1
|
Zhong C, Lei Y, Zhang J, Zheng Q, Liu Z, Xu Y, Shan S, Ren T. Prognostic Function and Immunologic Landscape of a Predictive Model Based on Five Senescence-Related Genes in IPF Bronchoalveolar Lavage Fluid. Biomedicines 2024; 12:1246. [PMID: 38927453 PMCID: PMC11201203 DOI: 10.3390/biomedicines12061246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease characterized by unknown causes and a poor prognosis. Recent research indicates that age-related mechanisms, such as cellular senescence, may play a role in the development of this condition. However, the relationship between cellular senescence and clinical outcomes in IPF remains uncertain. METHODS Data from the GSE70867 database were meticulously analyzed in this study. The research employed differential expression analysis, as well as univariate and multivariate Cox regression analysis, to pinpoint senescence-related genes (SRGs) linked to prognosis and construct a prognostic risk model. The model's clinical relevance and its connection to potential biological processes were systematically assessed in training and testing datasets. Additionally, the expression location of prognosis-related SRGs was identified through immunohistochemical staining, and the correlation between SRGs and immune cell infiltration was deduced using the GSE28221 dataset. RESULT The prognostic risk model was constructed based on five SRGs (cellular communication network factor 1, CYR61, stratifin, SFN, megakaryocyte-associated tyrosine kinase, MATK, C-X-C motif chemokine ligand 1, CXCL1, LIM domain, and actin binding 1, LIMA1). Both Kaplan-Meier (KM) curves (p = 0.005) and time-dependent receiver operating characteristic (ROC) analysis affirmed the predictive accuracy of this model in testing datasets, with respective areas under the ROC curve at 1-, 2-, and 3-years being 0.721, 0.802, and 0.739. Furthermore, qRT-RCR analysis and immunohistochemical staining verify the differential expression of SRGs in IPF samples and controls. Moreover, patients in the high-risk group contained higher infiltration levels of neutrophils, eosinophils, and M1 macrophages in BALF, which appeared to be independent indicators of poor prognosis in IPF patients. CONCLUSION Our research reveals the effectiveness of the 5 SRGs model in BALF for risk stratification and prognosis prediction in IPF patients, providing new insights into the immune infiltration of IPF progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shan Shan
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200230, China; (C.Z.)
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200230, China; (C.Z.)
| |
Collapse
|
2
|
Zhu S, Sun R, Guo X, Bao Y, Zhang D. Regulation, targets and functions of CHK. Front Cell Dev Biol 2022; 10:1068952. [PMID: 36568988 PMCID: PMC9780368 DOI: 10.3389/fcell.2022.1068952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Src family kinases (SFKs) play pivotal roles in multiple signaling pathways (Yeatman, 2004). SFK activity is inhibited by phosphorylation at its C-terminal tyrosine, by CSK (C-terminal Src kinase) and CHK (CSK-homologous kinase). CHK expression is restricted to normal hematopoietic cells, brain, and colon tissues. Downregulation of CHK in brain and colon tumors contributes to tumorigenicity in these tissues. CHK does not phosphorylate Src efficiently, however, in contrast to CSK, CHK inhibits Src kinase activity allosterically. Although the functions of CHK are still largely unknown, potential substrates of CHK including β-synuclein, α-tubulin, α-spectrin, 14-3-3, and Hsp90 have been identified. CHK is regulated epigenetically via promoter methylation. As the unknown roles of CHK are beginning to be revealed, current knowledge of regulation, molecular targets and functions of CHK is summarized, and important topics for future CHK research are discussed.
Collapse
Affiliation(s)
- Shudong Zhu
- School of Medicine, Nantong University, Nantong, China,Argus Pharmaceuticals, Changsha, China,*Correspondence: Shudong Zhu,
| | - Rong Sun
- School of Medicine, Nantong University, Nantong, China
| | | | | | - Dianzheng Zhang
- Department of Bio-medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
3
|
Yamaguchi N. [Novel Tyrosine Phosphorylation Signals in the Nucleus and on Mitotic Spindle Fibers and Lysosomes Revealed by Strong Inhibition of Tyrosine Dephosphorylation]. YAKUGAKU ZASSHI 2021; 141:927-947. [PMID: 34193653 DOI: 10.1248/yakushi.21-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-tyrosine phosphorylation is one of the posttranslational modifications and plays critical roles in regulating a wide variety of cellular processes, such as cell proliferation, differentiation, adhesion, migration, survival, and apoptosis. Protein-tyrosine phosphorylation is reversibly regulated by protein-tyrosine kinases and protein-tyrosine phosphatases. Strong inhibition of protein-tyrosine phosphatase activities is required to undoubtedly detect tyrosine phosphorylation. Our extremely careful usage of Na3VO4, a potent protein-tyrosine phosphatase inhibitor, has revealed not only the different intracellular trafficking pathways of Src-family tyrosine kinase members but also novel tyrosine phosphorylation signals in the nucleus and on mitotic spindle fibers and lysosomes. Furthermore, despite that the first identified oncogene product v-Src is generally believed to induce transformation through continuous stimulation of proliferation signaling by its strong tyrosine kinase activity, v-Src-driven transformation was found to be caused not by continuous proliferation signaling but by v-Src tyrosine kinase activity-dependent stochastic genome alterations. Here, I summarize our findings regarding novel tyrosine phosphorylation signaling in a spatiotemporal sense and highlight the significance of the roles of tyrosine phosphorylation in transcriptional regulation inside the nucleus and chromosome dynamics.
Collapse
Affiliation(s)
- Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
4
|
Suzuki K, Honda T, Akatsu A, Yamaguchi N, Yamaguchi N. The promoting role of lysosome-localized c-Src in autophagosome-lysosome fusion. Cell Signal 2020; 75:109774. [PMID: 32916275 DOI: 10.1016/j.cellsig.2020.109774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Src-family kinases (SFKs), such as c-Src, Lyn and Fyn, belong to non-receptor-type tyrosine kinases and play key roles in cell proliferation, adhesion, and migration. SFKs are anchored to the plasma membrane, Golgi membranes and lysosomal membranes through lipid modifications. Although the functions of SFKs being localized to the plasma membrane are intensively studied, those of SFKs being localized to organelle membranes are poorly understood. Here, we show that, among SFKs, c-Src in particular is involved in a decrease in the amount of LC3-II. c-Src and non-palmitoylated Lyn [Lyn(C3S) (cysteine-3 → serine-3)], which are localized onto lysosomes, decrease the amount of LC3-II and treatment with SFK inhibitors increases the amount of LC3-II, suggesting the importance of SFKs' lysosomal localization for a change of autophagic flux in a kinase activity-dependent manner. Colocalization of LC3-II with the lysosome-associated membrane protein LAMP1 shows that lysosome-localized SFKs promote the fusion of autophagosomes with lysosomes. Lysosome-localized SFKs play a positive role in the maintenance of cell viability under starvation conditions, which is further supported by knockdown of c-Src. Therefore, our results suggest that autophagosome-lysosome fusion is promoted by lysosome-localized c-Src, leading to cell survival under starvation conditions.
Collapse
Affiliation(s)
- Ko Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Aki Akatsu
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| |
Collapse
|
5
|
Schoenherr C, Frame MC, Byron A. Trafficking of Adhesion and Growth Factor Receptors and Their Effector Kinases. Annu Rev Cell Dev Biol 2018; 34:29-58. [PMID: 30110558 DOI: 10.1146/annurev-cellbio-100617-062559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.
Collapse
Affiliation(s)
- Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| |
Collapse
|
6
|
Desuppression of TGF-β signaling via nuclear c-Abl-mediated phosphorylation of TIF1γ/TRIM33 at Tyr-524, -610, and -1048. Oncogene 2018; 38:637-655. [PMID: 30177833 DOI: 10.1038/s41388-018-0481-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023]
Abstract
Protein-tyrosine kinases regulate a broad range of intracellular processes occurring primarily just beneath the plasma membrane. With the greatest care to prevent dephosphorylation, we have shown that nuclear tyrosine phosphorylation regulates global chromatin structural states. However, the roles for tyrosine phosphorylation in the nucleus are poorly understood. Here we identify transcriptional intermediary factor 1-γ (TIF1γ/TRIM33/Ectodermin), which suppresses transforming growth factor-β (TGF-β) signaling through the association with Smad2/3 transcription factor, as a new nuclear substrate of c-Abl tyrosine kinase. Replacement of the three tyrosine residues Tyr-524, -610, and -1048 with phenylalanine (3YF) inhibits c-Abl-mediated phosphorylation of TIF1γ and enhances TIF1γ's association with Smad3. Importantly, knockdown-rescue experiments show that 3YF strengthens TIF1γ's ability to suppress TGF-β signaling. Intriguingly, activation of c-Abl by epidermal growth factor (EGF) induces desuppression of TGF-β signaling via enhancing the tyrosine phosphorylation level of TIF1γ. TGF-β together with EGF synergistically provokes desuppressive responses of epithelial-to-mesenchymal transition through tyrosine phosphorylation of TIF1γ. These results suggest that nuclear c-Abl-mediated tyrosine phosphorylation of TIF1γ has a desuppressive role in TGF-β-Smad2/3 signaling.
