1
|
Penalva YCM, Paschkowsky S, Yang J, Recinto SJ, Cinkornpumin JK, Ruelas M, Xiao B, Nitu A, Kwon SY, Wu HYL, Munter HM, Michalski B, Fahnestock M, Pastor WA, Bennett DA, Munter LM. Loss of the APP regulator RHBDL4 preserves memory in an Alzheimer's disease mouse model. Cell Death Dis 2025; 16:280. [PMID: 40221411 PMCID: PMC11993729 DOI: 10.1038/s41419-025-07579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Characteristic cerebral pathological changes of Alzheimer's disease (AD) such as glucose hypometabolism or the accumulation of cleavage products of the amyloid precursor protein (APP), known as Aβ peptides, lead to sustained endoplasmic reticulum (ER) stress and neurodegeneration. To preserve ER homeostasis, cells activate their unfolded protein response (UPR). The rhomboid-like-protease 4 (RHBDL4) is an enzyme that participates in the UPR by targeting proteins for proteasomal degradation. We demonstrated previously that RHBDL4 cleaves APP in HEK293T cells, leading to decreased total APP and Aβ. More recently, we showed that RHBDL4 processes APP in mouse primary mixed cortical cultures as well. Here, we aim to examine the physiological relevance of RHBDL4 in the brain. We first found that brain samples from AD patients and an AD mouse model (APPtg) showed increased RHBDL4 mRNA and protein expression. To determine the effects of RHBDL4's absence on APP physiology in vivo, we crossed APPtg mice to a RHBDL4 knockout (R4-/-) model. RHBDL4 deficiency in APPtg mice led to increased total cerebral APP and amyloidogenic processing when compared to APPtg controls. Contrary to expectations, as assessed by cognitive tests, RHBDL4 absence rescued cognition in 5-month-old female APPtg mice. Informed by unbiased RNA-seq data, we demonstrated in vitro and in vivo that RHBDL4 absence leads to greater levels of active β-catenin due to decreased proteasomal clearance. Decreased β-catenin activity is known to underlie cognitive defects in APPtg mice and AD. Our work suggests that RHBDL4's increased expression in AD, in addition to regulating APP levels, leads to aberrant degradation of β-catenin, contributing to cognitive impairment.
Collapse
Affiliation(s)
- Ylauna Christine Mégane Penalva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada
| | - Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sherilyn Junelle Recinto
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
| | | | - Marina Ruelas
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada
| | - Bin Xiao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada
| | - Albert Nitu
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Helen Yee-Li Wu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
| | | | - Bernadeta Michalski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada.
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Hirsch RM, Premsankar S, Kurnit KC, Chiou LF, Rabjohns EM, Lee HN, Broaddus RR, Vaziri C, Bowser JL. CD73 restrains mutant β-catenin oncogenic activity in endometrial carcinomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624183. [PMID: 39605508 PMCID: PMC11601622 DOI: 10.1101/2024.11.18.624183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Missense mutations in exon 3 of CTNNB1, the gene encoding β-catenin, are associated with poor outcomes in endometrial carcinomas (EC). Clinically, CTNNB1 mutation status has been difficult to use as a predictive biomarker as β-catenin oncogenic activity is modified by other factors, and these determinants are unknown. Here we reveal that CD73 restrains the oncogenic activity of exon 3 β-catenin mutants, and its loss associates with recurrence. Using 7 patient-specific mutants, with genetic deletion or ectopic expression of CD73, we show that CD73 loss increases β-catenin-TCF/LEF transcriptional activity. In cells lacking CD73, membrane levels of mutant β-catenin decreased which corresponded with increased levels of nuclear and chromatin-bound mutant β-catenin. These results suggest CD73 sequesters mutant β-catenin to the membrane to limit its oncogenic activity. Adenosine A1 receptor deletion phenocopied increased β-catenin-TCF/LEF activity seen with NT5E deletion, suggesting that the effect of CD73 loss on mutant β-catenin is mediated via attenuation of adenosine receptor signaling. RNA-seq analyses revealed that NT5E deletion alone drives pro-tumor Wnt/β-catenin gene expression and, with CD73 loss, β-catenin mutants dysregulate zinc-finger and non-coding RNA gene expression. We identify CD73 as a novel regulator of oncogenic β-catenin and help explain variability in patient outcomes in CTNNB1 mutant EC.
Collapse
Affiliation(s)
- Rebecca M. Hirsch
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sunthoshini Premsankar
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Chancellor’s Science Scholars Program, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine C. Kurnit
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Lilly F. Chiou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Emily M. Rabjohns
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Pathobiology and Translational Science, University of North Carolina, Chapel Hill, NC, USA
| | - Hannah N. Lee
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica L. Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Megane Penalva YC, Paschkowsky S, Yang J, Recinto SJ, Cinkorpumin J, Hernandez MR, Xiao B, Nitu A, Yee-Li Wu H, Munter HM, Michalski B, Fahnestock M, Pastor W, Bennett DA, Munter LM. Loss of the APP regulator RHBDL4 preserves memory in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.579698. [PMID: 38464180 PMCID: PMC10925189 DOI: 10.1101/2024.02.22.579698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Characteristic cerebral pathological changes of Alzheimer's disease (AD) such as glucose hypometabolism or the accumulation of cleavage products of the amyloid precursor protein (APP), known as Aβ peptides, lead to sustained endoplasmic reticulum (ER) stress and neurodegeneration. To preserve ER homeostasis, cells activate their unfolded protein response (UPR). The rhomboid-like-protease 4 (RHBDL4) is an enzyme that participates in the UPR by targeting proteins for proteasomal degradation. We demonstrated previously that RHBLD4 cleaves APP in HEK293T cells, leading to decreased total APP and Aβ. More recently, we showed that RHBDL4 processes APP in mouse primary mixed cortical cultures as well. Here, we aim to examine the physiological relevance of RHBDL4 in the brain. We first found that brain samples from AD patients and an AD mouse model (APPtg) showed increased RHBDL4 mRNA and protein expression. To determine the effects of RHBDL4's absence on APP physiology in vivo, we crossed APPtg mice to a RHBDL4 knockout (R4-/-) model. RHBDL4 deficiency in APPtg mice led to increased total cerebral APP and amyloidogenic processing when compared to APPtg controls. Contrary to expectations, as assessed by cognitive tests, RHBDL4 absence rescued cognition in 5-month-old female APPtg mice. Informed by unbiased RNAseq data, we demonstrated in vitro and in vivo that RHBDL4 absence leads to greater levels of active β-catenin due to decreased proteasomal clearance. Decreased β-catenin activity is known to underlie cognitive defects in APPtg mice and AD. Our work suggests that RHBDL4's increased expression in AD, in addition to regulating APP levels, leads to aberrant degradation of β-catenin, contributing to cognitive impairment.
Collapse
Affiliation(s)
- Ylauna Christine Megane Penalva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sherilyn Junelle Recinto
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | | | - Marina Ruelas Hernandez
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Bin Xiao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Albert Nitu
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Helen Yee-Li Wu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | - Hans Markus Munter
- Department of Human Genetics, McGill University, Montreal, QC, Canada H3A 0C7
| | - Bernadeta Michalski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - William Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 0B1
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
4
|
Fasano C, Grossi V, Forte G, Simone C. Short Linear Motifs in Colorectal Cancer Interactome and Tumorigenesis. Cells 2022; 11:3739. [PMID: 36496998 PMCID: PMC9737320 DOI: 10.3390/cells11233739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Colorectal tumorigenesis is driven by alterations in genes and proteins responsible for cancer initiation, progression, and invasion. This multistage process is based on a dense network of protein-protein interactions (PPIs) that become dysregulated as a result of changes in various cell signaling effectors. PPIs in signaling and regulatory networks are known to be mediated by short linear motifs (SLiMs), which are conserved contiguous regions of 3-10 amino acids within interacting protein domains. SLiMs are the minimum sequences required for modulating cellular PPI networks. Thus, several in silico approaches have been developed to predict and analyze SLiM-mediated PPIs. In this review, we focus on emerging evidence supporting a crucial role for SLiMs in driver pathways that are disrupted in colorectal cancer (CRC) tumorigenesis and related PPI network alterations. As a result, SLiMs, along with short peptides, are attracting the interest of researchers to devise small molecules amenable to be used as novel anti-CRC targeted therapies. Overall, the characterization of SLiMs mediating crucial PPIs in CRC may foster the development of more specific combined pharmacological approaches.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.G.); (G.F.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.G.); (G.F.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.G.); (G.F.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (V.G.); (G.F.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
5
|
Pedone E, Failli M, Gambardella G, De Cegli R, La Regina A, di Bernardo D, Marucci L. β-catenin perturbations control differentiation programs in mouse embryonic stem cells. iScience 2022; 25:103756. [PMID: 35128356 PMCID: PMC8804270 DOI: 10.1016/j.isci.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Wnt/β-catenin pathway is involved in development, cancer, and embryonic stem cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still controversial. Here, by applying an in vitro system enabling inducible gene expression control, we report that moderate induction of transcriptionally active exogenous β-catenin in β-catenin null mouse ESCs promotes epiblast-like cell (EpiLC) derivation in vitro. Instead, in wild-type cells, moderate chemical pre-activation of the Wnt/β-catenin pathway promotes EpiLC in vitro derivation. Finally, we suggest that moderate β-catenin levels in β-catenin null mouse ESCs favor early stem cell commitment toward mesoderm if the exogenous protein is induced only in the “ground state” of pluripotency condition, or endoderm if the induction is maintained during the differentiation. Overall, our results confirm previous findings about the role of β-catenin in pluripotency and differentiation, while indicating a role for its doses in promoting specific differentiation programs. Moderate β-catenin levels promote EpiLCs derivation in vitro Chemical pre-activation of the Wnt pathway enhances ESC-EpiLC transition β-catenin overexpression tips the balance between mesoderm and endoderm Cell fate is influenced by the extent of β-catenin induction
Collapse
|
6
|
Götze KJ, Mrestani A, Beckmann P, Krohn K, Le Duc D, Velluva A, Böhme MA, Heckmann M, Jamra RA, Lemke JR, Bläker H, Scholz N, Ljaschenko D, Langenhan T. Improving one-step scarless genome editing in Drosophila melanogaster by combining ovoD co-CRISPR selection with sgRNA target site masking. Biol Methods Protoc 2022; 7:bpac003. [PMID: 35087953 PMCID: PMC8789338 DOI: 10.1093/biomethods/bpac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
The precise and rapid construction of alleles through CRISPR/Cas9-mediated genome engineering renders Drosophila melanogaster a powerful animal system for molecular structure–function analyses and human disease models. Application of the ovoD co-selection method offers expedited generation and enrichment of scarlessly edited alleles without the need for linked transformation markers, which specifically in the case of exon editing can impact allele usability. However, we found that knockin procedures by homology-directed repair (HDR) under ovoD co-selection resulted in low transformation efficiency. This is likely due to repeated rounds of Cas9 cleavage of HDR donor and/or engineered genomic locus DNA, as noted for other CRISPR/Cas9 editing strategies before, impeding the recovery of correctly edited alleles. Here we provide a one-step protocol to improve the generation of scarless alleles by ovoD-co-selection with single-guide RNA (sgRNA) binding site masking. Using this workflow, we constructed human disease alleles for two Drosophila genes, unc-13/CG2999 and armadillo/CG11579. We show and quantify how a known countermeasure, the insertion of silent point mutations into protospacer adjacent motif (PAM) or sgRNA homology regions, can potently suppress unintended sequence modifications during CRISPR/Cas9 genome editing of D. melanogaster under ovoD co-selection. This strongly increased the recovery frequency of disease alleles.
