1
|
Abbasi E. The impact of climate change on Aedes aegypti distribution and dengue fever prevalence in semi-arid regions: A case study of Tehran Province, Iran. ENVIRONMENTAL RESEARCH 2025; 275:121441. [PMID: 40118318 DOI: 10.1016/j.envres.2025.121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Climate change profoundly affects ecosystems and public health, particularly by altering the dynamics of vector-borne diseases. This study investigates the impact of climate change on the distribution and biological behavior of Aedes aegypti mosquitoes and the prevalence of dengue fever in Tehran Province, a semi-arid region of Iran. Over the past two decades, the province has experienced significant climatic shifts, including a 7.3 % increase in average annual temperature, a 12.5 % decrease in rainfall, and a 50 % rise in the number of hot days, creating favorable conditions for vector proliferation. MATERIALS AND METHODS Climatic data analysis, field monitoring of mosquito populations, and species distribution modeling (SDM) were employed to understand the ecological and epidemiological dynamics of Aedes aegypti in Tehran. Key variables such as temperature, rainfall, and artificial water sources were analyzed. Predictive models assessed the expansion of suitable mosquito habitats under moderate (RCP4.5) and severe (RCP8.5) climate scenarios. RESULTS Field data revealed an 87.5 % increase in mosquito density in urban areas and a doubling of densities in peri-urban and natural areas over two decades. Biological studies showed increases in mosquito lifespan (+50 %), egg production (+50 %), and larval development rates (+33 %) under warmer conditions. Predictive modeling indicated an 83 % expansion in suitable habitats by 2050 under the RCP8.5 scenario. Epidemiological data revealed a 200 % increase in dengue cases in urban areas and a 140-150 % rise in peri-urban and natural areas, driven by the expanding geographic range of Aedes aegypti. DISCUSSION The findings highlight the critical role of climate change in driving mosquito population growth and disease transmission in semi-arid regions. Enhanced surveillance, climate-resilient urban planning, and integrated vector control measures are essential to mitigate these risks. This study provides actionable insights into the complex relationship between climate change and vector-borne diseases, underscoring the urgent need for targeted public health interventions to prevent future outbreaks.
Collapse
Affiliation(s)
- Ebrahim Abbasi
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Anstead GM. A One Health Perspective on the Resurgence of Flea-Borne Typhus in Texas in the 21st Century: Part 1: The Bacteria, the Cat Flea, Urbanization, and Climate Change. Pathogens 2025; 14:154. [PMID: 40005529 PMCID: PMC11858070 DOI: 10.3390/pathogens14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Flea-borne typhus (FBT), due to Rickettsia typhi and R. felis, is an infection typically causing fever, headache, rash, hepatitis, and thrombocytopenia. About one quarter of patients suffer pulmonary, neurologic, hematologic, renal, hepatic, cardiac, ocular or other complications. In the 21st century, the incidence of FBT has increased in both Texas and California compared to the 1990s. In this paper, county-level epidemiological data for the number of cases of FBT occurring in Texas for two decades, 1990-1999 and 2010-2019, were compared with respect to county of residence, urbanization, and climatic region. Human population growth in Texas has promoted FBT by increased urbanization and the abundance of pet dogs and cats, stray/feral dogs and cats, and opossums. Increasing temperatures in Texas in the new millennium have increased the flea-borne transmission of FBT by promoting host infestation and flea feeding and defecation, accelerating the flea life cycle, and increasing rickettsial replication within the flea. Increased numbers of opossums and stray cats and dogs in the urban/suburban landscape have increased the risk of flea transfer to humans and their pets.
Collapse
Affiliation(s)
- Gregory M. Anstead
- Division of Infectious Diseases, Medical Service, South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229, USA;
- Division of Infectious Diseases, Depatment of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Prudhomme J, Delabarre A, Alten B, Berberoglu U, Berriatua E, Bongiorno G, Cristovao JM, Davidovich-Cohen M, Di Muccio T, Erisoz Kasap O, Fiorentino E, D. Kirstein O, Kniha E, Maia C, Mungan M, Muñoz-Hernández C, Nalçaci M, Oguz Kaskan G, Ozbel Y, Ozensoy Toz S, Parreira R, Platzgummer K, Polat C, Risueño J, Studentsky L, Varol G, Walochnik J, Yetişmiş K, Robert-Gangneux F. Performance evaluation of nine reference centers and comparison of DNA extraction protocols for effective surveillance of Leishmania-infected Phlebotomine sand flies: Basis for technical recommendations. PLoS Negl Trop Dis 2024; 18:e0012543. [PMID: 39715247 PMCID: PMC11706373 DOI: 10.1371/journal.pntd.0012543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/07/2025] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Leishmaniasis, caused by Leishmania protozoan parasites transmitted by Phlebotomine sand flies, is a significant public health concern in the Mediterranean basin. Effective monitoring of Leishmania-infected sand flies requires standardized tools for comparing their distribution and infection prevalence. Consistent quantitative real-time PCR (qPCR) parameters and efficient DNA extraction protocols are crucial for reliable results over time and across regions. However, the absence of standardized technical recommendations for Leishmania DNA detection hinders effective surveillance. This study aimed to compare different DNA extraction protocols and conduct a qPCR-based External Quality Assessment (EQA) through a multicenter study involving nine reference laboratories, with a focus on optimizing Leishmania DNA detection in sand fly. METHODOLOGY/PRINCIPAL FINDINGS EQA samples consisted of Leishmania infantum and L. major species, at concentrations ranging from 101 to 104 parasites/mL. All but one center detected all concentrations, demonstrating strong diagnostic proficiency. The ability to detect low concentrations highlighted the robustness of the qPCR assay used, though variations in Cq values indicated differences in sensitivity related to technical capabilities or DNA extraction kit performance. A comparative analysis of seven DNA extraction methods identified the EZ1 DSP Virus Kit and QIAamp DNA mini-kit as the most efficient, supporting their use in standardized protocols. The study also assessed the effects of lyophilization and shipment conditions, showing no significant compromise in Leishmania detection despite slight variations in Cq values. Experimentally infected sand flies were included to simulate field conditions, and all centers successfully detected positive samples with varying Cq values, probably reflecting differences in infection load. CONCLUSION AND SIGNIFICANCE This study emphasizes the importance of standardized DNA extraction protocols and continuous quality assurance for accurate Leishmania DNA detection. The results highlight the superior performance of certain extraction kits and the need for ongoing technical training, essential for reliable leishmaniasis surveillance, particularly in field settings with low infection densities.
Collapse
Affiliation(s)
- Jorian Prudhomme
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR S 1085, Rennes, France
| | - Aymeric Delabarre
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR S 1085, Rennes, France
| | | | | | | | | | - José Manuel Cristovao
- Global Health and Tropical Medicine, GHTM, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | | | | | | | - Oscar D. Kirstein
- Jerusalem Public Health Laboratories, Ministry of Health, Jerusalem, Israel
| | - Edwin Kniha
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Carla Maia
- Global Health and Tropical Medicine, GHTM, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Clara Muñoz-Hernández
- University of Murcia, Murcia, Spain
- Health and Biotechnology Research Group (SaBio), Institute for Game and Wildlife Research (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Muhammed Nalçaci
- Ege University Graduate School of Natural and Applied Sciences, Department of Biology, Bornova, Izmir, Türkiye
| | | | - Yusuf Ozbel
- Ege University Graduate School of Natural and Applied Sciences, Department of Biology, Bornova, Izmir, Türkiye
| | - Seray Ozensoy Toz
- Ege University Graduate School of Natural and Applied Sciences, Department of Biology, Bornova, Izmir, Türkiye
| | - Ricardo Parreira
- Global Health and Tropical Medicine, GHTM, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Katharina Platzgummer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Liora Studentsky
- Jerusalem Public Health Laboratories, Ministry of Health, Jerusalem, Israel
| | | | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kardelen Yetişmiş
- Ege University Graduate School of Natural and Applied Sciences, Department of Biology, Bornova, Izmir, Türkiye
| | - Florence Robert-Gangneux
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR S 1085, Rennes, France
| |
Collapse
|
4
|
Dodson BL, Pujhari S, Brustolin M, Metz HC, Rasgon JL. Variable effects of transient Wolbachia infections on alphaviruses in Aedes aegypti. PLoS Negl Trop Dis 2024; 18:e0012633. [PMID: 39495807 PMCID: PMC11575829 DOI: 10.1371/journal.pntd.0012633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/19/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of transient somatic infection with two strains of Wolbachia (wAlbB and wMel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed viral titers, while wAlbB had more modest effects. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.
Collapse
Affiliation(s)
- Brittany L Dodson
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sujit Pujhari
- Department of Pharmacology Physiology and Neuroscience, School of Medicine, University of South Carolina, South Carolina, United States of America
| | - Marco Brustolin
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hillery C Metz
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
5
|
Cosma C, Maia C, Khan N, Infantino M, Del Riccio M. Leishmaniasis in Humans and Animals: A One Health Approach for Surveillance, Prevention and Control in a Changing World. Trop Med Infect Dis 2024; 9:258. [PMID: 39591264 PMCID: PMC11598728 DOI: 10.3390/tropicalmed9110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Leishmaniasis is classified as a neglected tropical disease (NTD), caused by protozoan parasites of the genus Leishmania, which are transmitted to humans and other animals through the bite of infected female phlebotomine sandflies. There are three forms of the disease: cutaneous leishmaniasis (CL) manifested by ulcers and scars; systemic or visceral leishmaniasis (VL), which can lead to life-threatening complications if left untreated; and mucocutaneous leishmaniasis (MCL), which can destroy the mucous membranes of the nose, mouth and throat. Human leishmaniasis is endemic in many countries across Africa, Asia, Southern Europe, the Middle East, and Central and South America. The interconnection of environmental, animal and human health underlies the spread of the Leishmania parasite. Environmental disruptions, such as climate change, deforestation or urbanisation, but also globalisation and migration, significantly affect the distribution and abundance of sand fly vectors and reservoir hosts. Climate change alters the breeding patterns of sandflies and expands their geographic range; deforestation and misuse of large areas disrupt ecosystems, leading to increased human-vector contact; and urbanisation increases the potential for contact between parties, particularly in densely populated areas. Migration of humans and animals, either through natural migration or, for example, the pet trade and breeding, can facilitate the spread of Leishmania parasites. In addition, socio-economic factors, including poverty and lack of access to healthcare, increase the burden of leishmaniasis in vulnerable populations. Due to this multitude of reasons, the geographic distribution of sandflies has expanded to higher latitudes and altitudes in recent years, with a consequent increase in disease burden. Indeed, despite ongoing challenges in the surveillance systems, data from the last available year have shown an increase in many cases in both humans and dogs. This perspective explores the interconnected factors influencing the spread of leishmaniasis worldwide and the epidemiology of the disease. In addition, it illustrates the importance of integrated strategies in a One Health approach: surveillance, prevention and control of vectors, animals and humans.
Collapse
Affiliation(s)
- Claudia Cosma
- Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Carla Maia
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Nushrat Khan
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College, 90 Wood Ln, London W12 0BZ, UK
| | - Maria Infantino
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Azienda USL-Toscana Centro, 50012 Florence, Italy
| | - Marco Del Riccio
- Department of Health Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|
6
|
Neto JFDN, Roque RA, Ferreira FADS, Rabelo MX, Marques JA, Guimaraes JM, Vasconcelos ADS, Tavares CPDS, Barros JC, Da Silva BFO, Tadei WP, Val AL. Morphological changes in eggs and embryos of Aedes aegypti (Diptera: Culicidae) exposed to predicted climatic scenarios for the year 2100 in the Central Amazon. Acta Trop 2024; 258:107328. [PMID: 39032849 DOI: 10.1016/j.actatropica.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
According to the IPCC, by the year 2100, rises in global temperature could reach up to 5 °C above current averages. On a planet-wide scale, this is one of the effects of climate changes that could have repercussions on the biological cycle of Aedes aegypti, the main arbovirus vector in urban environments and a transmitter of the arboviruses that cause dengue, Zika, chikungunya and urban yellow fever. The objective of this study was to evaluate morphological changes in Ae. aegypti eggs and embryos maintained in a climate change simulator. For this, specimens obtained from an insectarium were kept in four chambers that simulated the range of environmental scenarios predicted by the IPCC for the year 2100. The eggs obtained from each room were collected and transported to the laboratory for morphometric and morphological analysis, using confocal and scanning microscopy. Aedes aegypti eggs (n=20) were used to obtain the following variables: total width, total length, length-width ratio and diameter of the micropylar disc. Additionally, 20 embryos were used to obtain the data on head capsule length, width and length-width ratio. The data were subjected to a normality test and the means of each variable were compared using ANOVA and Tukey's post-hoc test, considering (p ≤ 0.05). A significant reduction (p < 0.05) was observed mainly in the mean lengths under the current-extreme scenario (587.5 and 553.6 μm, respectively), as well as in the widths under the current-mild scenario (171 and 158.4 μm, respectively). The length of the cephalic capsule was also affected, showing significant differences in the means under the current-intermediate scenario (189.5 and 208.5 μm, respectively), as well as in the widths between the current-intermediate scenarios (173.7 and 194.9 μm, respectively). The results suggest significant changes in the morphometry of Ae. aegypti eggs and embryos as a result of the climatic influences to which the adults were subjected, which may have an impact on vector population density and, consequently, on arbovirus dynamics in urban environments.