Collapse
|
7
|
Honda T, Morii M, Nakayama Y, Suzuki K, Yamaguchi N, Yamaguchi N. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling. Sci Rep 2018; 8:1063. [PMID: 29348492 PMCID: PMC5773541 DOI: 10.1038/s41598-018-19599-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.
Collapse
Affiliation(s)
- Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Mariko Morii
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Ko Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
8
|
Morii M, Kubota S, Honda T, Yuki R, Morinaga T, Kuga T, Tomonaga T, Yamaguchi N, Yamaguchi N. Src Acts as an Effector for Ku70-dependent Suppression of Apoptosis through Phosphorylation of Ku70 at Tyr-530. J Biol Chem 2016; 292:1648-1665. [PMID: 27998981 DOI: 10.1074/jbc.m116.753202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
Src-family tyrosine kinases are widely expressed in many cell types and participate in a variety of signal transduction pathways. Despite the significance of Src in suppression of apoptosis, its mechanism remains poorly understood. Here we show that Src acts as an effector for Ku70-dependent suppression of apoptosis. Inhibition of endogenous Src activity promotes UV-induced apoptosis, which is impaired by Ku70 knockdown. Src phosphorylates Ku70 at Tyr-530, being close to the possible acetylation sites involved in promotion of apoptosis. Src-mediated phosphorylation of Ku70 at Tyr-530 decreases acetylation of Ku70, whereas Src inhibition augments acetylation of Ku70. Importantly, knockdown-rescue experiments with stable Ku70 knockdown cells show that the nonphosphorylatable Y530F mutant of Ku70 reduces the ability of Ku70 to suppress apoptosis accompanied by augmentation of Ku70 acetylation. Our results reveal that Src plays a protective role against hyperactive apoptotic cell death by reducing apoptotic susceptibility through phosphorylation of Ku70 at Tyr-530.
Collapse
Affiliation(s)
- Mariko Morii
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Sho Kubota
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takuya Honda
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Ryuzaburo Yuki
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takao Morinaga
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takahisa Kuga
- the Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- the Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Noritaka Yamaguchi
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naoto Yamaguchi
- From the Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| |
Collapse
|
9
|
Honda T, Soeda S, Tsuda K, Yamaguchi C, Aoyama K, Morinaga T, Yuki R, Nakayama Y, Yamaguchi N, Yamaguchi N. Protective role for lipid modifications of Src-family kinases against chromosome missegregation. Sci Rep 2016; 6:38751. [PMID: 27941902 PMCID: PMC5150256 DOI: 10.1038/srep38751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
Src-family tyrosine kinases, which are expressed in various cell types, play critical roles in cell signalling at the cytoplasmic side of the plasma membrane through their lipid modifications. Src-family kinases are cotranslationally myristoylated and posttranslationally palmitoylated in the amino-terminal region. The Src-family member Lyn contains a myristoylation site at glycine-2 and a palmitoylation site at cysteine-3, whereas c-Src has a myristoylation site at glycine-2 but not any palmitoylation sites. However, little is known about the role for lipid modifications of Src-family kinases in cell division. Here, we show that non-lipid-modified Lyn and c-Src, Lyn(G2A/C3A) and c-Src(G2A), are delocalized from membranes to the cytoplasm and the nucleus, which gives rise to a significant increase in the rate of chromosome missegregation, such as chromosome lagging and anaphase chromosome bridging, in a tyrosine kinase activity-dependent manner. Treatment with the Src inhibitor PP2 shows that the kinase activity of non-lipid-modified, non-membrane-bound Src during M phase is critical for giving rise to chromosome missegregation. Given that only a fraction of Src-family kinases fails in lipid modifications during biosynthesis, these results suggest that Src’s membrane anchorage through their lipid modifications from prophase to anaphase plays a protective role against induction of chromosome missegregation.
Collapse
Affiliation(s)
- Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Shuhei Soeda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kunihiko Tsuda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Chihiro Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kazumasa Aoyama
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takao Morinaga
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Ryuzaburo Yuki
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yuji Nakayama
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.,Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
10
|
Wen H, Cui Q, Meng H, Lai F, Wang S, Zhang X, Chen X, Cui H, Yin D. A high-resolution method to assess cell multinucleation with cytoplasm-localized fluorescent probes. Analyst 2016; 141:4010-3. [DOI: 10.1039/c6an00613b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell multinucleation is closely related to chromosomal instability.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Qinghua Cui
- College of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan
- China
| | - Hui Meng
- College of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan
- China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Shufang Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Xiang Zhang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Huaqing Cui
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| |
Collapse
|
11
|
c-Abl-mediated tyrosine phosphorylation of JunB is required for Adriamycin-induced expression of p21. Biochem J 2015. [PMID: 26217035 DOI: 10.1042/bj20150372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The non-receptor-type tyrosine kinase c-Abl functions as a cytoplasmic signal transducer upon activation of cell-surface receptors. c-Abl is also involved in DDR (DNA-damage response), which is initiated in the nucleus, whereas its molecular functions in DDR are not fully understood. In the present study, we found that c-Abl phosphorylates JunB, a member of the AP-1 (activator protein 1) transcription factor family. Because JunB was suggested to be involved in DDR, we analysed the role of c-Abl-mediated phosphorylation of JunB in DDR. We first analysed phosphorylation sites of JunB and found that c-Abl majorly phosphorylates JunB at Tyr(173), Tyr(182) and Tyr(188). Because c-Abl promotes expression of the cyclin-dependent kinase inhibitor p21 upon stimulation with the DNA-damaging agent Adriamycin (doxorubicin), we analysed the involvement of JunB in Adriamycin-induced p21 expression. We found that JunB suppresses p21 induction through inhibition of its promoter activity. The phosphomimetic JunB, which was generated by glutamic acid substitutions at the phosphorylation sites, failed to repress p21 induction. Recruitment of JunB to the p21 promoter was promoted by Adriamycin stimulation and was further enhanced by co-treatment with the c-Abl inhibitor imatinib. The phosphomimetic glutamic acid substitutions in JunB or Adriamycin treatment impaired the JunB-c-Fos transcription factor complex formation. Taken together, these results suggest that, although JunB represses p21 promoter activity, c-Abl phosphorylates JunB and conversely inhibits its suppressive role on p21 promoter activity upon Adriamycin stimulation. Therefore JunB is likely to be a key target of c-Abl in expression of p21 in Adriamycin-induced DDR.
Collapse
|
12
|
Kubota S, Morii M, Yuki R, Yamaguchi N, Yamaguchi H, Aoyama K, Kuga T, Tomonaga T, Yamaguchi N. Role for Tyrosine Phosphorylation of A-kinase Anchoring Protein 8 (AKAP8) in Its Dissociation from Chromatin and the Nuclear Matrix. J Biol Chem 2015; 290:10891-904. [PMID: 25770215 PMCID: PMC4409252 DOI: 10.1074/jbc.m115.643882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/13/2015] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphorylation regulates a wide variety of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine kinases induce global nuclear structure changes, which we called chromatin structural changes. However, the mechanisms are not fully understood. In this study we identify protein kinase A anchoring protein 8 (AKAP8/AKAP95), which associates with chromatin and the nuclear matrix, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of AKAP8 is induced by several tyrosine kinases, such as Src, Fyn, and c-Abl but not Syk. Nucleus-targeted Lyn and c-Src strongly dissociate AKAP8 from chromatin and the nuclear matrix in a kinase activity-dependent manner. The levels of tyrosine phosphorylation of AKAP8 are decreased by substitution of multiple tyrosine residues on AKAP8 into phenylalanine. Importantly, the phenylalanine mutations of AKAP8 inhibit its dissociation from nuclear structures, suggesting that the association/dissociation of AKAP8 with/from nuclear structures is regulated by its tyrosine phosphorylation. Furthermore, the phenylalanine mutations of AKAP8 suppress the levels of nuclear tyrosine kinase-induced chromatin structural changes. In contrast, AKAP8 knockdown increases the levels of chromatin structural changes. Intriguingly, stimulation with hydrogen peroxide induces chromatin structural changes accompanied by the dissociation of AKAP8 from nuclear structures. These results suggest that AKAP8 is involved in the regulation of chromatin structural changes through nuclear tyrosine phosphorylation.
