1
|
Gümüşderelioğlu S, Sahabandu N, Elnatan D, Gregory EF, Chiba K, Niwa S, Luxton GWG, McKenney RJ, Starr DA. The KASH protein UNC-83 differentially regulates kinesin-1 activity to control developmental stage-specific nuclear migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641899. [PMID: 40093101 PMCID: PMC11908248 DOI: 10.1101/2025.03.06.641899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope KASH protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity. The shorter UNC-83c isoform promotes kinesin-1-dependent nuclear movement in embryonic hyp7 precursors, while longer UNC-83a/b isoforms facilitate dynein-mediated nuclear migration in larval P cells. We demonstrate that UNC-83a's N-terminal domain functions as a kinesin-1 inhibitory module by directly binding kinesin heavy chain (UNC-116). This isoform-specific inhibition, combined with differential affinity for kinesin light chain (KLC-2), establishes a molecular switch for directional control. Together, these interdisciplinary studies reveal how alternative isoforms of cargo adaptors can generate developmental stage-specific regulation of motor activity during development.
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Natalie Sahabandu
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, United States
| |
Collapse
|
2
|
Cho SH, Kim JH, Kim S. Perturbed cell cycle phase-dependent positioning and nuclear migration of retinal progenitors along the apico-basal axis underlie global retinal disorganization in the LCA8-like mouse model. Dev Biol 2025; 517:39-54. [PMID: 39284539 DOI: 10.1016/j.ydbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/29/2024]
Abstract
Combined removal of Crb1 and Crb2 from the developing optic vesicle evokes cellular and laminar disorganization by disrupting the apical cell-cell adhesion in developing retinal epithelium. As a result, at postnatal stages, affected mouse retinas show temporarily thickened, coarsely laminated retinas in addition to functional deficits, including a severely abnormal electroretinogram and decreased visual acuity. These features are reminiscent of Leber congenital amaurosis 8, which is caused in humans by subsets of Crb1 mutations. However, the cellular basis of the abnormalities in retinal progenitor cells (RPCs) that lead to retinal disorganization is largely unknown. In this study, we analyze specific features of RPCs in mutant retinas, including maintenance of the progenitor pool, cell cycle progression, cell cycle phase-dependent nuclear positioning, cell survival, and generation of mature retinal cell types. We find crucial defects in the mutant RPCs. Upon removal of CRB1 and CRB2, apical structures of the RPCs, determined by markers of cilia and centrosomes, are basally shifted. In addition, the positioning of the somata of the M-phase cells, normally localized at the apical surface of the retinal epithelium, is basally shifted in a nearly randomized pattern along the apico-basal axis. Consequently, we propose that positioning of RPCs is desynchronized from cell cycle phase and largely randomized during embryonic development at E17.5. Because the resultant postmitotic cells inevitably lose positional information, the outer and inner nuclear layers (ONL and INL) fail to form from ONBL during neonatal development and retinal cells become mixed locally and globally. Additional results of the lost tissue polarity in Crb1/Crb2 dKO retinas include atypical formation of heterotopic cell patches containing photoreceptor cells in the ganglion cell layer and acellular patches filled with neural processes. Collectively, these changes lead to a mouse model of LCA8-like pathology. LCA8-like pathology differs substantially from the well-characterized, broad range of degeneration phenotypes that arise during the differentiation of photoreceptor and Muller glial cells in retinitis pigmentosa 12, a closely related disease caused by mutated human Crb1. Importantly, the present results suggest that Crb1/Crb2 serve indispensable functions in maintaining cell-cycle phase-dependent positioning of RPCs along the apico-basal axis, regulating cell cycle progression, and maintaining structural laminar integrity without significantly affecting the size of the RPC pools, generation of the subsets of the retinal cell types, or the distribution of cell cycle phases during RPC division. Taken together, these findings provide the crucial cellular basis of the thickening and severely disorganized lamination that are the unique features of the retinal abnormalities in LCA8 patients.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Ji Hyang Kim
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Seonhee Kim
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
3
|
de Leeuw NF, Budhathoki R, Russell LJ, Loerke D, Blankenship JT. Nuclei as mechanical bumpers during epithelial remodeling. J Cell Biol 2024; 223:e202405078. [PMID: 39325019 PMCID: PMC11450824 DOI: 10.1083/jcb.202405078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
The morphogenesis of developing tissues relies on extensive cellular rearrangements in shape, position, and identity. A key process in reshaping tissues is cell intercalation-driven elongation, where epithelial cells align and intercalate along a common axis. Typically, analyses focus on how peripheral cortical forces influence cell shape changes. Less attention is given to how inhomogeneities in internal structures, particularly the nucleus, impact cell shaping. Here, we examine how pulsed contractile and extension dynamics interact with the nucleus in elongating Drosophila embryos. Our data show that tightly packed nuclei in apical layers hinder tissue remodeling/oscillatory behaviors. We identify two mechanisms for resolving internuclear tensions: nuclear deformation and dispersion. Embryos with non-deformable nuclei use nuclear dispersion to maintain near-normal extensile rates, while those with non-dispersible nuclei due to microtubule inhibition exhibit disruptions in contractile behaviors. Disrupting both mechanisms leads to severe tissue extension defects and cell extrusion. These findings highlight the critical role of nuclear shape and positioning in topological remodeling of epithelia.
Collapse
Affiliation(s)
- Noah F. de Leeuw
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
| | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Liam J. Russell
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO, USA
| | | |
Collapse
|
4
|
del Rosario-Gilabert D, Valenzuela-Miralles A, Esquiva G. Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells. Biophys Rev 2024; 16:783-812. [PMID: 39830129 PMCID: PMC11735818 DOI: 10.1007/s12551-024-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes. These components connect with the cytoskeletal fibre network, enabling the transmission of mechanical stimuli towards the nucleus. The nucleus, in turn, linked to the cytoskeleton via the linkers of the nucleoskeleton and cytoskeleton complex, acts as a mechanosensitive centre, not only responding to changes in cytoskeletal stiffness and nuclear tension but also regulating gene expression through the transcriptional co-activator YAP/TAZ and interactions between chromatin and the nuclear envelope. This intricate chain of mechanisms highlights the potential of sonobiology in various fields, including dentistry, regenerative medicine, tissue engineering and cancer research. However, progress in these fields requires the establishment of standardized measurement methodologies and biocompatible experimental setups to ensure the reproducibility of results.
Collapse
Affiliation(s)
- D. del Rosario-Gilabert
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Spain
- Department of Computer Technology, University of Alicante, San Vicente del Raspeig, Spain
- Institute for Advanced Neuroscience of Barcelona (INAB), Barcelona, Spain
| | - A. Valenzuela-Miralles
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
| | - G. Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
5
|
Kuwako KI, Suzuki S. Diverse Roles of the LINC Complex in Cellular Function and Disease in the Nervous System. Int J Mol Sci 2024; 25:11525. [PMID: 39519078 PMCID: PMC11545860 DOI: 10.3390/ijms252111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC complex is essential for different aspects of the nervous system, particularly during development. The significance of the LINC complex in neural lineage cells is further corroborated by the fact that mutations in genes associated with the LINC complex have been implicated in several neurological diseases, including neurodegenerative and psychiatric disorders. In this review, we aimed to summarize the expanding knowledge of LINC complex-related neuronal functions and associated neurological diseases.