Collapse
Affiliation(s)
- Katharina J Götze
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Achmed Mrestani
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany
- Department of Neurology, University of Leipzig Medical Center, Liebigstraße 20, 04103 Leipzig, Germany
| | - Paula Beckmann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Knut Krohn
- Core Unit DNA, Medical Faculty, University of Leipzig Medical Center, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics,University of Leipzig Medical Center, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics,University of Leipzig Medical Center, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Mathias A Böhme
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Manfred Heckmann
- Institute of Physiology, Department of Neurophysiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics,University of Leipzig Medical Center, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Johannes R Lemke
- Institute of Human Genetics,University of Leipzig Medical Center, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Hendrik Bläker
- Institute of Pathology,University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Ma Y, Xia P, Wang Z, Xu J, Zhang L, Jiang Y. PDIA6 promotes pancreatic cancer progression and immune escape through CSN5-mediated deubiquitination of β-catenin and PD-L1. Neoplasia 2021; 23:912-928. [PMID: 34325342 PMCID: PMC8329431 DOI: 10.1016/j.neo.2021.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/15/2023]
Abstract
Protein Disulfide Isomerase Family A Member 6 (PDIA6) is an endoplasmic reticulum protein that is capable of catalyzing protein folding and disulfide bond formation. Abnormally elevated expression of PDIA6 has been reported to predict poor outcomes in various cancers. Herein, gain-of- and loss-of-function experiments were performed to investigate how PDIA6 participated in the carcinogenesis of pancreatic cancer (PC). By analyzing the protein expression of PDIA6 in 28 paired PC and para carcinoma specimens, we first found that PDIA6 expression was higher in PC samples. Both the overall survival and disease-free survival rates of PC patients with higher PDIA6 expression were poorer than those with lower PDIA6 (n = 178). Furthermore, knockdown of PDIA6 impaired the malignancies of PC cells - suppressed cell proliferation, invasion, migration, cisplatin resistance, and xenografted tumor growth. PDIA6-silenced PC cells were more sensitive to cytotoxic natural killer (NK) cells. Overexpression of PDIA6 had opposite effects on PC cells. Interestingly, COP9 signalosome subunit 5 (CSN5), a regulator of E3 ubiquitin ligases known to promote deubiquitination of its downstream targets, was demonstrated to interact with PDIA6, and its expression was increased in PC cells overexpressing PDIA6. Additionally, PDIA6 overexpression promoted deubiquitination of β-catenin and PD-L1 and subsequently upregulated their expression in PC cells. These alterations were partly reversed by CSN5 shRNA. Collectively, the above results demonstrate that PDIA6 contributes to PC progression, which may be associated with CSN5-regulated deubiquitination of β-catenin and PD-L1. Our findings suggest PDIA6 as a potential target for the treatment of PC.
Collapse
Affiliation(s)
- Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Peiyi Xia
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Deng C, Liu X, Zhang C, Li L, Wen S, Gao X, Liu L. ANXA1-GSK3β interaction and its involvement in NSCLC metastasis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:912-924. [PMID: 34002210 DOI: 10.1093/abbs/gmab067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 12/09/2022] Open
Abstract
Although initially discovered and extensively studied for its role in inflammation, Annexin A1 (ANXA1) has been reported to be closely related to cancer in recent years, and its role in cancer is specific to tumor types and tissues. In the present study, we identified ANXA1 as an interaction partner of glycogen synthase kinase 3 beta (GSK3β), a multi-functional serine/threonine kinase tightly associated with cell fate determination and cancer, and assessed the functional significance of GSK3β-ANXA1 interaction in the metastasis of non-small cell lung cancer (NSCLC). We confirmed the interaction between GSK3β and ANXA1 in vitro and in H1299 and A549 cells by Glutathione-S-transferase (GST) pull-down assay and co-immunoprecipitation. We found that ANXA1 negatively regulated the phosphorylation of GSK3β and inhibited the epithelial-mesenchymal transformation (EMT) process and migration and invasion of NSCLC cells. By functional rescue assay, we confirmed that ANXA1 inhibited EMT through the regulation of GSK3β activity and thereby inhibited the migration and invasion of NSCLC cells. Our study sheds light on the function of ANXA1 and GSK3β and provides new elements for the understanding of NSCLC pathogenesis.
Collapse
Affiliation(s)
- Chunmiao Deng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Cuiqiong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Lu Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyuan Wen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Choi H, Liu Y, Yang L, Cho ES. Suppression of Hedgehog signaling is required for cementum apposition. Sci Rep 2020; 10:7285. [PMID: 32350360 PMCID: PMC7190817 DOI: 10.1038/s41598-020-64188-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hedgehog (Hh) signaling plays a broad role in the development of many organs including bone and teeth. It is noted that sustained Hh activity in osteoblasts negatively regulates postnatal development in mice. However, it remains unknown whether Hh signaling contributes to cementum formation. In this study, to define the roles of Hh signaling in cementum formation, we analyzed two kinds of transgenic mouse models for Hh signaling activation designed by the inactivation of Suppressor of Fused (Sufu), a negative regulator of Hh signaling, (SufuOC) and a forced endogenous activation of Smo (SmoM2OC) under the control of osteocalcin (OC) promoter-driven Cre recombinase. Interestingly, cellular cementum apposition was remarkably reduced in both mutants. Consistently, matrix formation and mineralization ability were down-regulated in OCCM-30, a cementoblast cell line, following treatment with a pharmaceutical Smo agonist. In addition, reductions in Osx expression and β-catenin activity, which are critical for cellular cementum formation, were also detected in vitro. Furthermore, the compound mutant mice designed for the stabilization of β-catenin with both Hh-Smo signaling activation in cementoblasts revealed a complete restoration of defective cellular cementum. In addition, Wnt antagonists such as Sostdc1 and Dkk1 were also induced by Smo activation and played a role in the reduction of Osx expression and β-catenin activity. Collectively, our data demonstrated that Hh signaling negatively regulates cementum apposition in a Wnt/β-catenin/Osx-dependent manner.
Collapse
Affiliation(s)
- Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Yudong Liu
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea.,Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Liu Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea.
| |
Collapse
|
10
|
Epigallocatechin-3-gallate prevents TGF-β1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via GSK-3β/β-catenin/Snail1 and Nrf2 pathways. J Nutr Biochem 2020; 76:108266. [DOI: 10.1016/j.jnutbio.2019.108266] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/28/2019] [Accepted: 11/03/2019] [Indexed: 11/20/2022]
|
11
|
Georgess D, Padmanaban V, Sirka OK, Coutinho K, Choi A, Frid G, Neumann NM, Inoue T, Ewald AJ. Twist1-Induced Epithelial Dissemination Requires Prkd1 Signaling. Cancer Res 2019; 80:204-218. [PMID: 31676574 DOI: 10.1158/0008-5472.can-18-3241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Dissemination is an essential early step in metastasis but its molecular basis remains incompletely understood. To define the essential targetable effectors of this process, we developed a 3D mammary epithelial culture model, in which dissemination is induced by overexpression of the transcription factor Twist1. Transcriptomic analysis and ChIP-PCR together demonstrated that protein kinase D1 (Prkd1) is a direct transcriptional target of Twist1 and is not expressed in the normal mammary epithelium. Pharmacologic and genetic inhibition of Prkd1 in the Twist1-induced dissemination model demonstrated that Prkd1 was required for cells to initiate extracellular matrix (ECM)-directed protrusions, release from the epithelium, and migrate through the ECM. Antibody-based protein profiling revealed that Prkd1 induced broad phosphorylation changes, including an inactivating phosphorylation of β-catenin and two microtubule depolymerizing phosphorylations of Tau, potentially explaining the release of cell-cell contacts and persistent activation of Prkd1. In patients with breast cancer, TWIST1 and PRKD1 expression correlated with metastatic recurrence, particularly in basal breast cancer. Prkd1 knockdown was sufficient to block dissemination of both murine and human mammary tumor organoids. Finally, Prkd1 knockdown in vivo blocked primary tumor invasion and distant metastasis in a mouse model of basal breast cancer. Collectively, these data identify Prkd1 as a novel and targetable signaling node downstream of Twist1 that is required for epithelial invasion and dissemination. SIGNIFICANCE: Twist1 is a known regulator of metastatic cell behaviors but not directly targetable. This study provides a molecular explanation for how Twist1-induced dissemination works and demonstrates that it can be targeted. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/2/204/F1.large.jpg.
Collapse
Affiliation(s)
- Dan Georgess
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Veena Padmanaban
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Orit Katarina Sirka
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kester Coutinho
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alex Choi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gabriela Frid
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neil M Neumann
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cancer Invasion and Metastasis Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
12
|
Pedone E, Postiglione L, Aulicino F, Rocca DL, Montes-Olivas S, Khazim M, di Bernardo D, Pia Cosma M, Marucci L. A tunable dual-input system for on-demand dynamic gene expression regulation. Nat Commun 2019; 10:4481. [PMID: 31578371 PMCID: PMC6775159 DOI: 10.1038/s41467-019-12329-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular systems have evolved numerous mechanisms to adapt to environmental stimuli, underpinned by dynamic patterns of gene expression. In addition to gene transcription regulation, modulation of protein levels, dynamics and localization are essential checkpoints governing cell functions. The introduction of inducible promoters has allowed gene expression control using orthogonal molecules, facilitating its rapid and reversible manipulation to study gene function. However, differing protein stabilities hinder the generation of protein temporal profiles seen in vivo. Here, we improve the Tet-On system integrating conditional destabilising elements at the post-translational level and permitting simultaneous control of gene expression and protein stability. We show, in mammalian cells, that adding protein stability control allows faster response times, fully tunable and enhanced dynamic range, and improved in silico feedback control of gene expression. Finally, we highlight the effectiveness of our dual-input system to modulate levels of signalling pathway components in mouse Embryonic Stem Cells.
