheongnam‑do 35015, Republic of Korea
| |
Collapse
|
33
|
Pollak A, Lechowicz U, Murcia Pieńkowski VA, Stawiński P, Kosińska J, Skarżyński H, Ołdak M, Płoski R. Whole exome sequencing identifies TRIOBP pathogenic variants as a cause of post-lingual bilateral moderate-to-severe sensorineural hearing loss. BMC MEDICAL GENETICS 2017; 18:142. [PMID: 29197352 PMCID: PMC5712175 DOI: 10.1186/s12881-017-0499-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Background Implementation of whole exome sequencing has provided unique opportunity for a wide screening of causative variants in genetically heterogeneous diseases, including nonsyndromic hearing impairment. TRIOBP in the inner ear is responsible for proper structure and function of stereocilia and is necessary for sound transduction. Methods Whole exome sequencing followed by Sanger sequencing was conducted on patients derived from Polish hearing loss family. Results Based on whole exome analysis, we identified two TRIOBP pathogenic variants (c.802_805delCAGG, p.Gln268Leufs*610 and c.5014G>T, p.Gly1672*, the first of which was novel) causative of nonsyndromic, peri- to postlingual, moderate-to-severe hearing loss in three siblings from a Polish family. Typically, TRIOBP pathogenic variants lead to prelingual, severe-to-profound hearing loss, thus the onset and degree of hearing impairment in our patients represent a distinct phenotypic manifestation caused by TRIOBP variants. The pathogenic variant p.Gln268Leufs*610 disrupts the TRIOBP-4 and TRIOBP-5 isoforms (both expressed exclusively in the inner ear and retina) whereas the second pathogenic variant c.514G>T, p.Gly1672* affects only TRIOBP-5. Conclusions The onset and degree of hearing impairment, characteristic for our patients, represent a unique phenotypic manifestation caused by TRIOBP pathogenic variants. Although TRIOBP alterations are not a frequent cause of hearing impairment, this gene should be thoroughly analyzed especially in patients with a postlingual hearing loss. A delayed onset of hearing impairment due to TRIOBP pathogenic variants creates a potential therapeutic window for future targeted therapies.
Collapse
Affiliation(s)
- Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, Warsaw, 02-042, Poland
| | - Urszula Lechowicz
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, Warsaw, 02-042, Poland
| | - Victor Abel Murcia Pieńkowski
- Department of Medical Genetics, Warsaw Medical University, Pawinskiego 3c, Warsaw, 02-106, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Piotr Stawiński
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, Warsaw, 02-042, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Warsaw Medical University, Pawinskiego 3c, Warsaw, 02-106, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw/Kajetany, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mochnackiego 10, Warsaw, 02-042, Poland.
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Pawinskiego 3c, Warsaw, 02-106, Poland.
| |
Collapse
|
34
|
Bradshaw NJ, Yerabham ASK, Marreiros R, Zhang T, Nagel-Steger L, Korth C. An unpredicted aggregation-critical region of the actin-polymerizing protein TRIOBP-1/Tara, determined by elucidation of its domain structure. J Biol Chem 2017; 292:9583-9598. [PMID: 28438837 DOI: 10.1074/jbc.m116.767939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
Aggregation of specific proteins in the brains of patients with chronic mental illness as a result of disruptions in proteostasis is an emerging theme in the study of schizophrenia in particular. Proteins including DISC1 (disrupted in schizophrenia 1) and dysbindin-1B are found in insoluble forms within brain homogenates from such patients. We recently identified TRIOBP-1 (Trio-binding protein 1, also known as Tara) to be another such protein through an epitope discovery and proteomics approach by comparing post-mortem brain material from schizophrenia patients and control individuals. We hypothesized that this was likely to occur as a result of a specific subcellular process and that it, therefore, should be possible to identify a region of the TRIOBP-1 protein that is essential for its aggregation to occur. Here, we probe the domain organization of TRIOBP-1, finding it to possess two distinct coiled-coil domains: the central and C-terminal domains. The central domain inhibits the depolymerization of F-actin and is also responsible for oligomerization of TRIOBP-1. Along with an N-terminal pleckstrin homology domain, the central domain affects neurite outgrowth. In neuroblastoma cells it was found that the aggregation propensity of TRIOBP-1 arises from its central domain, with a short "linker" region narrowed to within amino acids 324-348, between its first two coiled coils, as essential for the formation of TRIOBP-1 aggregates. TRIOBP-1 aggregation, therefore, appears to occur through one or more specific cellular mechanisms, which therefore have the potential to be of physiological relevance for the biological process underlying the development of chronic mental illness.