Collapse
Affiliation(s)
- Joaquim Ferreira do Nascimento Neto
- Laboratório de Ecofisiologia e Evolução Molecular - LEEM, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva - GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil.
| | - Rosemary Aparecida Roque
- Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | | | - Marjory Ximenes Rabelo
- Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio; Universidade do Estado do Amazonas - UEA; Manaus, Amazonas, Brasil
| | - Jéssica Araújo Marques
- Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio; Universidade do Estado do Amazonas - UEA; Manaus, Amazonas, Brasil
| | - Jander Matos Guimaraes
- Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio; Universidade do Estado do Amazonas - UEA; Manaus, Amazonas, Brasil
| | - Aldenora Dos Santos Vasconcelos
- Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio; Universidade do Estado do Amazonas - UEA; Manaus, Amazonas, Brasil; Programa de Pós-graduação em Biotecnologia - PPG Biotec, Universidade do Federal do Amazonas - UFAM, Manaus, Amazonas, Brasil
| | | | - Jessica Cavalcante Barros
- Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | - Bruna Felipe Olavo Da Silva
- Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | - Wanderli Pedro Tadei
- Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução Molecular - LEEM, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| |
Collapse
|
7
|
García-Suárez O, Tolsá-García MJ, Arana-Guardia R, Rodríguez-Valencia V, Talaga S, Pontifes PA, Machain-Williams C, Suzán G, Roiz D. Seasonal mosquito (Diptera: Culicidae) dynamics and the influence of environmental variables in a land use gradient from Yucatan, Mexico. Acta Trop 2024; 257:107275. [PMID: 38851624 DOI: 10.1016/j.actatropica.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Mosquito-borne diseases constitute a significant global impact on public and animal health. Climatic variables are recognized as major drivers in the mosquitoes' life history, principally rainfall and temperature, which directly influence mosquito abundance. Likewise, urbanization changes environmental conditions, and understanding how environmental variables and urbanization influence mosquito dynamics is crucial for the integrated management of mosquito-borne diseases, especially in the context of climate change. In this study, our aim was to observe the effect of temperature, rainfall, and the percentage of impervious surface on the abundance of mosquito species over a temporal scale of one complete year of fortnightly samplings, spanning from June 2021 to June 2022 in Yucatan, Mexico. We selected nine localities along an urbanization gradient (three natural, three rural, and three urban) from Mérida City to Reserva de la Biosfera Ría Celestún. Using BG-traps, mosquitoes were collected biweekly at each locality. Additionally, we estimated the percentage of impervious surface. Daily data of the maximum, mean and minimum temperatures, diurnal temperature range and rainfall were accumulated weekly. We calculated the accumulated quantities of temperatures and rainfall and lagged from one to four weeks before sampling for each locality. Generalized linear mixed models were then performed to study the influence of environmental variables and percentage of impervious surfaces on each of the 15 most abundant species. A total of 131,525 mosquitoes belonging to 11 genera and 49 species were sampled with BG-Sentinel traps baited with BG-lure and dry ice. The most frequently significative variable is the accumulated precipitation four weeks before the sampling. We observed a positive relationship between Cx. quinquefasciatus and Cx. thriambus with the diurnal temperature range. For Ae. aegypti, we observed a positive relationship with minimum temperature. Conversely, the percentage of impervious surface serves as a proxy of anthropogenic influence and helped us to distinguishing species exhibiting habitat preference for urban and rural environments, versus those preferring natural habitats. Our results characterize the species-specific effects of environmental variables (temperature, rainfall and impervious surface) on mosquito abundance.
Collapse
Affiliation(s)
- O García-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - M J Tolsá-García
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - R Arana-Guardia
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - V Rodríguez-Valencia
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - S Talaga
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité d'Entomologie Médicale, 23 Avenue Pasteur Guiana, Cayenne 97300, French
| | - P A Pontifes
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - C Machain-Williams
- Unidad Profesional Interdisciplinaria de Ingeniería Palenque (UPIIP), Instituto Politécnico Nacional, Carretera Federal 199, Nueva Esperanza, Palenque, Chiapas 29960, Mexico
| | - G Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - D Roiz
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
8
|
Humphreys JM, Shults PT, Velazquez-Salinas L, Bertram MR, Pelzel-McCluskey AM, Pauszek SJ, Peters DPC, Rodriguez LL. Interrogating Genomes and Geography to Unravel Multiyear Vesicular Stomatitis Epizootics. Viruses 2024; 16:1118. [PMID: 39066280 PMCID: PMC11281362 DOI: 10.3390/v16071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
We conducted an integrative analysis to elucidate the spatial epidemiological patterns of the Vesicular Stomatitis New Jersey virus (VSNJV) during the 2014-15 epizootic cycle in the United States (US). Using georeferenced VSNJV genomics data, confirmed vesicular stomatitis (VS) disease cases from surveillance, and a suite of environmental factors, our study assessed environmental and phylogenetic similarity to compare VS cases reported in 2014 and 2015. Despite uncertainties from incomplete virus sampling and cross-scale spatial processes, patterns suggested multiple independent re-invasion events concurrent with potential viral overwintering between sequential seasons. Our findings pointed to a geographically defined southern virus pool at the US-Mexico interface as the source of VSNJV invasions and overwintering sites. Phylodynamic analysis demonstrated an increase in virus diversity before a rise in case numbers and a pronounced reduction in virus diversity during the winter season, indicative of a genetic bottleneck and a significant narrowing of virus variation between the summer outbreak seasons. Environment-vector interactions underscored the central role of meta-population dynamics in driving disease spread. These insights emphasize the necessity for location- and time-specific management practices, including rapid response, movement restrictions, vector control, and other targeted interventions.
Collapse
Affiliation(s)
- John M. Humphreys
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan Kansas, KS 66502, USA; (L.V.-S.); (M.R.B.); (L.L.R.)
| | - Phillip T. Shults
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA;
| | - Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan Kansas, KS 66502, USA; (L.V.-S.); (M.R.B.); (L.L.R.)
| | - Miranda R. Bertram
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan Kansas, KS 66502, USA; (L.V.-S.); (M.R.B.); (L.L.R.)
| | - Angela M. Pelzel-McCluskey
- Veterinary Services, Animal and Plant Health Inspection Service (APHIS), U.S. Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Steven J. Pauszek
- Foreign Animal Disease Diagnostic Laboratory, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service (APHIS), Plum Island Animal Disease Center (PIADC), U.S. Department of Agriculture, Orient, NY 11957, USA;
| | - Debra P. C. Peters
- Office of National Programs, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA;
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan Kansas, KS 66502, USA; (L.V.-S.); (M.R.B.); (L.L.R.)
| |
Collapse
|
9
|
Damtew YT, Varghese BM, Anikeeva O, Tong M, Hansen A, Dear K, Zhang Y, Morgan G, Driscoll T, Capon T, Gourley M, Prescott V, Bi P. Current and future burden of Ross River virus infection attributable to increasing temperature in Australia: a population-based study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 48:101124. [PMID: 39040035 PMCID: PMC11260579 DOI: 10.1016/j.lanwpc.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
Background Ross River virus (RRV), Australia's most notifiable vector-borne disease transmitted through mosquito bites, has seen increased transmission due to rising temperatures. Quantifying the burden of RRV infection attributable to increasing temperatures (both current and future) is pivotal to inform prevention strategies in the context of climate change. Methods As RRV-related deaths are rare in Australia, we utilised years lived with disability (YLDs) associated with RRV infection data from the Australian Institute of Health and Welfare (AIHW) Burden of Disease database between 2003 and 2018. We obtained relative risks per 1 °C temperature increase in RRV infection from a previous meta-analysis. Exposure distributions for each Köppen-Geiger climate zone were calculated separately and compared with the theoretical-minimum-risk exposure distribution to calculate RRV burden attributable to increasing temperatures during the baseline period (2003-2018), and projected future burdens for the 2030s and 2050s under two greenhouse gas emission scenarios (Representative Concentration Pathways, RCP 4.5 and RCP 8.5), two adaptation scenarios, and different population growth series. Findings During the baseline period (2003-2018), increasing mean temperatures contributed to 35.8 (±0.5) YLDs (19.1%) of the observed RRV burden in Australia. The mean temperature attributable RRV burden varied across climate zones and jurisdictions. Under both RCP scenarios, the projected RRV burden is estimated to increase in the future despite adaptation scenarios. By the 2050s, without adaptation, the RRV burden could reach 45.8 YLDs under RCP4.5 and 51.1 YLDs under RCP8.5. Implementing a 10% adaptation strategy could reduce RRV burden to 41.8 and 46.4 YLDs, respectively. Interpretation These findings provide scientific evidence for informing policy decisions and guiding resource allocation for mitigating the future RRV burden. The current findings underscore the need to develop location-specific adaptation strategies for climate-sensitive disease control and prevention. Funding Australian Research Council Discovery Program.
Collapse
Affiliation(s)
- Yohannes Tefera Damtew
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- College of Health and Medical Sciences, Haramaya University, P.O.BOX 138, Dire Dawa, Ethiopia
| | - Blesson Mathew Varghese
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Olga Anikeeva
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Michael Tong
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia
| | - Alana Hansen
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Keith Dear
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ying Zhang
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia
| | - Geoffrey Morgan
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia
| | - Tim Driscoll
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia
| | - Tony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, Victoria, Australia
| | - Michelle Gourley
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT 2601, Australia
| | - Vanessa Prescott
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT 2601, Australia
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
10
|
Bibard A, Martinetti D, Picado A, Chalvet-Monfray K, Porphyre T. Assessing the Risk of Windborne Dispersal of Culicoides Midges in Emerging Epizootic Hemorrhagic Disease Virus Outbreaks in France. Transbound Emerg Dis 2024; 2024:5571195. [PMID: 40303085 PMCID: PMC12017055 DOI: 10.1155/2024/5571195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 05/02/2025]
Abstract
The epizootic hemorrhagic disease virus (EHDV) is a novel emerging threat for the European livestock sector. First detected in Sardinia and southern Spain at the end of 2022, this transboundary disease emerged in France in September 2023 despite restrictions on animal movement and enhanced surveillance protocols. Although virus spread is believed to be mediated by the dispersal of Culicoides vectors by the wind, prediction is difficult due to the large number of meteorological parameters that must be considered. Using simulations of atmospheric trajectories, we developed a model to investigate the long-distance dispersal risk zone of Culicoides in Europe, starting from different source zones. Our model predicted with good sensitivity the newly EHDV-infected areas in France over a period of 5 weeks after its first introduction in the country. Prospectively, we predicted that the midge dispersal zone of early 2024 could expand toward most of the western half of France and could sporadically reach new countries under favorable spring conditions. The wind dispersal risk maps provided are intended to support better preparedness and response to Culicoides-borne diseases.