Collapse
Affiliation(s)
- Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - Lorena Postiglione
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Francesco Aulicino
- BrisSynBio, Bristol, BS8 1TQ, UK
- Department of Biochemistry, Bristol, BS8 1TD, UK
| | - Dan L Rocca
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| | - Sandra Montes-Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Mahmoud Khazim
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08002, Barcelona, Spain
- Universitati Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Luis Companys, 08010, Barcelona, Spain
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), 510005, Guangzhou, China
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 510530, Guangzhou, China
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| |
Collapse
|
13
|
Casein Kinase 2 Interacting Protein-1 Suppresses Glioma Cell Proliferation via Regulating the AKT/GSK3 β/ β-Catenin Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5653212. [PMID: 31355268 PMCID: PMC6634126 DOI: 10.1155/2019/5653212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 01/08/2023]
Abstract
Objective Casein kinase 2 interacting protein-1 (CKIP-1) has exhibited multiple functions in regulating cell proliferation, apoptosis, differentiation, and cytoskeleton. CKIP-1 also plays an important role as a critical regulator in tumorigenesis. The aim of this study is to further examine the function of CKIP-1 in glioma cells. Methods The expression level of CKIP-1 protein was determined in gliomas tissues and cell lines by immunohistochemistry stain and western blotting while the association of CKIP-1 expression with prognosis was analyzed by Kaplan-Meier method and compared by log-rank test. CKIP-1 was overexpressed or silenced in gliomas cell lines. CCK-8, colony formation assay, and BrdU incorporation assay were used to determine cell proliferation and DNA synthesis. Cell cycle and apoptosis rate were determined with fluorescence-activated cell sorting (FACS) method. Then, expression of key members in AKT/GSK3β/β-catenin pathway was detected by western blot analysis. Results In the present study, we reported new evidence that CKIP-1 was reversely associated with the proliferation of glioma cells and survival in glioma patients. Additionally, the overexpressed CKIP-1 significantly inhibited glioma cell proliferation. Further experiments revealed that CKIP-1 functioned through its antiproliferative and proapoptotic activity in glioma cells. Importantly, mechanistic investigations suggested that CKIP-1 sharply suppressed the activity of AKT by inhibiting the phosphorylation, markedly downregulated the phosphorylated GSK3β at Ser9, and promoted β-catenin degradation. Conclusions Overall, our results provided new insights into the clinical significance and molecular mechanism of CKIP-1 in glioma, which indicated CKIP1 might function as a therapeutic target for clinical treatment of glioma.
Collapse
|
14
|
Yang F, Xu J, Li H, Tan M, Xiong X, Sun Y. FBXW2 suppresses migration and invasion of lung cancer cells via promoting β-catenin ubiquitylation and degradation. Nat Commun 2019; 10:1382. [PMID: 30918250 PMCID: PMC6437151 DOI: 10.1038/s41467-019-09289-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/26/2019] [Indexed: 01/05/2023] Open
Abstract
FBXW2 inhibits proliferation of lung cancer cells by targeting SKP2 for degradation. Whether and how FBXW2 regulates tumor invasion and metastasis is previously unknown. Here, we report that FBXW2 is an E3 ligase for β-catenin. FBXW2 binds to β-catenin upon EGF-AKT1-mediated phosphorylation on Ser552, and promotes its ubiquitylation and degradation. FBXW2 overexpression reduces β-catenin levels and protein half-life, whereas FBXW2 knockdown increases β-catenin levels, protein half-life and transcriptional activity. Functionally, FBXW2 overexpression inhibits migration and invasion by blocking transactivation of MMPs driven by β-catenin, whereas FXBW2 knockdown promotes migration, invasion and metastasis both in vitro and in vivo lung cancer models. In human lung cancer specimens, while FBXW2 levels are inversely correlated with β-catenin levels and lymph-node metastasis, lower FBXW2 coupled with higher β-catenin, predict a worse patient survival. Collectively, our study demonstrates that FBXW2 inhibits tumor migration, invasion and metastasis in lung cancer cells by targeting β-catenin for degradation. FBXW2 is an F-box protein that target substrates for degradation through SCF E3 ligase. Here, the authors show that FBXW2 suppresses lung cancer migration and invasion by promoting degradation of β-catenin and this is dependent on EGF-AKT1.
Collapse
Affiliation(s)
- Fei Yang
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China.,Division of Radiation and Cancer Biology, Departments of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI, MI48109, USA
| | - Jie Xu
- Division of Radiation and Cancer Biology, Departments of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI, MI48109, USA
| | - Hua Li
- Division of Radiation and Cancer Biology, Departments of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI, MI48109, USA
| | - Mingjia Tan
- Division of Radiation and Cancer Biology, Departments of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI, MI48109, USA
| | - Xiufang Xiong
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China. .,Division of Radiation and Cancer Biology, Departments of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI, MI48109, USA.
| |
Collapse
|
15
|
White KA, Grillo-Hill BK, Esquivel M, Peralta J, Bui VN, Chire I, Barber DL. β-Catenin is a pH sensor with decreased stability at higher intracellular pH. J Cell Biol 2018; 217:3965-3976. [PMID: 30315137 PMCID: PMC6219716 DOI: 10.1083/jcb.201712041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/16/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023] Open
Abstract
White et al. find that intracellular pH regulates the stability of β-catenin, the Wnt signaling molecule that controls cell polarity, adhesion, and differentiation. A conserved histidine residue in β-catenin mediates pH-dependent binding to the E3 ligase β-TrCP for degradation, and a cancer-associated mutation that bypasses this pH-sensitive regulation induces ectopic tumors in the Drosophila eye. β-Catenin functions as an adherens junction protein for cell–cell adhesion and as a signaling protein. β-catenin function is dependent on its stability, which is regulated by protein–protein interactions that stabilize β-catenin or target it for proteasome-mediated degradation. In this study, we show that β-catenin stability is regulated by intracellular pH (pHi) dynamics, with decreased stability at higher pHi in both mammalian cells and Drosophila melanogaster. β-Catenin degradation requires phosphorylation of N-terminal residues for recognition by the E3 ligase β-TrCP. While β-catenin phosphorylation was pH independent, higher pHi induced increased β-TrCP binding and decreased β-catenin stability. An evolutionarily conserved histidine in β-catenin (found in the β-TrCP DSGIHS destruction motif) is required for pH-dependent binding to β-TrCP. Expressing a cancer-associated H36R–β-catenin mutant in the Drosophila eye was sufficient to induce Wnt signaling and produced pronounced tumors not seen with other oncogenic β-catenin alleles. We identify pHi dynamics as a previously unrecognized regulator of β-catenin stability, functioning in coincidence with phosphorylation.
Collapse
Affiliation(s)
- Katharine A White
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Bree K Grillo-Hill
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Mario Esquivel
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Jobelle Peralta
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Vivian N Bui
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Ismahan Chire
- Department of Biological Sciences, San Jose State University, San Jose, CA
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
16
|
Inoue M, Uchida Y, Edagawa M, Hirata M, Mitamura J, Miyamoto D, Taketani K, Sekine S, Kawauchi J, Kitajima S. The stress response gene ATF3 is a direct target of the Wnt/β-catenin pathway and inhibits the invasion and migration of HCT116 human colorectal cancer cells. PLoS One 2018; 13:e0194160. [PMID: 29966001 PMCID: PMC6028230 DOI: 10.1371/journal.pone.0194160] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Aberrant Wnt/β-catenin signaling is implicated in tumorigenesis and the progression of human colorectal cancers, and mutations in the components of the Wnt/β-catenin signaling pathway are observed in the majority of patients. Therefore, extensive studies on the Wnt signaling pathway and its target genes are crucial to understand the molecular events of tumorigenesis and develop an efficacious therapy. In this study, we showed that the stress response gene ATF3 is transcriptionally activated by the binding of β-catenin and TCF4 to the redundant TCF4 site at the proximal promoter region of the ATF3 gene, indicating that ATF3 is a direct target of the Wnt/β-catenin pathway. The loss of function or overexpression studies showed that ATF3 inhibited the migration or invasion of HCT116 cells. The expression of some MMP and TIMP genes and the ratio of MMP2/9 to TIMP3/4 mRNAs was differentially regulated by ATF3. Therefore, though ATF3 is activated downstream of the Wnt/β-catenin pathway, it acts as a negative regulator of the migration and invasion of HCT116 human colon cancer cells exhibiting aberrant Wnt/β-catenin activity. ATF3 is a candidate biomarker and target for human colorectal cancer treatment and prevention.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yohei Uchida
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Edagawa
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Manabu Hirata
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Mitamura
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiki Miyamoto
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Taketani
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeki Sekine
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Junya Kawauchi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
17
|
Ghatak S, Raha S. Beta catenin is regulated by its subcellular distribution and mutant huntingtin status in Huntington's disease cell STHdhQ111/HdhQ111. Biochem Biophys Res Commun 2018; 503:359-364. [PMID: 29894684 DOI: 10.1016/j.bbrc.2018.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 01/31/2023]
Abstract
Dysregulation of gene expression at RNA and protein level is a hallmark of Huntington's disease (HD). Altered levels of microRNAs and beta catenin in HD were studied earlier; however, any direct involvement of full length, basally-expressing mutant huntingtin (Htt) remained to be elusive. Here we reported that the gain-of-function mutation of full-length basally-expressing Htt in HD cell Q111 (STHdhQ111/HdhQ111) upregulated microRNA-214 and decreased beta catenin & its transcriptional activity in an aggregate-independent manner. The result was quite opposite of the function of aggregate-forming mutant Htt fragment 83Q-DsRed. Here, we also reported an elevated level of beta catenin phosphorylation in Q111 cell compared to Q7 cell (SThdhQ7/HdhQ7). We showed that in Q111 cell (compared to Q7), beta catenin was more localized in the cytosol than that of the plasma membrane. This is significant as Gsk3beta phosphorylates beta catenin in the cytosol. Hence, for the first time, our study identified beta catenin localization and mutant Htt status as two key factors of beta catenin regulation in HD.
Collapse
Affiliation(s)
- Supratim Ghatak
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
| | - Sanghamitra Raha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| |
Collapse
|
18
|
Huang N, Li W, Wang X, Qi S. MicroRNA-17-5p aggravates lipopolysaccharide-induced injury in nasal epithelial cells by targeting Smad7. BMC Cell Biol 2018; 19:1. [PMID: 29433423 PMCID: PMC5809994 DOI: 10.1186/s12860-018-0152-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/16/2018] [Indexed: 01/07/2023] Open
Abstract
Background Globally, rhinitis is one of the most common chronic disorders. Despite availability of drugs to manage the symptomatology of rhinitis, researchers still focus on identification of novel molecular targets for better management. MicroRNAs are implicated in many biological and pathological processes. However, the role of miR-17-5p in rhinitis remains unexplored. This study aimed to explore the role of miR-17-5p in lipopolysaccharide (LPS)-induced injury of nasal epithelial RPMI2650 cells and to elucidate the possible underlying molecular mechanism. Results LPS damaged RPMI2650 cells by inhibiting cell proliferation, promoting apoptosis, and stimulating the release of inflammatory cytokines. miR-17-5p expression was significantly increased in RPMI2650 cells following treatment with LPS. Furthermore, it was found that overexpression of miR-17-5p led to aggravation of LPS-induced injury. miR-17-5p negatively regulated expression of Smad7; overexpression of Smad7 protected the RPMI2650 cells by inactivating NF-κB and Wnt/β catenin pathways and vice versa. Conclusions Overexpression of miR-17-5p aggravated LPS-induced damage of RPMI2650 cells. Expression of Smad7 was negatively regulated by miR-17-5p; Smad7 expression inactivated NF-κB and Wnt/β catenin pathways.