Collapse
Affiliation(s)
- Sho Kubota
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Mariko Morii
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Ryuzaburo Yuki
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Noritaka Yamaguchi
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Hiromi Yamaguchi
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Kazumasa Aoyama
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Takahisa Kuga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085, Japan
| | - Naoto Yamaguchi
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| |
Collapse
|
13
|
Aoyama K, Yamaguchi N, Yuki R, Morii M, Kubota S, Hirata K, Abe K, Honda T, Kuga T, Hashimoto Y, Tomonaga T, Yamaguchi N. c-Abl induces stabilization of histone deacetylase 1 (HDAC1) in a kinase activity-dependent manner. Cell Biol Int 2015; 39:446-56. [PMID: 25561363 DOI: 10.1002/cbin.10413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/10/2014] [Indexed: 12/21/2022]
Abstract
c-Abl is a non-receptor-type tyrosine kinase that regulates various cellular events, including cell proliferation, differentiation, and apoptosis, through phosphorylation of cytoplasmic and nuclear targets. Although we showed that c-Abl induces histone deacetylation, the molecular mechanisms of this phenomenon are largely unknown. Here, we analyzed the effect of c-Abl on the expression of histone deacetylase 1 (HDAC1), because c-Abl was shown to be involved in maintenance of nuclear protein levels of HDAC1. Co-transfection of HDAC1 with c-Abl increased the levels of HDAC1 protein in a kinase activity-dependent manner without affecting its mRNA levels. Treatment with the proteasome inhibitor MG132 increased protein levels of HDAC1 in cells transfected with HDAC1 but not in cells co-transfected with HDAC1 and c-Abl. Among class I HDACs, knockdown of endogenous c-Abl preferentially suppressed endogenous protein levels of HDAC1, suggesting that c-Abl stabilizes HDAC1 protein by inhibiting its proteasomal degradation. Subcellular fractionation showed that the stabilization of HDAC1 by c-Abl occurred in the nucleus. Despite the fact that HDAC1 was phosphorylated by co-expression with c-Abl, stabilization of HDAC1 by c-Abl was not affected by mutations in its sites phosphorylated by c-Abl. Co-expression with HDAC1 and nuclear-targeted c-Abl did not affect HDAC1 stabilization. Therefore, these results suggest that c-Abl induces HDAC1 stabilization possibly through phosphorylation of a cytoplasmic target that is involved in proteasomal degradation of HDAC1.
Collapse
Affiliation(s)
- Kazumasa Aoyama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kubota S, Fukumoto Y, Ishibashi K, Soeda S, Kubota S, Yuki R, Nakayama Y, Aoyama K, Yamaguchi N, Yamaguchi N. Activation of the prereplication complex is blocked by mimosine through reactive oxygen species-activated ataxia telangiectasia mutated (ATM) protein without DNA damage. J Biol Chem 2014; 289:5730-46. [PMID: 24421316 DOI: 10.1074/jbc.m113.546655] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mimosine is an effective cell synchronization reagent used for arresting cells in late G1 phase. However, the mechanism underlying mimosine-induced G1 cell cycle arrest remains unclear. Using highly synchronous cell populations, we show here that mimosine blocks S phase entry through ATM activation. HeLa S3 cells are exposed to thymidine for 15 h, released for 9 h by washing out the thymidine, and subsequently treated with 1 mM mimosine for a further 15 h (thymidine → mimosine). In contrast to thymidine-induced S phase arrest, mimosine treatment synchronizes >90% of cells at the G1-S phase boundary by inhibiting the transition of the prereplication complex to the preinitiation complex. Mimosine treatment activates ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint signaling without inducing DNA damage. Inhibition of ATM activity is found to induce mimosine-arrested cells to enter S phase. In addition, ATM activation by mimosine treatment is mediated by reactive oxygen species (ROS). These results suggest that, upon mimosine treatment, ATM blocks S phase entry in response to ROS, which prevents replication fork stalling-induced DNA damage.
Collapse
Affiliation(s)
- Shoichi Kubota
- From the Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Formation of long and winding nuclear F-actin bundles by nuclear c-Abl tyrosine kinase. Exp Cell Res 2013; 319:3251-68. [DOI: 10.1016/j.yexcr.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/09/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
|
16
|
Kubota S, Fukumoto Y, Aoyama K, Ishibashi K, Yuki R, Morinaga T, Honda T, Yamaguchi N, Kuga T, Tomonaga T, Yamaguchi N. Phosphorylation of KRAB-associated protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by nuclear tyrosine kinases inhibits the association of KAP1 and heterochromatin protein 1α (HP1α) with heterochromatin. J Biol Chem 2013; 288:17871-83. [PMID: 23645696 DOI: 10.1074/jbc.m112.437756] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protein tyrosine phosphorylation regulates a wide range of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine phosphorylation by Src family kinases (SFKs) induces chromatin structural changes. In this study, we identify KRAB-associated protein 1 (KAP1/TIF1β/TRIM28), a component of heterochromatin, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of KAP1 is induced by several tyrosine kinases, such as Src, Lyn, Abl, and Brk. Among SFKs, Src strongly induces tyrosine phosphorylation of KAP1. Nucleus-targeted Lyn potentiates tyrosine phosphorylation of KAP1 compared with intact Lyn, but neither intact Fyn nor nucleus-targeted Fyn phosphorylates KAP1. Substitution of the three tyrosine residues Tyr-449/Tyr-458/Tyr-517, located close to the HP1 binding-motif, into phenylalanine ablates tyrosine phosphorylation of KAP1. Immunostaining and chromatin fractionation show that Src and Lyn decrease the association of KAP1 with heterochromatin in a kinase activity-dependent manner. KAP1 knockdown impairs the association of HP1α with heterochromatin, because HP1α associates with KAP1 in heterochromatin. Intriguingly, tyrosine phosphorylation of KAP1 decreases the association of HP1α with heterochromatin, which is inhibited by replacement of endogenous KAP1 with its phenylalanine mutant (KAP1-Y449F/Y458F/Y517F, KAP1-3YF). In DNA damage, KAP1-3YF repressed transcription of p21. These results suggest that nucleus-localized tyrosine kinases, including SFKs, phosphorylate KAP1 at Tyr-449/Tyr-458/Tyr-517 and inhibit the association of KAP1 and HP1α with heterochromatin.
Collapse
Affiliation(s)
- Sho Kubota
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lyn is involved in CD24-induced ERK1/2 activation in colorectal cancer. Mol Cancer 2012; 11:43. [PMID: 22731636 PMCID: PMC3464950 DOI: 10.1186/1476-4598-11-43] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022] Open
Abstract
Background and aim CD24 expression is associated with human colorectal cancer (CRC). Our previous data indicated that CD24 promoted the proliferation and invasion of colorectal cancer cells through the activation of ERK1/2. Since Src family kinases are frequently deregulated in CRC and closely related to the MAPK signaling pathway, we investigated the impact of Lyn, an important member of SFKs, on CD24-induced ERK1/2 activation in CRC. Methods and Results The interaction of CD24 and Lyn was identified by co-immunoprecipitation (Co-IP) and ectopic expression of CD24-induced Lyn activation. Inhibition of Lyn activation by phosphatase PP2 in SW480CD24cells abrogated CD24-induced invasion. The results of the Co-IP and immunofluorescence assay revealed that overexpression of CD24 enhanced the interaction of Lyn and ERK1/2 and induced the nuclear translocation of Lyn. However, inhibition of Lyn activity attenuated CD24-induced ERK1/2 activation, and depletion of CD24 disrupted Lyn-ERK1/2 interaction. Immunohistochemistry analysis for 202 cases of CRC showed that the expression of both CD24 and Lyn was positively correlated with tumor grade, stage, lymph node and distant metastasis. Patients with lower expression of CD24 or Lyn had a higher survival rate. The Cox multivariate analysis showed that CD24 expression, but not Lyn expression, was an independent prognostic factor of CRC. Conclusions Our results suggest that Lyn is involved in CD24-induced ERK1/2 activation in CRC. The expression of CD24 is associated with activation of Lyn and ERK1/2, which might be a novel mechanism related to CD24-mediated regulation of CRC development.