Collapse
Affiliation(s)
- Ken-ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | | |
Collapse
|
6
|
Dias AP, Rehmani T, Salih M, Tuana B. Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis. Open Biol 2024; 14:240094. [PMID: 39378988 PMCID: PMC11461071 DOI: 10.1098/rsob.240094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 10/10/2024] Open
Abstract
The positioning and communication between the nucleus and centrosomes are essential in cell division, differentiation and tissue formation. During skeletal myogenesis, the nuclei become evenly spaced with the switch of the microtubule-organizing centre (MTOC) from the centrosome to the nuclear envelope (NE). We report that the tail-anchored sarcolemmal membrane associated protein 3 (SLMAP3), a component of the MTOC and NE, is crucial for myogenesis because its deletion in mice leads to a reduction in the NE-MTOC formation, mislocalization of the nuclei, dysregulation of the myogenic programme and abnormal embryonic myofibres. SLMAP3-/- myoblasts also displayed a similar disorganized distribution of nuclei with an aberrant NE-MTOC and defective myofibre formation and differentiation programming. We identified novel interactors of SLMAP3, including pericentrin, PCM1 (pericentriolar material 1), AKAP9 (A-kinase anchoring protein 9), kinesin-1 members Kif5B (kinesin family member 5B), KCL1 (kinesin light chain 1), KLC2 (kinesin light chain 2) and nuclear lamins, and observed that the distribution of centrosomal proteins at the NE together with Nesprin-1 was significantly altered by the loss of SLMAP3 in differentiating myoblasts. SLMAP3 is believed to negatively regulate Hippo signalling, but its loss was without impact on this pathway in developing muscle. These results reveal that SLMAP3 is essential for skeletal myogenesis through unique mechanisms involving the positioning of nuclei, NE-MTOC dynamics and gene programming.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| |
Collapse
|
7
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024; 227:iyae071. [PMID: 38797871 PMCID: PMC11228842 DOI: 10.1093/genetics/iyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
8
|
Agarwal P, Berger S, Shemesh T, Zaidel-Bar R. Active nuclear positioning and actomyosin contractility maintain leader cell integrity during gonadogenesis. Curr Biol 2024; 34:2373-2386.e5. [PMID: 38776903 DOI: 10.1016/j.cub.2024.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Proper distribution of organelles can play an important role in a moving cell's performance. During C. elegans gonad morphogenesis, the nucleus of the leading distal tip cell (DTC) is always found at the front, yet the significance of this localization is unknown. Here, we identified the molecular mechanism that keeps the nucleus at the front, despite a frictional force that pushes it backward. The Klarsicht/ANC-1/Syne homology (KASH) domain protein UNC-83 links the nucleus to the motor protein kinesin-1 that moves along a polarized acentrosomal microtubule network. Interestingly, disrupting nuclear positioning on its own did not affect gonad morphogenesis. However, reducing actomyosin contractility on top of nuclear mispositioning led to a dramatic phenotype: DTC splitting and gonad bifurcation. Long-term live imaging of the double knockdown revealed that, while the gonad attempted to perform a planned U-turn, the DTC was stretched due to the lagging nucleus until it fragmented into a nucleated cell and an enucleated cytoplast, each leading an independent gonadal arm. Remarkably, the enucleated cytoplast had polarity and invaded, but it could only temporarily support germ cell proliferation. Based on a qualitative biophysical model, we conclude that the leader cell employs two complementary mechanical approaches to preserve its integrity and ensure proper organ morphogenesis while navigating through a complex 3D environment: active nuclear positioning by microtubule motors and actomyosin-driven cortical contractility.
Collapse
Affiliation(s)
- Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Simon Berger
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Tom Shemesh
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
9
|
Suga A, Minegishi Y, Yamamoto M, Ueda K, Iwata T. Compound heterozygous mutations in a mouse model of Leber congenital amaurosis reveal the role of CCT2 in photoreceptor maintenance. Commun Biol 2024; 7:676. [PMID: 38830954 PMCID: PMC11148128 DOI: 10.1038/s42003-024-06384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
TRiC/CCT is a chaperonin complex required for the folding of cytoplasmic proteins. Although mutations in each subunit of TRiC/CCT are associated with various human neurodegenerative diseases, their impact in mammalian models has not yet been examined. A compound heterozygous mutation in CCT2 (p.[Thr400Pro]; p.[Arg516His]) is causal for Leber congenital amaurosis. Here, we generate mice carrying each mutation and show that Arg516His (R516H) homozygosity causes photoreceptor degeneration accompanied by a significant depletion of TRiC/CCT substrate proteins in the retina. In contrast, Thr400Pro (T400P) homozygosity results in embryonic lethality, and the compound heterozygous mutant (T400P/R516H) mouse showed aberrant cone cell lamination and died 2 weeks after birth. Finally, CCDC181 is identified as a interacting protein for CCTβ protein, and its localization to photoreceptor connecting cilia is compromised in the mutant mouse. Our results demonstrate the distinct impact of each mutation in vivo and suggest a requirement for CCTβ in ciliary maintenance.
Collapse
Affiliation(s)
- Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Megumi Yamamoto
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan.
| |
Collapse
|
10
|
Gregory EF, Luxton GWG, Starr DA. Anchorage of H3K9-methylated heterochromatin to the nuclear periphery helps mediate P-cell nuclear migration though constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595380. [PMID: 38826247 PMCID: PMC11142143 DOI: 10.1101/2024.05.22.595380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nuclei adjust their deformability while migrating through constrictions to enable structural changes and maintain nuclear integrity. The effect of heterochromatin anchored at the nucleoplasmic face of the inner nuclear membrane on nuclear morphology and deformability during in vivo nuclear migration through constricted spaces remains unclear. Here, we show that abolishing peripheral heterochromatin anchorage by eliminating CEC-4, a chromodomain protein that tethers H3K9-methylated chromatin to the nuclear periphery, disrupts constrained P-cell nuclear migration in Caenorhabditis elegans larvae in the absence of the established LINC complex-dependent pathway. CEC-4 acts in parallel to an actin and CDC-42-based pathway. We also demonstrate the necessity for the chromatin methyltransferases MET-2 and JMJD-1.2 during P-cell nuclear migration in the absence of functional LINC complexes. We conclude that H3K9-nethylated chromatin needs to be anchored to the nucleoplasmic face of the inner nuclear membrane to help facilitate nuclear migration through constricted spaces in vivo.
Collapse
Affiliation(s)
- Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| |
Collapse
|
11
|
Bueno C, García-Bernal D, Martínez S, Blanquer M, Moraleda JM. The nuclei of human adult stem cells can move within the cell and generate cellular protrusions to contact other cells. Stem Cell Res Ther 2024; 15:32. [PMID: 38321563 PMCID: PMC10848534 DOI: 10.1186/s13287-024-03638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The neuronal transdifferentiation of adult bone marrow cells (BMCs) is still considered an artifact based on an alternative explanation of experimental results supporting this phenomenon obtained over decades. However, recent studies have shown that following neural induction, BMCs enter an intermediate cellular state before adopting neural-like morphologies by active neurite extension and that binucleated BMCs can be formed independent of any cell fusion events. These findings provide evidence to reject the idea that BMC neural transdifferentiation is merely an experimental artifact. Therefore, understanding the intermediate states that cells pass through during transdifferentiation is crucial given their potential application in regenerative medicine and disease modelling. METHODS In this study, we examined the functional significance of the variety of morphologies and positioning that cell nuclei of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can adopt during neural-like differentiation using live-cell nuclear fluorescence labelling, time-lapse microscopy, and confocal microscopy analysis. RESULTS Here, we showed that after neural induction, hBM-MSCs enter an intermediate cellular state in which the nuclei are able to move within the cells, switching shapes and positioning and even generating cellular protrusions as they attempt to contact the cells around them. These findings suggest that changes in nuclear positioning occur because human cell nuclei somehow sense their environment. In addition, we showed the process of direct interactions between cell nuclei, which opens the possibility of a new level of intercellular interaction. CONCLUSIONS The present study advances the understanding of the intermediate stage through which hBM-MSCs pass during neural transdifferentiation, which may be crucial to understanding the mechanisms of these cell conversion processes and eventually harness them for use in regenerative medicine. Importantly, our study provides for the first time evidence that the nuclei of hBM-MSC-derived intermediate cells somehow sense their environment, generating cellular protrusions to contact other cells. In summary, human mesenchymal stromal cells could not only help to increase our understanding of the mechanisms underlying cellular plasticity but also facilitate the exact significance of nuclear positioning in cellular function and in tissue physiology.
Collapse
Affiliation(s)
- Carlos Bueno
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain.
| | - David García-Bernal
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
- Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550, San Juan, Alicante, Spain
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, 28029, Madrid, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - Miguel Blanquer
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| | - José M Moraleda
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| |
Collapse
|
12
|
Konstantinidis G, Tavernarakis N. In Vivo Monitoring of Nucleophagy in Caenorhabditis elegans. Methods Mol Biol 2024; 2845:67-77. [PMID: 39115658 DOI: 10.1007/978-1-0716-4067-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The autophagy-lysosomal pathway enables the controlled degradation of cellular contents. Nucleophagy is the selective autophagic recycling of nuclear components upon delivery to the lysosome. Although methods to monitor and quantify autophagy as well as selective types of autophagy have been developed and implemented in cells and in vivo, methods monitoring nucleophagy remain scarce. Here, we describe a procedure to monitor the autophagic engagement of an endogenous nuclear envelope component, i.e., ANC-1, the nematode homologue of the mammalian Nesprins in vivo, utilizing super-resolution microscopy.