Collapse
Affiliation(s)
- Nan Huang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjing Li
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolong Wang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanshan Qi
- Department of Allergy, Wuhan No.1 Hospital, No. 215, Zhongshan Avenue, Wuhan, 430022, China.
| |
Collapse
|
19
|
Abdul AURM, De Silva B, Gary RK. The GSK3 kinase inhibitor lithium produces unexpected hyperphosphorylation of β-catenin, a GSK3 substrate, in human glioblastoma cells. Biol Open 2018; 7:bio.030874. [PMID: 29212798 PMCID: PMC5829510 DOI: 10.1242/bio.030874] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lithium salt is a classic glycogen synthase kinase 3 (GSK3) inhibitor. Beryllium is a structurally related inhibitor that is more potent but relatively uncharacterized. This study examined the effects of these inhibitors on the phosphorylation of endogenous GSK3 substrates. In NIH-3T3 cells, both salts caused a decrease in phosphorylated glycogen synthase, as expected. GSK3 inhibitors produce enhanced phosphorylation of Ser9 of GSK3β via a positive feedback mechanism, and both salts elicited this enhancement. Another GSK3 substrate is β-catenin, which has a central role in Wnt signaling. In A172 human glioblastoma cells, lithium treatment caused a surprising increase in phospho-Ser33/Ser37-β-catenin, which was quantified using an antibody-coupled capillary electrophoresis method. The β-catenin hyperphosphorylation was unaffected by p53 RNAi knockdown, indicating that p53 is not involved in the mechanism of this response. Lithium caused a decrease in the abundance of axin, a component of the β-catenin destruction complex that has a role in coordinating β-catenin ubiquitination and protein turnover. The axin and phospho-β-catenin results were reproduced in U251 and U87MG glioblastoma cell lines. These observations run contrary to the conventional view of the canonical Wnt signaling pathway, in which a GSK3 inhibitor would be expected to decrease, not increase, phospho-β-catenin levels. This article has an associated First Person interview with the first author of the paper. Summary: GSK3 inhibitors have potential use against Alzheimer's disease and other conditions. In this study, a classic inhibitor produced unexpected molecular effects on key components of the Wnt signaling pathway.
Collapse
Affiliation(s)
| | - Bhagya De Silva
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Ronald K Gary
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
20
|
Schlienger S, Campbell S, Pasquin S, Gaboury L, Claing A. ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer. Oncotarget 2017; 7:15811-27. [PMID: 26908458 PMCID: PMC4941279 DOI: 10.18632/oncotarget.7515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
Metastatic capacities are fundamental features of tumor malignancy. ADP-ribosylation factor (ARF) 1 has emerged as a key regulator of invasion in breast cancer cells. However, the importance of this GTPase, in vivo, remains to be demonstrated. We report that ARF1 is highly expressed in breast tumors of the most aggressive and advanced subtypes. Furthermore, we show that lowered expression of ARF1 impairs growth of primary tumors and inhibits lung metastasis in a murine xenograft model. To understand how ARF1 contributes to invasiveness, we used a poorly invasive breast cancer cell line, MCF7 (ER+), and examined the effects of overexpressing ARF1 to levels similar to that found in invasive cell lines. We demonstrate that ARF1 overexpression leads to the epithelial-mesenchymal transition (EMT). Mechanistically, ARF1 controls cell–cell adhesion through ß-catenin and E-cadherin, oncogenic Ras activation and expression of EMT inducers. We further show that ARF1 overexpression enhances invasion, proliferation and resistance to a chemotherapeutic agent. In vivo, ARF1 overexpressing MCF7 cells are able to form more metastases to the lung. Overall, our findings demonstrate that ARF1 is a molecular switch for cancer progression and thus suggest that limiting the expression/activation of this GTPase could help improve outcome for breast cancer patients.
Collapse
Affiliation(s)
- Sabrina Schlienger
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Shirley Campbell
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Sarah Pasquin
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Louis Gaboury
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Audrey Claing
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
21
|
Choi H, Kim TH, Yang S, Lee JC, You HK, Cho ES. A Reciprocal Interaction between β-Catenin and Osterix in Cementogenesis. Sci Rep 2017; 7:8160. [PMID: 28811640 PMCID: PMC5558006 DOI: 10.1038/s41598-017-08607-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023] Open
Abstract
Although accumulating evidence indicates that both β-catenin and osterix (Osx) are essential for bone and tooth development, few studies have investigated the interaction of these two key proteins in the context of cementogenesis. In this study, we used transgenic mice with constitutively active β-catenin and inactive Osx in the dental mesenchyme to address this question. We found that cementoblasts with constitutively active β-catenin require Osx to produce excessive cellular cementum, and that ablation of Osx prevents this abnormal accumulation. Importantly, cementoblasts transduced with retrovirus expressing constitutively active β-catenin exhibited upregulation of Osx expression through direct binding to the promoter region of Osx. Osx regulates Lef1 expression and consequently could regulate T-cell factor/lymphoid enhancer factor (Tcf/Lef) binding activity in Wnt/β-catenin signaling. However, the loss of Tcf/Lef binding activity by Osx ablation was not rescued by transduction of retrovirus expressing constitutively active β-catenin or ectopic Lef1 overexpression. These results suggest that the Tcf/Lef binding activity of Wnt/β-catenin signaling is Osx-dependent during cementogenesis. Moreover, Osx differentially regulates the expression of various Tcf family members, suggesting that Osx regulates cementogenesis by utilizing various Tcf/Lef-dependent mechanisms. This is the first report to show that downstream Osx signaling through Tcf/Lefs is critical for cementogenesis.
Collapse
Affiliation(s)
- Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Siqin Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Hyung-Keun You
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, 54538, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea.
| |
Collapse
|
22
|
Ghatak S, Raha S. Differential alterations of positive and negative regulators of beta catenin enhance endogenous expression and activity of beta catenin in A549 non small cell lung cancer (NSCLC) cells. Genes Dis 2016; 3:282-288. [PMID: 30258898 PMCID: PMC6147136 DOI: 10.1016/j.gendis.2016.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/28/2016] [Indexed: 11/28/2022] Open
Abstract
Beta catenin has been well documented in previous studies to be involved in non small cell lung cancer (NSCLC). Beta catenin abundance and transcriptional activity are significantly regulated by several factors. Though it is well known that Akt and Gsk3 beta are respective positive and negative regulators of beta catenin, however, no single study has so far documented how the expression and activity of both positive as well as negative regulators play favorable role on beta catenin expression and activity in NSCLC. In this study, we compared expression and activity of beta catenin and its regulators in normal lung cell WI38 and NSCLC cell A549 by western blot, qRT-PCR and luciferase assay. We observed that beta catenin positive regulators (Akt and Hsp90) and negative regulators (Gsk3 beta and microRNA-214) have differential expression and/or activity in NSCLC cell A549. However the differentially altered statuses of both the positive and negative regulators rendered cumulative positive effect on beta catenin expression and activity in A549. Our study thus suggests that chemotherapeutic modulations of regulating factors are crucial when abrogation and/or inhibition of key oncogenic proteins are necessary for cancer chemotherapy.
Collapse
Affiliation(s)
- Supratim Ghatak
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Sanghamitra Raha
- Department of Biotechnology and ISERC, Visva Bharati University, Santiniketan, 731235, India
| |
Collapse
|
23
|
Florian W, Lenfert E, Gerstel D, von Ehrenstein L, Einhoff J, Schmidt G, Logsdon M, Brandner J, Tiegs G, Beauchemin N, Wagener C, Deppert W, Horst AK. CEACAM1 controls the EMT switch in murine mammary carcinoma in vitro and in vivo. Oncotarget 2016; 7:63730-63746. [PMID: 27572314 PMCID: PMC5325399 DOI: 10.18632/oncotarget.11650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 08/08/2016] [Indexed: 12/29/2022] Open
Abstract
We analyzed the molecular basis for carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1)-controlled inhibition of epithelial-mesenchymal transition (EMT) in a mouse model for mammary adenocarcinoma (WAP-T mice). We demonstrate that silencing of CEACAM1 in WAP-T tumor-derived G-2 cells induces epithelial-mesenchymal plasticity (EMP), as evidenced by typical changes of gene expression, morphology and increased invasion. In contrast, reintroduction of CEACAM1 into G-2 cells reversed up-regulation of genes imposing mesenchymal transition, as well as cellular invasion. We identified the Wnt-pathway as target for CEACAM1-mediated repression of EMT. Importantly, β-catenin phosphorylation status and transcriptional activity strongly depend on CEACAM1 expression: CEACAM1high G-2 cells displayed enhanced phosphorylation of β-catenin at S33/S37/T41 and decreased phosphorylation at Y86, thereby inhibiting canonical Wnt/β-catenin signaling. We identified Src-homology 2 domain-containing phosphatase 2 (SHP-2) as a critical binding partner of CEACAM1 that could modulate β-catenin Y86 phosphorylation. Hence, CEACAM1 serves as a scaffold that controls membrane proximal β-catenin signaling. In vivo, mammary tumors of WAP-T/CEACAM1null mice displayed increased nuclear translocation of β-catenin and a dramatically enhanced metastasis rate compared to WAP-T mice. Hence, CEACAM1 controls EMT in vitro and in vivo by site-specific regulation of β-catenin phosphorylation. Survival analyses of human mammary carcinoma patients corroborated these data, indicating that CEACAM1 is a prognostic marker for breast cancer survival.