Collapse
|
18
|
Nakayama Y, Matsui Y, Takeda Y, Okamoto M, Abe K, Fukumoto Y, Yamaguchi N. c-Src but not Fyn promotes proper spindle orientation in early prometaphase. J Biol Chem 2012; 287:24905-15. [PMID: 22689581 DOI: 10.1074/jbc.m112.341578] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Src family tyrosine kinases (SFKs) participate in mitotic signal transduction events, including mitotic entry, cleavage furrow ingression, and cytokinesis abscission. Although SFKs have been shown to associate with the mitotic spindle, the role of SFKs in mitotic spindle formation remains unclear. Here, we show that c-Src promotes proper spindle orientation in early prometaphase. Src localizes close to spindle poles in a manner independent of Src kinase activity. Three-dimensional analyses showed that Src inhibition induced spindle misorientation, exhibiting a tilting spindle in early prometaphase. Spindle misorientation is frequently seen in SYF cells, which harbor triple knock-out mutations of c-Src, c-Yes, and Fyn, and reintroduction of c-Src but not Fyn into SYF cells rescued spindle misorientation. Spindle misorientation was also observed upon Src inhibition under conditions in which Aurora B was inhibited. Inducible expression of c-Src promoted a properly oriented bipolar spindle, which was suppressed by Src inhibition. Aster formation was severely inhibited in SYF cells upon Aurora B inhibition, which was rescued by reintroduction of c-Src into SYF cells. Furthermore, reintroduction of c-Src facilitated microtubule regrowth from cold-induced depolymerization and accelerated M phase progression. These results suggest that c-Src is involved in spindle orientation through centrosome-mediated aster formation.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ishibashi K, Fukumoto Y, Hasegawa H, Abe K, Kubota S, Aoyama K, Kubota S, Nakayama Y, Yamaguchi N. Nuclear ErbB4 signaling through H3K9me3 that is antagonized by EGFR-activated c-Src. J Cell Sci 2012; 126:625-37. [DOI: 10.1242/jcs.116277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ErbB family of receptor tyrosine kinases comprises four members: EGFR (epidermal growth factor receptor)/ErbB1, HER2/ErbB2, ErbB3 and ErbB4, and plays roles in signal transduction at the plasma membrane upon ligand stimulation. Stimulation with neuregulin-1 (NRG-1) cleaves ErbB4 and releases the ErbB4 intracellular domain (4ICD) that translocates into the nucleus to control gene expression. However, little is known about the regulation of 4ICD nuclear signaling through tyrosine phosphorylation. We show here that 4ICD nuclear signaling is antagonized by EGF-induced c-Src activation via EGFR. Generation of 4ICD by NRG-1 leads to increased levels of trimethylated histone H3 on lysine 9 (H3K9me3) in a manner dependent on 4ICD's nuclear accumulation and its tyrosine kinase activity. Once EGF activates c-Src downstream of EGFR concomitantly with NRG-1-induced ErbB4 activation, c-Src associates with phospho-Tyr950 and phospho-Tyr1056 on 4ICD, thereby decreasing nuclear accumulation of 4ICD and inhibiting an increase of H3K9me3 levels. Moreover, 4ICD-induced transcriptional repression of the human telomerase reverse transcriptase (hTERT) is inhibited by EGF-EGFR-Src signaling. Thus, our findings reveal c-Src-mediated inhibitory regulation of ErbB4 nuclear signaling upon EGFR activation.
Collapse
|
20
|
Yoshida K, Ono M, Bito H, Mikami T, Sawada H. Plasmodium induced by SU6656, an Src family kinase inhibitor, is accompanied by a contractile ring defect. Cell Biochem Funct 2011; 30:33-40. [PMID: 22034098 DOI: 10.1002/cbf.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/01/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
We have shown that SU6656, a potent Src family kinase inhibitor, has the ability to induce multinucleation at a high frequency in diverse cells: rat skin fibroblasts, bone marrow adherent cells, 5F9A mesenchymal stem cell-like clones, 2C5 tracheal epithelial cells and MDCK epithelial cells from dog kidney. To gain insight into the mechanism of multinucleation, we observed the process by time-lapse and confocal microscopy. These multinuclei generally seem to exist independently in one cell without any connections with each other. By time-lapse microscopy, multinucleated cells were found to be formed through the mechanism of plasmodium: karyokinesis without cytokinesis. The observation of EGFP-actin transfected cells by time-lapse confocal laser scanning microscopy suggested that plasmodium occurred with deficient contractile ring formation. Although we examined the differentiation of these cells, the multinucleated cells could not be categorized into any type of cell in vivo known to exhibit multinuclei.
Collapse
Affiliation(s)
- Keiichiro Yoshida
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | | | | | | | | |
Collapse
|
21
|
Aoyama K, Fukumoto Y, Ishibashi K, Kubota S, Morinaga T, Horiike Y, Yuki R, Takahashi A, Nakayama Y, Yamaguchi N. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation. Exp Cell Res 2011; 317:2874-903. [PMID: 22001646 DOI: 10.1016/j.yexcr.2011.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/07/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022]
Abstract
c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.
Collapse
Affiliation(s)
- Kazumasa Aoyama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Obata Y, Fukumoto Y, Nakayama Y, Kuga T, Dohmae N, Yamaguchi N. The Lyn kinase C-lobe mediates Golgi export of Lyn through conformation-dependent ACSL3 association. J Cell Sci 2010; 123:2649-62. [PMID: 20605918 DOI: 10.1242/jcs.066266] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Src-family tyrosine kinase Lyn has a role in signal transduction at the cytoplasmic face of the plasma membrane upon extracellular ligand stimulation. After synthesis in the cytoplasm, Lyn accumulates on the Golgi and is subsequently transported to the plasma membrane. However, the mechanism of Lyn trafficking remains elusive. We show here that the C-lobe of the Lyn kinase domain is associated with long-chain acyl-CoA synthetase 3 (ACSL3) on the Golgi in a manner that is dependent on Lyn conformation but is independent of its kinase activity. Formation of a closed conformation by CSK prevents Lyn from associating with ACSL3, resulting in blockade of Lyn export from the Golgi. Overexpression and knockdown of ACSL3 accelerates and blocks Golgi export of Lyn, respectively. The post-Golgi route of Lyn, triggered by ACSL3, is distinct from that of vesicular stomatitis virus glycoprotein (VSV-G) and of caveolin. Moreover, an ACSL3 mutant lacking the LR2 domain, which is required for the catalytic activity, retains the ability to associate with Lyn and accelerate Golgi export of Lyn. These results suggest that initiation of Golgi export of Lyn involves association of ACSL3 with the Lyn C-lobe, which is exposed to the molecular surface in an open conformation.