Collapse
Affiliation(s)
| | | | | | - Tao Zhang
- the Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany and.,the Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Luitgard Nagel-Steger
- the Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany and.,the Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | |
Collapse
|
35
|
Dos Santos APR, Rocha TL, Borges CL, Bailão AM, de Almeida Soares CM, de Sabóia-Morais SMT. A glyphosate-based herbicide induces histomorphological and protein expression changes in the liver of the female guppy Poecilia reticulata. CHEMOSPHERE 2017; 168:933-943. [PMID: 27836263 DOI: 10.1016/j.chemosphere.2016.10.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Glyphosate-based herbicides (GBH) are among the most common herbicides found in aquatic systems, but limited data are available about their mode of action and hepatotoxicity in fish. This study investigated the hepatotoxicity induced by GBH in the guppy Poecilia reticulata using a histopathological assessment associated with a proteomic approach. Guppies were exposed to GBH for 24 h at 1.8 mg of glyphosate L-1, corresponding to 50% of the LC50, 96 h. The results indicate that the GBH at 1.8 mg of glyphosate L-1 induce the development of hepatic damage in P. reticulata, which is exposure-time dependent. The histopathological indexes demonstrate that GBH cause inflammatory, regressive, vascular and progressive disorders in the liver of guppies. Using 2D gel electrophoresis associated with mass spectrometry, 18 proteins that changed by GBH were identified and were related to the cellular structure, motility and transport, energy metabolism and apoptosis. The results show that the acute exposure to GBH causes hepatic histopathological damage related to protein expression profile changes in P. reticulata, indicating that a histopathological assessment associated with a proteomic analysis provides a valuable approach to assess the toxic effects of GBH in sentinel fish species.
Collapse
Affiliation(s)
- Ana Paula Rezende Dos Santos
- Laboratory of Cellular Behavior, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Cellular Behavior, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil; CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Clayton Luiz Borges
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
36
|
Hong JH, Kwak Y, Woo Y, Park C, Lee SA, Lee H, Park SJ, Suh Y, Suh BK, Goo BS, Mun DJ, Sanada K, Nguyen MD, Park SK. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep 2016; 6:31827. [PMID: 27546710 PMCID: PMC4992831 DOI: 10.1038/srep31827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement.
Collapse
Affiliation(s)
- Ji-Ho Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yongdo Kwak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Haeryun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
37
|
Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton. mBio 2016; 7:mBio.00622-16. [PMID: 27381293 PMCID: PMC4958246 DOI: 10.1128/mbio.00622-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Many bacteria live as intracellular symbionts, causing persistent infections within insects. One extraordinarily common infection is that of Wolbachia pipientis, which infects 40% of insect species and induces reproductive effects. The bacteria are passed from generation to generation both vertically (through the oocyte) and horizontally (by environmental transmission). Maintenance of the infection within Drosophila melanogaster is sensitive to the regulation of actin, as Wolbachia inefficiently colonizes strains hemizygous for the profilin or villin genes. Therefore, we hypothesized that Wolbachia must depend on the host actin cytoskeleton. In this study, we identify and characterize a Wolbachia protein (WD0830) that is predicted to be secreted by the bacterial parasite. Expression of WD0830 in a model eukaryote (the yeast Saccharomyces cerevisiae) induces a growth defect associated with the appearance of aberrant, filamentous structures which colocalize with rhodamine-phalloidin-stained actin. Purified WD0830 bundles actin in vitro and cosediments with actin filaments, suggesting a direct interaction of the two proteins. We characterized the expression of WD0830 throughout Drosophila development and found it to be upregulated in third-instar larvae, peaking in early pupation, during the critical formation of adult tissues, including the reproductive system. In transgenic flies, heterologously expressed WD0830 localizes to the developing oocyte. Additionally, overexpression of WD0830 results in increased Wolbachia titers in whole flies, in stage 9 and 10 oocytes, and in embryos, compared to controls, suggesting that the protein may facilitate Wolbachia's replication or transmission. Therefore, this candidate secreted effector may play a role in Wolbachia's infection of and persistence within host niches. IMPORTANCE The obligate intracellular Wolbachia pipientis is a ubiquitous alphaproteobacterial symbiont of arthropods and nematodes and is related to the rickettsial pathogens Ehrlichia spp. and Anaplasma spp. Studies of Wolbachia cell biology suggest that this bacterium relies on host actin for efficient proliferation and transmission between generations. Here, we identified and characterized a Wolbachia protein that localizes to and manipulates the eukaryotic actin cytoskeleton, is expressed by Wolbachia during host development, and alters Wolbachia titers and localization in transgenic fruit flies. We hypothesize that WD0830 may be utilized by the bacterium to facilitate replication in or invasion of different niches during host development.