Collapse
Affiliation(s)
- Georgios Konstantinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
13
|
Jimeno D, Lillo C, de la Villa P, Calzada N, Santos E, Fernández-Medarde A. GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina. Cells 2023; 12:2574. [PMID: 37947653 PMCID: PMC10650203 DOI: 10.3390/cells12212574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2KO and GRF2WT mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2WT mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2KO mice. In contrast, the single ablation of CDC42 in the cone photoreceptors of GRF2WT mice resulted in clear alterations of nuclear movement that, unlike those of the GRF2KO retinas, were not accompanied by electrophysiological defects or slow, progressive cone cell degeneration. On the other hand, the concomitant disruption of GRF2 and CDC42 in the cone photoreceptors resulted, somewhat surprisingly, in a normalized pattern of nuclear positioning/movement, similar to that physiologically observed in GRF2WT mice, along with worsened patterns of electrophysiological responses and faster rates of cell death/disappearance than those previously recorded in single GRF2KO cone cells. Interestingly, the increased rates of cone cell apoptosis/death observed in single GRF2KO and double-knockout GRF2KO/CDC42KO retinas correlated with the electron microscopic detection of significant ultrastructural alterations (flattening) of their retinal ribbon synapses that were not otherwise observed at all in single-knockout CDC42KO retinas. Our observations identify GRF2 and CDC42 (but not RAC1) as key regulators of retinal processes controlling cone photoreceptor nuclear positioning and survival, and support the notion of GRF2 loss-of-function mutations as potential drivers of cone retinal dystrophies.
Collapse
Affiliation(s)
- David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | | | - Pedro de la Villa
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcalá de Henares, and IRYCIS, 28034 Madrid, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| |
Collapse
|
14
|
Ho J, Guerrero LA, Libuda DE, Luxton GWG, Starr DA. Actin and CDC-42 contribute to nuclear migration through constricted spaces in C. elegans. Development 2023; 150:dev202115. [PMID: 37756590 PMCID: PMC10617605 DOI: 10.1242/dev.202115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Successful nuclear migration through constricted spaces between cells or in the extracellular matrix relies on the ability of the nucleus to deform. Little is known about how this takes place in vivo. We have studied confined nuclear migration in Caenorhabditis elegans larval P cells, which is mediated by the LINC complex to pull nuclei towards the minus ends of microtubules. Null mutations of the LINC component unc-84 lead to a temperature-dependent phenotype, suggesting a parallel pathway for P-cell nuclear migration. A forward genetic screen for enhancers of unc-84 identified cgef-1 (CDC-42 guanine nucleotide exchange factor). Knockdown of CDC-42 in the absence of the LINC complex led to a P-cell nuclear migration defect. Expression of constitutively active CDC-42 partially rescued nuclear migration in cgef-1; unc-84 double mutants, suggesting that CDC-42 functions downstream of CGEF-1. The Arp2/3 complex and non-muscle myosin II (NMY-2) were also found to function parallel to the LINC pathway. In our model, CGEF-1 activates CDC-42, which induces actin polymerization through the Arp2/3 complex to deform the nucleus during nuclear migration, and NMY-2 helps to push the nucleus through confined spaces.
Collapse
Affiliation(s)
- Jamie Ho
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Leslie A. Guerrero
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Diana E. Libuda
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to LINC complexes and Cdc42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552041. [PMID: 37577634 PMCID: PMC10418278 DOI: 10.1101/2023.08.04.552041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and pro-inflammatory responses. Studies performed in tissue culture cells have implicated LINC (linker of nucleoskeleton and cytoskeleton) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In C. elegans larvae, 6 pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function, this and structural predictions suggest that FLN-2 is not a divergent filamin. The immunoglobulin (Ig)-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
16
|
Gümüşderelioğlu S, Resch L, Brock T, Luxton GWG, Cope H, Tan QKG, Hopkins C, Starr DA. A humanized Caenorhabditis elegans model of hereditary spastic paraplegia-associated variants in KLC4. Dis Model Mech 2023; 16:dmm050076. [PMID: 37565267 PMCID: PMC10481945 DOI: 10.1242/dmm.050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of degenerative neurological disorders. We identified a variant in human kinesin light chain 4 (KLC4) that is suspected to be associated with autosomal-dominant HSP. How this and other variants relate to pathologies is unknown. We created a humanized Caenorhabditis elegans model in which klc-2 was replaced by human KLC4 (referred to as hKLC4) and assessed the extent to which hKLC4 retained function in the worm. We observed a slight decrease in motility but no nuclear migration defects in the humanized worms, suggesting that hKLC4 retains much of the function of klc-2. Five hKLC4 variants were introduced into the humanized model. The clinical variant led to early lethality, with significant defects in nuclear migration when homozygous and a weak nuclear migration defect when heterozygous, possibly correlating with the clinical finding of late-onset HSP when the proband was heterozygous. Thus, we were able to establish humanized C. elegans as an animal model for HSP and to use it to test the significance of five variants of uncertain significance in the human gene KLC4.
Collapse
Affiliation(s)
- Selin Gümüşderelioğlu
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Queenie K.-G. Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
17
|
Huang Q, Chen J, Lv Q, Long M, Pan G, Zhou Z. Germination of Microsporidian Spores: The Known and Unknown. J Fungi (Basel) 2023; 9:774. [PMID: 37504762 PMCID: PMC10381864 DOI: 10.3390/jof9070774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Microsporidia are a large group of mysterious obligate intracellular eukaryotic parasites. The microsporidian spore can survive in the absence of nutrients for years under harsh conditions and germinate within seconds under the stimulation of environmental changes like pH and ions. During germination, microsporidia experience an increase in intrasporal osmotic pressure, which leads to an influx of water into the spore, followed by swelling of the polaroplasts and posterior vacuole, which eventually fires the polar filament (PF). Infectious sporoplasm was transported through the extruded polar tube (PT) and delivered into the host cell. Despite much that has been learned about the germination of microsporidia, there are still several major questions that remain unanswered, including: (i) There is still a lack of knowledge about the signaling pathways involved in spore germination. (ii) The germination of spores is not well understood in terms of its specific energetics. (iii) Limited understanding of how spores germinate and how the nucleus and membranes are rearranged during germination. (iv) Only a few proteins in the invasion organelles have been identified; many more are likely undiscovered. This review summarizes the major resolved and unresolved issues concerning the process of microsporidian spore germination.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
18
|
Imaizumi H, Minami K, Hieda M, Narihiro N, Koizumi M. The linker of nucleoskeleton and cytoskeleton complex is required for X-ray-induced epithelial-mesenchymal transition. JOURNAL OF RADIATION RESEARCH 2023; 64:358-368. [PMID: 36694940 PMCID: PMC10036107 DOI: 10.1093/jrr/rrac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex has been implicated in various functions of the nuclear envelope, including nuclear migration, mechanotransduction and DNA repair. We previously revealed that the LINC complex component Sad1 and UNC84 domain containing 1 (SUN1) is required for sublethal-dose X-ray-enhanced cell migration and invasion. This study focused on epithelial-mesenchymal transition (EMT), which contributes to cell migration. Hence, the present study aimed to examine whether sublethal-dose X-irradiation induces EMT and whether LINC complex component SUN1 is involved in low-dose X-ray-induced EMT. This study showed that low-dose (0.5 Gy or 2 Gy) X-irradiation induced EMT in human breast cancer MDA-MB-231 cells. Additionally, X-irradiation increased the expression of SUN1. Therefore, SUN1 was depleted using siRNA. In SUN1-depleted cells, low-dose X-irradiation did not induce EMT. In addition, although the SUN1 splicing variant SUN1_916-depleted cells (containing 916 amino acids [AA] of SUN1) were induced EMT by low-dose X-irradiation like as non-transfected control cells, SUN1_888-depleted cells (which encodes 888 AA) were not induced EMT by low-dose X-irradiation. Moreover, since the Wnt/β-catenin signaling pathway regulates E-cadherin expression via the expression of the E-cadherin repressor Snail, the expression of β-catenin after X-irradiation was examined. After 24 hours of irradiation, β-catenin expression increased in non-transfected cells or SUN1_916-depleted cells, whereas β-catenin expression remained unchanged and did not increase in SUN1- or SUN1_888-depleted cells. Therefore, in this study, we found that low-dose X-irradiation induces EMT, and LINC complex component SUN1, especially SUN1_888, is required for X-ray-induced EMT via activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hiromasa Imaizumi
- Corresponding author. Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan. E-mail: ; Tel: +81-86-462-1111; Fax: +81-86-464-1109
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Graduate School of Medicine and Health Science, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Hieda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, 543 Takoda, Tobe-cho, Iyo-gun, Ehime 791-2101, Japan
| | - Naomasa Narihiro
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Graduate School of Medicine and Health Science, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Fujita I, Kimura A, Yamashita A. A force balance model for a cell size-dependent meiotic nuclear oscillation in fission yeast. EMBO Rep 2023; 24:e55770. [PMID: 36622644 PMCID: PMC9986818 DOI: 10.15252/embr.202255770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Fission yeast undergoes premeiotic nuclear oscillation, which is dependent on microtubules and is driven by cytoplasmic dynein. Although the molecular mechanisms have been analyzed, how a robust oscillation is generated despite the dynamic behaviors of microtubules has yet to be elucidated. Here, we show that the oscillation exhibits cell length-dependent frequency and requires a balance between microtubule and viscous drag forces, as well as proper microtubule dynamics. Comparison of the oscillations observed in living cells with a simulation model based on microtubule dynamic instability reveals that the period of oscillation correlates with cell length. Genetic alterations that reduce cargo size suggest that the nuclear movement depends on viscous drag forces. Deletion of a gene encoding Kinesin-8 inhibits microtubule catastrophe at the cell cortex and results in perturbation of oscillation, indicating that nuclear movement also depends on microtubule dynamic instability. Our findings link numerical parameters from the simulation model with cellular functions required for generating the oscillation and provide a basis for understanding the physical properties of microtubule-dependent nuclear movements.