Collapse
Affiliation(s)
- Amandine Bibard
- Global InnovationBoehringer Ingelheim Animal Health France, Saint Priest, France
| | | | - Albert Picado
- Global InnovationBoehringer Ingelheim Animal Health France, Saint Priest, France
| | - Karine Chalvet-Monfray
- Epidémiologie des Maladies Animales et ZoonotiquesUMR EPIAINRAEUniversité Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie ÉvolutiveUMR 5558CNRSUniversité Claude Bernard Lyon 1, VetAgro Sup, Villeurbanne, France
| |
Collapse
|
11
|
Bergmann S, Graf E, Hoffmann P, Becker SC, Stern M. Localization of nitric oxide-producing hemocytes in Aedes and Culex mosquitoes infected with bacteria. Cell Tissue Res 2024; 395:313-326. [PMID: 38240845 PMCID: PMC10904431 DOI: 10.1007/s00441-024-03862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 03/01/2024]
Abstract
Mosquitoes are significant vectors of various pathogens. Unlike vertebrates, insects rely solely on innate immunity. Hemocytes play a crucial role in the cellular part of the innate immune system. The gaseous radical nitric oxide (NO) produced by hemocytes acts against pathogens and also functions as a versatile transmitter in both the immune and nervous systems, utilizing cyclic guanosine monophosphate (cGMP) as a second messenger. This study conducted a parallel comparison of NO synthase (NOS) expression and NO production in hemocytes during Escherichia coli K12 infection in four vector species: Aedes aegypti, Aedes albopictus, Culex pipiens molestus, and Culex pipiens quinquefasciatus. Increased NOS expression by NADPH diaphorase (NADPHd) staining and NO production by immunofluorescence against the by-product L-citrulline were observed in infected mosquito hemocytes distributed throughout the abdomens. NADPHd activity and citrulline labeling were particularly found in periostial hemocytes near the heart, but also on the ventral nerve chord (VNC). Pericardial cells of Ae. aegypti and Cx. p. molestus showed increased citrulline immunofluorescence, suggesting their involvement in the immune response. Oenocytes displayed strong NADPHd and citrulline labeling independent of infection status. This comparative study, consistent with findings in other species, suggests a widespread phenomenon of NO's role in hemocyte responses during E. coli infection. Found differences within and between genera highlight the importance of species-specific investigations.
Collapse
Affiliation(s)
- Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Emily Graf
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Stefanie C Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany.
| |
Collapse
|
12
|
Erazo D, Grant L, Ghisbain G, Marini G, Colón-González FJ, Wint W, Rizzoli A, Van Bortel W, Vogels CBF, Grubaugh ND, Mengel M, Frieler K, Thiery W, Dellicour S. Contribution of climate change to the spatial expansion of West Nile virus in Europe. Nat Commun 2024; 15:1196. [PMID: 38331945 PMCID: PMC10853512 DOI: 10.1038/s41467-024-45290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
West Nile virus (WNV) is an emerging mosquito-borne pathogen in Europe where it represents a new public health threat. While climate change has been cited as a potential driver of its spatial expansion on the continent, a formal evaluation of this causal relationship is lacking. Here, we investigate the extent to which WNV spatial expansion in Europe can be attributed to climate change while accounting for other direct human influences such as land-use and human population changes. To this end, we trained ecological niche models to predict the risk of local WNV circulation leading to human cases to then unravel the isolated effect of climate change by comparing factual simulations to a counterfactual based on the same environmental changes but a counterfactual climate where long-term trends have been removed. Our findings demonstrate a notable increase in the area ecologically suitable for WNV circulation during the period 1901-2019, whereas this area remains largely unchanged in a no-climate-change counterfactual. We show that the drastic increase in the human population at risk of exposure is partly due to historical changes in population density, but that climate change has also been a critical driver behind the heightened risk of WNV circulation in Europe.
Collapse
Affiliation(s)
- Diana Erazo
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
| | - Luke Grant
- Department of Water and Climate, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guillaume Ghisbain
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | | | - William Wint
- Environmental Research Group Oxford Ltd, Department of Biology, Mansfield Road, Oxford, OX1 3SZ, UK
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Wim Van Bortel
- Unit Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Outbreak Research team, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Matthias Mengel
- Department Transformation Pathways, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Katja Frieler
- Department Transformation Pathways, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Wim Thiery
- Department of Water and Climate, Vrije Universiteit Brussel, Brussels, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Carpenter MJ, Rodgers CR, Torchetti MK, Fox KA, Burton M, Sherman TJ, Mayo CE. Recovery of multireassortant bluetongue virus serotype 6 sequences from a mule deer (Odocoileus hemionus) and Dorset sheep (Ovis aries) in Colorado. Vet Microbiol 2024; 289:109944. [PMID: 38141398 DOI: 10.1016/j.vetmic.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
We report the discovery of two bluetongue virus serotype 6 (BTV-6) reassortants recovered from a domestic sheep and a free-ranging mule deer in northern Colorado. At the time of this publication, whole-genome sequencing of BTV-6 isolates in the Western U.S. have not been undertaken. These findings reflect the incursive movement of geographically distinct BTV serotypes into important agricultural areas of the U.S. and demonstrate reassortment with regionally circulating serotypes.
Collapse
Affiliation(s)
- Molly J Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Case R Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Mia K Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, 1800 Dayton Ave, Ames, IA 50010, USA.
| | - Karen A Fox
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, CO 80521, USA.
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Tyler J Sherman
- Diagnostic Medicine Center, Colorado State University, 2450 Gillette Drive, Fort Collins, CO 80526, USA.
| | - Christie E Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| |
Collapse
|
14
|
Diyes CP, Dergousoff SJ, Chilton NB. Differences in the reproductive output and larval survival of Rocky Mountain wood ticks (Dermacentor andersoni) and American dog ticks (Dermacentor variabilis) from prairie populations near their northern distributional limits in western Canada. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:645-660. [PMID: 38015278 DOI: 10.1007/s10493-023-00856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
The effects of temperature and relative humidity (RH) on female reproductive output, egg development and larval survival were determined for Rocky Mountain wood ticks (Dermacentor andersoni) from a prairie population (Chin Lakes, Alberta, Canada) near the northern distribution limit of this species. The responses of D. andersoni eggs and unfed larvae to different temperature (25 or 32 °C) and RH (35, 55, 75, 85 or 95%) regimes were compared to our previously published data (Diyes et al. 2021) for a northern prairie population of American dog ticks (Dermacentor variabilis). Oviposition by D. andersoni females took 21-30 days at 25 °C and 95% RH compared to 10-21 days for D. variabilis. The number of eggs laid by female ticks was strongly dependent on their engorgement weight, and D. andersoni females produced more eggs than D. variabilis females of an equivalent body weight. Eggs of D. andersoni took less time to develop at 32 °C than 25 °C with ≥ 85% RH, and hatched faster than those of D. variabilis. Larval survival times declined as temperature increased and RH decreased, but D. andersoni survived longer at 32 °C and ≤ 75% RH than D. variabilis. The interspecific differences in responses to the same temperature and humidity regimes indicate that D. andersoni is xerophilic, whereas D. variabilis is hydrophilic. Hence, 'prairie' populations of the Rocky Mountain wood tick occur in the drier grassland ecoregions but are absent in Aspen Parklands Ecoregion which is located to the north and east of the distributional range of D. andersoni.
Collapse
Affiliation(s)
- Chulantha P Diyes
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Shaun J Dergousoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Neil B Chilton
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
15
|
Guimerà Busquets M, Brown FV, Carpenter ST, Darpel KE, Sanders CJ. Visualisation of Bluetongue Virus in the Salivary Apparatus of Culicoides Biting Midges Highlights the Accessory Glands as a Primary Arboviral Infection Site. Biol Proced Online 2023; 25:27. [PMID: 37932658 PMCID: PMC10626815 DOI: 10.1186/s12575-023-00221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Arthropods transmit a wide range of pathogens of importance for the global health of humans, animals, and plants. One group of these arthropod vectors, Culicoides biting midges (Diptera: Ceratopogonidae), is the biological vector of several human and animal pathogens, including economically important livestock viruses like bluetongue virus (BTV). Like other arthropod-borne viruses (arboviruses), Culicoides-borne viruses must reach and replicate in the salivary apparatus, from where they can be transmitted to susceptible hosts through the saliva during subsequent blood feeding. Despite the importance of the salivary gland apparatus for pathogen transmission to susceptible animals from the bite of infected Culicoides, these structures have received relatively little attention, perhaps due to the small size and fragility of these vectors. RESULTS In this study, we developed techniques to visualize the infection of the salivary glands and other soft tissues with BTV, in some of the smallest known arbovirus vectors, Culicoides biting midges, using three-dimensional immunofluorescence confocal microscopy. We showed BTV infection of specific structures of the salivary gland apparatus of female Culicoides vectors following oral virus uptake, related visualisation of viral infection in the salivary apparatus to high viral RNA copies in the body, and demonstrated for the first time, that the accessory glands are a primary site for BTV replication within the salivary apparatus. CONCLUSIONS Our work has revealed a novel site of virus-vector interactions, and a novel role of the accessory glands of Culicoides in arbovirus amplification and transmission. Our approach would also be applicable to a wide range of arbovirus vector groups including sand flies (Diptera: Psychodidae), as well as provide a powerful tool to investigate arbovirus infection and dissemination, particularly where there are practical challenges in the visualization of small size and delicate tissues of arthropods.
Collapse
Affiliation(s)
| | - Faye V Brown
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | - Simon T Carpenter
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- The School of the Biological Sciences, University of Cambridge, Mill Lane, Cambridge, CB2 1RX, UK
| | - Karin E Darpel
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- Institute of Virology and Immunology, Mittelhäusern, 3147, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, 3012, Switzerland
| | | |
Collapse
|
16
|
Servadio JL, Convertino M, Fiecas M, Muñoz‐Zanzi C. Weekly Forecasting of Yellow Fever Occurrence and Incidence via Eco-Meteorological Dynamics. GEOHEALTH 2023; 7:e2023GH000870. [PMID: 37885914 PMCID: PMC10599710 DOI: 10.1029/2023gh000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Yellow Fever (YF), a mosquito-borne disease, requires ongoing surveillance and prevention due to its persistence and ability to cause major epidemics, including one that began in Brazil in 2016. Forecasting based on factors influencing YF risk can improve efficiency in prevention. This study aimed to produce weekly forecasts of YF occurrence and incidence in Brazil using weekly meteorological and ecohydrological conditions. Occurrence was forecast as the probability of observing any cases, and incidence was forecast to represent morbidity if YF occurs. We fit gamma hurdle models, selecting predictors from several meteorological and ecohydrological factors, based on forecast accuracy defined by receiver operator characteristic curves and mean absolute error. We fit separate models for data before and after the start of the 2016 outbreak, forecasting occurrence and incidence for all municipalities of Brazil weekly. Different predictor sets were found to produce most accurate forecasts in each time period, and forecast accuracy was high for both time periods. Temperature, precipitation, and previous YF burden were most influential predictors among models. Minimum, maximum, mean, and range of weekly temperature, precipitation, and humidity contributed to forecasts, with optimal lag times of 2, 6, and 7 weeks depending on time period. Results from this study show the use of environmental predictors in providing regular forecasts of YF burden and producing nationwide forecasts. Weekly forecasts, which can be produced using the forecast model developed in this study, are beneficial for informing immediate preparedness measures.
Collapse
Affiliation(s)
- Joseph L. Servadio
- Department of BiologyCenter for Infectious Disease DynamicsPennsylvania State UniversityUniversity ParkPAUSA
- Division of Environmental Health SciencesSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| | | | - Mark Fiecas
- Division of BiostatisticsSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| | - Claudia Muñoz‐Zanzi
- Division of Environmental Health SciencesSchool of Public HealthUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
17
|
McGregor BL, Lewis A. Host Associations of Culicoides Biting Midges in Northeastern Kansas, USA. Animals (Basel) 2023; 13:2504. [PMID: 37570311 PMCID: PMC10416965 DOI: 10.3390/ani13152504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are hematophagous flies that transmit several viruses of veterinary concern to livestock. Understanding blood feeding behaviors is integral towards identification of putative vector species and preventing the transmission of these pathogens. PCR-based blood meal analysis was conducted on 440 blood-engorged Culicoides midges collected in northeastern Kansas, with 316 (71.8%) returning non-human vertebrate identifications at the ≥95% identity match level. Broadly, Culicoides sonorensis, Culicoides stellifer, and Culicoides variipennis were found to feed heavily on mammalian hosts, while Culicoides crepuscularis and Culicoides haematopotus fed on avian hosts. The blood meals in all specimens were graded prior to DNA extraction to determine whether blood meal size or digestion status significantly impacted the likelihood of a quality host match. Size had a significant impact on the likelihood of a quality match at grades 3-5, whereas digestion only significantly impacted outcomes at the most extreme grade. These vector-host dynamics have not previously been studied in Culicoides collected in Kansas, which represents a unique tallgrass prairie biome within the United States that is heavily interspersed with livestock operations. Based on these data, the highly abundant species C. crepuscularis and C. haematopotus are unlikely to be major vectors of mammalian viruses.