Collapse
|
38
|
Springelkamp H, Mishra A, Hysi PG, Gharahkhani P, Höhn R, Khor CC, Cooke Bailey JN, Luo X, Ramdas WD, Vithana E, Koh V, Yazar S, Xu L, Forward H, Kearns LS, Amin N, Iglesias AI, Sim KS, van Leeuwen EM, Demirkan A, van der Lee S, Loon SC, Rivadeneira F, Nag A, Sanfilippo PG, Schillert A, de Jong PTVM, Oostra BA, Uitterlinden AG, Hofman A, Zhou T, Burdon KP, Spector TD, Lackner KJ, Saw SM, Vingerling JR, Teo YY, Pasquale LR, Wolfs RCW, Lemij HG, Tai ES, Jonas JB, Cheng CY, Aung T, Jansonius NM, Klaver CCW, Craig JE, Young TL, Haines JL, MacGregor S, Mackey DA, Pfeiffer N, Wong TY, Wiggs JL, Hewitt AW, van Duijn CM, Hammond CJ. Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology. Genet Epidemiol 2015; 39:207-16. [PMID: 25631615 DOI: 10.1002/gepi.21886] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/30/2023]
Abstract
Primary open-angle glaucoma is the most common optic neuropathy and an important cause of irreversible blindness worldwide. The optic nerve head or optic disc is divided in two parts: a central cup (without nerve fibers) surrounded by the neuroretinal rim (containing axons of the retinal ganglion cells). The International Glaucoma Genetics Consortium conducted a meta-analysis of genome-wide association studies consisting of 17,248 individuals of European ancestry and 6,841 individuals of Asian ancestry. The outcomes of the genome-wide association studies were disc area and cup area. These specific measurements describe optic nerve morphology in another way than the vertical cup-disc ratio, which is a clinically used measurement, and may shed light on new glaucoma mechanisms. We identified 10 new loci associated with disc area (CDC42BPA, F5, DIRC3, RARB, ABI3BP, DCAF4L2, ELP4, TMTC2, NR2F2, and HORMAD2) and another 10 new loci associated with cup area (DHRS3, TRIB2, EFEMP1, FLNB, FAM101, DDHD1, ASB7, KPNB1, BCAS3, and TRIOBP). The new genes participate in a number of pathways and future work is likely to identify more functions related to the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Henriët Springelkamp
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bao J, Wang S, Gunther LK, Kitajiri SI, Li C, Sakamoto T. The actin-bundling protein TRIOBP-4 and -5 promotes the motility of pancreatic cancer cells. Cancer Lett 2015; 356:367-373. [PMID: 25130170 DOI: 10.1016/j.canlet.2014.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 10/25/2022]
Abstract
TRIOBP isoforms 4 and 5 (TRIOBP-4/-5) are an actin-bundling protein associated with hearing loss. Here, we showed that TRIOBP-4/-5 was up-regulated in human pancreatic carcinoma cells. Knockdown of TRIOBP-4/-5 led to a loss of filopodia and a decrease in cell motility. Confocal microscopy showed that re-expression of GFP-TRIOBP-4 or -5 restored the filopodial formation in TRIOBP-4/-5-deficient PANC-1 cells. Finally, TRIOBP-4/-5 was shown to be overexpressed in human pancreatic cancer tissues. These results demonstrate a novel role of TRIOBP-4/-5 that promotes the motility of pancreatic cancer cells via regulating actin cytoskeleton reorganization in the filopodia of the cells.