Collapse
Affiliation(s)
- Ikumi Fujita
- Laboratory for Cell Asymmetry, Center for Biosystems Dynamics ResearchRIKENKobeJapan
| | - Akatsuki Kimura
- Cell Architecture LaboratoryNational Institute of GeneticsMishimaJapan
- Department of Genetics, School of Life ScienceSOKENDAI (The Graduate University for Advanced Studies)MishimaJapan
| | - Akira Yamashita
- Interdisciplinary Research UnitNational Institute for Basic BiologyOkazakiJapan
- Center for Low‐temperature Plasma SciencesNagoya UniversityNagoyaJapan
| |
Collapse
|
20
|
Abstract
Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.
Collapse
Affiliation(s)
- Jorel R. Padilla
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S. Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
21
|
Joshi R, Han SB, Cho WK, Kim DH. The role of cellular traction forces in deciphering nuclear mechanics. Biomater Res 2022; 26:43. [PMID: 36076274 PMCID: PMC9461125 DOI: 10.1186/s40824-022-00289-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cellular forces exerted on the extracellular matrix (ECM) during adhesion and migration under physiological and pathological conditions regulate not only the overall cell morphology but also nuclear deformation. Nuclear deformation can alter gene expression, integrity of the nuclear envelope, nucleus-cytoskeletal connection, chromatin architecture, and, in some cases, DNA damage responses. Although nuclear deformation is caused by the transfer of forces from the ECM to the nucleus, the role of intracellular organelles in force transfer remains unclear and a challenging area of study. To elucidate nuclear mechanics, various factors such as appropriate biomaterial properties, processing route, cellular force measurement technique, and micromanipulation of nuclear forces must be understood. In the initial phase of this review, we focused on various engineered biomaterials (natural and synthetic extracellular matrices) and their manufacturing routes along with the properties required to mimic the tumor microenvironment. Furthermore, we discussed the principle of tools used to measure the cellular traction force generated during cell adhesion and migration, followed by recently developed techniques to gauge nuclear mechanics. In the last phase of this review, we outlined the principle of traction force microscopy (TFM), challenges in the remodeling of traction forces, microbead displacement tracking algorithm, data transformation from bead movement, and extension of 2-dimensional TFM to multiscale TFM.
Collapse
Affiliation(s)
- Rakesh Joshi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
22
|
Nuclear speed and cycle length co-vary with local density during syncytial blastoderm formation in a cricket. Nat Commun 2022; 13:3889. [PMID: 35794113 PMCID: PMC9259616 DOI: 10.1038/s41467-022-31212-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The blastoderm is a broadly conserved stage of early animal development, wherein cells form a layer at the embryo’s periphery. The cellular behaviors underlying blastoderm formation are varied and poorly understood. In most insects, the pre-blastoderm embryo is a syncytium: nuclei divide and move throughout the shared cytoplasm, ultimately reaching the cortex. In Drosophila melanogaster, some early nuclear movements result from pulsed cytoplasmic flows that are coupled to synchronous divisions. Here, we show that the cricket Gryllus bimaculatus has a different solution to the problem of creating a blastoderm. We quantified nuclear dynamics during blastoderm formation in G. bimaculatus embryos, finding that: (1) cytoplasmic flows are unimportant for nuclear movement, and (2) division cycles, nuclear speeds, and the directions of nuclear movement are not synchronized, instead being heterogeneous in space and time. Moreover, nuclear divisions and movements co-vary with local nuclear density. We show that several previously proposed models for nuclear movements in D. melanogaster cannot explain the dynamics of G. bimaculatus nuclei. We introduce a geometric model based on asymmetric pulling forces on nuclei, which recapitulates the patterns of nuclear speeds and orientations of both unperturbed G. bimaculatus embryos, and of embryos physically manipulated to have atypical nuclear densities. Early in insect embryo development, many nuclei share one large cell, travel varied paths and self-organize into a single layer. Donoughe et al. illuminate this process with live-imaging, modeling, and experimental changes to the embryo’s shape.
Collapse
|
23
|
Deshpande O, de-Carvalho J, Vieira DV, Telley IA. Astral microtubule cross-linking safeguards uniform nuclear distribution in the Drosophila syncytium. J Cell Biol 2022; 221:212810. [PMID: 34766978 PMCID: PMC8594625 DOI: 10.1083/jcb.202007209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The early insect embryo develops as a multinucleated cell distributing the genome uniformly to the cell cortex. Mechanistic insight for nuclear positioning beyond cytoskeletal requirements is missing. Contemporary hypotheses propose actomyosin-driven cytoplasmic movement transporting nuclei or repulsion of neighbor nuclei driven by microtubule motors. Here, we show that microtubule cross-linking by Feo and Klp3A is essential for nuclear distribution and internuclear distance maintenance in Drosophila. Germline knockdown causes irregular, less-dense nuclear delivery to the cell cortex and smaller distribution in ex vivo embryo explants. A minimal internuclear distance is maintained in explants from control embryos but not from Feo-inhibited embryos, following micromanipulation-assisted repositioning. A dimerization-deficient Feo abolishes nuclear separation in embryo explants, while the full-length protein rescues the genetic knockdown. We conclude that Feo and Klp3A cross-linking of antiparallel microtubule overlap generates a length-regulated mechanical link between neighboring microtubule asters. Enabled by a novel experimental approach, our study illuminates an essential process of embryonic multicellularity.
