1
|
Matthews PGD. Buoyancy Regulation in Insects. Physiology (Bethesda) 2025; 40:0. [PMID: 39319858 DOI: 10.1152/physiol.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Multiple insect lineages have successfully reinvaded the aquatic environment, evolving to complete either part or all of their life cycle submerged in water. Although these insects vary in their reliance on atmospheric oxygen, with many having the ability to extract dissolved oxygen directly from the water, all retain an internal air-filled respiratory system, their tracheal system, due to their terrestrial origins. However, carrying air within their tracheal system, and even augmenting this volume with additional air bubbles carried on their body, dramatically increases their buoyancy, which can make it challenging to remain submerged. But by manipulating this air volume a few aquatic insects can deliberately alter or regulate their position in the water column. Unlike cephalopods and teleost fish that control the volume of gas within their hydrostatic organs by either using osmosis to pull liquid from a rigid chamber or secreting oxygen at high pressure to inflate a flexible chamber, insects have evolved hydrostatic control mechanisms that rely either on the temporary stabilization of a compressible air bubble volume with O2 unloaded from hemoglobin or on the mechanical expansion and contraction of a gas-filled volume with rigid, gas-permeable walls. The ability to increase their buoyancy while submerged separates aquatic insects from the buoyancy compensation achieved by other air-breathing aquatic animals that also use air within their respiratory systems to offset their submerged weight. The mechanisms they have evolved to achieve this are unique and provide new insights into the function and evolution of mechanochemical systems.
Collapse
Affiliation(s)
- Philip G D Matthews
- Department of ZoologyUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Lee J, Park J, Jung KH, Lee S, Lee JJ, Wooh S, Lee DW. Enhancing Resistance to Wetting Transition through the Concave Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409389. [PMID: 39358940 PMCID: PMC11707565 DOI: 10.1002/adma.202409389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Water-repellent superhydrophobic surfaces are ubiquitous in nature. The fundamental understanding of bio/bio-inspired structures facilitates practical applications surmounting metastable superhydrophobicity. Typically, the hierarchical structure and/or reentrant morphology have been employed hitherto to suppress the Cassie-Baxter to Wenzel transition (CWT). Herein, a new design concept is reported, an effect of concave structure, which is vital for the stable superhydrophobic surface. The thermodynamic and kinetic stabilities of the concave pillars are evaluated by continuous exposure to various hydrostatic pressures and sudden impacts of water droplets with various Weber numbers (We), comparing them to the standard superhydrophobic normal pillars. Specifically, the concave pillar exhibits reinforced impact resistance preventing CWT below a critical We of ≈27.6, which is ≈1.6 times higher than that of the normal pillar (≈17.0). Subsequently, the stability of underwater air film (plastron) is investigated at various hydrostatic pressures. The results show that convex air caps formed at the concave cavities generate downward Laplace pressure opposing the exerted hydrostatic pressure between the pillars, thus impeding the hydrostatic pressure-dependent underwater air diffusion. Hence, the effects of trapped air caps contributing to the stable Cassie-Baxter state can offer a pioneering strategy for the exploration and utilization of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Jinhoon Lee
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| | - Jinwoo Park
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| | - Kwang Hui Jung
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| | - Seunghyun Lee
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| | - Jeong Jun Lee
- School of Life SciencesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Sanghyuk Wooh
- Department of Chemical EngineeringChung‐Ang University84 Heukseok‐ro, Dongjak‐guSeoul06794Republic of Korea
| | - Dong Woog Lee
- Ulsan National Institute of Science and Technology50 UNIST‐gil, Ulju‐gunUlsan44919Republic of Korea
| |
Collapse
|
3
|