Collapse
Affiliation(s)
- Jianjun Bao
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | - Shuo Wang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Laura K Gunther
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
| | - Shin-Ichiro Kitajiri
- Department of Otolaryngology - Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Takeshi Sakamoto
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
40
|
Bradshaw NJ, Bader V, Prikulis I, Lueking A, Müllner S, Korth C. Aggregation of the protein TRIOBP-1 and its potential relevance to schizophrenia. PLoS One 2014; 9:e111196. [PMID: 25333879 PMCID: PMC4205090 DOI: 10.1371/journal.pone.0111196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/29/2014] [Indexed: 11/29/2022] Open
Abstract
We have previously proposed that specific proteins may form insoluble aggregates as a response to an illness-specific proteostatic dysbalance in a subset of brains from individuals with mental illness, as is the case for other chronic brain conditions. So far, established risk factors DISC1 and dysbindin were seen to specifically aggregate in a subset of such patients, as was a novel schizophrenia-related protein, CRMP1, identified through a condition-specific epitope discovery approach. In this process, antibodies are raised against the pooled insoluble protein fractions (aggregomes) of post mortem brain samples from schizophrenia patients, followed by epitope identification and confirmation using additional techniques. Pursuing this epitope discovery paradigm further, we reveal TRIO binding protein (TRIOBP) to be a major substrate of a monoclonal antibody with a high specificity to brain aggregomes from patients with chronic mental illness. TRIOBP is a gene previously associated with deafness which encodes for several distinct protein species, each involved in actin cytoskeletal dynamics. The 3′ splice variant TRIOBP-1 is found to be the antibody substrate and has a high aggregation propensity when over-expressed in neuroblastoma cells, while the major 5′ splice variant, TRIOBP-4, does not. Endogenous TRIOBP-1 can also spontaneously aggregate, doing so to a greater extent in cell cultures which are post-mitotic, consistent with aggregated TRIOBP-1 being able to accumulate in the differentiated neurons of the brain. Finally, upon expression in Neuroscreen-1 cells, aggregated TRIOBP-1 affects cell morphology, indicating that TRIOBP-1 aggregates may directly affect cell development, as opposed to simply being a by-product of other processes involved in major mental illness. While further experiments in clinical samples are required to clarify their relevance to chronic mental illness in the general population, TRIOBP-1 aggregates are thus implicated for the first time as a biological element of the neuropathology of a subset of chronic mental illness.
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
- * E-mail: (NJB); (CK)
| | - Verian Bader
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
- * E-mail: (NJB); (CK)
| |
Collapse
|
41
|
Schmidt S, Debant A. Function and regulation of the Rho guanine nucleotide exchange factor Trio. Small GTPases 2014; 5:e29769. [PMID: 24987837 DOI: 10.4161/sgtp.29769] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rho GTPases oscillate between an inactive GDP-bound state and an active GTP-bound state. They are activated by Rho Guanine nucleotide Exchange Factors (GEF), which accelerate the GDP to GTP exchange. RhoGEFs fall into two different classes: the Dbl family and the DOCK family of proteins. In this review, we focus on the function and regulation of the Dbl family RhoGEF Trio. Trio and its paralog Kalirin are unique within this family in that they display two GEF domains of distinct specificity. Trio is a major regulator of neuronal development, and its function is conserved through evolution. Moreover, Trio plays an important role in cell adhesion and in signaling pathways elicited by Gαq protein-coupled receptors. Combined, these observations suggest that Trio has a major role in cellular physiology. Of note, Trio is an essential gene for mouse development, with a prominent role in the development of the nervous system. Finally, Trio expression is significantly increased in different types of tumors and it has been proposed that it could participate in oncogenesis.
Collapse
Affiliation(s)
- Susanne Schmidt
- Centre de Recherche en Biochimie Macromoléculaire; CNRS - UMR 5237; Université de Montpellier; Montpellier, France
| | - Anne Debant
- Centre de Recherche en Biochimie Macromoléculaire; CNRS - UMR 5237; Université de Montpellier; Montpellier, France
| |
Collapse
|
42
|
McCormack J, Welsh NJ, Braga VMM. Cycling around cell-cell adhesion with Rho GTPase regulators. J Cell Sci 2014; 126:379-91. [PMID: 23547086 DOI: 10.1242/jcs.097923] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The formation and stability of epithelial adhesive systems, such as adherens junctions, desmosomes and tight junctions, rely on a number of cellular processes that ensure a dynamic interaction with the cortical cytoskeleton, and appropriate delivery and turnover of receptors at the surface. Unique signalling pathways must be coordinated to allow the coexistence of distinct adhesive systems at discrete sub-domains along junctions and the specific properties they confer to epithelial cells. Rho, Rac and Cdc42 are members of the Rho small GTPase family, and are well-known regulators of cell-cell adhesion. The spatio-temporal control of small GTPase activation drives specific intracellular processes to enable the hierarchical assembly, morphology and maturation of cell-cell contacts. Here, we discuss the small GTPase regulators that control the precise amplitude and duration of the levels of active Rho at cell-cell contacts, and the mechanisms that tailor the output of Rho signalling to a particular cellular event. Interestingly, the functional interaction is reciprocal; Rho regulators drive the maturation of cell-cell contacts, whereas junctions can also modulate the localisation and activity of Rho regulators to operate in diverse processes in the epithelial differentiation programme.