Collapse
Affiliation(s)
- Wegwitz Florian
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Eva Lenfert
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Daniela Gerstel
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Lena von Ehrenstein
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Julia Einhoff
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
- Pharmaceutical Institute, Christian-Albrechts-University Kiel, D-24118 Kiel, Germany
| | - Geske Schmidt
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | - Matthew Logsdon
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | - Johanna Brandner
- Dermatology and Venerology Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Nicole Beauchemin
- Goodman Cancer Research Centre and Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, H3G1Y6, Canada
| | - Christoph Wagener
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Wolfgang Deppert
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Andrea Kristina Horst
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| |
Collapse
|
24
|
Dema A, Schröter MF, Perets E, Skroblin P, Moutty MC, Deàk VA, Birchmeier W, Klussmann E. The A-Kinase Anchoring Protein (AKAP) Glycogen Synthase Kinase 3β Interaction Protein (GSKIP) Regulates β-Catenin through Its Interactions with Both Protein Kinase A (PKA) and GSK3β. J Biol Chem 2016; 291:19618-30. [PMID: 27484798 DOI: 10.1074/jbc.m116.738047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 01/24/2023] Open
Abstract
The A-kinase anchoring protein (AKAP) GSK3β interaction protein (GSKIP) is a cytosolic scaffolding protein binding protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Here we show that both the AKAP function of GSKIP, i.e. its direct interaction with PKA, and its direct interaction with GSK3β are required for the regulation of β-catenin and thus Wnt signaling. A cytoplasmic destruction complex targets β-catenin for degradation and thus prevents Wnt signaling. Wnt signals cause β-catenin accumulation and translocation into the nucleus, where it induces Wnt target gene expression. GSKIP facilitates control of the β-catenin stabilizing phosphorylation at Ser-675 by PKA. Its interaction with GSK3β facilitates control of the destabilizing phosphorylation of β-catenin at Ser-33/Ser-37/Thr-41. The influence of GSKIP on β-catenin is explained by its scavenger function; it recruits the kinases away from the destruction complex without forming a complex with β-catenin. The regulation of β-catenin by GSKIP is specific for this AKAP as AKAP220, which also binds PKA and GSK3β, did not affect Wnt signaling. We find that the binding domain of AKAP220 for GSK3β is a conserved GSK3β interaction domain (GID), which is also present in GSKIP. Our findings highlight an essential compartmentalization of both PKA and GSK3β by GSKIP, and ascribe a function to a cytosolic AKAP-PKA interaction as a regulatory factor in the control of canonical Wnt signaling. Wnt signaling controls different biological processes, including embryonic development, cell cycle progression, glycogen metabolism, and immune regulation; deregulation is associated with diseases such as cancer, type 2 diabetes, inflammatory, and Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Alessandro Dema
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Micha Friedemann Schröter
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Ekaterina Perets
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Philipp Skroblin
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Marie Christine Moutty
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Veronika Anita Deàk
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Walter Birchmeier
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and
| | - Enno Klussmann
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany and the DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Oudenarder Strasse 16, 13347 Berlin, Germany
| |
Collapse
|
25
|
Kalatskaya I. Overview of major molecular alterations during progression from Barrett's esophagus to esophageal adenocarcinoma. Ann N Y Acad Sci 2016; 1381:74-91. [PMID: 27415609 DOI: 10.1111/nyas.13134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/14/2022]
Abstract
Esophageal adenocarcinoma (EAC) develops in the sequential transformation of normal epithelium into metaplastic epithelium, called Barrett's esophagus (BE), then to dysplasia, and finally cancer. BE is a common condition in which normal stratified squamous epithelium of the esophagus is replaced with an intestine-like columnar epithelium, and it is the most prominent risk factor for EAC. This review aims to impartially systemize the knowledge from a large number of publications that describe the molecular and biochemical alterations occurring over this progression sequence. In order to provide an unbiased extraction of the knowledge from the literature, a text-mining methodology was used to select genes that are involved in the BE progression, with the top candidate genes found to be TP53, CDKN2A, CTNNB1, CDH1, GPX3, and NOX5. In addition, sample frequencies across analyzed patient cohorts at each stage of disease progression are summarized. All six genes are altered in the majority of EAC patients, and accumulation of alterations correlates well with the sequential progression of BE to cancer, indicating that the text-mining method is a valid approach for gene prioritization. This review discusses how, besides being cancer drivers, these genes are functionally interconnected and might collectively be considered a central hub of BE progression.
Collapse
Affiliation(s)
- Irina Kalatskaya
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Wu B, Guo BM, Kang J, Deng XZ, Fan YB, Zhang XP, Ai KX. PPM1D exerts its oncogenic properties in human pancreatic cancer through multiple mechanisms. Apoptosis 2015; 21:365-78. [DOI: 10.1007/s10495-015-1211-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Deák VA, Skroblin P, Dittmayer C, Knobeloch KP, Bachmann S, Klussmann E. The A-kinase Anchoring Protein GSKIP Regulates GSK3β Activity and Controls Palatal Shelf Fusion in Mice. J Biol Chem 2015; 291:681-90. [PMID: 26582204 DOI: 10.1074/jbc.m115.701177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) represent a family of structurally diverse proteins, all of which bind PKA. A member of this family is glycogen synthase kinase 3β (GSK3β) interaction protein (GSKIP). GSKIP interacts with PKA and also directly interacts with GSK3β. The physiological function of the GSKIP protein in vivo is unknown. We developed and characterized a conditional knock-out mouse model and found that GSKIP deficiency caused lethality at birth. Embryos obtained through Caesarean section at embryonic day 18.5 were cyanotic, suffered from respiratory distress, and failed to initiate breathing properly. Additionally, all GSKIP-deficient embryos showed an incomplete closure of the palatal shelves accompanied by a delay in ossification along the fusion area of secondary palatal bones. On the molecular level, GSKIP deficiency resulted in decreased phosphorylation of GSK3β at Ser-9 starting early in development (embryonic day 10.5), leading to enhanced GSK3β activity. At embryonic day 18.5, GSK3β activity decreased to levels close to that of wild type. Our findings reveal a novel, crucial role for GSKIP in the coordination of GSK3β signaling in palatal shelf fusion.
Collapse
Affiliation(s)
- Veronika Anita Deák
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin
| | - Philipp Skroblin
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin
| | - Carsten Dittmayer
- the Institute of Anatomy, Charité University Medicine, Philippstrasse 12, 10115 Berlin, Germany
| | - Klaus-Peter Knobeloch
- the Institute for Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, and
| | - Sebastian Bachmann
- the Institute of Anatomy, Charité University Medicine, Philippstrasse 12, 10115 Berlin, Germany
| | - Enno Klussmann
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, the DZHK (German Centre for Cardiovascular Research), partner site Berlin, Oudenarder Strasse 16, 13347 Berlin, Germany
| |
Collapse
|
28
|
Li X, Bai B, Liu L, Ma P, Kong L, Yan J, Zhang J, Ye Z, Zhou H, Mao B, Zhu H, Li Y. Novel β-carbolines against colorectal cancer cell growth via inhibition of Wnt/β-catenin signaling. Cell Death Discov 2015; 1:15033. [PMID: 27551464 PMCID: PMC4979417 DOI: 10.1038/cddiscovery.2015.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling pathway is aberrantly activated in a variety of cancers, especially in colorectal cancer (CRC), because of mutations in the genes encoding adenomatous polyposis coli (APC), β-catenin and Axin. Small-molecule antagonists of Wnt/β-catenin signaling are attractive candidates for developing effective therapeutics for CRC. In this study, we have identified a novel Wnt signaling inhibitor, isopropyl 9-ethyl-1- (naphthalen-1-yl)-9H-pyrido[3,4-b]indole-3- carboxylate (Z86). Z86 inhibited Wnt reporter activities and the expression of endogenous Wnt signaling target genes in mammalian cells and antagonized the second axis formation of Xenopus embryos induced by Wnt8. We showed that Z86 treatment inhibits GSK3β (Ser9) phosphorylation, leading to its overactivation and promoting the phosphorylation and degradation of β-catenin. In vitro, Z86 selectively inhibited the growth of CRC cells with constitutive Wnt signaling and caused obvious G1-phase arrest of the cell cycle. Notably, in a nude mouse model, Z86 inhibited dramatically the xenografted tumor growth of CRC. Daily intraperitoneal injection of Z86 at 5 mg/kg resulted in >70% reduction in the tumor weight of HCT116 cell origin that was associated with decreased GSK3β (Ser9) phosphorylation and increased β-catenin phosphorylation. Taken together, our findings provide a novel promising chemotype for CRC therapeutics development targeting the canonical Wnt signaling.
Collapse
Affiliation(s)
- X Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - B Bai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - L Liu
- Chinese Center for Chirality, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Committee of China, Hebei University , Baoding 071002, People's Republic of China
| | - P Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - L Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - J Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - J Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Z Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - H Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - B Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - H Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Chinese Center for Chirality, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Committee of China, Hebei University, Baoding 071002, People's Republic of China
| | - Y Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| |
Collapse
|
29
|
Pronobis MI, Rusan NM, Peifer M. A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient βcatenin destruction. eLife 2015; 4:e08022. [PMID: 26393419 PMCID: PMC4568445 DOI: 10.7554/elife.08022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/20/2015] [Indexed: 01/11/2023] Open
Abstract
APC, a key negative regulator of Wnt signaling in development and oncogenesis, acts in the destruction complex with the scaffold Axin and the kinases GSK3 and CK1 to target βcatenin for destruction. Despite 20 years of research, APC's mechanistic function remains mysterious. We used FRAP, super-resolution microscopy, functional tests in mammalian cells and flies, and other approaches to define APC's mechanistic role in the active destruction complex when Wnt signaling is off. Our data suggest APC plays two roles: (1) APC promotes efficient Axin multimerization through one known and one novel APC:Axin interaction site, and (2) GSK3 acts through APC motifs R2 and B to regulate APC:Axin interactions, promoting high-throughput of βcatenin to destruction. We propose a new dynamic model of how the destruction complex regulates Wnt signaling and how this goes wrong in cancer, providing insights into how this multiprotein signaling complex is assembled and functions via multivalent interactions. DOI:http://dx.doi.org/10.7554/eLife.08022.001 An embryo starts off as a small ball of stem cells, each of which has the potential to become any type of cell in the body. Adult organs and tissues also contain small numbers of stem cells that can replace old or damaged cells. In both of these processes, stem cells need to ‘decide’ when they should start to change into a more specialized cell type, and which cell fate to choose (e.g., liver cell vs kidney cell). A signaling pathway involving Wnt proteins helps to direct many of these decisions. But if the ‘Wnt signaling pathway’ becomes activated at the wrong time, it can lead to cancer. For example, the first step in development of colon cancer is the inappropriate activation of Wnt signaling, and is most often caused by mutations in the gene that encodes a protein called APC. The APC protein is a tumor suppressor and normally inhibits Wnt signaling. However, even after over 20 years of effort, it remains largely mysterious how APC does this. APC is known to work with another protein called Axin as part of a large protein machine. This protein complex performs one of the first steps in a process that ultimately marks a key component of the Wnt signaling pathway for destruction. Pronobis et al. have now used a range of techniques to define APC's role in this so-called ‘destruction complex’. This analysis revealed the internal structure of a complex made from APC and Axin, and showed that cable- and sheet-like assemblies of Axin were intertwined with APC cables. Further experiments then revealed how APC and Axin proteins are added into or leave these complexes, and showed that this is critical for this protein machine to work. Pronobis et al.'s data also suggest that APC plays two roles, which make the destruction complex more efficient. Firstly, it can interact with Axin via two separate interaction sites that help to assemble the destruction complex. Secondly, specific features in APC allow it to interact with a third protein (called GSK3), which can then regulate how APC interacts with Axin. One of the next challenges will be to uncover how APC helps to transfer the components of Wnt signaling to the next step of their destruction, and to clear up the role played by GSK3. DOI:http://dx.doi.org/10.7554/eLife.08022.002