Collapse
Affiliation(s)
- Ojas Deshpande
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Diana V Vieira
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| |
Collapse
|
24
|
Brandt JN, Voss L, Rambo FM, Nicholson K, Thein JR, Fairchild L, Seabrook L, Lewis D, Guevara-Hernandez L, White ML, Sax L, Eichten V, Harper L, Hermann GJ. Asymmetric organelle positioning during epithelial polarization of C. elegans intestinal cells. Dev Biol 2022; 481:75-94. [PMID: 34597675 PMCID: PMC8665101 DOI: 10.1016/j.ydbio.2021.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
While the epithelial cell cortex displays profound asymmetries in protein distribution and morphology along the apico-basal axis, the extent to which the cytoplasm is similarly polarized within epithelial cells remains relatively unexplored. We show that cytoplasmic organelles within C. elegans embryonic intestinal cells develop extensive apico-basal polarity at the time they establish cortical asymmetry. Nuclei and conventional endosomes, including early endosomes, late endosomes, and lysosomes, become polarized apically. Lysosome-related gut granules, yolk platelets, and lipid droplets become basally enriched. Removal of par-3 activity does not disrupt organelle positioning, indicating that cytoplasmic apico-basal asymmetry is independent of the PAR polarity pathway. Blocking the apical migration of nuclei leads to the apical positioning of gut granules and yolk platelets, whereas the asymmetric localization of conventional endosomes and lipid droplets is unaltered. This suggests that nuclear positioning organizes some, but not all, cytoplasmic asymmetries in this cell type. We show that gut granules become apically enriched when WHT-2 and WHT-7 function is disrupted, identifying a novel role for ABCG transporters in gut granule positioning during epithelial polarization. Analysis of WHT-2 and WHT-7 ATPase mutants is consistent with a WHT-2/WHT-7 heterodimer acting as a transporter in gut granule positioning. In wht-2(-) mutants, the polarized distribution of other organelles is not altered and gut granules do not take on characteristics of conventional endosomes that could have explained their apical mispositioning. During epithelial polarization wht-2(-) gut granules exhibit a loss of the Rab32/38 family member GLO-1 and ectopic expression of GLO-1 is sufficient to rescue the basal positioning of wht-2(-) and wht-7(-) gut granules. Furthermore, depletion of GLO-1 causes the mislocalization of the endolysosomal RAB-7 to gut granules and RAB-7 drives the apical mispositioning of gut granules when GLO-1, WHT-2, or WHT-7 function is disrupted. We suggest that ABC transporters residing on gut granules can regulate Rab dynamics to control organelle positioning during epithelial polarization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Greg J. Hermann
- Corresponding author. Department of Biology, Lewis & Clark College, Portland, OR, USA, (G.J. Hermann)
| |
Collapse
|
25
|
Siemsen K, Rajput S, Rasch F, Taheri F, Adelung R, Lammerding J, Selhuber‐Unkel C. Tunable 3D Hydrogel Microchannel Networks to Study Confined Mammalian Cell Migration. Adv Healthc Mater 2021; 10:e2100625. [PMID: 34668667 PMCID: PMC8743577 DOI: 10.1002/adhm.202100625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/12/2021] [Indexed: 11/12/2022]
Abstract
Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environmental architecture is particularly relevant in the context of cancer cell metastasis, where cells migrate through small constrictions in their microenvironment to invade surrounding tissues. Here, a synthetic hydrogel scaffold with an interconnected, random, 3D microchannel network is presented that is functionalized with collagen to promote cell adhesion. It is shown that cancer cells can invade such scaffolds within days, and both the microarchitecture and stiffness of the hydrogel modulate cell invasion and nuclear dynamics of the cells. Specifically, it is found that cell migration through the microchannels is a function of hydrogel stiffness. In addition to this, it is shown that the hydrogel stiffness and confinement, influence the occurrence of nuclear envelope ruptures of cells. The tunable hydrogel microarchitecture and stiffness thus provide a novel tool to investigate cancer cell invasion as a function of the 3D microenvironment. Furthermore, the material provides a promising strategy to control cell positioning, migration, and cellular function in biological applications, such as tissue engineering.
Collapse
Affiliation(s)
| | - Sunil Rajput
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
| | - Florian Rasch
- Institute for Materials ScienceKiel UniversityKielD‐24143Germany
| | - Fereydoon Taheri
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
| | - Rainer Adelung
- Institute for Materials ScienceKiel UniversityKielD‐24143Germany
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNY14853USA
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
- Max Planck School Matter to LifeJahnstraße 29Heidelberg69120Germany
| |
Collapse
|
26
|
Pérez-Dones D, Ledesma-Terrón M, Míguez DG. Quantitative Approaches to Study Retinal Neurogenesis. Biomedicines 2021; 9:1222. [PMID: 34572408 PMCID: PMC8471905 DOI: 10.3390/biomedicines9091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the development of the vertebrate retina can be addressed from several perspectives: from a purely qualitative to a more quantitative approach that takes into account its spatio-temporal features, its three-dimensional structure and also the regulation and properties at the systems level. Here, we review the ongoing transition toward a full four-dimensional characterization of the developing vertebrate retina, focusing on the challenges at the experimental, image acquisition, image processing and quantification. Using the developing zebrafish retina, we illustrate how quantitative data extracted from these type of highly dense, three-dimensional tissues depend strongly on the image quality, image processing and algorithms used to segment and quantify. Therefore, we propose that the scientific community that focuses on developmental systems could strongly benefit from a more detailed disclosure of the tools and pipelines used to process and analyze images from biological samples.
Collapse
Affiliation(s)
- Diego Pérez-Dones
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mario Ledesma-Terrón
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
27
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
28
|
Cavazza T, Takeda Y, Politi AZ, Aushev M, Aldag P, Baker C, Choudhary M, Bucevičius J, Lukinavičius G, Elder K, Blayney M, Lucas-Hahn A, Niemann H, Herbert M, Schuh M. Parental genome unification is highly error-prone in mammalian embryos. Cell 2021; 184:2860-2877.e22. [PMID: 33964210 PMCID: PMC8162515 DOI: 10.1016/j.cell.2021.04.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Yuko Takeda
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK
| | - Antonio Z Politi
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Magomet Aushev
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK
| | - Patrick Aldag
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | | | - Meenakshi Choudhary
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4EP Newcastle upon Tyne, UK
| | - Jonas Bucevičius
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Kay Elder
- Bourn Hall Clinic, CB23 2TN Cambridge, UK
| | | | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | - Mary Herbert
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK; Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4EP Newcastle upon Tyne, UK
| | - Melina Schuh
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
29
|
Hao H, Kalra S, Jameson LE, Guerrero LA, Cain NE, Bolivar J, Starr DA. The Nesprin-1/-2 ortholog ANC-1 regulates organelle positioning in C. elegans independently from its KASH or actin-binding domains. eLife 2021; 10:e61069. [PMID: 33860766 PMCID: PMC8139857 DOI: 10.7554/elife.61069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/11/2021] [Indexed: 12/15/2022] Open
Abstract
KASH proteins in the outer nuclear membrane comprise the cytoplasmic half of linker of nucleoskeleton and cytoskeleton (LINC) complexes that connect nuclei to the cytoskeleton. Caenorhabditis elegans ANC-1, an ortholog of Nesprin-1/2, contains actin-binding and KASH domains at opposite ends of a long spectrin-like region. Deletion of either the KASH or calponin homology (CH) domains does not completely disrupt nuclear positioning, suggesting neither KASH nor CH domains are essential. Deletions in the spectrin-like region of ANC-1 led to significant defects, but only recapitulated the null phenotype in combination with mutations in the transmembrane (TM) span. In anc-1 mutants, the endoplasmic reticulum ER, mitochondria, and lipid droplets were unanchored, moving throughout the cytoplasm. The data presented here support a cytoplasmic integrity model where ANC-1 localizes to the ER membrane and extends into the cytoplasm to position nuclei, ER, mitochondria, and other organelles in place.