Collapse
Affiliation(s)
- Bethany L. McGregor
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-ARS, Manhattan, KS 66502, USA
| | - Aaron Lewis
- College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Bergmann S, Bohn MC, Dornbusch S, Becker SC, Stern M. Influence of RVFV Infection on Olfactory Perception and Behavior in Drosophila melanogaster. Pathogens 2023; 12:pathogens12040558. [PMID: 37111444 PMCID: PMC10142484 DOI: 10.3390/pathogens12040558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In blood-feeding dipterans, olfaction plays a role in finding hosts and, hence, in spreading pathogens. Several pathogens are known to alter olfactory responses and behavior in vectors. As a mosquito-borne pathogen, Rift Valley Fever Virus (RVFV) can affect humans and cause great losses in livestock. We test the influence of RVFV infection on sensory perception, olfactory choice behavior and activity on a non-biting insect, Drosophila melanogaster, using electroantennograms (EAG), Y-maze, and locomotor activity monitor. Flies were injected with RVFV MP12 strain. Replication of RVFV and its persistence for at least seven days was confirmed by quantitative reverse transcription-PCR (RT-qPCR). One day post injection, infected flies showed weaker EAG responses towards 1-hexanol, vinegar, and ethyl acetate. In the Y-maze, infected flies showed a significantly lower response for 1-hexanol compared to uninfected flies. At days six or seven post infection, no significant difference between infected and control flies could be found in EAG or Y-maze anymore. Activity of infected flies was reduced at both time points. We found an upregulation of the immune-response gene, nitric oxide synthase, in infected flies. An infection with RVFV is able to transiently reduce olfactory perception and attraction towards food-related odors in Drosophila, while effects on activity and immune effector gene expression persist. A similar effect in blood-feeding insects could affect vector competence in RVFV transmitting dipterans.
Collapse
Affiliation(s)
- Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Maja C. Bohn
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| |
Collapse
|
19
|
Şevik M. Epidemiology of bluetongue virus infection among small ruminants in Turkey: Seroprevalence and associated risk factors. Prev Vet Med 2023; 213:105871. [PMID: 36801648 DOI: 10.1016/j.prevetmed.2023.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Bluetongue (BT) is an endemic disease of small ruminants in Turkey, and it has substantial socio-economic impact at national level. To reduce this impact, vaccination has been used for the control of BT but sporadic outbreaks have been reported. Although sheep and goat farming plays an important role in rural communities, little is known about the BT epidemiological situation in small ruminants in Turkey. Therefore, this study aimed to estimate the seroprevalence of the bluetongue virus (BTV) and to identify the potential risk factors associated with BTV seropositivity in small ruminants. This study was conducted in the Antalya Province in the Mediterranean region of Turkey, from June 2018 to June 2019. A total of 1026 blood samples, from clinically healthy goats (n = 517) and sheep (n = 509), obtained from randomly selected unvaccinated flocks (n = 100) were tested for BTV anti-VP7 antibodies by using a competitive enzyme linked immunosorbent assay test. A questionnaire was administered to the flock owners to obtain data related to sampled flocks and animals. At the animal level, the true prevalence of BTV antibodies was 74.2% (n = 651/1026, 95% CI = 70.7-77.7) with 85.3% (n = 370/509, 95% CI = 80.6-89.9) seropositive sheep and 63.3% (n = 281/517, 95% CI = 58.2-68.4) seropositive goats. The true flock-level seroprevalence of BTV was higher in goats (100.0%, 95% CI = 92.8-100.0) than in sheep (98.8%, 95% CI = 86.6-100.0). The intra-flock seroprevalence within seropositive flocks varied between 36.4% and 100%, with a mean value of 85.5% and 61.9% in sheep and goat flocks, respectively. The logistic regression model revealed that odds of seropositivity for sheep were significantly higher in female animals (OR: 1.8, 95% CI = 1.1-2.9), animals older than 24 months old (OR: 5.8, 95% CI = 3.1-10.8), Pirlak breed (OR: 3.3, 95% CI = 1.1-10.0) and Merino breed (OR: 4.9, 95% CI = 1.6-14.9), whereas for goats, it was higher in female animals (OR: 1.7, 95% CI = 1.0-2.6), animals older than 24 months old (OR: 4.2, 95% CI = 2.7-6.6) and Hair breed (OR: 5.6, 95% CI = 2.8-10.9). The use of insecticides was identified as a protective factor. The present study revealed that BTV infection is widespread in sheep and goats in the Antalya Province. It is recommended to implement biosecurity measures in flocks and use insecticides to mitigate the spread of infection and contact between hosts and vectors.
Collapse
Affiliation(s)
- Murat Şevik
- Department of Virology, Veterinary Faculty, Necmettin Erbakan University, Ereğli, 42310 Konya, Turkey.
| |
Collapse
|
20
|
Nadler LE, Adamo SA, Hawley DM, Binning SA. Mechanisms and consequences of infection‐induced phenotypes. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Lauren E. Nadler
- School of Ocean and Earth Science University of Southampton, National Oceanography Centre Southampton UK
| | - Shelley A. Adamo
- Department of Psychology and Neuroscience Dalhousie University Halifax Nova Scotia Canada
| | - Dana M. Hawley
- Department of Biological Sciences Virginia Tech Blacksburg Virginia USA
| | - Sandra A. Binning
- Département de Sciences Biologiques Université de Montréal Québec Montréal Canada
| |
Collapse
|
21
|
Saegerman C, Humblet MF, Leandri M, Gonzalez G, Heyman P, Sprong H, L’Hostis M, Moutailler S, Bonnet SI, Haddad N, Boulanger N, Leib SL, Hoch T, Thiry E, Bournez L, Kerlik J, Velay A, Jore S, Jourdain E, Gilot-Fromont E, Brugger K, Geller J, Studahl M, Knap N, Avšič-Županc T, Růžek D, Zomer TP, Bødker R, Berger TFH, Martin-Latil S, De Regge N, Raffetin A, Lacour SA, Klein M, Lernout T, Quillery E, Hubálek Z, Ruiz-Fons F, Estrada-Peña A, Fravalo P, Kooh P, Etore F, Gossner CM, Purse B. First Expert Elicitation of Knowledge on Possible Drivers of Observed Increasing Human Cases of Tick-Borne Encephalitis in Europe. Viruses 2023; 15:v15030791. [PMID: 36992499 PMCID: PMC10054665 DOI: 10.3390/v15030791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, 4000 Liege, Belgium
- Correspondence:
| | - Marie-France Humblet
- Department for Occupational Protection and Hygiene, Unit Biosafety, Biosecurity and Environmental Licences, University of Liege, 4000 Liege, Belgium
| | - Marc Leandri
- UMI SOURCE, Université Paris-Saclay—UVSQ, 78000 Versailles, France
| | - Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | | | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 MA Bilthoven, The Netherlands
| | - Monique L’Hostis
- Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes-Atlantique, Oniris, 44307 Nantes, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Sarah I. Bonnet
- UMR 2000 Institut Pasteur-CNRS-Université Paris-Cité, Ecology and Emergence of Arthropod-borne Pathogens, 75015 Paris, France
- Animal Health Department, INRAE, 37380 Nouzilly, France
| | - Nadia Haddad
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Nathalie Boulanger
- UR7290: VBP: Borrelia Group, France and French Reference Centre on Lyme Borreliosis, CHRU, Unversity of Strasbourg, 67000 Strasbourg, France
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | | | - Etienne Thiry
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, 4000 Liege, Belgium
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Wildlife, 54220 Malzéville, France
| | - Jana Kerlik
- Department of Epidemiology, Regional Authority of Public Health in Banská Bystrica, 497556 Banská Bystrica, Slovakia
| | - Aurélie Velay
- Unité Mixte de Recherché Immunorhumathologie Moléculaire (UMR IRM_S) 1109, Université de Strasbourg, INSERM, 67000 Strasbourg, France
| | - Solveig Jore
- Zoonotic, Water and Foodborne Infections, The Norwegian Institute for Public Health (NIPH), 0213 Oslo, Norway
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Route de Theix, 63122 Saint-Genès-Champanelle, France
| | | | - Katharina Brugger
- Competence Center Climate and Health, Austrian National Institute of Public Health, 1010 Vienna, Austria
| | - Julia Geller
- Department of Virology and Immunology, National Institute for Health Development, 11619 Tallinn, Estonia
| | - Marie Studahl
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, 41685 Gothenburg, Sweden
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Tizza P. Zomer
- Lyme Center Apeldoorn, Gelre Hospital, 7300 DS Apeldoorn, The Netherlands
| | - René Bødker
- Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Thomas F. H. Berger
- Agroscope, Risk Evaluation and Risk Mitigation, Schwarzenburgstrasse, 3003 Bern-Liebefeld, Switzerland
| | - Sandra Martin-Latil
- Laboratory for Food Safety, ANSES, University of Paris-EST, 94700 Maisons-Alfort, France
| | - Nick De Regge
- Operational Direction Infectious Diseases in Animals, Unit of Exotic and Vector-borne Diseases, Sciensano, 1180 Brussels, Belgium
| | - Alice Raffetin
- Reference Centre for Tick-Borne Diseases, Paris and Northern Region, Department of Infectious Diseases, General Hospital of Villeneuve-Saint-Georges, 94100 Villeneuve-Saint-Georges, France
| | - Sandrine A. Lacour
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Matthias Klein
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, LMU München, Marchioninistraße 15, 81377 München, Germany
| | - Tinne Lernout
- Scientific Directorate of Epidemiology and Public Health, Sciensano, 1180 Brussels, Belgium
| | - Elsa Quillery
- ANSES, Risk Assessment Department, 94700 Maisons-Alfort, France
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365 Brno, Czech Republic
| | - Francisco Ruiz-Fons
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain
| | - Agustín Estrada-Peña
- Deptartment of Animal Health, Faculty of Veterinary Medicine, 50013 Zaragoza, Spain
| | - Philippe Fravalo
- Pôle Agroalimentaire, Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Pauline Kooh
- ANSES, Risk Assessment Department, 94700 Maisons-Alfort, France
| | - Florence Etore
- ANSES, Risk Assessment Department, 94700 Maisons-Alfort, France
| | - Céline M. Gossner
- European Centre for Disease Prevention and Control (ECDC), 17183 Solna, Sweden
| | - Bethan Purse
- UK Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Oxfordshire OX10 8BB, UK
| |
Collapse
|
22
|
Tóth AG, Farkas R, Gyurkovszky M, Krikó E, Solymosi N. First detection of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus ticks (Acari: Ixodidae) from multiple locations in Hungary. Sci Rep 2023; 13:1624. [PMID: 36709348 PMCID: PMC9884279 DOI: 10.1038/s41598-023-28969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
The parasitoid wasp, Ixodiphagus hookeri (Hymenoptera: Encyrtidae), is the natural enemy of a wide range of hard and soft tick species. While these encyrtid wasps are supposed to be distributed worldwide, only a few studies report on their actual distribution around the globe. Within a shotgun sequencing-based metagenome analysis, the occurrence of I. hookeri was screened at multiple Ixodes ricinus (Acari: Ixodidae) tick sampling points in Hungary to contribute to the assessment of the distribution patterns of the parasitoid wasps in Central Europe. To our knowledge, the first report of the species in Hungary and the description of the southernmost I. hookeri associated geoposition in Central Europe took place within our study. I. hookeri infested I. ricinus nymphs were detected at five sampling points in Hungary. The results show that the exact distribution range of I. hookeri is still barely studied. At the same time, unprecedented public health issues being brought about by climate change might require steps toward the exploitation of the tick biocontrol potential and as an ecological bioindicator role of the parasitoid wasp in the future.
Collapse
Affiliation(s)
- Adrienn Gréta Tóth
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, István u. 2., 1078, Hungary
| | - Róbert Farkas
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, István u. 2., 1078, Hungary
| | - Mónika Gyurkovszky
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, István u. 2., 1078, Hungary
| | - Eszter Krikó
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, István u. 2., 1078, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, István u. 2., 1078, Hungary.
| |
Collapse
|
23
|
Dodson BL, Pujhari S, Brustolin M, Metz HC, Rasgon JL. Variable effects of Wolbachia on alphavirus infection in Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524939. [PMID: 36711723 PMCID: PMC9884506 DOI: 10.1101/2023.01.20.524939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wolbachia pipientis (=Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of somatic infection with two strains of Wolbachia (wAlbB and wMel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed viral titers, while wAlbB did not influence MAYV infection. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.