Collapse
Affiliation(s)
- Yuuki Obata
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Requirement of the SH4 and tyrosine-kinase domains but not the kinase activity of Lyn for its biosynthetic targeting to caveolin-positive Golgi membranes. Biochim Biophys Acta Gen Subj 2009; 1790:1345-52. [DOI: 10.1016/j.bbagen.2009.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/18/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022]
|
24
|
Nakayama Y, Igarashi A, Kikuchi I, Obata Y, Fukumoto Y, Yamaguchi N. Bleomycin-induced over-replication involves sustained inhibition of mitotic entry through the ATM/ATR pathway. Exp Cell Res 2009; 315:2515-28. [PMID: 19527713 DOI: 10.1016/j.yexcr.2009.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 05/12/2009] [Accepted: 06/04/2009] [Indexed: 01/10/2023]
Abstract
Polyploid cells result in aneuploidy through aberrant chromosome segregation, possibly leading to tumorigenesis. Although polyploid cells are induced through over-replication by a variety of agents, including DNA-damaging drugs, the mechanisms that induce polyploidy have been hitherto unknown. Here, we show that treatment with bleomycin, a glycopeptide anticancer drug, induces over-replication at low cytotoxic doses. During bleomycin-induced over-replication, mitotic entry is inhibited through tyrosine phosphorylation of CDK1 along the ATM/ATR pathway in the early phase of treatment. Bleomycin-induced over-replication is inhibited by the inhibitors of the ATM/ATR pathway through abrogation of bleomycin-induced G2 arrest, and the ATM/ATR inhibitors promote cell death instead of over-replication. Following the phosphorylation of CDK1, the level of cyclin B1 is decreased in the late phase of treatment. Time-lapse imaging of clone cells that express a live cell marker of endogenous cyclin B1 revealed that cyclin B1 is degraded in G2-arrested cells upon bleomycin treatment. Our findings lead to a model of how the ATM/ATR pathway acts as a molecular switch for regulating cell fates, flipping between cell death via progress into mitosis, and over-replication via sustained G2 arrest upon DNA damage, where cyclin B1 degradation is an important factor for inducing over-replication.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Sato I, Obata Y, Kasahara K, Nakayama Y, Fukumoto Y, Yamasaki T, Yokoyama KK, Saito T, Yamaguchi N. Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci 2009; 122:965-75. [PMID: 19258394 DOI: 10.1242/jcs.034843] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Src-family tyrosine kinases (SFKs), which participate in a variety of signal transduction events, are known to localize to the cytoplasmic face of the plasma membrane through lipid modification. Recently, we showed that Lyn, an SFK member, is exocytosed to the plasma membrane via the Golgi region along the secretory pathway. We show here that SFK trafficking is specified by the palmitoylation state. Yes is also a monopalmitoylated SFK and is biosynthetically transported from the Golgi pool of caveolin to the plasma membrane. This pathway can be inhibited in the trans-Golgi network (TGN)-to-cell surface delivery by temperature block at 19 degrees C or dominant-negative Rab11 GTPase. A large fraction of Fyn, a dually palmitoylated SFK, is directly targeted to the plasma membrane irrespective of temperature block of TGN exit. Fyn(C6S), which lacks the second palmitoylation site, is able to traffic in the same way as Lyn and Yes. Moreover, construction of Yes(S6C) and chimeric Lyn or Yes with the Fyn N-terminus further substantiates the importance of the dual palmitoylation site for plasma membrane targeting. Taken together with our recent finding that Src, a nonpalmitoylated SFK, is rapidly exchanged between the plasma membrane and late endosomes/lysosomes, these results suggest that SFK trafficking is specified by the palmitoylation state in the SH4 domain.
Collapse
Affiliation(s)
- Izumi Sato
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Takahashi A, Obata Y, Fukumoto Y, Nakayama Y, Kasahara K, Kuga T, Higashiyama Y, Saito T, Yokoyama KK, Yamaguchi N. Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization. Exp Cell Res 2009; 315:1117-41. [PMID: 19245808 DOI: 10.1016/j.yexcr.2009.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 02/08/2009] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
Src-family kinases (SFKs), which participate in various signaling events, are found at not only the plasma membrane but also several subcellular compartments, including the nucleus. Nuclear structural changes are frequently observed during transcription, cell differentiation, senescence, tumorigenesis, and cell cycle. However, little is known about signal transduction in the alteration of chromatin texture. Here, we develop a pixel imaging method for quantitatively evaluating chromatin structural changes. Growth factor stimulation increases euchromatic hypocondensation and concomitant heterochromatic hypercondensation in G(1) phase, and the levels reach a plateau by 30 min, sustain for at least 5 h and return to the basal levels after 24 h. Serum-activated SFKs in the nucleus were more frequently detected in the euchromatin areas than the heterochromatin areas. Nuclear expression of kinase-active SFKs, but not unrelated Syk kinase, drastically increases both euchromatinization and heterochromatinization in a manner dependent on the levels of nuclear tyrosine phosphorylation. However, growth factor stimulation does not induce chromatin structural changes in SYF cells lacking SFKs, and reintroduction of one SFK member into SYF cells can, albeit insufficiently, induce chromatin structural changes. These results suggest that nuclear tyrosine phosphorylation by SFKs plays an important role in chromatin structural changes upon growth factor stimulation.
Collapse
Affiliation(s)
- Akinori Takahashi
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity. Exp Cell Res 2008; 314:3392-404. [PMID: 18817770 DOI: 10.1016/j.yexcr.2008.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/23/2008] [Accepted: 08/25/2008] [Indexed: 01/23/2023]
Abstract
Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification.
Collapse
|
28
|
Aoyama J, Akazawa Y, Kasahara K, Higashiyama Y, Kikuchi I, Fukumoto Y, Saburi S, Nakayama Y, Fukuda MN, Yamaguchi N. Nuclear localization of magphinins, alternative splicing products of the human trophinin gene. J Cell Biochem 2008; 103:765-77. [PMID: 17559068 DOI: 10.1002/jcb.21446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human magphinin proteins are translation products of differentially spliced transcripts from the 5' region of the human trophinin gene (TRO), whose 3' region encodes trophinin, a unique cell adhesion molecule involved in human embryo implantation. Magphinins belong to the MAGE (melanoma-associated antigen) family, and a previous study of mouse magphinins showed their expression in male and female germ cells, suggesting a role in germ cell development. Here, we characterized the structure and subcellular localization of human magphinins. Confocal microscopy analysis of ectopically expressed magphinins revealed that magphinin-alpha and -beta localize in the cytoplasm, whereas magphinin-gamma lacking the peptide encoded by exon-3 is nuclear. Following Triton X-100 extraction, DNA digestion, and high salt extraction magphinin-gamma remained nuclear, suggesting strong association with the nuclear matrix. A series of magphinin-gamma deletion mutants were generated and assayed for localization, which showed that the N-terminal region of the MAGE homology domain is necessary for nuclear localization. When magphinin-gamma was expressed in NIH3T3 cells, cells underwent G1 arrest. These results suggest that human magphinin-gamma inhibits cell cycle progression through nuclear activity.
Collapse
Affiliation(s)
- Junya Aoyama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kuga T, Hoshino M, Nakayama Y, Kasahara K, Ikeda K, Obata Y, Takahashi A, Higashiyama Y, Fukumoto Y, Yamaguchi N. Role of Src-family kinases in formation of the cortical actin cap at the dorsal cell surface. Exp Cell Res 2008; 314:2040-54. [PMID: 18457834 DOI: 10.1016/j.yexcr.2008.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 02/23/2008] [Accepted: 03/29/2008] [Indexed: 10/22/2022]
Abstract
Protein-tyrosine phosphorylation is regulated by protein-tyrosine kinases and protein-tyrosine phosphatases (PTPs). Src-family tyrosine kinases (SFKs) participate in the regulation of the actin cytoskeleton. Actin filaments can be accumulated in a cap at the dorsal cell surface, which is called the cortical actin cap. Here, we show that SFKs play an important role in formation of the cortical actin cap. HeLa cells normally exhibit the cortical actin cap, one of the major sites of tyrosine phosphorylation. The cortical actin cap is disrupted by SFK inhibitors or overexpression of the Lyn SH3 domain. Csk-knockout cells form the cortical actin cap when the level of tyrosine phosphorylation is increased by Na(3)VO(4), a PTP inhibitor, and the formation of the cortical actin cap is inhibited by SFK inactivation with re-introduction of Csk. SYF cells lacking SFKs minimally exhibit the cortical actin cap even in the presence of Na(3)VO(4), and transfection with Lyn restores the cortical actin cap in the presence of Na(3)VO(4). Disruption of the cortical actin cap by dominant-negative Cdc42 causes loss of tyrosine phosphorylation at the cell top. These results suggest that SFK(s) is involved in formation of the cortical actin cap, which may serve as a platform of tyrosine phosphorylation signaling.