Collapse
Affiliation(s)
- Jessica McCormack
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London. Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
43
|
Bao J, Bielski E, Bachhawat A, Taha D, Gunther LK, Thirumurugan K, Kitajiri SI, Sakamoto T. R1 motif is the major actin-binding domain of TRIOBP-4. Biochemistry 2013; 52:5256-64. [PMID: 23789641 DOI: 10.1021/bi400585h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TRIOBP is an actin-bundling protein. Mutations of TRIOBP are associated with human deafness DFNB28. In vitro, TRIOBP isoform 4 (TRIOBP-4) forms dense F-actin bundles resembling the inner ear hair cell rootlet structure. Deletion of TRIOBP isoforms 4 and 5 leads to hearing loss in mice due to the absence of stereocilia rootlets. The mechanism of actin bundle formation by TRIOBP is not fully understood. The amino acid sequences of TRIOBP isoforms 4 and 5 contain two repeated motifs, referred to here as R1 and R2. To examine the potential role of R1 and R2 motifs in F-actin binding, we generated TRIOBP-4 mutant proteins deleted for R1 and/or R2, and then assessed their actin-binding activity and bundle formation in vitro using actin cosedimentation assays, and fluorescence and electron microscopy. Cellular distributions of the TRIOBP-4 mutants were examined by confocal microscopy. We showed that deletion of both R1 and R2 motifs completely disrupted the actin binding/bundling activities of TRIOBP-4 and impaired its localization to cellular actin cytoskeleton structures. By contrast, TRIOBP-4, lacking only R2 motif, retained its F-actin bundling ability and remained localized to actin filaments in cells, similar to full length TRIOBP-4. On the contrary, the R1 motif-deleted TRIOBP-4 mutant, which mainly consists of the R2 motif, formed thin F-actin bundles in vitro but failed to colocalize to actin filaments in cells. These results indicate that R1 motif is the major actin-binding domain of TRIOBP-4, and the binding of R2 motif with actin filaments is nonspecific.
Collapse
Affiliation(s)
- Jianjun Bao
- Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu Y, Wang C, Lan J, Yu J, Jin C, Huang H. Phosphorylation of Tara by Plk1 is essential for faithful chromosome segregation in mitosis. Exp Cell Res 2012; 318:2344-52. [PMID: 22820163 DOI: 10.1016/j.yexcr.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022]
Abstract
Trio-associated repeat on actin (Tara) is an F-actin binding protein and regulates actin cytoskeletal organization. In our previous study, we have found that Tara associates with telomeric repeat binding factor 1 (TRF1) and mediates the function of TRF1 in mitotic regulation. We also found that overexpression HECTD3, a member of HECT E3 ubiquitin ligases, enhances the ubiquitination of Tara in vivo and promotes the degradation of Tara, and such degradation of Tara facilitates cell cycle progression. However, less is known about the post-translational modification of Tara in mitosis. Here we show that Tara is a novel Polo-like kinase 1 (Plk1) target protein. Plk1 interacts with and phosphorylates Tara in vivo and in vitro. Actually, the Thr-457 in Tara was a bona fide in vivo phosphorylation site for Plk1. Interestingly, we found that the centrosomal localization of Tara depended on the Thr-457 phosphorylation and the kinase activity of Plk1. Furthermore, overexpression of non-phosphorylatable mutant of Tara caused aberrant mitosis delay in HeLa cells. Our study demonstrated that Plk1-mediated phospho-dependent centrosomal localization of Tara is important for faithful chromosome segregation, and provided novel insights into understanding on the role of Plk1 in cooperation with Tara in mitotic progression.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
45
|
Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation. PLoS One 2012; 7:e37108. [PMID: 22693568 PMCID: PMC3365017 DOI: 10.1371/journal.pone.0037108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/15/2012] [Indexed: 01/19/2023] Open
Abstract
To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.