Collapse
Affiliation(s)
- Mira I Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, Bethesda, United States
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
30
|
Zhang DP, Li XW, Lang JH. Prognostic Value of β-catenin Expression in Breast Cancer Patients: a Meta-analysis. Asian Pac J Cancer Prev 2015; 16:5625-33. [DOI: 10.7314/apjcp.2015.16.14.5625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Ohishi K, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Coronaridine, an iboga type alkaloid from Tabernaemontana divaricata, inhibits the Wnt signaling pathway by decreasing β-catenin mRNA expression. Bioorg Med Chem Lett 2015; 25:3937-40. [DOI: 10.1016/j.bmcl.2015.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 01/18/2023]
|
32
|
Chang YW, Su YJ, Hsiao M, Wei KC, Lin WH, Liang CJ, Chen SC, Lee JL. Diverse Targets of β-Catenin during the Epithelial–Mesenchymal Transition Define Cancer Stem Cells and Predict Disease Relapse. Cancer Res 2015; 75:3398-410. [DOI: 10.1158/0008-5472.can-14-3265] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/13/2015] [Indexed: 11/16/2022]
|
33
|
Thorvaldsen TE, Pedersen NM, Wenzel EM, Schultz SW, Brech A, Liestøl K, Waaler J, Krauss S, Stenmark H. Structure, Dynamics, and Functionality of Tankyrase Inhibitor-Induced Degradasomes. Mol Cancer Res 2015; 13:1487-501. [PMID: 26124443 DOI: 10.1158/1541-7786.mcr-15-0125] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/12/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Tankyrase (TNKS) enzymes, due to their poly(ADP-ribose) polymerase activity, have emerged as potential targets in experimental cancer therapy. However, the functional consequences of TNKS inhibition remain incompletely resolved because of the binding promiscuity of TNKS. One of the hallmarks of small-molecule TNKS inhibitors (TNKSi) is the stabilization of AXIN, which plays a pivotal role in the WNT/β-catenin signaling pathway. The present study focused on the known ability of TNKSi to induce cytoplasmic puncta (degradasomes) consisting of components of the signal-limiting WNT/β-catenin destruction complex. Using the colorectal cancer cell line SW480 stably transfected with GFP-TNKS1, it was demonstrated that a TNKS-specific inhibitor (G007-LK) induces highly dynamic and mobile degradasomes that contain phosphorylated β-catenin, ubiquitin, and β-TrCP. Likewise, G007-LK was found to induce similar degradasomes in other colorectal cancer cell lines expressing wild-type or truncated versions of the degradasome component APC. Super-resolution and electron microscopy revealed that the induced degradasomes in SW480 cells are membrane-free structures that consist of a filamentous assembly of high electron densities and discrete subdomains of various destruction complex components. Fluorescence recovery after photobleaching experiments further demonstrated that β-catenin-mCherry was rapidly turned over in the G007-LK-induced degradasomes, whereas GFP-TNKS1 remained stable. In conclusion, TNKS inhibition attenuates WNT/β-catenin signaling by promoting dynamic assemblies of functional active destruction complexes into a TNKS-containing scaffold even in the presence of an APC truncation. IMPLICATIONS This study demonstrates that β-catenin is rapidly turned over in highly dynamic assemblies of WNT destruction complexes (degradasomes) upon tankyrase inhibition and provides a direct mechanistic link between degradasome formation and reduced WNT signaling in colorectal cancer cells.
Collapse
Affiliation(s)
- Tor Espen Thorvaldsen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Eva M Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Sebastian W Schultz
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Knut Liestøl
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Informatics, University of Oslo, Oslo, Norway
| | - Jo Waaler
- Department of Microbiology, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Oslo, Norway
| | - Stefan Krauss
- Department of Microbiology, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Oslo, Norway. Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.
| |
Collapse
|
34
|
Tian X, Wu C. Active zone stability: insights from fly neuromuscular junction. Neural Regen Res 2015; 10:677-8. [PMID: 26109929 PMCID: PMC4468746 DOI: 10.4103/1673-5374.156942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2015] [Indexed: 11/23/2022] Open
Abstract
The presynaptic active zone is a dynamic structure that orchestrates regulated release of neurotransmitters. Developmental and aging processes, and changes in neuronal network activity can all modulate the number, size and composition of active zone and thereby synaptic efficacy. However, very little is known about the mechanism that controls the structural stability of active zone. By studying a model synapse, the Drosophila neuromuscular junction, our recent work shed light on how two scaffolding proteins at the active zone regulate active zone stability by promoting a localized dephosphorylation event at the nerve terminal. Here we discuss the major insights from our findings and their implications for future research.
Collapse
Affiliation(s)
- Xiaolin Tian
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Chunlai Wu
- Neuroscience Center of Excellence, Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
35
|
Ohishi K, Toume K, Arai MA, Koyano T, Kowithayakorn T, Mizoguchi T, Itoh M, Ishibashi M. 9-Hydroxycanthin-6-one, a β-Carboline Alkaloid from Eurycoma longifolia, Is the First Wnt Signal Inhibitor through Activation of Glycogen Synthase Kinase 3β without Depending on Casein Kinase 1α. JOURNAL OF NATURAL PRODUCTS 2015; 78:1139-1146. [PMID: 25905468 DOI: 10.1021/acs.jnatprod.5b00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wnt signaling regulates various processes such as cell proliferation, differentiation, and embryo development. However, numerous diseases have been attributed to the aberrant transduction of Wnt signaling. We screened a plant extract library targeting TCF/β-catenin transcriptional modulating activity with a cell-based luciferase assay. Activity-guided fractionation of the MeOH extract of the E. longifolia root led to the isolation of 9-hydroxycanthin-6-one (1). Compound 1 exhibited TCF/β-catenin inhibitory activity. Compound 1 decreased the expression of Wnt signal target genes, mitf and zic2a, in zebrafish embryos. Treatment of SW480 cells with 1 decreased β-catenin and increased phosphorylated β-catenin (Ser 33, 37, Tyr 41) protein levels. The degradation of β-catenin by 1 was suppressed by GSK3β-siRNA, while compound 1 decreased β-catenin even in the presence of CK1α-siRNA. These results suggest that 1 inhibits Wnt signaling through the activation of GSK3β independent of CK1α.
Collapse
Affiliation(s)
- Kensuke Ohishi
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazufumi Toume
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takashi Koyano
- ‡Temko Corporation, 4-27-4 Honcho, Nakano, Tokyo 164-0012, Japan
| | | | - Takamasa Mizoguchi
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masami Ishibashi
- †Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
36
|
Jiao F, Hu H, Han T, Yuan C, Wang L, Jin Z, Guo Z, Wang L. Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. Int J Mol Sci 2015; 16:6677-93. [PMID: 25811929 PMCID: PMC4424983 DOI: 10.3390/ijms16046677] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 12/31/2022] Open
Abstract
Cancer stem cells (CSCs) play a vital role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. The mechanisms that maintain the stemness of these cells remain largely unknown. Our previous study indicated that MALAT-1 may serve as an oncogenic long noncoding RNA in pancreatic cancer by promoting epithelial-mesenchymal transition (EMT) and regulating CSCs markers expression. More significantly, there is emerging evidence that the EMT process may give rise to CSCs, or at least cells with stem cell-like properties. Therefore, we hypothesized that MALAT-1 might enhance stem cell-like phenotypes in pancreatic cancer cells. In this study, our data showed that MALAT-1 could increase the proportion of pancreatic CSCs, maintain self-renewing capacity, decrease the chemosensitivity to anticancer drugs, and accelerate tumor angiogenesis in vitro. In addition, subcutaneous nude mouse xenografts revealed that MALAT-1 could promote tumorigenicity of pancreatic cancer cells in vivo. The underlying mechanisms may involve in increased expression of self-renewal related factors Sox2. Collectively, we for the first time found the potential effects of MALAT-1 on the stem cell-like phenotypes in pancreatic cancer cells, suggesting a novel role of MALAT-1 in tumor stemness, which remains to be fully elucidated.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China.
| | - Hai Hu
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China.
| | - Ting Han
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China.
| | - Cuncun Yuan
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Lei Wang
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China.
| | - Ziliang Jin
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China.
| | - Zhen Guo
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China.
| | - Liwei Wang
- Department of Medical Oncology and Pancreatic Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai 201620, China.
| |
Collapse
|
37
|
Choi SW, Song JK, Yim YS, Yun HG, Chun KH. Glucose deprivation triggers protein kinase C-dependent β-catenin proteasomal degradation. J Biol Chem 2015; 290:9863-73. [PMID: 25691573 PMCID: PMC4392283 DOI: 10.1074/jbc.m114.606756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 11/07/2022] Open
Abstract
Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of now poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation as well as the increase in LC3-II levels and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy.
Collapse
Affiliation(s)
- Seung-Won Choi
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and
| | - Jun-Kyu Song
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Ye-Seal Yim
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Ho-Geun Yun
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| | - Kyung-Hee Chun
- From the Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea and the Brain Korea 21 Plus Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea
| |
Collapse
|
38
|
Dias C, Feng J, Sun H, Shao NY, Mazei-Robison MS, Damez-Werno D, Scobie K, Bagot R, LaBonté B, Ribeiro E, Liu X, Kennedy P, Vialou V, Ferguson D, Peña C, Calipari ES, Koo JW, Mouzon E, Ghose S, Tamminga C, Neve R, Shen L, Nestler EJ. β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature 2014; 516:51-5. [PMID: 25383518 PMCID: PMC4257892 DOI: 10.1038/nature13976] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/20/2014] [Indexed: 01/11/2023]
Abstract
β-catenin is a multi-functional protein that plays an important role in the mature central nervous system; its dysfunction has been implicated in several neuropsychiatric disorders, including depression. Here we show that β-catenin mediates pro-resilient and anxiolytic effects in mice in the nucleus accumbens, a key brain reward region, an effect mediated by D2-type medium spiny neurons. Using genome-wide β-catenin enrichment mapping, we identify Dicer1—important in small RNA (e.g., microRNA) biogenesis—as a β-catenin target gene that mediates resilience. Small RNA profiling after excising β-catenin from nucleus accumbens in the context of chronic stress reveals β-catenin-dependent microRNA regulation associated with resilience. Together, these findings establish β-catenin as a critical regulator in the development of behavioral resilience, activating a network that includes Dicer1 and downstream microRNAs. We thus present a foundation for the development of novel therapeutic targets to promote stress resilience.