Collapse
Affiliation(s)
- Takahisa Kuga
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kasahara K, Nakayama Y, Yamaguchi N. v-Src and c-Src, nonpalmitoylated Src-family kinases, induce perinuclear accumulation of lysosomes through Rab7 in a kinase activity-independent manner. Cancer Lett 2008; 262:19-27. [DOI: 10.1016/j.canlet.2007.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
|
31
|
Kuga T, Nakayama Y, Iwamatsu A, Fukumoto Y, Yokomori K, Yamaguchi N. Separation of a disulfide-linked phosphoprotein by diagonal SDS–PAGE with optimized gel crosslinking. Anal Biochem 2007; 370:252-4. [PMID: 17716617 DOI: 10.1016/j.ab.2007.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/13/2007] [Accepted: 07/16/2007] [Indexed: 11/17/2022]
Affiliation(s)
- Takahisa Kuga
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Src activation has been associated with colon cancers but the mechanism underlying Src activation is largely unknown. Csk-homologous kinase (CHK) can inhibit the kinase activity of certain Src kinase family members in vitro by phosphorylating the C-terminal tyrosine and by a non-catalytic mechanism. CHK was previously reported to be expressed primarily in brain and hematopoietic cells. We report herein that CHK is also expressed in normal colon cell lines. Furthermore, CHK protein levels are significantly decreased in various colon cancer cell lines and the decrease correlates with the increased specific activity of Src in these cell lines, while the level of the other Src inhibitory kinase, C-terminal Src kinase, is not significantly changed. CHK is also expressed in normal colon tissues but its expression level is decreased in colon cancer tissues collected from the same patients. Immunofluorescence microscopy shows that CHK colocalizes with Src in normal colon FHC cells. Overexpression of CHK in colon cancer cells results in inactivation of Src without phosphorylating Y530 at its C-terminus. In addition, CHK suppresses anchorage-independent cell growth and cell invasion of colon cancer cells. These results reveal a potentially important role for CHK in Src activation and tumorigenicity in colon cancer cells.
Collapse
|
33
|
Kuga T, Nakayama Y, Hoshino M, Higashiyama Y, Obata Y, Matsuda D, Kasahara K, Fukumoto Y, Yamaguchi N. Differential mitotic activation of endogenous c-Src, c-Yes, and Lyn in HeLa cells. Arch Biochem Biophys 2007; 466:116-24. [PMID: 17692281 DOI: 10.1016/j.abb.2007.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/03/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
Src-family tyrosine kinases (SFKs) play an important role in mitosis. Despite overlapping expression of multiple SFK members, little is known about how individual SFK members are activated in M phase. Here, we examined mitotic activation of endogenous c-Src, c-Yes, and Lyn, which are co-expressed in HeLa cells. c-Src, c-Yes, and Lyn were activated at different levels in M phase, and the activation was inhibited by Cdc2 inactivation. Mitotic c-Src and c-Yes exhibited normal- and retarded-electrophoretic-mobility forms on SDS-polyacrylamide gels, whereas Lyn did not show mobility retardation. Like c-Src, the retardation of electrophoretic mobility of c-Yes was caused by Cdc2-mediated phosphorylation. The normal- and retarded-mobility forms of c-Src were comparably activated, but activation of the retarded-mobility form of c-Yes was higher than that of the normal-mobility form of c-Yes. Thus, these results suggest that endogenous c-Src, c-Yes, and Lyn are differentially activated through Cdc2 activation during M phase.
Collapse
Affiliation(s)
- Takahisa Kuga
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kasahara K, Nakayama Y, Kihara A, Matsuda D, Ikeda K, Kuga T, Fukumoto Y, Igarashi Y, Yamaguchi N. Rapid trafficking of c-Src, a non-palmitoylated Src-family kinase, between the plasma membrane and late endosomes/lysosomes. Exp Cell Res 2007; 313:2651-66. [PMID: 17537435 DOI: 10.1016/j.yexcr.2007.05.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 04/18/2007] [Accepted: 05/02/2007] [Indexed: 01/05/2023]
Abstract
Src-family kinases (SFKs) are co-expressed with multiple combinations of each member in a single cell and involved in various signalings. Recently, we showed by sucrose-density gradient fractionation that the subcellular distribution of c-Src is distinct from that of Lyn. However, little is known about the trafficking of c-Src in living cells. Here, we show by time-lapse monitoring combined with photobleaching techniques that c-Src, a non-palmitoylated SFK, is rapidly exchanged between the plasma membrane and intracellular organelles representing late endosomes/lysosomes possibly through its cytosolic release. Although Lyn, a palmitoylated SFK, is exocytosed to the plasma membrane via the Golgi apparatus along the secretory pathway, lack of palmitoylation directs Lyn away from the exocytotic transport to the c-Src-type trafficking between the plasma membrane and late endosomes/lysosomes. Intriguingly, c-Src and a non-palmitoylated Lyn mutant are efficiently delivered and immobilized to focal adhesions when their SH2 domains are able to mediate protein-protein interactions in place of intramolecular bindings. However, palmitoylation of Lyn inhibits its recruitment to focal adhesions. These results suggest that palmitoylation of SFKs is critical for SFK localization and trafficking and implicate that two distinct trafficking pathways for SFKs may be involved in SFKs' specific functions.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kasahara K, Nakayama Y, Sato I, Ikeda K, Hoshino M, Endo T, Yamaguchi N. Role of Src-family kinases in formation and trafficking of macropinosomes. J Cell Physiol 2007; 211:220-32. [PMID: 17167779 DOI: 10.1002/jcp.20931] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Src-family kinases that localize to the cytoplasmic side of cellular membranes through lipid modification play a role in signaling events including membrane trafficking. Macropinocytosis is an endocytic process for solute uptake by large vesicles called macropinosomes. Although macropinosomes can be visualized following uptake of fluorescent macromolecules, little is known about the dynamics of macropinosomes in living cells. Here, we show that constitutive c-Src expression generates macropinosomes in a kinase-dependent manner. Live-cell imaging of GFP-tagged c-Src (Src-GFP) reveals that c-Src associates with macropinosomes via its N-terminus continuously from their generation at membrane ruffles, through their centripetal trafficking, to fusion with late endosomes and lysosomes. Fluorescence recovery after photobleaching (FRAP) of Src-GFP shows that Src-GFP is rapidly recruited to macropinosomal membranes from the plasma membrane and intracellular organelles through vesicle transport even in the presence of a protein synthesis inhibitor. Furthermore, using a HeLa cell line overexpressing inducible c-Src, we show that following stimulation with epidermal growth factor (EGF), high levels of c-Src kinase activity promote formation of macropinosomes associated with the lysosomal compartment. Unlike c-Src, Lyn and Fyn, which are palmitoylated Src kinases, only minimally induce macropinosomes, although a Lyn mutant in which the palmitoylation site is mutated efficiently induces macropinocytosis. We conclude that kinase activity of nonpalmitoylated Src kinases including c-Src may play an important role in the biogenesis and trafficking of macropinosomes.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Kasahara K, Nakayama Y, Nakazato Y, Ikeda K, Kuga T, Yamaguchi N. Src Signaling Regulates Completion of Abscission in Cytokinesis through ERK/MAPK Activation at the Midbody. J Biol Chem 2007; 282:5327-39. [PMID: 17189253 DOI: 10.1074/jbc.m608396200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Src family non-receptor-type tyrosine kinases regulate a wide variety of cellular events including cell cycle progression in G(2)/M phase. Here, we show that Src signaling regulates the terminal step in cytokinesis called abscission in HeLa cells. Abscission failure with an unusually elongated intercellular bridge containing the midbody is induced by treatment with the chemical Src inhibitors PP2 and SU6656 or expression of membrane-anchored Csk chimeras. By anti-phosphotyrosine immunofluorescence and live cell imaging, completion of abscission requires Src-mediated tyrosine phosphorylation during early stages of mitosis (before cleavage furrow formation), which is subsequently delivered to the midbody through Rab11-driven vesicle transport. Treatment with U0126, a MEK inhibitor, decreases tyrosine phosphorylation levels at the midbody, leading to abscission failure. Activated ERK by MEK-catalyzed dual phosphorylation on threonine and tyrosine residues in the TEY sequence, which is strongly detected by anti-phosphotyrosine antibody, is transported to the midbody in a Rab11-dependent manner. Src kinase activity during the early mitosis mediates ERK activation in late cytokinesis, indicating that Src-mediated signaling for abscission is spatially and temporally transmitted. Thus, these results suggest that recruitment of activated ERK, which is phosphorylated by MEK downstream of Src kinases, to the midbody plays an important role in completion of abscission.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Nakayama Y, Kawana A, Igarashi A, Yamaguchi N. Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus. Exp Cell Res 2006; 312:2252-63. [PMID: 16707123 DOI: 10.1016/j.yexcr.2006.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 03/21/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022]
Abstract
Chk tyrosine kinase phosphorylates Src-family kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. In this study, we explored the role of the N-terminal unique domain of Chk in nuclear localization and Chk-induced tyrosine phosphorylation in the nucleus. In situ binding experiments showed that the N-terminal domain of Chk was associated with the nucleus and the nuclear matrix. The presence of the N-terminal domain of Chk led to a fourfold increase in cell population exhibiting Chk-induced tyrosine phosphorylation in the nucleus. Expression of Chk but not kinase-deficient Chk induced tyrosine phosphorylation of a variety of proteins ranging from 23 kDa to approximately 200 kDa, especially in Triton X-100-insoluble fraction that included chromatin and the nuclear matrix. Intriguingly, in situ subnuclear fractionations revealed that Chk induced tyrosine phosphorylation of proteins that were associated with the nuclear matrix. These results suggest that various unidentified substrates of Chk, besides Src-family kinases, may be present in the nucleus. Thus, our findings indicate that the importance of the N-terminal domain to Chk-induced tyrosine phosphorylation in the nucleus, implicating that these nuclear tyrosine-phosphorylated proteins may contribute to inhibition of cell proliferation.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | |
Collapse
|
38
|
Matsuda D, Nakayama Y, Horimoto S, Kuga T, Ikeda K, Kasahara K, Yamaguchi N. Involvement of Golgi-associated Lyn tyrosine kinase in the translocation of annexin II to the endoplasmic reticulum under oxidative stress. Exp Cell Res 2006; 312:1205-17. [PMID: 16527271 DOI: 10.1016/j.yexcr.2006.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 01/10/2006] [Accepted: 02/02/2006] [Indexed: 12/22/2022]
Abstract
Src-family tyrosine kinases, known to participate in signaling pathways of a variety of receptors at the plasma membrane, are found in cellular endomembranes such as the Golgi apparatus and endosomes. Recently, we showed that Lyn, a member of the Src kinases, accumulates on the Golgi apparatus and then traffics to the plasma membrane. We show here that a majority of endogenous Lyn but not c-Src is accumulated in Golgi-enriched heavy-membrane fractions on a sucrose-density gradient, whereas a small amount of endogenous Lyn is present in light-membrane fractions containing the plasma membrane. Inducible expression of kinase-active Lyn, which biosynthetically reaches the Golgi apparatus, triggers tyrosine phosphorylation of proteins including annexin II. Coimmunoprecipitation analyses reveal that Lyn physically associates with annexin II, and an in vitro kinase assay shows that Lyn phosphorylates annexin II directly. Furthermore, stimulation of cells with H2O2 induces tyrosine phosphorylation of annexin II on the Golgi apparatus in a manner that is dependent on the kinase activity of Src kinases, leading to the translocation of annexin II from the Golgi apparatus to the endoplasmic reticulum. Thus, these results suggest that endomembranes containing the Golgi apparatus where Lyn is anchored can serve as a signaling platform under oxidative stress.