Collapse
Affiliation(s)
- Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Laura E Jameson
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Leslie A Guerrero
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jessica Bolivar
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
30
|
Calero-Cuenca FJ, Osorio DS, Carvalho-Marques S, Sridhara SC, Oliveira LM, Jiao Y, Diaz J, Janota CS, Cadot B, Gomes ER. Ctdnep1 and Eps8L2 regulate dorsal actin cables for nuclear positioning during cell migration. Curr Biol 2021; 31:1521-1530.e8. [PMID: 33567288 PMCID: PMC8043254 DOI: 10.1016/j.cub.2021.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2020] [Accepted: 01/06/2021] [Indexed: 11/30/2022]
Abstract
Cells actively position their nuclei within the cytoplasm for multiple cellular and physiological functions.1, 2, 3 Consequently, nuclear mispositioning is usually associated with cell dysfunction and disease, from muscular disorders to cancer metastasis.4, 5, 6, 7 Different cell types position their nuclei away from the leading edge during cell migration.8, 9, 10, 11 In migrating fibroblasts, nuclear positioning is driven by an actin retrograde flow originated at the leading edge that drives dorsal actin cables away from the leading edge. The dorsal actin cables connect to the nuclear envelope by the linker of nucleoskeleton and cytoskeleton (LINC) complex on transmembrane actin-associated nuclear (TAN) lines.12, 13, 14 Dorsal actin cables are required for the formation of TAN lines. How dorsal actin cables are organized to promote TAN lines formation is unknown. Here, we report a role for Ctdnep1/Dullard, a nuclear envelope phosphatase,15, 16, 17, 18, 19, 20, 21, 22 and the actin regulator Eps8L223, 24, 25 on nuclear positioning and cell migration. We demonstrate that Ctdnep1 and Eps8L2 directly interact, and this interaction is important for nuclear positioning and cell migration. We also show that Ctdnep1 and Eps8L2 are involved in the formation and thickness of dorsal actin cables required for TAN lines engagement during nuclear movement. We propose that Ctdnep1-Eps8L2 interaction regulates dorsal actin cables for nuclear movement during cell migration. Ctdnep1 and Eps8L2 are required for nuclear positioning and TAN lines formation Ctdnep1 directly interacts with Eps8L2 for nuclear movement and cell migration Ctdnep1-Eps8L2 interaction regulates dorsal actin organization
Collapse
Affiliation(s)
- Francisco J Calero-Cuenca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Daniel S Osorio
- Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France
| | - Sofia Carvalho-Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sreerama Chaitanya Sridhara
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luis M Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Yue Jiao
- Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France
| | - Jheimmy Diaz
- Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France
| | - Cátia S Janota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Bruno Cadot
- Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France
| | - Edgar R Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Center for Research in Myology, INSERM U974, CNRS FRE3617, Université Pierre et Marie Curie, Sorbonne Universités, GH Pitié Salpêtrière, 75013 Paris, France; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
31
|
Ashraf S, Tay YD, Kelly DA, Sawin KE. Microtubule-independent movement of the fission yeast nucleus. J Cell Sci 2021; 134:jcs.253021. [PMID: 33602740 PMCID: PMC8015250 DOI: 10.1242/jcs.253021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Movement of the cell nucleus typically involves the cytoskeleton and either polymerization-based pushing forces or motor-based pulling forces. In the fission yeast Schizosaccharomyces pombe, nuclear movement and positioning are thought to depend on microtubule polymerization-based pushing forces. Here, we describe a novel, microtubule-independent, form of nuclear movement in fission yeast. Microtubule-independent nuclear movement is directed towards growing cell tips, and it is strongest when the nucleus is close to a growing cell tip, and weakest when the nucleus is far from that tip. Microtubule-independent nuclear movement requires actin cables but does not depend on actin polymerization-based pushing or myosin V-based pulling forces. The vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) Scs2 and Scs22, which are critical for endoplasmic reticulum-plasma membrane contact sites in fission yeast, are also required for microtubule-independent nuclear movement. We also find that in cells in which microtubule-based pushing forces are present, disruption of actin cables leads to increased fluctuations in interphase nuclear positioning and subsequent altered septation. Our results suggest two non-exclusive mechanisms for microtubule-independent nuclear movement, which may help illuminate aspects of nuclear positioning in other cells.
Collapse
|
32
|
Scheffler K, Uraji J, Jentoft I, Cavazza T, Mönnich E, Mogessie B, Schuh M. Two mechanisms drive pronuclear migration in mouse zygotes. Nat Commun 2021; 12:841. [PMID: 33547291 PMCID: PMC7864974 DOI: 10.1038/s41467-021-21020-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
A new life begins with the unification of the maternal and paternal chromosomes upon fertilization. The parental chromosomes first become enclosed in two separate pronuclei near the surface of the fertilized egg. The mechanisms that then move the pronuclei inwards for their unification are only poorly understood in mammals. Here, we report two mechanisms that act in concert to unite the parental genomes in fertilized mouse eggs. The male pronucleus assembles within the fertilization cone and is rapidly moved inwards by the flattening cone. Rab11a recruits the actin nucleation factors Spire and Formin-2 into the fertilization cone, where they locally nucleate actin and further accelerate the pronucleus inwards. In parallel, a dynamic network of microtubules assembles that slowly moves the male and female pronuclei towards the cell centre in a dynein-dependent manner. Both mechanisms are partially redundant and act in concert to unite the parental pronuclei in the zygote's centre.
Collapse
Affiliation(s)
- Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Julia Uraji
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ida Jentoft
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tommaso Cavazza
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Eike Mönnich
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
33
|
Moser M, Kirkpatrick A, Groves NR, Meier I. LINC-complex mediated positioning of the vegetative nucleus is involved in calcium and ROS signaling in Arabidopsis pollen tubes. Nucleus 2020; 11:149-163. [PMID: 32631106 PMCID: PMC7529407 DOI: 10.1080/19491034.2020.1783783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nuclear movement and positioning play a role in developmental processes throughout life. Nuclear movement and positioning are mediated primarily by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes are comprised of the inner nuclear membrane SUN proteins and the outer nuclear membrane (ONM) KASH proteins. In Arabidopsis pollen tubes, the vegetative nucleus (VN) maintains a fixed distance from the pollen tube tip during growth, and the VN precedes the sperm cells (SCs). In pollen tubes of wit12 and wifi, mutants deficient in the ONM component of a plant LINC complex, the SCs precede the VN during pollen tube growth and the fixed VN distance from the tip is lost. Subsequently, pollen tubes frequently fail to burst upon reception. In this study, we sought to determine if the pollen tube reception defect observed in wit12 and wifi is due to decreased sensitivity to reactive oxygen species (ROS). Here, we show that wit12 and wifi are hyposensitive to exogenous H2O2, and that this hyposensitivity is correlated with decreased proximity of the VN to the pollen tube tip. Additionally, we report the first instance of nuclear Ca2+ peaks in growing pollen tubes, which are disrupted in the wit12 mutant. In the wit12 mutant, nuclear Ca2+ peaks are reduced in response to exogenous ROS, but these peaks are not correlated with pollen tube burst. This study finds that VN proximity to the pollen tube tip is required for both response to exogenous ROS, as well as internal nuclear Ca2+ fluctuations.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Andrew Kirkpatrick
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA.,Center for RNA Biology, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
34
|
Biel A, Moser M, Meier I. Arabidopsis KASH Proteins SINE1 and SINE2 Are Involved in Microtubule Reorganization During ABA-Induced Stomatal Closure. FRONTIERS IN PLANT SCIENCE 2020; 11:575573. [PMID: 33324432 PMCID: PMC7722481 DOI: 10.3389/fpls.2020.575573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
Abscisic acid (ABA) induces stomatal closure by utilizing complex signaling mechanisms, allowing for sessile plants to respond rapidly to ever-changing environmental conditions. ABA regulates the activity of plasma membrane ion channels and calcium-dependent protein kinases, Ca2+ oscillations, and reactive oxygen species (ROS) concentrations. Throughout ABA-induced stomatal closure, the cytoskeleton undergoes dramatic changes that appear important for efficient closure. However, the precise role of this cytoskeletal reorganization in stomatal closure and the nature of its regulation are unknown. We have recently shown that the plant KASH proteins SINE1 and SINE2 are connected to actin organization during ABA-induced stomatal closure but their role in microtubule (MT) organization remains to be investigated. We show here that depolymerizing MTs using oryzalin can restore ABA-induced stomatal closure deficits in sine1-1 and sine2-1 mutants. GFP-MAP4-visualized MT organization is compromised in sine1-1 and sine2-1 mutants during ABA-induced stomatal closure. Loss of SINE1 or SINE2 results in loss of radially organized MT patterning in open guard cells, aberrant MT organization during stomatal closure, and an overall decrease in the number of MT filaments or bundles. Thus, SINE1 and SINE2 are necessary for establishing MT patterning and mediating changes in MT rearrangement, which is required for ABA-induced stomatal closure.
Collapse
Affiliation(s)
- Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
35
|
Gonçalves JC, Quintremil S, Yi J, Vallee RB. Nesprin-2 Recruitment of BicD2 to the Nuclear Envelope Controls Dynein/Kinesin-Mediated Neuronal Migration In Vivo. Curr Biol 2020; 30:3116-3129.e4. [PMID: 32619477 PMCID: PMC9670326 DOI: 10.1016/j.cub.2020.05.091] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate brain development depends on a complex program of cell proliferation and migration. Post-mitotic neuronal migration in the developing cerebral cortex involves Nesprin-2, which recruits cytoplasmic dynein, kinesin, and actin to the nuclear envelope (NE) in other cell types. However, the relative importance of these interactions in neurons has remained poorly understood. To address these issues, we performed in utero electroporation into the developing rat brain to interfere with Nesprin-2 function. We find that an ∼100-kDa "mini" form of the ∼800-kDa Nesprin-2 protein, which binds dynein and kinesin, is sufficient, remarkably, to support neuronal migration. In contrast to dynein's role in forward nuclear migration in these cells, we find that kinesin-1 inhibition accelerates neuronal migration, suggesting a novel role for the opposite-directed motor proteins in regulating migration velocity. In contrast to studies in fibroblasts, the actin-binding domain of Nesprin-2 was dispensable for neuronal migration. We find further that, surprisingly, the motor proteins interact with Nesprin-2 through the dynein/kinesin "adaptor" BicD2, both in neurons and in non-mitotic fibroblasts. Furthermore, mutation of the Nesprin-2 LEWD sequence, implicated in nuclear envelope kinesin recruitment in other systems, interferes with BicD2 binding. Although disruption of the Nesprin-2/BicD2 interaction severely inhibited nuclear movement, centrosome advance proceeded unimpeded, supporting an independent mechanism for centrosome advance. Our data together implicate Nesprin-2 as a novel and fundamentally important form of BicD2 cargo and help explain BicD2's role in neuronal migration and human disease.