Collapse
Affiliation(s)
- Brittany L Dodson
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Sujit Pujhari
- Current address: Department of Pharmacology Physiology and Neuroscience, School of Medicine, University of South Carolina, United States
| | - Marco Brustolin
- Current address: Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hillery C Metz
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
24
|
Fujisawa Y, Kornmatitsuk K, Kornmatitsuk S, Kornmatitsuk B. Field evaluation of newly developed 3D-printed ultraviolet and green light-emitting diode traps for the collection of Culicoides species in Thailand. PLoS One 2023; 18:e0280673. [PMID: 36662802 PMCID: PMC9858794 DOI: 10.1371/journal.pone.0280673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Culcioides biting midges (Diptera: Ceratopogonidae) are vectors of various veterinary pathogens. Suction light traps are one of the most widely used tools for vector surveillance. The present aim was to compare the efficiency for the collection of Culicoides species between newly developed 3D-printed ultraviolet (Mahidol University (MU) UV LED) and green light-emitting diode (Mahidol University (MU) Green LED) traps baited with CO2 and UV LED Center for Disease Control (CDC) light trap (BioQuip 2770) baited with CO2. The experiment consisted of two replicates of a 3 × 3 Latin square design in each three sampling locations (Location 1, 2, 3 and 4, 5, 6), for 12 nights between 26th July and 7th August 2020 in Thailand. Results showed that efficiency of the MU UV LED light trap was equivalent to that of the BioQuip 2770 trap for the collection of Culicoides. Meanwhile, the efficiency of the MU Green LED light trap was lower than that of both UV LED light traps. In the analysis of Culicoides species composition and sex-age grading, a similar pattern was observed among three light traps except for Culicoides actoni Smith. The newly developed 3D-printed UV LED light trap demonstrated the following advantages over the commercial light trap: cost saving to obtain multiple units, ease of customization and standardization, and increased availability by end-users. Although further assessments in different environmental conditions are needed, this 3D-printed light trap design could minimize the constrains in vector surveillance programs worldwide.
Collapse
Affiliation(s)
- Yuki Fujisawa
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Kandit Kornmatitsuk
- Chulalongkorn University Demonstration Secondary School, Faculty of Education, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Sudsaijai Kornmatitsuk
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Bunlue Kornmatitsuk
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
25
|
Shi Y, Zhao H, Zhang X. Dynamics of a multi-strain malaria model with diffusion in a periodic environment. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:766-815. [PMID: 36415138 DOI: 10.1080/17513758.2022.2144648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This paper mainly explores the complex impacts of spatial heterogeneity, vector-bias effect, multiple strains, temperature-dependent extrinsic incubation period (EIP) and seasonality on malaria transmission. We propose a multi-strain malaria transmission model with diffusion and periodic delays and define the reproduction numbers Ri and R^i (i = 1, 2). Quantitative analysis indicates that the disease-free ω-periodic solution is globally attractive when Ri<1, while if Ri>1>Rj (i≠j,i,j=1,2), then strain i persists and strain j dies out. More interestingly, when R1 and R2 are greater than 1, the competitive exclusion of the two strains also occurs. Additionally, in a heterogeneous environment, the coexistence conditions of the two strains are R^1>1 and R^2>1. Numerical simulations verify the analytical results and reveal that ignoring vector-bias effect or seasonality when studying malaria transmission will underestimate the risk of disease transmission.
Collapse
Affiliation(s)
- Yangyang Shi
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA), MIIT, Nanjing, People's Republic of China
| | - Hongyong Zhao
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA), MIIT, Nanjing, People's Republic of China
| | - Xuebing Zhang
- College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Bloch EM, Zhu X, Krause PJ, Patel EU, Grabowski MK, Goel R, Auwaerter PG, Tobian AAR. Comparing the Epidemiology and Health Burden of Lyme Disease and Babesiosis Hospitalizations in the United States. Open Forum Infect Dis 2022; 9:ofac597. [PMID: 36467296 PMCID: PMC9709699 DOI: 10.1093/ofid/ofac597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Background Lyme disease (LD) and babesiosis are increasing in the United States. We sought to characterize and compare their epidemiology and health burden using a nationally representative sample of hospitalizations. Methods Data were extracted from the National Inpatient Sample (NIS) pertaining to LD and babesiosis for 2018 and 2019. The NIS is a comprehensive database of all-payer inpatient hospitalizations, representing a stratified systematic random sample of discharges from US hospitals. Patient demographics, clinical outcomes, and admission costs were evaluated, in addition to hospital-level variables (eg, location/teaching status and census division). Annual incidence of hospitalizations was calculated using US Census Bureau data. Results The annual incidence of hospitalizations of LD-related and babesiosis-related hospitalizations were 6.98 and 2.03 per 1 000 000 persons/year. Of the 4585 LD hospitalizations in 2018-2019, 60.9% were among male patients, 85.3% were White, and 39.0% were ≥60 years. Of the 1330 babesiosis hospitalizations in 2018-2019, 72.2% were among male patients, 78.9% were White, and 74.1% were ≥60 years; 70.0% of LD and 91.7% of babesiosis hospitalizations occurred in Middle Atlantic or New England. Lower disease severity was noted in 81.8% of LD hospitalizations compared with 49.3% of babesiosis hospitalizations, whereas those suffering from high severity were 2.3% and 6.0%, respectively. The mean hospital charges for LD and babesiosis hospitalizations were $33 440.8 and $40 689.8, respectively. Conclusions Despite overlap between the 2 diseases, LD has a broader geographic range and a greater number of hospital admissions, whereas babesiosis is more severe, incurring longer hospital stays, higher inpatient costs, and deaths.
Collapse
Affiliation(s)
- Evan M Bloch
- Correspondence: Evan M. Bloch, MBChB, MS, Associate Professor of Pathology, Associate Director, Transfusion Medicine, Department of Pathology, Johns Hopkins University, School of Medicine, 600 N. Wolfe Street, Carnegie 446 D1, Baltimore, MD 21287 ()
| | - Xianming Zhu
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter J Krause
- Department of Epidemiology and Public Health, Yale School of Public Health and Yale School of Medicine, New Haven, Connecticut, USA
| | - Eshan U Patel
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - M Kate Grabowski
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruchika Goel
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Internal Medicine, Simmons Cancer Institute at Southern Illinois University, Springfield, Illinois, USA
| | - Paul G Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
27
|
Simón F, Diosdado A, Siles-Lucas M, Kartashev V, González-Miguel J. Human dirofilariosis in the 21st century: A scoping review of clinical cases reported in the literature. Transbound Emerg Dis 2022; 69:2424-2439. [PMID: 34197050 DOI: 10.1111/tbed.14210] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022]
Abstract
Human dirofilariosis is a clinical entity caused by infection with nematode species of the genus Dirofilaria. The traditional picture depicts the disease as a sporadic event associated with the presence of a single immature worm causing a nodular lesion. With the aim to reassess this paradigm, establishing a more accurate picture of the disease and homogenize criteria, a scoping review was conducted by searching, screening and analysing published clinical cases of human dirofilariosis worldwide during the 21st century. After extracting data from 305 publications containing 576 case reports, results showed that human dirofilariosis is currently caused by five Dirofilaria species (mainly D. repens). Maturation was not uncommon, since 42.95% of the parasites recovered were described as mature worms, most of them females, 26.42% of which contained micofilariae in the uterus. Moreover, six microfilaremic cases have been described. The predominant clinical manifestation was the presence of a worm encapsulated within a nodule, but there is a considerable variety of accompanying symptoms depending on anatomical location and type of dirofilariosis. Parasites/nodules were found in 71 different anatomical locations, being the traditional nomenclature of human dirofilariosis unable to properly cover this complex situation. Delay in seeking medical assistance (patient perception) and the frequency of wrong clinical suspicions (doctor knowledge), strongly influenced clinical management. The initial suspicion in cases of subcutaneous and pulmonary dirofilariosis is predominantly a tumour, while in the ocular dirofilariosis a parasite (but not directly Dirofilaria) is mostly suspected. Surgery is usually applied, regardless of the use of non-invasive techniques during preoperative management and although its use is still limited, molecular approach is the most accurate technique to establish a species-level diagnosis. Accurate epidemiological, parasitological and clinical information while handling and reporting human clinical cases is a need for physicians and researchers to improve and standardize the clinical management of human dirofilariosis.
Collapse
Affiliation(s)
- Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Alicia Diosdado
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Mar Siles-Lucas
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Vladimir Kartashev
- Department of Infectious Diseases, Rostov State Medical University, Rostov-na-Donu, Russia
| | - Javier González-Miguel
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
28
|
Zhang HD, Gao J, Xing D, Guo XX, Li CX, Dong YD, Zheng Z, Ma Z, Wu ZM, Zhu XJ, Zhao MH, Liu QM, Yan T, Chu HL, Zhao TY. Fine-scale genetic structure and wolbachia infection of aedes albopictus (Diptera: Culicidae) in Nanjing city, China. Front Genet 2022; 13:827655. [PMID: 36110209 PMCID: PMC9468874 DOI: 10.3389/fgene.2022.827655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background:Aedes albopictus is an indigenous primary vector of dengue and Zika viruses in China. Wolbachia is a gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Compared with research on the dispersion of Ae. albopictus at the macrospatial level (mainly at the country or continent level), little is known about its variation and Wolbachia infection at the microspatial level, which is essential for its management. Meanwhile, no local cases of dengue fever have been recorded in the history of Nanjing, which implies that few adulticides have been applied in the city. Thus, the present study examines how the Ae. albopictus population varies and the Wolbachia infection status of each population among microspatial regions of Nanjing City. Methods: The genetic structure of 17 Aedes albopictus populations collected from urban, urban fringe, and rural regions of Nanjing City was investigated based on 9 microsatellite loci and the mitochondrial coxI gene. The Wolbachia infection status of each population was also assessed with Wolbachia A- and Wolbachia B-specific primers. Results: Nine out of 58 tested pairs of microsatellite markers were highly polymorphic, with a mean PIC value of 0.560, and these markers were therefore chosen for microsatellite genotyping analysis. The Na value of each Ae. albopictus population was very high, and the urban area populations (7.353 ± 4.975) showed a lower mean value than the urban fringe region populations (7.866 ± 5.010). A total of 19 coxI haplotypes were observed among 329 Ae. albopictus individuals via haplotype genotyping, with the highest diversity observed among the urban fringe Ae. albopictus populations (Hd = 0.456) and the lowest among the urban populations (Hd = 0.277). Each Ae. albopictus population showed significant departure from HWE, and significant population expansion was observed in only three populations from the urban (ZSL), urban fringe (HAJY), and rural areas (HSZY) (p < 0.05). Combined with DAPC analysis, all the Ae. albopictus populations were adequately allocated to two clades with significant genetic differences according to population structure analysis, and the best K value was equal to two. AMOVA results showed that most (96.18%) of the genetic variation detected in Ae. albopictus occurred within individuals (FIT = 0.22238, p < 0.0001), while no significant positive correlation was observed via isolation by distance (IBD) analysis (R2 = 0.03262, p = 0.584). The TCS network of all haplotypes showed that haplotype 1 (H1) and haplotype 4 (H4) were the most frequent haplotypes among all populations, and the haplotype frequency significantly increased from urban regions (36.84%) to rural regions (68.42%). Frequent migration was observed among Ae. albopictus populations from rural to urban regions via the urban fringe region, with four direct migration routes between rural and urban regions. Furthermore, Wolbachia genotyping results showed that most of the individuals of each population were coinfected with Wolbachia A and Wolbachia B. The independent infection rate of Wolbachia A was slightly higher than that of Wolbachia B, and no significant differences were observed among different regions. Conclusion: In the microspatial environment of Nanjing City, the urban fringe region is an important region for the dispersion of Ae. albopictus populations between rural and urban areas, and Wolbachia A and Wolbachia B coinfection is the most common Wolbachia infection status in all Ae. albopictus populations among different regions.