Collapse
Affiliation(s)
- Caroline Dias
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jian Feng
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Haosheng Sun
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ning Yi Shao
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Michelle S Mazei-Robison
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Diane Damez-Werno
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kimberly Scobie
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Rosemary Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Benoit LaBonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Efrain Ribeiro
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - XiaoChuan Liu
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Pamela Kennedy
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Vincent Vialou
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Deveroux Ferguson
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Catherine Peña
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Erin S Calipari
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ja Wook Koo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ezekiell Mouzon
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern, Dallas, Texas 75390, USA
| | - Carol Tamminga
- Department of Psychiatry, University of Texas Southwestern, Dallas, Texas 75390, USA
| | - Rachael Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
39
|
Wang Y, Bu F, Royer C, Serres S, Larkin JR, Soto MS, Sibson NR, Salter V, Fritzsche F, Turnquist C, Koch S, Zak J, Zhong S, Wu G, Liang A, Olofsen PA, Moch H, Hancock DC, Downward J, Goldin RD, Zhao J, Tong X, Guo Y, Lu X. ASPP2 controls epithelial plasticity and inhibits metastasis through β-catenin-dependent regulation of ZEB1. Nat Cell Biol 2014; 16:1092-104. [PMID: 25344754 DOI: 10.1038/ncb3050] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/10/2014] [Indexed: 12/16/2022]
Abstract
Epithelial to mesenchymal transition (EMT), and the reverse mesenchymal to epithelial transition (MET), are known examples of epithelial plasticity that are important in kidney development and cancer metastasis. Here we identify ASPP2, a haploinsufficient tumour suppressor, p53 activator and PAR3 binding partner, as a molecular switch of MET and EMT. ASPP2 contributes to MET in mouse kidney in vivo. Mechanistically, ASPP2 induces MET through its PAR3-binding amino-terminus, independently of p53 binding. ASPP2 prevents β-catenin from transactivating ZEB1, directly by forming an ASPP2-β-catenin-E-cadherin ternary complex and indirectly by inhibiting β-catenin's N-terminal phosphorylation to stabilize the β-catenin-E-cadherin complex. ASPP2 limits the pro-invasive property of oncogenic RAS and inhibits tumour metastasis in vivo. Reduced ASPP2 expression results in EMT, and is associated with poor survival in hepatocellular carcinoma and breast cancer patients. Hence, ASPP2 is a key regulator of epithelial plasticity that connects cell polarity to the suppression of WNT signalling, EMT and tumour metastasis.
Collapse
Affiliation(s)
- Yihua Wang
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Fangfang Bu
- 1] International Joint Cancer Institute &Eastern Hospital of Hepatobiliary Surgery, The Second Military Medical University, Shanghai 200433, China [2] PLA General Hospital Cancer Center, PLA Postgraduate School of Medicine, 28 Fuxing Road Beijing 100853, China
| | - Christophe Royer
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sébastien Serres
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7LE, UK
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7LE, UK
| | - Manuel Sarmiento Soto
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7LE, UK
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7LE, UK
| | - Victoria Salter
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Florian Fritzsche
- 1] Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK [2] Institute of Surgical Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Casmir Turnquist
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sofia Koch
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jaroslav Zak
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Shan Zhong
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Guobin Wu
- Guangxi Cancer Hospital, Guangxi Medical University, Guangxi 530021, China
| | - Anmin Liang
- Guangxi Cancer Hospital, Guangxi Medical University, Guangxi 530021, China
| | - Patricia A Olofsen
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - David C Hancock
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields London WC2A 3LY, UK
| | - Julian Downward
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields London WC2A 3LY, UK
| | - Robert D Goldin
- Centre for Pathology, St Mary's Hospital, Imperial College, London W2 1NY, UK
| | - Jian Zhao
- 1] International Joint Cancer Institute &Eastern Hospital of Hepatobiliary Surgery, The Second Military Medical University, Shanghai 200433, China [2] PLA General Hospital Cancer Center, PLA Postgraduate School of Medicine, 28 Fuxing Road Beijing 100853, China
| | - Xin Tong
- 1] International Joint Cancer Institute &Eastern Hospital of Hepatobiliary Surgery, The Second Military Medical University, Shanghai 200433, China [2] PLA General Hospital Cancer Center, PLA Postgraduate School of Medicine, 28 Fuxing Road Beijing 100853, China
| | - Yajun Guo
- 1] International Joint Cancer Institute &Eastern Hospital of Hepatobiliary Surgery, The Second Military Medical University, Shanghai 200433, China [2] PLA General Hospital Cancer Center, PLA Postgraduate School of Medicine, 28 Fuxing Road Beijing 100853, China
| | - Xin Lu
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
40
|
Fan C, Zhao Y, Mao X, Miao Y, Lin X, Jiang G, Zhang X, Han Q, Luan L, Wang E. Armc8 expression was elevated during atypia-to-carcinoma progression and associated with cancer development of breast carcinoma. Tumour Biol 2014; 35:11337-43. [PMID: 25119601 DOI: 10.1007/s13277-014-2473-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/07/2014] [Indexed: 11/25/2022] Open
Abstract
Armadillo repeat-containing protein 8 (Armc8) is a key factor to regulate cell membrane adhesion complex through promoting α-catenin degradation. However, its expression and function in human malignant tumors are largely unknown. Here, we present our study investigating Armc8 expression in tumor and non-tumor breast tissues including 45 normal epithelia, 53 lesions of hyperplasia with or without dysplasia, 22 benign tumors, and 92 carcinomas including 28 carcinomas in situ and 64 infiltrating carcinomas using immunohistochemistry (IHC) and Western blotting study. Armc8 expression was detected mainly in the cytoplasm with occasional membrane immunostaining. The positive rate of Armc8 expression in normal breast epithelia (8.9%, four out of 45) was very low. No significant difference was found between Armc8 expression in usual ductal hyperplasia (UDH) (11.1%, two out of 18), benign breast tumors including intraductal papilloma (10.0%, one out of 10) and fibroadenoma (8.3%, one out of 12), and normal breast epithelia (p>0.05). Elevated expression of Armc8 was found in breast epithelia with dysplasia (24.0%, six out of 25) compared to that in normal breast epithelia, UDH, and benign breast tumors (p<0.05). Armc8 expression in breast carcinoma including breast carcinoma in situ (10/28, 35.7%), infiltrating ductal carcinoma (60.7%, 34/56), and infiltrating lobular carcinoma (50.0%, 4/8) was higher than that in normal breast epithelia, UDH, benign breast tumors, and breast epithelia with dysplasia (p<0.05). The highest expression of Armc8 was found in infiltrating breast carcinoma (59.4%, 38/64) compared to all the other breast tissues. Higher Armc8 expression was found to be linked to lymph node metastasis and advanced tumor-node-metastasis (TNM) stages (III+IV) in infiltrating breast carcinoma (p<0.05). We further confirmed Armc8 expression in breast epithelial cell line MCF10A and breast carcinoma cell lines including MCF-7, MDA-MB-231, and ZR751 using Western blotting and immunofluorescent study. These results indicate that the elevated expression of Armc8 may be involved in carcinogenesis including atypia-to-carcinoma progression and cancer development of breast carcinoma.
Collapse
Affiliation(s)
- Chuifeng Fan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, 110001, Shenyang, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ohishi K, Toume K, Arai MA, Sadhu SK, Ahmed F, Mizoguchi T, Itoh M, Ishibashi M. Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α. Bioorg Med Chem 2014; 22:4597-601. [PMID: 25124862 DOI: 10.1016/j.bmc.2014.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022]
Abstract
Wnt signaling plays important roles in proliferation, differentiation, development of cells, and various diseases. Activity-guided fractionation of the MeOH extract of the Ricinus communis stem led to the isolation of four compounds (1-4). The TCF/β-catenin transcription activities of 1 and 3 were 2.2 and 2.5 fold higher at 20 and 30μM, respectively. Cells treated with ricinine (1) had higher β-catenin and lower of p-β-catenin (ser 33, 37, 45, Thr 41) protein levels, whereas glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) protein levels remained unchanged. Cells treated with pyrvinium, an activator of CK1α, had lower β-catenin levels. However, the combined treatment of pyrvinium and 1 led to higher β-catenin levels than those in cells treated with pyrvinium alone, which suggested that 1 inhibited CK1α activity. Furthermore, 1 increased β-catenin protein levels in zebrafish embryos. These results indicated that 1 activated the Wnt signaling pathway by inhibiting CK1α.
Collapse
Affiliation(s)
- Kensuke Ohishi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazufumi Toume
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Samir K Sadhu
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Takamasa Mizoguchi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
42
|
Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat Commun 2014; 4:2610. [PMID: 24162018 PMCID: PMC3826636 DOI: 10.1038/ncomms3610] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/13/2013] [Indexed: 12/12/2022] Open
Abstract
Aberrant regulation of the Wnt/β-catenin pathway has an important role during the onset and progression of colorectal cancer, with over 90% of cases of sporadic colon cancer featuring mutations in APC or β-catenin. However, it has remained a point of controversy whether these mutations are sufficient to activate the pathway or require additional upstream signals. Here we show that colorectal tumours express elevated levels of Wnt3 and Evi/Wls/GPR177. We found that in colon cancer cells, even in the presence of mutations in APC or β-catenin, downstream signalling remains responsive to Wnt ligands and receptor proximal signalling. Furthermore, we demonstrate that truncated APC proteins bind β-catenin and key components of the destruction complex. These results indicate that cells with mutations in APC or β-catenin depend on Wnt ligands and their secretion for a sufficient level of β-catenin signalling, which potentially opens new avenues for therapeutic interventions by targeting Wnt secretion via Evi/Wls. Activating mutations in the Wnt signalling pathway are associated with colon cancer. Here the authors show that tumour cells carrying mutations in APC and β-catenin are still regulated by Wnt ligands, suggesting that Wnt secretion and receptor signalling remains important to control downstream signalling.
Collapse
|
43
|
Li S, Li S, Sun Y, Li L. The expression of β-catenin in different subtypes of breast cancer and its clinical significance. Tumour Biol 2014; 35:7693-8. [PMID: 24801904 DOI: 10.1007/s13277-014-1975-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/15/2014] [Indexed: 12/21/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is implicated in mammary oncogenesis. Reports of β-catenin expression and its association with outcome in breast cancer are controversial. This study was performed to address the distribution of β-catenin expression in invasive breast cancer and the correlation between β-catenin expression and survival of breast cancer patients, and to determine whether β-catenin was specifically activated in any molecular subtypes. Immunohistochemistry was performed on a tissue microarray containing 169 invasive breast cancers to detect expression of β-catenin. One hundred thirty one of the 169 patients were followed up. Correlation between β-catenin expression and different molecular subtypes was determined using chi-square analysis. Overall survival (OS) was analyzed by Kaplan-Meier method with log-rank test. The invasive breast cancer displayed the different patterns of β-catenin expression from normal tissues with significantly increased cytoplasmic and nuclear staining of β-catenin. Aberrant β-catenin expression was observed in 109 in the 169 cases (64.50 %), and there was no difference in β-catenin expression in the four molecular subtypes. Furthermore, aberrant β-catenin expression was significantly associated with adverse outcome not only in the entire cohort but also in each of the different molecular subtypes. β-catenin activation is preferentially found and is associated with a poor clinical outcome in invasive breast cancer independent of molecular subtype.