Collapse
Affiliation(s)
- Daisuke Matsuda
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Aoyama J, Nakayama Y, Sugiyama D, Saburi S, Nadano D, Fukuda MN, Yamaguchi N. Apical cell adhesion molecule, trophinin, localizes to the nuclear envelope. FEBS Lett 2005; 579:6326-32. [PMID: 16288751 DOI: 10.1016/j.febslet.2005.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Trophinin mediates homophilic and apical cell adhesion between trophoblastic cells and endometrial epithelial cells, which is potentially the initial attachment step in human embryo implantation. Since trophinin is an atypical membrane protein without the signal sequence, it is possible that trophinin localizes to the cytoplasm. By treating trophinin-expressing trophoblastic cells with a series of detergents, we found significant levels of endogenous trophinin in the cytoplasm, particularly at the nuclear envelope (NE). Fluorescence photobleaching of GFP-trophinin expressed in COS-1 cells showed the stable association of trophinin with the NE, suggesting an additional role of trophinin besides apical cell adhesion.
Collapse
Affiliation(s)
- Junya Aoyama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Chong YP, Mulhern TD, Cheng HC. C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)--endogenous negative regulators of Src-family protein kinases. Growth Factors 2005; 23:233-44. [PMID: 16243715 DOI: 10.1080/08977190500178877] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are endogenous inhibitors of the Src-family protein tyrosine kinases (SFKs). Since constitutive activation of SFKs contributes to cancer formation and progression, to prevent excessive activation of SFKs, their activity in normal cells is kept at the basal level by CSK and CHK. CSK and CHK inactivate SFKs by specifically phosphorylating a consensus tyrosine (called Y(T)) near their C-termini. Upon phosphorylation, the phospho-Y(T) engages in intramolecular interactions that lock the SFK molecule in an inactive conformation. SFKs are anchored to the plasma membrane, while CSK and CHK are localized predominantly in the cytosol. To inhibit SFKs, CSK and CHK need to translocate to the plasma membrane. Recruitment of CSK and CHK to the plasma membrane is mediated by the binding of their SH2, SH3 and/or kinase domains to specific transmembrane proteins, G-proteins and adaptor proteins located near the plasma membrane. For CSK, membrane recruitment often accompanies activation. CSK and CHK employ two types of direct interactions with SFKs to achieve efficient Y(T) phosphorylation: (i) short-range interactions involving binding of the active sites of CSK and CHK to specific residues near Y(T), (ii) long-range non-catalytic interactions involving binding of SFKs to motifs located distally from the active sites of CSK and CHK. The interactions between CSK and SFKs are transient in nature. Unlike CSK, CHK binds tightly to SFKs to form stable protein complexes. The binding is non-catalytic as it is independent of Y(T). More importantly, the tight binding alone is sufficient to completely inhibit SFKs. This non-catalytic inhibitory binding represents a novel mechanism employed by CHK to inhibit SFKs. Given that SFKs are implicated in cancer development, compounds mimicking the non-catalytic inhibitory mechanism of CHK are potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yuh-Ping Chong
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Department of Biochemistry and Molecular Biology, Parkville, Victoria, Australia
| | | | | |
Collapse
|
41
|
Lee BC, Lee TH, Zagozdzon R, Avraham S, Usheva A, Avraham HK. Carboxyl-terminal Src kinase homologous kinase negatively regulates the chemokine receptor CXCR4 through YY1 and impairs CXCR4/CXCL12 (SDF-1alpha)-mediated breast cancer cell migration. Cancer Res 2005; 65:2840-5. [PMID: 15805285 DOI: 10.1158/0008-5472.can-04-3309] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using microarray gene analysis, we found that carboxyl-terminal Src kinase homologous kinase (CHK) regulated the expression of the chemokine receptor, CXCR4. Northern blot and fluorescence-activated cell-sorting analyses showed that CHK down-regulated CXCR4 mRNA and protein levels, respectively. Mutated CHK, which contains a mutation within the ATP binding site of CHK, failed to inhibit CXCR4 expression, thus suggesting that CHK kinase activity is involved in the regulation of CXCR4. Results from gel shift analysis indicated that CHK regulates CXCR4 transcriptional activity by altering YY1 binding to the CXCR4 promoter. Whereas CHK had no significant effects on the expression of YY1, c-Myc, Max, and other YY1-binding proteins, CHK was found to modulate the YY1/c-Myc association. Furthermore, CHK inhibited CXCR4-positive breast cancer cell migration. Taken together, these studies show a novel mechanism by which CHK down-regulates CXCR4 through the YY1 transcription factor, leading to decreased CXCR4-mediated breast cancer cell motility and migration.
Collapse
Affiliation(s)
- Byeong-Chel Lee
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
42
|
Nakayama Y, Yamaguchi N. Multi-lobulation of the nucleus in prolonged S phase by nuclear expression of Chk tyrosine kinase. Exp Cell Res 2005; 304:570-81. [PMID: 15748901 DOI: 10.1016/j.yexcr.2004.11.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 10/13/2004] [Accepted: 11/26/2004] [Indexed: 11/24/2022]
Abstract
Chk tyrosine kinase phosphorylates Src-family tyrosine kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. To investigate the role of nuclear Chk in proliferation, various Chk mutants were constructed and expressed. Nuclear localization of Chk-induced dynamic multi-lobulation of the nucleus and prolonged S phase of the cell cycle. The N-terminal domain of Chk and a portion of its kinase domain but not the kinase activity were responsible for induction of the multi-lobulation. Cell sorting analysis revealed that nuclear multi-lobulated cells were enriched in late S phase. Multi-lobulated nuclei were surrounded with lamin B1 that was particularly concentrated in concave regions of the nuclei. Furthermore, treatment with nocodazole or taxol disrupted multi-lobulation of the nucleus. These results suggest that nuclear multi-lobulation in late S phase, which is dependent on polymerization and depolymerization of microtubules, may be involved in nuclear Chk-induced inhibition of proliferation.