Collapse
Affiliation(s)
- Heng-Duan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Xia Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chun-Xiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan-De Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhong Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zu Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhi-Ming Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Juan Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ming-Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qin-Mei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hong-Liang Chu
- Department of Disinfection and Vector Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- *Correspondence: Hong-Liang Chu, ; Tong-Yan Zhao,
| | - Tong-Yan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Hong-Liang Chu, ; Tong-Yan Zhao,
| |
Collapse
|
29
|
Byrne AW, Barrett D, Breslin P, O’Keeffe J, Murphy KJ, Conteddu K, Morera-Pujol V, Ryan E, Ciuti S. Disturbance Ecology Meets Bovine Tuberculosis (bTB) Epidemiology: A Before-and-After Study on the Association between Forest Clearfelling and bTB Herd Risk in Cattle Herds. Pathogens 2022; 11:807. [PMID: 35890051 PMCID: PMC9321662 DOI: 10.3390/pathogens11070807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Disturbance ecology refers to the study of discrete processes that disrupt the structure or dynamics of an ecosystem. Such processes can, therefore, affect wildlife species ecology, including those that are important pathogen hosts. We report on an observational before-and-after study on the association between forest clearfelling and bovine tuberculosis (bTB) herd risk in cattle herds, an episystem where badgers (Meles meles) are the primary wildlife spillover host. The study design compared herd bTB breakdown risk for a period of 1 year prior to and after exposure to clearfelling across Ireland at sites cut in 2015-2017. The percent of herds positive rose from 3.47% prior to clearfelling to 4.08% after exposure. After controlling for confounders (e.g., herd size, herd type), we found that cattle herds significantly increased their odds of experiencing a bTB breakdown by 1.2-times (95%CIs: 1.07-1.36) up to 1 year after a clearfell risk period. Disturbance ecology of wildlife reservoirs is an understudied area with regards to shared endemic pathogens. Epidemiological observational studies are the first step in building an evidence base to assess the impact of such disturbance events; however, such studies are limited in inferring the mechanism for any changes in risk observed. The current cohort study suggested an association between clearfelling and bTB risk, which we speculate could relate to wildlife disturbance affecting pathogen spillback to cattle, though the study design precludes causal inference. Further studies are required. However, ultimately, integration of epidemiology with wildlife ecology will be important for understanding the underlying mechanisms involved, and to derive suitable effective management proposals, if required.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One Health Scientific Support Unit, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland;
| | - Damien Barrett
- One Health Scientific Support Unit, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland;
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - Philip Breslin
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - James O’Keeffe
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - Kilian J. Murphy
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| | - Kimberly Conteddu
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| | - Virginia Morera-Pujol
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| | - Eoin Ryan
- Ruminant Animal Health Division, Department of Agriculture, Food and the Marine, D02 WK12 Dublin, Ireland; (P.B.); (J.O.); (E.R.)
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (K.J.M.); (K.C.); (V.M.-P.); (S.C.)
| |
Collapse
|
30
|
Effect of Constant Temperatures on Culicoides sonorensis Midge Physiology and Vesicular Stomatitis Virus Infection. INSECTS 2022; 13:insects13040372. [PMID: 35447814 PMCID: PMC9024736 DOI: 10.3390/insects13040372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Culicoides biting midges are nuisance pests of livestock and well-known vectors of veterinary arboviruses, such as vesicular stomatitis virus (VSV). Female midges ingest viruses when feeding on blood to obtain protein for egg-laying. After ingesting a VSV-infected blood meal, the environmental temperature of the resting location mediates the rates at which blood is digested, eggs are laid, and virus particles are replicated inside the midge. VSV transmission will occur if the timing of virus amplification aligns with the next feeding–egg-laying cycle. We evaluated the impact of constant environmental temperatures on midge physiology (lifespan and reproduction), vector competence for VSV (infection and dissemination), and thermal resting preference. Our results indicate that after ingesting a blood meal, most midges prefer to rest in areas that fall within their preferred physiological range regardless of the temperatures at which they were being maintained. These preferred temperatures maximized their survival, the number of egg-laying cycles, and the likelihood of VSV transmission. Our temperature approach shows that in the Culicoides–VSV system, the preferred resting temperature selected by blood-fed midges is beneficial for both insect and virus transmission. Abstract Culicoides midges play an important role in vesicular stomatitis virus (VSV) transmission to US livestock. After VSV-blood feeding, blood digestion followed by oviposition occurs while ingested virus particles replicate and disseminate to salivary glands for transmission during subsequent blood-feeding events. Changes to environmental temperature may alter the feeding–oviposition–refeeding cycles, midge survival, VSV infection, and overall vector capacity. However, the heterothermic midge may respond rapidly to environmental changes by adjusting their thermal behavior to resting in areas closer to their physiological range. Here we investigated the effects of four constant environmental temperatures (20, 25, 30, and 35 °C) on C. sonorensis survival, oviposition, and VSV infection, as well as resting thermal preferences after blood-feeding. We found that most midges preferred to rest in areas at 25–30 °C. These two constant temperatures (25 and 30 °C) allowed an intermediate fitness performance, with a 66% survival probability by day 10 and oviposition cycles occurring every 2–3 days. Additionally, VSV infection rates in bodies and heads with salivary glands were higher than in midges held at 20 °C and 35 °C. Our results provide insight into the implications of temperature on VSV–Culicoides interactions and confirm that the range of temperature preferred by midges can benefit both the vector and the arbovirus.
Collapse
|
31
|
Severns PM, Mundt CC. Delays in Epidemic Outbreak Control Cost Disproportionately Large Treatment Footprints to Offset. Pathogens 2022; 11:pathogens11040393. [PMID: 35456068 PMCID: PMC9030382 DOI: 10.3390/pathogens11040393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Epidemic outbreak control often involves a spatially explicit treatment area (quarantine, inoculation, ring cull) that covers the outbreak area and adjacent regions where hosts are thought to be latently infected. Emphasis on space however neglects the influence of treatment timing on outbreak control. We conducted field and in silico experiments with wheat stripe rust (WSR), a long-distance dispersed plant disease, to understand interactions between treatment timing and area interact to suppress an outbreak. Full-factorial field experiments with three different ring culls (outbreak area only to a 25-fold increase in treatment area) at three different disease control timings (1.125, 1.25, and 1.5 latent periods after initial disease expression) indicated that earlier treatment timing had a conspicuously greater suppressive effect than the area treated. Disease spread computer simulations over a broad range of influential epidemic parameter values (R0, outbreak disease prevalence, epidemic duration) suggested that potentially unrealistically large increases in treatment area would be required to compensate for even small delays in treatment timing. Although disease surveillance programs are costly, our results suggest that treatments early in an epidemic disease outbreak require smaller areas to be effective, which may ultimately compensate for the upfront costs of proactive disease surveillance programs.
Collapse
Affiliation(s)
- Paul M. Severns
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| | - Christopher C. Mundt
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
32
|
Dogan F, Dik B, Bilge-Dagalp S, Farzani TA, Ataseven VS, Acar G, Şahinkesen İ, Özkul A. Prevalance of Schmallenberg orthobunyavirus (SBV) infection in sampled ruminants in Turkey's eastern Mediterranean region between 2015 and 2017. Res Vet Sci 2022; 145:63-70. [DOI: 10.1016/j.rvsc.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/15/2022]
|
33
|
Zhao S, Li Y, Fu S, Liu M, Li F, Liu C, Yu J, Rui L, Wang D, Wang H. Environmental factors and spatiotemporal distribution of Japanese encephalitis after vaccination campaign in Guizhou Province, China (2004-2016). BMC Infect Dis 2021; 21:1172. [PMID: 34809606 PMCID: PMC8607706 DOI: 10.1186/s12879-021-06857-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background Although a vaccination campaign has been conducted since 2004, Japanese encephalitis (JE) is still a public health problem in Guizhou, one of the provinces with the highest incidence of JE in China. The aim of this study was to understand the spatiotemporal distribution of JE and its relationship with environmental factors in Guizhou Province in the post-vaccination era, 2004–2016. Methods We collected data on human JE cases in Guizhou Province from 2004 to 2016 from the national infectious disease reporting system. A Poisson regression model was used to analyze the relationship between JE occurrence and environmental factors amongst counties. Results Our results showed that the incidence and mortality of JE decreased after the initiation of vaccination. JE cases were mainly concentrated in preschool and school-age children and the number of cases in children over age 15 years was significantly decreased compared with the previous 10 years; the seasonality of JE before and after the use of vaccines was unchanged. JE incidence was positively associated with cultivated land and negatively associated with gross domestic product (GDP) per capita, vegetation coverage, and developed land. In areas with cultivated land coverage < 25%, vegetation coverage > 55%, and urban area coverage > 25%, the JE risk was lower. The highest JE incidence was among mid-level GDP areas and in moderately urbanized areas. Conclusions This study assessed the relationship between incidence of JE and environmental factors in Guizhou Province. Our results highlight that the highest risk of JE transmission in the post-vaccination era is in mid-level developed areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06857-3.
Collapse
Affiliation(s)
- Suye Zhao
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Yidan Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.,School of National Security and Emergency Management, Beijing Normal University, Beijing, 100875, China
| | - Shihong Fu
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Ming Liu
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Fan Li
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Chunting Liu
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Jing Yu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Liping Rui
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Dingming Wang
- Guizhou Provincial Center for Disease Control and Prevention, 101, Ba Ge Yan road, Yunyan District, Guiyang, 550004, Guizhou, China.
| | - Huanyu Wang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China. .,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
34
|
Predicting the Geographic Range of an Invasive Livestock Disease across the Contiguous USA under Current and Future Climate Conditions. CLIMATE 2021. [DOI: 10.3390/cli9110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vesicular stomatitis (VS) is the most common vesicular livestock disease in North America. Transmitted by direct contact and by several biting insect species, this disease results in quarantines and animal movement restrictions in horses, cattle and swine. As changes in climate drive shifts in geographic distributions of vectors and the viruses they transmit, there is considerable need to improve understanding of relationships among environmental drivers and patterns of disease occurrence. Multidisciplinary approaches integrating pathology, ecology, climatology, and biogeophysics are increasingly relied upon to disentangle complex relationships governing disease. We used a big data model integration approach combined with machine learning to estimate the potential geographic range of VS across the continental United States (CONUS) under long-term mean climate conditions over the past 30 years. The current extent of VS is confined to the western portion of the US and is related to summer and winter precipitation, winter maximum temperature, elevation, fall vegetation biomass, horse density, and proximity to water. Comparison with a climate-only model illustrates the importance of current processes-based parameters and identifies regions where uncertainty is likely to be greatest if mechanistic processes change. We then forecast shifts in the range of VS using climate change projections selected from CMIP5 climate models that most realistically simulate seasonal temperature and precipitation. Climate change scenarios that altered climatic conditions resulted in greater changes to potential range of VS, generally had non-uniform impacts in core areas of the current potential range of VS and expanded the range north and east. We expect that the heterogeneous impacts of climate change across the CONUS will be exacerbated with additional changes in land use and land cover affecting biodiversity and hydrological cycles that are connected to the ecology of insect vectors involved in VS transmission.
Collapse
|
35
|
Nigusie A, Gizaw Z, Gebrehiwot M, Destaw B. Vector-Borne Diseases and Associated Factors in the Rural Communities of Northwest Ethiopia: A Community-Based Cross-Sectional Study. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:11786302211043049. [PMID: 34483662 PMCID: PMC8414622 DOI: 10.1177/11786302211043049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Human illnesses caused by parasites, viruses, and bacteria that are transmitted by vectors are called vector-borne diseases. Vector-borne diseases usually affect the poorest populations, particularly where there is a lack of access to adequate housing, safe drinking water, and sanitation. This community-based cross-sectional study was, conducted to assess the prevalence of self-reported vector-borne diseases and associated factors in the rural communities of northwest Ethiopia. METHODS A community-based cross-sectional study design with structured observation was conducted among 1191 randomly selected rural households in northwest Ethiopia from April to June 2017. Data were collected by using a structured questionnaire; and observation checklist. Multivariable binary logistic regression analysis was used to identify variables associated with the prevalence of self-reported vector-borne diseases on the basis of adjusted odds ratio (AOR) with 95% confidence interval (CI) and P-values <.05. RESULTS In the current study, 216 (18.1%) of the rural households reported one or more vector-borne diseases. Scabies (9.5%) were the most reported vector-borne disease followed by Malaria (6.9%). The prevalence of self-reported vector-borne diseases was statistically associated with the head of the family (mother) (AOR = 0.13, 95% CI = 0.02-0.72), regular cleaning of the living environment (AOR = 0.51, 95% CI = 0.36-0.74), poor cleanness of the living rooms (AOR = 1.77, 95% CI = 1.03-3.03), and moderate cleanness of the floor (AOR = 1.64, 95% CI = 1.06-2.52). CONCLUSION The prevalence of self-reported vector-borne diseases was high in the rural communities of northwest Ethiopia. The low prevalence was associated with family head; regular cleaning of living environment and cleanness of the floor. Designing and strengthening an intervention strategy for environmental sanitation, regular cleaning of living house, and keeping personal hygiene shall be considered.