Collapse
Affiliation(s)
- Shuguang Li
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, 250012, Jinan, China
| | | | | | | |
Collapse
|
44
|
Park HY, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Calotropin: a cardenolide from calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells. Chembiochem 2014; 15:872-8. [PMID: 24644251 DOI: 10.1002/cbic.201300786] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 11/09/2022]
Abstract
Wnt signaling plays key roles in embryonic development and various human diseases. Activity-guided testing to isolate Wnt signaling inhibitors from the methanol extract of Calotropis gigantea (Asclepiadaceae) exudutes identified six Wnt inhibitory cardenolides (1-6), of which 1, 3, 5, and 6 exhibited potent TCF/β-catenin inhibitory activities (IC50 0.7-3.6 nM). Calotropin (1) inhibited Wnt signaling by decreasing both nuclear and cytosolic β-catenin in a dose-dependent manner, and promoted degradation of β-catenin by increasing the phosphorylation of β-catenin at Ser45 through casein kinase 1α (CK1α). Moreover, 1 significantly increased CK1α protein and mRNA levels. The results suggest that 1 inhibits the Wnt signaling pathway by increasing CK1α protein levels. To the best of our knowledge, calotropin is the first small molecule to increase CK1α levels.
Collapse
Affiliation(s)
- Hyun Young Park
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 (Japan)
| | | | | | | | | | | |
Collapse
|
45
|
You H, Lei P, Andreadis ST. JNK is a novel regulator of intercellular adhesion. Tissue Barriers 2013; 1:e26845. [PMID: 24868495 PMCID: PMC3942331 DOI: 10.4161/tisb.26845] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
c-Jun N-terminal Kinase (JNK) is a family of protein kinases, which are activated by stress stimuli such as inflammation, heat stress and osmotic stress, and regulate diverse cellular processes including proliferation, survival and apoptosis. In this review, we focus on a recently discovered function of JNK as a regulator of intercellular adhesion. We summarize the existing knowledge regarding the role of JNK during the formation of cell-cell junctions. The potential mechanisms and implications for processes requiring dynamic formation and dissolution of cell-cell junctions including wound healing, migration, cancer metastasis and stem cell differentiation are also discussed.
Collapse
Affiliation(s)
- Hui You
- Bioengineering Laboratory; Department of Chemical and Biological Engineering; University at Buffalo; The State University of New York; Amherst, NY USA
| | - Pedro Lei
- Bioengineering Laboratory; Department of Chemical and Biological Engineering; University at Buffalo; The State University of New York; Amherst, NY USA
| | - Stelios T Andreadis
- Bioengineering Laboratory; Department of Chemical and Biological Engineering; University at Buffalo; The State University of New York; Amherst, NY USA ; Department of Biomedical Engineering; University at Buffalo; The State University of New York; Amherst, NY USA ; Center for Excellence in Bioinformatics and Life Sciences; University at Buffalo; The State University of New York; Amherst, NY USA
| |
Collapse
|
46
|
Modeling the effect of APC truncation on destruction complex function in colorectal cancer cells. PLoS Comput Biol 2013; 9:e1003217. [PMID: 24086117 PMCID: PMC3784502 DOI: 10.1371/journal.pcbi.1003217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/10/2013] [Indexed: 01/02/2023] Open
Abstract
In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β—catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β—catenin, serine/threonine kinases, and other proteins. The kinases and , which are recruited by Axin, mediate phosphorylation of β—catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β—catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of β—catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. We find that the phosphorylated truncated form of APC can outcompete Axin for binding to β—catenin, provided that Axin is limiting, and thereby sequester β—catenin away from Axin and the Axin-recruited kinases and . Full-length APC also competes with Axin for binding to β—catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring β—catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on β—catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by , we suggest that is a potential target for therapeutic intervention in colorectal cancer. Specific inhibition of is predicted to limit binding of β—catenin to truncated APC and thereby to reverse the effect of APC truncation. We asked the question, how can the effects of APC truncation, a very common mutation in colorectal cancer, be understood and reversed? We addressed this question by formulating a computational model for destruction complex function that incorporates site-specific details about protein-protein interactions and protein phosphorylation and examined the differences in predicted behaviors when APC is full length, as in normal cells, and truncated, as in colorectal cancer cells. Our model offers an explanation for how and why destruction complex function is altered by APC truncation. The model indicates that phosphorylation of the first 20-amino acid repeat in APC (which is usually the only 20-amino acid repeat that remains in truncated forms of APC) together with the absence of SAMP repeats (missing entirely because of truncation) allows truncated APC to act as a diversion sink. In other words, phosphorylated APC can outcompete Axin for binding to , provided Axin is limiting, and thereby prevent from associating with Axin and the Axin-associated kinases and , which initiate phosphorylation-dependent degradation of . Thus, the model identifies inhibition of APC phosphorylation, which is mediated by , as a potential means by which the oncogenic effect of APC truncation could be reversed.
Collapse
|
47
|
Pustylnik S, Fiorino C, Nabavi N, Zappitelli T, da Silva R, Aubin JE, Harrison RE. EB1 levels are elevated in ascorbic Acid (AA)-stimulated osteoblasts and mediate cell-cell adhesion-induced osteoblast differentiation. J Biol Chem 2013; 288:22096-110. [PMID: 23740245 DOI: 10.1074/jbc.m113.481515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoblasts are differentiated mesenchymal cells that function as the major bone-producing cells of the body. Differentiation cues including ascorbic acid (AA) stimulation provoke intracellular changes in osteoblasts leading to the synthesis of the organic portion of the bone, which includes collagen type I α1, proteoglycans, and matrix proteins, such as osteocalcin. During our microarray analysis of AA-stimulated osteoblasts, we observed a significant up-regulation of the microtubule (MT) plus-end binding protein, EB1, compared with undifferentiated osteoblasts. EB1 knockdown significantly impaired AA-induced osteoblast differentiation, as detected by reduced expression of osteoblast differentiation marker genes. Intracellular examination of AA-stimulated osteoblasts treated with EB1 siRNA revealed a reduction in MT stability with a concomitant loss of β-catenin distribution at the cell cortex and within the nucleus. Diminished β-catenin levels in EB1 siRNA-treated osteoblasts paralleled an increase in phospho-β-catenin and active glycogen synthase kinase 3β, a kinase known to target β-catenin to the proteasome. EB1 siRNA treatment also reduced the expression of the β-catenin gene targets, cyclin D1 and Runx2. Live immunofluorescent imaging of differentiated osteoblasts revealed a cortical association of EB1-mcherry with β-catenin-GFP. Immunoprecipitation analysis confirmed an interaction between EB1 and β-catenin. We also determined that cell-cell contacts and cortically associated EB1/β-catenin interactions are necessary for osteoblast differentiation. Finally, using functional blocking antibodies, we identified E-cadherin as a major contributor to the cell-cell contact-induced osteoblast differentiation.
Collapse
Affiliation(s)
- Sofia Pustylnik
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Panza A, Pazienza V, Ripoli M, Benegiamo G, Gentile A, Valvano MR, Augello B, Merla G, Prattichizzo C, Tavano F, Ranieri E, di Sebastiano P, Vinciguerra M, Andriulli A, Mazzoccoli G, Piepoli A. Interplay between SOX9, β-catenin and PPARγ activation in colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1853-65. [PMID: 23583560 DOI: 10.1016/j.bbamcr.2013.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 12/31/2022]
Abstract
Colorectal carcinogenesis relies on loss of homeostasic mechanisms regulating cell proliferation, differentiation and survival. These cell processes have been reported to be influenced independently by transcription factors activated downstream of the Wnt pathway, such as SOX9 and β-catenin, and by the nuclear receptor PPARγ. The purpose of this study was to explore the expression levels and functional link between SOX9, β-catenin and PPARγ in the pathogenesis of colorectal cancer (CRC). We evaluated SOX9, β-catenin and PPARγ expression levels on human CRC specimens by qPCR and immunoblot detection. We tested the hypothesis that PPARγ activation might affect SOX9 and β-catenin expression using four colon cancer cell lines (CaCo2, SW480, HCT116, and HT29 cells). In CRC tissues SOX9 resulted up-regulated at both mRNA and protein levels when compared to matched normal mucosa, β-catenin resulted up-regulated at protein levels, while PPARG mRNA and PPARγ protein levels were down-regulated. A significant relationship was observed between high PPARG and SOX9 expression levels in the tumor tissue and female gender (p=0.005 and p=0.04, respectively), and between high SOX9 expression in the tumor tissue and age (p=0.04) and microsatellite instability (MSI), in particular with MSI-H (p=0.0002). Moreover, treatment with the synthetic PPARγ ligand rosiglitazone induced different changes of SOX9 and β-catenin expression and subcellular localization in the colon cancer cell lines examined. In conclusion, SOX9, β-catenin and PPARγ expression levels are deregulated in the CRC tissue, and in colon cancer cell lines ligand-dependent PPARγ activation unevenly influences SOX9 and β-catenin expression and subcellular localization, suggesting a variable mechanistic role in colon carcinogenesis.
Collapse
Affiliation(s)
- Anna Panza
- Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Odenwald MA, Prosperi JR, Goss KH. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology. BMC Cancer 2013; 13:12. [PMID: 23302090 PMCID: PMC3556124 DOI: 10.1186/1471-2407-13-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 01/05/2013] [Indexed: 12/30/2022] Open
Abstract
Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta control the migratory potential and mesenchymal morphology of mammary tumor cells and suggest that APC loss during later stages of tumor progression might impact tumor cell dissemination or colonization.
Collapse
|
50
|
Layton MJ, Church NL, Faux MC, Ji H, Goode RJA, Kapp EA, Burgess AW, Simpson RJ. Solubilisation of the armadillo-repeat protein β-catenin using a zwitterionic detergent allows resolution of phosphorylated forms by 2DE. Electrophoresis 2012; 33:1804-13. [PMID: 22740469 DOI: 10.1002/elps.201100671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
β-catenin is a member of the armadillo repeat family of proteins and has important functions in cell-cell adhesion and Wnt signalling. Different protein species of β-catenin have been shown to exist in the cell and the relative proportions of these species are altered upon stimulation of cells with Wnt-3a (Gottardi and Gumbiner, 2004). In order to determine whether posttranslational modifications (PTMs) of β-catenin underlie these different protein species, we have used 2DE separation and immunoblotting with an antibody specific for β-catenin. High-resolution separation of differentially modified species of β-catenin in 2DE required the addition of ASB-16, a zwitterionic detergent that can solubilise integral membrane proteins. ASB-16 was also necessary for focussing of other armadillo repeat proteins, such as γ-catenin and p120-catenin. 2DE using ASB-16 allowed detection of a previously unreported phosphorylation site in the transcriptionally active form of β-catenin that binds to GST-Tcf in response to Wnt signalling.
Collapse
Affiliation(s)
- Meredith J Layton
- The Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
| | | | | | | | | | | | | | | |
Collapse
|