Collapse
|
46
|
Viaud J, Gaits-Iacovoni F, Payrastre B. Regulation of the DH-PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides. Adv Biol Regul 2012; 52:303-14. [PMID: 22781744 DOI: 10.1016/j.jbior.2012.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
Rho GTPases act as molecular switches central in cellular processes such as cytoskeleton dynamics, migration, cell proliferation, growth or survival. Their activation is tightly regulated downstream of cell surface receptors by Guanine nucleotide Exchange Factors (GEFs), that are responsible for the specificity, the accuracy, and the spatial restriction of Rho GTPases response to extracellular cues. Because there is about four time more RhoGEFs that Rho GTPases, and GEFs do not always show a strict specificity for GTPases, it is clear that their regulation depends on specific interactions with the subcellular environment. RhoGEFs bear a peculiar structure, highly conserved though evolution, consisting of a DH-PH tandem, the DH (Dbl homology) domain being responsible for the exchange activity. The function of the PH (Pleckstrin homology) domain known to bind phosphoinositides, however, remains elusive, and reports are in many cases rather confusing. This review summarizes data on the regulation of RhoGEFs activity through interaction of the PH-associated DH domain with phosphoinositides which are considered as critical players in the spatial organization of major signaling pathways.
Collapse
Affiliation(s)
- Julien Viaud
- INSERM, UMR1048, Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | |
Collapse
|
47
|
Knowles JP, Shi-Wen X, Haque SU, Bhalla A, Dashwood MR, Yang S, Taylor I, Winslet MC, Abraham DJ, Loizidou M. Endothelin-1 stimulates colon cancer adjacent fibroblasts. Int J Cancer 2011; 130:1264-72. [PMID: 21445967 DOI: 10.1002/ijc.26090] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/08/2011] [Indexed: 12/25/2022]
Abstract
Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy.
Collapse
Affiliation(s)
- Jonathan P Knowles
- Department of Surgery, UCL Division of Surgery and Interventional Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lenz DR, Avraham KB. Hereditary hearing loss: from human mutation to mechanism. Hear Res 2011; 281:3-10. [PMID: 21664957 DOI: 10.1016/j.heares.2011.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022]
Abstract
The genetic heterogeneity of hereditary hearing loss is thus far represented by hundreds of genes encoding a large variety of proteins. Mutations in these genes have been discovered for patients with different modes of inheritance and types of hearing loss, ranging from syndromic to non-syndromic and mild to profound. In many cases, the mechanisms whereby the mutations lead to hearing loss have been partly elucidated using cell culture systems and mouse and other animal models. The discovery of the genes has completely changed the practice of genetic counseling in this area, providing potential diagnosis in many cases that can be coupled with clinical phenotypes and offer predictive information for families. In this review we provide three examples of gene discovery in families with hereditary hearing loss, all associated with elucidation of some of the mechanisms leading to hair cell degeneration and pathology of deafness.
Collapse
Affiliation(s)
- Danielle R Lenz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
49
|
Yano T, Yamazaki Y, Adachi M, Okawa K, Fort P, Uji M, Tsukita S, Tsukita S. Tara up-regulates E-cadherin transcription by binding to the Trio RhoGEF and inhibiting Rac signaling. ACTA ACUST UNITED AC 2011; 193:319-32. [PMID: 21482718 PMCID: PMC3080255 DOI: 10.1083/jcb.201009100] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The spatiotemporal regulation of E-cadherin expression is important during body plan development and carcinogenesis. We found that Tara (Trio-associated repeat on actin) is enriched in cadherin-based adherens junctions (AJs), and its knockdown in MDCK cells (Tara-KD cells) significantly decreases the expression of E-cadherin. Tara-KD activates Rac1 through the Trio RhoGEF, which binds to E-cadherin and subsequently increases the phosphorylation of p38 and Tbx3, a transcriptional E-cadherin repressor. Accordingly, the decrease in E-cadherin expression is abrogated by ITX3 and SB203580 (specific inhibitors of Trio RhoGEF and p38MAPK, respectively), and by dephosphomimetic Tbx3. Despite the decreased E-cadherin expression, the Tara-KD cells do not undergo an epithelial-mesenchymal transition and remain as an epithelial cell sheet, presumably due to the concomitant up-regulation of cadherin-6. Tara-KD reduces the actin-belt density in the circumferential ring, and the cells form flattened cysts, suggesting that Tara functions to modulate epithelial cell sheet formation and integrity by up-regulating E-cadherin transcription.
Collapse
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gautel M. Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 2011; 462:119-34. [PMID: 21416260 PMCID: PMC3114093 DOI: 10.1007/s00424-011-0946-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca2+–calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other “MLCKs”, is not Ca2+–calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, London, SE1 1UL, UK.
| |
Collapse
|