Collapse
Affiliation(s)
- Adane Nigusie
- Department of Health Education and
Behavioral Sciences, Institute of Public Health, College of Medicine and Health
Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemichael Gizaw
- Department of Environmental and
Occupational Health and Safety, Institute of Public Health, College of Medicine and
Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Epidemiology and
Biostatistics, Addis Continental Institute of Public Health, Addis Ababa,
Ethiopia
| | - Mulat Gebrehiwot
- Department of Environmental and
Occupational Health and Safety, Institute of Public Health, College of Medicine and
Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bikes Destaw
- Department of Environmental and
Occupational Health and Safety, Institute of Public Health, College of Medicine and
Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
36
|
Damos PT, Dorrestijn J, Thomidis T, Tuells J, Caballero P. A Temperature Conditioned Markov Chain Model for Predicting the Dynamics of Mosquito Vectors of Disease. INSECTS 2021; 12:insects12080725. [PMID: 34442291 PMCID: PMC8396828 DOI: 10.3390/insects12080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
Understanding and predicting mosquito population dynamics is crucial for gaining insight into the abundance of arthropod disease vectors and for the design of effective vector control strategies. In this work, a climate-conditioned Markov chain (CMC) model was developed and applied for the first time to predict the dynamics of vectors of important medical diseases. Temporal changes in mosquito population profiles were generated to simulate the probabilities of a high population impact. The simulated transition probabilities of the mosquito populations achieved from the trained model are very near to the observed data transitions that have been used to parameterize and validate the model. Thus, the CMC model satisfactorily describes the temporal evolution of the mosquito population process. In general, our numerical results, when temperature is considered as the driver of change, indicate that it is more likely for the population system to move into a state of high population level when the former is a state of a lower population level than the opposite. Field data on frequencies of successive mosquito population levels, which were not used for the data inferred MC modeling, were assembled to obtain an empirical intensity transition matrix and the frequencies observed. Our findings match to a certain degree the empirical results in which the probabilities follow analogous patterns while no significant differences were observed between the transition matrices of the CMC model and the validation data (ChiSq = 14.58013, df = 24, p = 0.9324451). The proposed modeling approach is a valuable eco-epidemiological study. Moreover, compared to traditional Markov chains, the benefit of the current CMC model is that it takes into account the stochastic conditional properties of ecological-related climate variables. The current modeling approach could save costs and time in establishing vector eradication programs and mosquito surveillance programs.
Collapse
Affiliation(s)
- Petros T. Damos
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain; (J.T.); (P.C.)
- Pharmacy Department, University General Infectious Disease Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54136 Thessaloniki, Greece
- Department of Nutritional Sciences and Dietetics, International Hellenic University of Thessaloniki, 57400 Thessaloniki, Greece;
- Correspondence: or
| | - Jesse Dorrestijn
- Faculty of Civil Engineering and Geoscience, Delft University of Technology, 2628 CN Delft, The Netherlands;
| | - Thomas Thomidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University of Thessaloniki, 57400 Thessaloniki, Greece;
| | - José Tuells
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain; (J.T.); (P.C.)
| | - Pablo Caballero
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain; (J.T.); (P.C.)
| |
Collapse
|
37
|
Bikomeye JC, Namin S, Anyanwu C, Rublee CS, Ferschinger J, Leinbach K, Lindquist P, Hoppe A, Hoffman L, Hegarty J, Sperber D, Beyer KMM. Resilience and Equity in a Time of Crises: Investing in Public Urban Greenspace Is Now More Essential Than Ever in the US and Beyond. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8420. [PMID: 34444169 PMCID: PMC8392137 DOI: 10.3390/ijerph18168420] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 01/14/2023]
Abstract
The intersecting negative effects of structural racism, COVID-19, climate change, and chronic diseases disproportionately affect racial and ethnic minorities in the US and around the world. Urban populations of color are concentrated in historically redlined, segregated, disinvested, and marginalized neighborhoods with inadequate quality housing and limited access to resources, including quality greenspaces designed to support natural ecosystems and healthy outdoor activities while mitigating urban environmental challenges such as air pollution, heat island effects, combined sewer overflows and poor water quality. Disinvested urban environments thus contribute to health inequity via physical and social environmental exposures, resulting in disparities across numerous health outcomes, including COVID-19 and chronic diseases such as cancer and cardiovascular diseases (CVD). In this paper, we build off an existing conceptual framework and propose another conceptual framework for the role of greenspace in contributing to resilience and health equity in the US and beyond. We argue that strategic investments in public greenspaces in urban neighborhoods impacted by long term economic disinvestment are critically needed to adapt and build resilience in communities of color, with urgency due to immediate health threats of climate change, COVID-19, and endemic disparities in chronic diseases. We suggest that equity-focused investments in public urban greenspaces are needed to reduce social inequalities, expand economic opportunities with diversity in workforce initiatives, build resilient urban ecosystems, and improve health equity. We recommend key strategies and considerations to guide this investment, drawing upon a robust compilation of scientific literature along with decades of community-based work, using strategic partnerships from multiple efforts in Milwaukee Wisconsin as examples of success.
Collapse
Affiliation(s)
- Jean C. Bikomeye
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| | - Sima Namin
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| | - Chima Anyanwu
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| | - Caitlin S. Rublee
- Department of Emergency Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;
| | - Jamie Ferschinger
- Sixteenth Street Community Health Centers, Environmental Health & Community Wellness, 1337 S Cesar Chavez Drive, Milwaukee, WI 53204, USA;
| | - Ken Leinbach
- The Urban Ecology Center, 1500 E. Park Place, Milwaukee, WI 53211, USA;
| | - Patricia Lindquist
- Wisconsin Department of Natural Resources, Division of Forestry, 101 S. Webster Street, P.O. Box 7921, Madison, WI 53707, USA;
| | - August Hoppe
- The Urban Wood Lab, Hoppe Tree Service, 1813 S. 73rd Street, West Allis, WI 53214, USA;
| | - Lawrence Hoffman
- Department of GIS, Groundwork Milwaukee, 227 West Pleasant Street, Milwaukee, WI 53212, USA;
| | - Justin Hegarty
- Reflo—Sustainable Water Solutions, 1100 S 5th Street, Milwaukee, WI 53204, USA;
| | - Dwayne Sperber
- Wudeward Urban Forest Products, N11W31868 Phyllis Parkway, Delafield, WI 53018, USA;
| | - Kirsten M. M. Beyer
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (S.N.); (C.A.)
| |
Collapse
|
38
|
Nadal C, Bonnet SI, Marsot M. Eco-epidemiology of equine piroplasmosis and its associated tick vectors in Europe: A systematic literature review and a meta-analysis of prevalence. Transbound Emerg Dis 2021; 69:2474-2498. [PMID: 34333863 DOI: 10.1111/tbed.14261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/04/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022]
Abstract
When studying a vector-borne disease, an eco-epidemiological approach is vital for a comprehensive understanding of how the pathogen circulates amongst populations. Equine piroplasmosis (EP), a tick-borne disease caused by the protozoans Babesia caballi and Theileria equi, is endemic in the Mediterranean basin of Europe and causes both animal health and economic issues for the equine sector. With no vaccine available, defining the episystem of the disease can help to identify which components of the host-pathogen-vector-environment system to target to improve preventive measures. In this systematic literature review, we collected relevant data on the eco-epidemiology of EP in Europe. The 62 studies remaining after the selection procedure explored potential vectors, indicators of parasite circulation and putative risk factors of EP. Eight hard tick species were identified as potential vectors of one or both piroplasm species. Meta-analyses were then conducted on prevalence and seroprevalence data in equids in European countries, demonstrating an estimated seroprevalence of 30% and 8% and prevalence of 25% and 2% for T. equi and B. caballi, respectively. Finally, herd management practices and environmental risk factors analysed in studies showed no real consensus between studies, but revealed a general trend highlighting age and exposure to ticks as risk factors, and vaccination as a protective factor. Through this study, we point out that only a few studies have focused on disease management practices and even fewer have studied the effect of environmental parameters on equid infections. Further investigation in these areas is required to better characterize the eco-epidemiology of EP and risk factors associated with this disease.
Collapse
Affiliation(s)
- Clémence Nadal
- Epidemiology Unit, Laboratory for Animal Health, ANSES, University Paris Est, Maisons-Alfort, France.,ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Sarah I Bonnet
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Maud Marsot
- Epidemiology Unit, Laboratory for Animal Health, ANSES, University Paris Est, Maisons-Alfort, France
| |
Collapse
|
39
|
Towards an ecosystem model of infectious disease. Nat Ecol Evol 2021; 5:907-918. [PMID: 34002048 DOI: 10.1038/s41559-021-01454-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/25/2021] [Indexed: 02/03/2023]
Abstract
Increasingly intimate associations between human society and the natural environment are driving the emergence of novel pathogens, with devastating consequences for humans and animals alike. Prior to emergence, these pathogens exist within complex ecological systems that are characterized by trophic interactions between parasites, their hosts and the environment. Predicting how disturbance to these ecological systems places people and animals at risk from emerging pathogens-and the best ways to manage this-remains a significant challenge. Predictive systems ecology models are powerful tools for the reconstruction of ecosystem function but have yet to be considered for modelling infectious disease. Part of this stems from a mistaken tendency to forget about the role that pathogens play in structuring the abundance and interactions of the free-living species favoured by systems ecologists. Here, we explore how developing and applying these more complete systems ecology models at a landscape scale would greatly enhance our understanding of the reciprocal interactions between parasites, pathogens and the environment, placing zoonoses in an ecological context, while identifying key variables and simplifying assumptions that underly pathogen host switching and animal-to-human spillover risk. As well as transforming our understanding of disease ecology, this would also allow us to better direct resources in preparation for future pandemics.
Collapse
|
40
|
Ratnadass A, Deguine JP. Crop protection practices and viral zoonotic risks within a One Health framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145172. [PMID: 33610983 DOI: 10.1016/j.scitotenv.2021.145172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Recent viral zoonotic epidemics have been attributed partially to the negative impact of human activities on ecosystem biodiversity. Agricultural activities, particularly conventional crop protection (CP) practices, are a major threat to global biodiversity, ecosystem health and human health. Here we review interactions between CP practices and viral zoonoses (VZs), the first time this has been done. It should be noted that a) VZs stand at the interface between human, animal and ecosystem health; b) some VZs involve arthropod vectors that are affected by CP practices; and c) some crop pests, or their natural enemies are vertebrate reservoirs/carriers of certain VZs, and their contact with humans or domestic animals is affected by CP practices. Our review encompasses examples highlighting interactions between VZs and CP practices, both efficiency improvement-based (i.e. conventional with agrochemical insecticides and rodenticides), substitution-based (i.e. mainly with physical/mechanical or biopesticidal pest control), and redesign-based (i.e. mainly with conservation biological pest control, including some forms of crop-livestock integration). These CP practices mainly target arthropod and vertebrate pests. They also target, to a lesser extent, weeds and plant pathogens. Conventional and some physical/mechanical control methods and some forms of biopesticidal and crop-livestock integration practices were found to have mixed outcomes in terms of VZ risk management. Conversely, practices based on biological control by habitat conservation of arthropod or vertebrate natural enemies, falling within the Agroecological Crop Protection (ACP) framework, result in VZ prevention at various scales (local to global, and short-term to long-term). ACP addresses major global challenges including climate resilience, biodiversity conservation and animal welfare, and helps integrate plant health within the extended "One Health" concept.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR HortSys, F-97455 Saint-Pierre, Réunion, France; HortSys, Univ Montpellier, CIRAD, Montpellier, France.
| | | |
Collapse
|
41
|
Sarli M, Novoa MB, Mazzucco MN, Morel N, Primo ME, de Echaide ST, Echaide IE. Efficacy of long-acting oxytetracycline and imidocarb dipropionate for the chemosterilization of Anaplasma marginale in experimentally infected carrier cattle in Argentina. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 23:100513. [PMID: 33678368 DOI: 10.1016/j.vprsr.2020.100513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/21/2020] [Accepted: 12/05/2020] [Indexed: 11/28/2022]
Abstract
The expansion of anaplasmosis to non-endemic areas in Argentina has created the need for specific treatments to eliminate Anaplasma marginale from carriers. The most recent studies have failed to chemosterilize A. marginale infections. In this work, we compare the efficacy of long-acting oxytetracycline (OTC) and imidocarb dipropionate (IMD) to chemosterilize the A. marginale infection. For this purpose, twenty steers were randomly clustered into two groups of ten animals each 78 days after A. marginale experimental infection (day 0). Cattle from group 1 (G1) were treated with three doses of 20 mg kg-1 of OTC (Terramycin® LA, 200 mg/ml) 7 days apart by intramuscular injection. Cattle from G2 were treated with two doses of 5 mg kg-1 of IMD (Imizol®, 120 mg/ml) 14 days apart by intramuscular injection. The efficacy of sterilizing treatments was evaluated by detection of DNA by nested PCR, anti-MSP5 antibodies by ELISA and by inoculation of splenectomized calves with blood from the steers 104 days post-treatment (dpt). The results showed 50% efficacy of the OTC treatment to chemosterilize persistent A. marginale infections in cattle and the failure of the IMD treatment under the evaluated conditions. The persistence of specific antibody levels in the sterilized animals (56 dpt) was shorter than the period of DNA detection. The ELISA was the test of choice to confirm the sterilizing outcome after 60 dpt. In spite of its limitations, the sterilization of A. marginale carrier status using OTC, could be useful for high-value bovines in non-endemic areas.