Collapse
Affiliation(s)
- João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| |
Collapse
|
36
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
37
|
Cao X, Yan C, Wu X, Zhou L, Xiu G. Nonylphenol induced individual and population fluctuation of Caenorhabditis elegans: Disturbances on developmental and reproductive system. ENVIRONMENTAL RESEARCH 2020; 186:109486. [PMID: 32283338 DOI: 10.1016/j.envres.2020.109486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 05/19/2023]
Abstract
The environmental risks that have arisen from endocrine disruption compounds (EDCs) have become global challenges, especially for persistent bio-accumulated xenobiotic chemicals, such as nonylphenol (NP). In the present study, the population dynamics of Caenorhabditis elegans (C. elegans) were systemically investigated by conducting developmental and reproductive bioassays under the exposure of NP, which has been widely detected in actual aquatic environments. The results revealed that under NP exposure (400 μg L-1 NP), developmental indictors of C. elegans, including the body length and width were significantly inhibited at different life stages of L1 and L4 larva, and the growth curves were further adversely affected. In addition, abnormalities in reproductive systems were also observed under NP exposure. Such abnormalities obeyed a dose-dependent relationship with NP levels, which were closely related to the delayed spawning time and decreased reproductive rates. Moreover, the results from global genome expression analysis for nematodes revealed that the most significant enriched GO terms could be predominantly responsible for the dysregulation of growth and reproductive system. The population's parameters, including age composition and intrinsic growth rate (rm d-1), displayed significant changes, with a suppressed potentiality of population growth. Those data elucidated that NP exhibited a profound impact on the dynamic stability of the population, even with no obvious effect on certain biochemical markers.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenzhi Yan
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Wu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
38
|
Lo Vecchio S, Thiagarajan R, Caballero D, Vigon V, Navoret L, Voituriez R, Riveline D. Collective Dynamics of Focal Adhesions Regulate Direction of Cell Motion. Cell Syst 2020; 10:535-542.e4. [DOI: 10.1016/j.cels.2020.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 01/14/2023]
|
39
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
40
|
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 2020; 8:394. [PMID: 32528959 PMCID: PMC7266953 DOI: 10.3389/fcell.2020.00394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration is a key process in health and disease. In the last decade an increasing attention is given to chromatin organization in migrating cells. In various types of cells induction of migration leads to a global increase in heterochromatin levels. Heterochromatin is required for optimal cell migration capabilities, since various interventions with heterochromatin formation impeded the migration rate of numerous cell types. Heterochromatin supports the migration process by affecting both the mechanical properties of the nucleus as well as the genetic processes taking place within it. Increased heterochromatin levels elevate nuclear rigidity in a manner that allows faster cell migration in 3D environments. Condensed chromatin and a more rigid nucleus may increase nuclear durability to shear stress and prevent DNA damage during the migration process. In addition, heterochromatin reorganization in migrating cells is important for induction of migration-specific transcriptional plan together with inhibition of many other unnecessary transcriptional changes. Thus, chromatin organization appears to have a key role in the cellular migration process.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Department of Molecular Biology and Ariel Center for Applied Cancer Research, Faculty of Life Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
41
|
Earle AJ, Kirby TJ, Fedorchak GR, Isermann P, Patel J, Iruvanti S, Moore SA, Bonne G, Wallrath LL, Lammerding J. Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. NATURE MATERIALS 2020; 19:464-473. [PMID: 31844279 PMCID: PMC7102937 DOI: 10.1038/s41563-019-0563-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/12/2019] [Indexed: 05/19/2023]
Abstract
Mutations in the LMNA gene, which encodes the nuclear envelope (NE) proteins lamins A/C, cause Emery-Dreifuss muscular dystrophy, congenital muscular dystrophy and other diseases collectively known as laminopathies. The mechanisms responsible for these diseases remain incompletely understood. Using three mouse models of muscle laminopathies and muscle biopsies from individuals with LMNA-related muscular dystrophy, we found that Lmna mutations reduced nuclear stability and caused transient rupture of the NE in skeletal muscle cells, resulting in DNA damage, DNA damage response activation and reduced cell viability. NE and DNA damage resulted from nuclear migration during skeletal muscle maturation and correlated with disease severity in the mouse models. Reduction of cytoskeletal forces on the myonuclei prevented NE damage and rescued myofibre function and viability in Lmna mutant myofibres, indicating that myofibre dysfunction is the result of mechanically induced NE damage. Taken together, these findings implicate mechanically induced DNA damage as a pathogenic contributor to LMNA skeletal muscle diseases.
Collapse
Affiliation(s)
- Ashley J Earle
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Tyler J Kirby
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Gregory R Fedorchak
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Philipp Isermann
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jineet Patel
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Sushruta Iruvanti
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gisèle Bonne
- Sorbonne Université, Inserm UMRS 974, Center of Research in Myology, Association Institute of Myology, Paris, France
| | - Lori L Wallrath
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
42
|
Job Opening for Nucleosome Mechanic: Flexibility Required. Cells 2020; 9:cells9030580. [PMID: 32121488 PMCID: PMC7140402 DOI: 10.3390/cells9030580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The nucleus has been studied for well over 100 years, and chromatin has been the intense focus of experiments for decades. In this review, we focus on an understudied aspect of chromatin biology, namely the chromatin fiber polymer’s mechanical properties. In recent years, innovative work deploying interdisciplinary approaches including computational modeling, in vitro manipulations of purified and native chromatin have resulted in deep mechanistic insights into how the mechanics of chromatin might contribute to its function. The picture that emerges is one of a nucleus that is shaped as much by external forces pressing down upon it, as internal forces pushing outwards from the chromatin. These properties may have evolved to afford the cell a dynamic and reversible force-induced communication highway which allows rapid coordination between external cues and internal genomic function.
Collapse
|
43
|
Abstract
The mechanisms that control how the two parental pronuclei fuse in the first mitosis of the embryo are poorly understood. In this issue, Rahman et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.201909137) found that membrane fusion between pronuclear envelopes, followed by fenestration, promotes pronuclear fusion.
Collapse
Affiliation(s)
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|
44
|
Rahman M, Chang IY, Harned A, Maheshwari R, Amoateng K, Narayan K, Cohen-Fix O. C. elegans pronuclei fuse after fertilization through a novel membrane structure. J Cell Biol 2020; 219:e201909137. [PMID: 31834351 PMCID: PMC7041684 DOI: 10.1083/jcb.201909137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
After fertilization, parental genomes are enclosed in two separate pronuclei. In Caenorhabditis elegans, and possibly other organisms, when the two pronuclei first meet, the parental genomes are separated by four pronuclear membranes. To understand how these membranes are breached to allow merging of parental genomes we used focused ion beam scanning electron microscopy (FIB-SEM) to study the architecture of the pronuclear membranes at nanometer-scale resolution. We find that at metaphase, the interface between the two pronuclei is composed of two membranes perforated by fenestrations ranging from tens of nanometers to several microns in diameter. The parental chromosomes come in contact through one of the large fenestrations. Surrounding this fenestrated, two-membrane region is a novel membrane structure, a three-way sheet junction, where the four membranes of the two pronuclei fuse and become two. In the plk-1 mutant, where parental genomes fail to merge, these junctions are absent, suggesting that three-way sheet junctions are needed for formation of a diploid genome.
Collapse
Affiliation(s)
- Mohammad Rahman
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Irene Y. Chang
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Kwabena Amoateng
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|
45
|
Methods to Measure Perinuclear Actin Dynamics During Nuclear Movement in Migrating Cells. Methods Mol Biol 2019; 2101:371-385. [PMID: 31879914 DOI: 10.1007/978-1-0716-0219-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The nucleus is specifically positioned within a cell in diverse biological contexts. There are multiple connections between the nuclear envelope and the cytoskeleton and these connections are involved in nuclear positioning. During cell polarization prior to cell migration, nuclear envelope proteins bind to the actin cytoskeleton and get organized into linear arrays, known as transmembrane actin-associated nuclear (TAN) lines to move the nucleus away from the leading edge. Here we describe methods to study perinuclear actin dynamics, including measurement of the thickness of actin cables coupled to TAN lines, measurement of the number of perinuclear actin cables, and ablation of perinuclear actin cables. These methods are used to identify mechanisms of nuclear positioning.