Collapse
Affiliation(s)
- Yuji Nakayama
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | |
Collapse
|
43
|
Laurent CE, Delfino FJ, Cheng HY, Smithgall TE. The human c-Fes tyrosine kinase binds tubulin and microtubules through separate domains and promotes microtubule assembly. Mol Cell Biol 2004; 24:9351-8. [PMID: 15485904 PMCID: PMC522259 DOI: 10.1128/mcb.24.21.9351-9358.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The c-Fes protein-tyrosine kinase (Fes) has been implicated in the differentiation of vascular endothelial, myeloid hematopoietic, and neuronal cells, promoting substantial morphological changes in these cell types. The mechanism by which Fes promotes morphological aspects of cellular differentiation is unknown. Using COS-7 cells as a model system, we observed that Fes strongly colocalizes with microtubules in vivo when activated via coiled-coil mutation or by coexpression with an active Src family kinase. In contrast, wild-type Fes showed a diffuse cytoplasmic localization in this system, which correlated with undetectable kinase activity. Coimmunoprecipitation and immunofluorescence microscopy showed that the N-terminal Fes/CIP4 homology (FCH) domain is involved in Fes interaction with soluble unpolymerized tubulin. However, the FCH domain was not required for colocalization with polymerized microtubules in vivo. In contrast, a functional SH2 domain was essential for microtubule localization of Fes, consistent with the strong tyrosine phosphorylation of purified tubulin by Fes in vitro. Using a microtubule nucleation assay, we observed that purified c-Fes also catalyzed extensive tubulin polymerization in vitro. Taken together, these results identify c-Fes as a regulator of the tubulin cytoskeleton that may contribute to Fes-induced morphological changes in myeloid hematopoietic and neuronal cells.
Collapse
Affiliation(s)
- Charles E Laurent
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
44
|
Ohtsuki T, Koyano T, Kowithayakorn T, Sakai S, Kawahara N, Goda Y, Yamaguchi N, Ishibashi M. New chlorogenin hexasaccharide isolated from Agave fourcroydes with cytotoxic and cell cycle inhibitory activities. Bioorg Med Chem 2004; 12:3841-5. [PMID: 15210151 DOI: 10.1016/j.bmc.2004.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/06/2004] [Accepted: 05/06/2004] [Indexed: 11/23/2022]
Abstract
A new chlorogenin hexasaccharide (1) was isolated from leaves of Agave fourcroydes (Agavaceae). The structure of the new saponin was elucidated as chlorogenin 3-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->3)-beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside] (1) by spectroscopic analysis and the result of acidic hydrolysis. The new saponin (1) as well as known hexasaccharides (3 and 5) isolated here showed cytotoxicity against HeLa cells, and 1 exhibited a cell cycle inhibitory effect at the G2/M stage at the concentration of 7.5 and 10 microg/mL.
Collapse
Affiliation(s)
- Takashi Ohtsuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kasahara K, Nakayama Y, Ikeda K, Fukushima Y, Matsuda D, Horimoto S, Yamaguchi N. Trafficking of Lyn through the Golgi caveolin involves the charged residues on alphaE and alphaI helices in the kinase domain. ACTA ACUST UNITED AC 2004; 165:641-52. [PMID: 15173188 PMCID: PMC2172378 DOI: 10.1083/jcb.200403011] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Src-family kinases, known to participate in signaling pathways of a variety of surface receptors, are localized to the cytoplasmic side of the plasma membrane through lipid modification. We show here that Lyn, a member of the Src-family kinases, is biosynthetically transported to the plasma membrane via the Golgi pool of caveolin along the secretory pathway. The trafficking of Lyn from the Golgi apparatus to the plasma membrane is inhibited by deletion of the kinase domain or Csk-induced “closed conformation” but not by kinase inactivation. Four residues (Asp346 and Glu353 on αE helix, and Asp498 and Asp499 on αI helix) present in the C-lobe of the kinase domain, which can be exposed to the molecular surface through an “open conformation,” are identified as being involved in export of Lyn from the Golgi apparatus toward the plasma membrane but not targeting to the Golgi apparatus. Thus, the kinase domain of Lyn plays a role in Lyn trafficking besides catalysis of substrate phosphorylation.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Nakatani S, Naoe A, Yamamoto Y, Yamauchi T, Yamaguchi N, Ishibashi M. Isolation of bisindole alkaloids that inhibit the cell cycle from Myxomycetes Arcyria ferruginea and Tubifera casparyi. Bioorg Med Chem Lett 2003; 13:2879-81. [PMID: 14611848 DOI: 10.1016/s0960-894x(03)00592-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From a myxomycete Arcyria ferruginea, dihydroarcyriarubin C (1), a new bisindole alkaloid, has been isolated together with two known bisindoles, arcyriarubin C (2) and arcyriaflavin C (3), and arcyriaflavin C (3) was also isolated from Tubifera casparyi together with arcyriaflavin B (4). Arcyriaflavin C (3) exhibited cell cycle inhibition effect at G1 and G2/M stage at 10 and 100ng/mL, respectively.
Collapse
Affiliation(s)
- Satomi Nakatani
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Mera A, Suga M, Nakayama Y, Ando M, Suda T, Yamaguchi N. Redistribution of ERK/MAP kinase to uropod-like structures in interleukin-3-induced cell shape changes. Immunol Lett 2002; 84:117-24. [PMID: 12270548 DOI: 10.1016/s0165-2478(02)00132-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin-3 (IL-3) is one of the cytokines of significance for the regulation of hematopoiesis and inflammation. Recently, we established IL-3-dependent Ba/F3 pro-B cells ectopically expressing RON tyrosine kinase, a receptor for macrophage-stimulating protein (MSP), and showed that MSP stimulation specifically promoted cell morphological changes through tyrosine phosphorylation of the IL-3 common beta-chain receptor subunit (betac) by activated RON kinase without activation of JAK2 tyrosine kinase. Here we investigate the IL-3 signaling pathway leading to morphological changes through tyrosine phosphorylation of betac. Treatment of RON-expressing cells with PD98059 or U0126, inhibitors of mitogen-activated protein kinase kinase activity, blocked both IL-3- and MSP-induced morphological changes. Upon stimulation with IL-3 or MSP, extracellular-regulated kinase (ERK) and F-actin were redistributed in uropod-like structures. ERK and F-actin were colocalized within uropod-like structures, and a majority of F-actin were localized around the peripheries of accumulated ERK. Tyrosine phosphorylation of ERK was detected after stimulation with IL-3 or MSP, whereas treatment with U0126 specifically inhibited IL-3- or MSP-induced ERK phosphorylation but not tyrosine phosphorylation of betac. These results suggest that the activation and localization of ERK to uropod-like structures play a role in IL-3-induced morphological changes.
Collapse
Affiliation(s)
- Akihiko Mera
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Bahar R, O-Wang J, Kawamura K, Seimiya M, Wang Y, Hatano M, Okada S, Tokuhisa T, Watanabe T, Tagawa M. Growth retardation, polyploidy, and multinucleation induced by Clast3, a novel cell cycle-regulated protein. J Biol Chem 2002; 277:40012-40019. [PMID: 12147697 DOI: 10.1074/jbc.m205345200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel gene, Clast3, by subtraction of cDNAs derived from activated and naive B lymphocytes. Clast3 expression is elevated in cycling cells and down-regulated in cells undergoing growth arrest, indicating that its expression is controlled in a cell cycle-dependent manner. The deduced amino acid sequence of Clast3 cDNA exhibits no significant homology to the known proteins in mammalian and other species. Immunofluorescence staining revealed that Clast3 localizes into discrete nuclear foci. Forced expression of Clast3 results in growth retardation, polyploidy, and generation of multinucleated cells. Treatment of Clast3 transfectants with nocodazole, a spindle-damaging agent, greatly enhances the incidence of the multinucleated cells, suggesting that Clast3 overexpression impairs the same checkpoint activated by nocodazole. Down-regulation of Clast3 expression by antisense oligonucleotides results in a decrease of cells at G(2)-M phase and a concomitant increase of apoptotic cells. These findings indicate that Clast3 is a novel cell cycle-regulated protein and that its constitutive overexpression induces polyploidy and multinucleation by interfering with the mitotic spindle checkpoint.
Collapse
Affiliation(s)
- Rumana Bahar
- Division of Pathology, Chiba Cancer Center Research Institute, Chiba 260-8717, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|