Collapse
Affiliation(s)
- Macarena Sarli
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CP 2300 Rafaela, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 2300 Rafaela, Santa Fe, Argentina.
| | - María B Novoa
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CP 2300 Rafaela, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 2300 Rafaela, Santa Fe, Argentina
| | - Matilde N Mazzucco
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CP 2300 Rafaela, Santa Fe, Argentina
| | - Nicolás Morel
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CP 2300 Rafaela, Santa Fe, Argentina
| | - María E Primo
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CP 2300 Rafaela, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 2300 Rafaela, Santa Fe, Argentina
| | - Susana T de Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CP 2300 Rafaela, Santa Fe, Argentina
| | - Ignacio E Echaide
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CP 2300 Rafaela, Santa Fe, Argentina
| |
Collapse
|
42
|
Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias. J Math Biol 2021; 82:24. [PMID: 33649976 DOI: 10.1007/s00285-021-01577-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 11/11/2020] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
In this paper, we introduce a reaction-diffusion malaria model which incorporates vector-bias, spatial heterogeneity, sensitive and resistant strains. The main question that we study is the threshold dynamics of the model, in particular, whether the existence of spatial structure would allow two strains to coexist. In order to achieve this goal, we define the basic reproduction number [Formula: see text] and introduce the invasion reproduction number [Formula: see text] for strain [Formula: see text]. A quantitative analysis shows that if [Formula: see text], then disease-free steady state is globally asymptotically stable, while competitive exclusion, where strain i persists and strain j dies out, is a possible outcome when [Formula: see text] [Formula: see text], and a unique solution with two strains coexist to the model is globally asymptotically stable if [Formula: see text], [Formula: see text]. Numerical simulations reinforce these analytical results and demonstrate epidemiological interaction between two strains, discuss the influence of resistant strains and study the effects of vector-bias on the transmission of malaria.
Collapse
|
43
|
Detecting seasonal transient correlations between populations of the West Nile Virus vector Culex sp. and temperatures with wavelet coherence analysis. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Couper LI, MacDonald AJ, Mordecai EA. Impact of prior and projected climate change on US Lyme disease incidence. GLOBAL CHANGE BIOLOGY 2021; 27:738-754. [PMID: 33150704 PMCID: PMC7855786 DOI: 10.1111/gcb.15435] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/28/2020] [Indexed: 05/21/2023]
Abstract
Lyme disease is the most common vector-borne disease in temperate zones and a growing public health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme disease burden has been challenging due to the complex ecology of the disease and the presence of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county-level Lyme disease case data in a panel data statistical model to investigate prior effects of climate variation on disease incidence while controlling for other putative drivers. We then used these climate-disease relationships to project Lyme disease cases using CMIP5 global climate models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in Lyme disease incidence is associated with climate variation in all US regions encompassing the range of the primary vector species. In all regions, the climate predictors explained less of the variation in Lyme disease incidence than unobserved county-level heterogeneity, but the strongest climate-disease association detected was between warming annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and with large uncertainty around this projected increase. Significant case changes are not projected for any other region under either climate scenario. The results demonstrate a regionally variable and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to projected climate change. Moreover, our results highlight the need for improved preparedness and public health interventions in endemic regions to minimize the impact of further climate change-induced increases in Lyme disease burden.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Andrew J MacDonald
- Earth Research Institute, University of California, Santa Barbara, CA, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
45
|
Bittner L, Krämer K, Wöckel A, Snedec T, Delling C, Böttcher D, Köller G, Baumgartner W, Richardt W, Starke A. Malnutrition as the cause of recumbency in suckler cows associated with Trypanosoma theileri infection. Acta Vet Scand 2021; 63:2. [PMID: 33422114 PMCID: PMC7797129 DOI: 10.1186/s13028-020-00567-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Recumbent cows are a diagnostic challenge because of a wide range of differential diagnoses, which include trauma, neurological and metabolic disorders, malnutrition and mineral deficiencies. This case report describes recumbent suckler cows that presented as a herd problem. In addition to weakness due to inanition, Cu and Se deficiencies were considered as possible aetiologies of the recumbency. Furthermore, Trypanosoma (T.) theileri, a blood parasite of unknown importance in Germany, was detected in the blood of some cows. CASE PRESENTATION Three recumbent cows were referred to the Clinic for Ruminants and Swine, Faculty of Veterinary Medicine of the University of Leipzig. They were unable to rise and had low body condition scores and rough hair coats. Haematological and serum biochemical analyses showed neutrophilia, electrolyte imbalances, increased activities of muscle and liver enzymes and decreased concentrations of trace elements, especially Copper (Cu) and Selenium (Se). T. theileri was detected in a routine blood smear from one cow. The cows did not respond to an intensive care protocol, which included intravenous fluids and electrolytes, mineral substitution, non-steroidal anti-inflammatories and antibiotics, and were therefore euthanized or died. Postmortem examination showed cachexia, subcutaneous and scleral oedema and muscular dystrophy, especially in the hind limbs. Follow-up examination of the herd of origin produced similar findings including the detection of T. theileri in a large proportion of the herd. Ration analysis revealed considerable undersupply of several nutrients. CONCLUSIONS Based on all findings, an aetiological diagnosis of trace mineral and nutrient deficiency with possible involvement of T. theileri was made.
Collapse
Affiliation(s)
- Lilli Bittner
- Faculty of Veterinary Medicine, Clinic for Ruminants and Swine, An den Tierkliniken 11, 04103, Leipzig, Germany.
| | - Kjelt Krämer
- Tierarztpraxis FTA Dr. Gregor Stampa, Groß Floyen 8, 24616, Brokstedt, Germany
| | - Adriana Wöckel
- Faculty of Veterinary Medicine, Clinic for Ruminants and Swine, An den Tierkliniken 11, 04103, Leipzig, Germany
| | - Teja Snedec
- Faculty of Veterinary Medicine, Clinic for Ruminants and Swine, An den Tierkliniken 11, 04103, Leipzig, Germany
| | - Cora Delling
- Faculty of Veterinary Medicine, Institute of Parasitology, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - Denny Böttcher
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, An den Tierkliniken 33, 04103, Leipzig, Germany
| | - Gabor Köller
- Faculty of Veterinary Medicine, Clinic for Ruminants and Swine, An den Tierkliniken 11, 04103, Leipzig, Germany
| | - Walter Baumgartner
- University Clinic for Ruminants, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | - Alexander Starke
- Faculty of Veterinary Medicine, Clinic for Ruminants and Swine, An den Tierkliniken 11, 04103, Leipzig, Germany
| |
Collapse
|
46
|
Zerbo A, Castro Delgado R, Arcos González P. Aedes-borne viral infections and risk of emergence/resurgence in Sub-Saharan African urban areas. JOURNAL OF BIOSAFETY AND BIOSECURITY 2020. [DOI: 10.1016/j.jobb.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Bellone R, Failloux AB. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front Microbiol 2020; 11:584846. [PMID: 33101259 PMCID: PMC7545027 DOI: 10.3389/fmicb.2020.584846] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.
Collapse
Affiliation(s)
- Rachel Bellone
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
48
|
Keds, the enigmatic flies and their role as vectors of pathogens. Acta Trop 2020; 209:105521. [PMID: 32447028 DOI: 10.1016/j.actatropica.2020.105521] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
Hippoboscid flies (Diptera: Hippoboscidae), commonly known as keds or louse flies, have been for long time overlooked by the scientific community, and their vector role of infectious agents to humans and domestic animals has been scantly investigated. This is partly due to the fact that the host range for most species is primarily restricted to wildlife, being rarely reported on domestic animals and humans. This led to a scarce scientific knowledge about their biology, ecology, behaviour, epidemiology as well as vector competence. However, the life history of some hippoboscid species, e.g., Melophagus ovinus, Lipoptena cervi and Hippobosca equina, suggests that these ectoparasites are important candidates to vector infectious disease agents (e.g., Rickettsia spp., Borrelia spp., Bartonella spp., Anaplasma phagocytophilum, Theileria ovis). Indeed, the peculiar biological and behavioural traits (i.e., obligatory blood sucking and reproductive physiology) of many ked species make them a suitable pabulum for pathogen's multiplication and for their transmission to receptive hosts. Therefore, studies focusing on the ked bio-ecological aspects as well as on their vector role are advocated along with the control of keds affecting different animal species. This review discusses current information on keds, highlighting their importance as vectors of pathogens of medical and veterinary concern to all animal species, with a special focus on mammals.
Collapse
|
49
|
Tracking Community Timing: Pattern and Determinants of Seasonality in Culicoides (Diptera: Ceratopogonidae) in Northern Florida. Viruses 2020; 12:v12090931. [PMID: 32854272 PMCID: PMC7552033 DOI: 10.3390/v12090931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Community dynamics are embedded in hierarchical spatial–temporal scales that connect environmental drivers with species assembly processes. Culicoides species are hematophagous arthropod vectors of orbiviruses that impact wild and domestic ruminants. A better sense of Culicoides dynamics over time is important because sympatric species can lengthen the seasonality of virus transmission. We tested a putative departure from the four seasons calendar in the phenology of Culicoides and the vector subassemblage in the Florida panhandle. Two years of weekly abundance data, temporal scales, persistence and environmental thresholds were analyzed using a tripartite Culicoides β-diversity based modeling approach. Culicoides phenology followed a two-season regime and was explained by stream flow and temperature, but not rainfall. Species richness fit a nested pattern where the species recruitment was maximized during spring months. Midges were active year-round, and two suspected vectors species, Culicoides venustus and Culicoides stellifer, were able to sustain and connect the seasonal modules. Persistence suggests that Orbivirus maintenance does not rely on overwintering and that viruses are maintained year-round, with the seasonal dynamics resembling subtropical Culicoides communities with temporal-overlapping between multivoltine species. Viewing Culicoides-borne orbiviruses as a time-sensitive community-based issue, our results help to recommend when management operations should be delivered.
Collapse
|
50
|
Tozan Y, Sjödin H, Muñoz ÁG, Rocklöv J. Transmission dynamics of dengue and chikungunya in a changing climate: do we understand the eco-evolutionary response? Expert Rev Anti Infect Ther 2020; 18:1187-1193. [PMID: 32741233 DOI: 10.1080/14787210.2020.1794814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We are witnessing an alarming increase in the burden and range of mosquito-borne arboviral diseases. The transmission dynamics of arboviral diseases is highly sensitive to climate and weather and is further affected by non-climatic factors such as human mobility, urbanization, and disease control. As evidence also suggests, climate-driven changes in species interactions may trigger evolutionary responses in both vectors and pathogens with important consequences for disease transmission patterns. AREAS COVERED Focusing on dengue and chikungunya, we review the current knowledge and challenges in our understanding of disease risk in a rapidly changing climate. We identify the most critical research gaps that limit the predictive skill of arbovirus risk models and the development of early warning systems, and conclude by highlighting the potentially important research directions to stimulate progress in this field. EXPERT OPINION Future studies that aim to predict the risk of arboviral diseases need to consider the interactions between climate modes at different timescales, the effects of the many non-climatic drivers, as well as the potential for climate-driven adaptation and evolution in vectors and pathogens. An important outcome of such studies would be an enhanced ability to promulgate early warning information, initiate adequate response, and enhance preparedness capacity.
Collapse
Affiliation(s)
- Yesim Tozan
- School of Global Public Health, New York University , New York, NY, USA
| | - Henrik Sjödin
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University , Umeå, Sweden
| | - Ángel G Muñoz
- International Research Institute for Climate and Society, the Earth Institute at Columbia University , New York, NY, USA
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University , Umeå, Sweden.,Heidelberg Institute of Global Health, University of Heidelberg , Heidelberg, Germany
| |
Collapse
|