Collapse
|
46
|
Brenneis G, Beltz BS. Adult neurogenesis in crayfish: Origin, expansion, and migration of neural progenitor lineages in a pseudostratified neuroepithelium. J Comp Neurol 2019; 528:1459-1485. [PMID: 31743442 DOI: 10.1002/cne.24820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 02/04/2023]
Abstract
Two decades after the discovery of adult-born neurons in the brains of decapod crustaceans, the deutocerebral proliferative system (DPS) producing these neural lineages has become a model of adult neurogenesis in invertebrates. Studies on crayfish have provided substantial insights into the anatomy, cellular dynamics, and regulation of the DPS. Contrary to traditional thinking, recent evidence suggests that the neurogenic niche in the crayfish DPS lacks self-renewing stem cells, its cell pool being instead sustained via integration of hemocytes generated by the innate immune system. Here, we investigated the origin, division and migration patterns of the adult-born neural progenitor (NP) lineages in detail. We show that the niche cell pool is not only replenished by hemocyte integration but also by limited numbers of symmetric cell divisions with some characteristics reminiscent of interkinetic nuclear migration. Once specified in the niche, first generation NPs act as transit-amplifying intermediate NPs that eventually exit and produce multicellular clones as they move along migratory streams toward target brain areas. Different clones may migrate simultaneously in the streams but occupy separate tracks and show spatio-temporally flexible division patterns. Based on this, we propose an extended DPS model that emphasizes structural similarities to pseudostratified neuroepithelia in other arthropods and vertebrates. This model includes hemocyte integration and intrinsic cell proliferation to synergistically counteract niche cell pool depletion during the animal's lifespan. Further, we discuss parallels to recent findings on mammalian adult neurogenesis, as both systems seem to exhibit a similar decoupling of proliferative replenishment divisions and consuming neurogenic divisions.
Collapse
Affiliation(s)
- Georg Brenneis
- Wellesley College, Neuroscience Program, Wellesley, Massachusetts, USA.,Universität Greifswald, Zoologisches Institut und Museum, AG Cytologie und Evolutionsbiologie, Greifswald, Germany
| | - Barbara S Beltz
- Wellesley College, Neuroscience Program, Wellesley, Massachusetts, USA
| |
Collapse
|
47
|
Thakar K, Carroll CW. Mkl1-dependent gene activation is sufficient to induce actin cap assembly. Small GTPases 2019; 10:433-440. [PMID: 28586283 PMCID: PMC6748361 DOI: 10.1080/21541248.2017.1328303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Actin-dependent forces mechanically control both the position and shape of the nucleus. While the mechanisms that establish nuclear position are well defined, less understood is how actin filaments determine nuclear shape. We recently showed that nuclear envelope-spanning LINC complexes promote stress fiber assembly by activating the small GTPase RhoA and Mkl1-dependent gene activation. We now report that a subset of these stress fibers associate with the apical face of the nuclear envelope through LINC complexes that contain the inner nuclear membrane protein Sun2. Apical stress fibers have previously been shown to specifically couple cell and nuclear morphology, suggesting that LINC complexes influence nuclear shape in part by regulating the small GTPase RhoA.
Collapse
Affiliation(s)
- Ketan Thakar
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
48
|
Starr DA. A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout Caenorhabditis elegans development. Exp Biol Med (Maywood) 2019; 244:1323-1332. [PMID: 31495194 PMCID: PMC6880151 DOI: 10.1177/1535370219871965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear migration and anchorage, together referred to as nuclear positioning, are central to many cellular and developmental events. Nuclear positioning is mediated by a conserved network of nuclear envelope proteins that interacts with force generators in the cytoskeleton. At the heart of this network are li nker of n ucleoskeleton and c ytoskeleton (LINC) complexes made of S ad1 and UN C-84 (SUN) proteins at the inner nuclear membrane and K larsicht, A NC-1, and S yne homology (KASH) proteins in the outer nuclear membrane. LINC complexes span the nuclear envelope, maintain nuclear envelope architecture, designate the surface of nuclei distinctly from the contiguous endoplasmic reticulum, and were instrumental in the early evolution of eukaryotes. LINC complexes interact with lamins in the nucleus and with various cytoplasmic KASH effectors from the surface of nuclei. These effectors regulate the cytoskeleton, leading to a variety of cellular outputs including pronuclear migration, nuclear migration through constricted spaces, nuclear anchorage, centrosome attachment to nuclei, meiotic chromosome movements, and DNA damage repair. How LINC complexes are regulated and how they function are reviewed here. The focus is on recent studies elucidating the best-understood network of LINC complexes, those used throughout Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology,
University of California, Davis, CA 95616, USA
| |
Collapse
|
49
|
Nesprin-1-alpha2 associates with kinesin at myotube outer nuclear membranes, but is restricted to neuromuscular junction nuclei in adult muscle. Sci Rep 2019; 9:14202. [PMID: 31578382 PMCID: PMC6775114 DOI: 10.1038/s41598-019-50728-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
Nesprins, nuclear envelope spectrin-repeat proteins encoded by the SYNE1 and SYNE2 genes, are involved in localization of nuclei. The short isoform, nesprin-1-alpha2, is required for relocation of the microtubule organizer function from centromeres to the nuclear rim during myogenesis. Using specific antibodies, we now show that both nesprin-1-alpha2 and nesprin-1-giant co-localize with kinesin at the junctions of concatenated nuclei and at the outer poles of nuclear chains in human skeletal myotubes. In adult muscle, nesprin-1-alpha2 was found, together with kinesin, only on nuclei associated with neuromuscular junctions, whereas all adult cardiomyocyte nuclei expressed nesprin-1-alpha2. In a proteomics study, kinesin heavy and light chains were the only significant proteins in myotube extracts pulled down by nesprin-1-alpha2, but not by a mutant lacking the highly-conserved STAR domain (18 amino-acids, including the LEWD motif). The results support a function for nesprin-1-alpha2 in the specific localization of skeletal muscle nuclei mediated by kinesins and suggest that its primary role is at the outer nuclear membrane.
Collapse
|
50
|
Abstract
Multinucleate fungi and oomycetes are phylogenetically distant but structurally similar. To address whether they share similar nuclear dynamics, we carried out time-lapse imaging of fluorescently labeled Phytophthora palmivora nuclei. Nuclei underwent coordinated bidirectional movements during plant infection. Within hyphal networks growing in planta or in axenic culture, nuclei either are dragged passively with the cytoplasm or actively become rerouted toward nucleus-depleted hyphal sections and often display a very stretched shape. Benomyl-induced depolymerization of microtubules reduced active movements and the occurrence of stretched nuclei. A centrosome protein localized at the leading end of stretched nuclei, suggesting that, as in fungi, astral microtubule-guided movements contribute to nuclear distribution within oomycete hyphae. The remarkable hydrodynamic shape adaptations of Phytophthora nuclei contrast with those in fungi and likely enable them to migrate over longer distances. Therefore, our work summarizes mechanisms which enable a near-equal nuclear distribution in an oomycete. We provide a basis for computational modeling of hydrodynamic nuclear deformation within branched tubular networks.IMPORTANCE Despite their fungal morphology, oomycetes constitute a distinct group of protists related to brown algae and diatoms. Many oomycetes are pathogens and cause diseases of plants, insects, mammals, and humans. Extensive efforts have been made to understand the molecular basis of oomycete infection, but durable protection against these pathogens is yet to be achieved. We use a plant-pathogenic oomycete to decipher a key physiological aspect of oomycete growth and infection. We show that oomycete nuclei travel actively and over long distances within hyphae and during infection. Such movements require microtubules anchored on the centrosome. Nuclei hydrodynamically adapt their shape to travel in or against the flow. In contrast, fungi lack a centrosome and have much less flexible nuclei. Our findings provide a basis for modeling of flexible nuclear shapes in branched hyphal networks and may help in finding hard-to-evade targets to develop specific antioomycete strategies and achieve durable crop disease protection.
Collapse
|