Wang J, Guo Z, Fu F. Locomotion behavior of air bubbles on solid surfaces. Adv Colloid Interface Sci 2024; 332:103266. [PMID: 39153417 DOI: 10.1016/j.cis.2024.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Air bubbles are a common occurrence in both natural and industrial settings and are a significant topic in the fields of physics, chemistry, engineering, and medicine. The physical phenomena of the contact between bubbles and submerged solid surfaces, as well as the locomotion behavior of bubbles, are worth exploring. Bubbles are generated in an unbounded liquid environment and rise due to unbalanced external forces. Bubbles of different diameters follow different ascending paths, after which they approach, touch, collide, bounce, and finally adsorb to the solid surface, forming a stable three-phase contact line (TPCL). The bubbles are in an unstable state due to the unbalanced external forces on the solid surface and the effects generated by the two-phase contact surface, resulting in different locomotion behaviors on the solid surface. Studying the formation, transport, aggregation, and rupture behaviors of bubbles on solid surfaces can enable the controllable operation of bubbles. This, in turn, can effectively reduce the loss of mechanical apparatus in agro-industrial production activities and improve corresponding production efficiency. Recent research has shown that the degree of bubble wetting on a solid surface is a crucial factor in the locomotion behavior of bubbles on that surface. This has led to significant progress in the study of bubble wetting, which has in turn greatly advanced our understanding of bubble behavior. Based on this, exploring the manipulation process of the directional motion of bubbles is a promising research direction. The locomotion behavior of bubbles on solid surfaces can be controlled by changing external conditions, leading to the integration of bubble behavior in various scientific and technological fields. Studying the dynamics of bubbles in liquids with infinite boundaries is worthwhile. Additionally, the manipulation process and mode of these bubbles is a popular research direction.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Feiyan Fu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
4
|
Swierk L. Novel rebreathing adaptation extends dive time in a semi-aquatic lizard. Biol Lett 2024; 20:20240371. [PMID: 39288814 PMCID: PMC11407854 DOI: 10.1098/rsbl.2024.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Bubble use evolved in many small invertebrates to enable underwater respiration, but, until recently, there has been no evidence that vertebrate animals use bubbles in a similar manner. Only one group of vertebrates, semi-aquatic Anolis lizards, may be an exception: these lizards dive underwater when threatened and, while underwater, rebreathe a bubble of air over their nostrils. Although it seems that rebreathing should be adaptive, possibly functioning to extend the time that lizards remain in underwater refugia, this has not been empirically tested. Here, I demonstrate that rebreathing serves to extend dive time in a semi-aquatic anole, Anolis aquaticus. I prevented the formation of normal rebreathing bubbles by applying a commercial emollient on the skin surface where bubbles form to assess the impact of bubbles on rebreathing cycles, gular pumps, and dive times. Lizards that were allowed to rebreathe normally remained underwater an average of 32% longer than those with impaired rebreathing, suggesting a functional role of rebreathing in underwater respiration. Unlike rebreathing, gular pumping was unaffected by treatment and may warrant further research regarding its role in supplementing underwater respiration. This study provides evidence that vertebrates can use bubbles to respire underwater and raises questions about adaptive mechanisms and potential bio-inspired applications.
Collapse
Affiliation(s)
- Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY13902, USA
- Amazon Conservatory for Tropical Studies, Iquitos, Loreto16001, Peru
| |
Collapse
|
5
|
Wang J, Liu Y. Self-Driven Gas Spreading on Mesh Surfaces for Regeneration of Underwater Superhydrophobicity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40231-40242. [PMID: 39034615 DOI: 10.1021/acsami.4c07843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Underwater superhydrophobic surfaces stand as a promising frontier in technological applications such as drag reduction, antifouling, and anticorrosion. Unfortunately, the air film, known as the plastron, on these surfaces tends to be unstable. To address this problem, active approaches have been designed to preserve or restore plastrons. In this work, a self-driven gas spreading superhydrophobic mesh (SHM) surface is designed to facilitate recovery of the plastron. The immersed SHM can be "wetted" by gas, even when the plastron is removed. We demonstrate that the injected gas can spread spontaneously along the SHM over a large area, which greatly simplifies the plastron replenishment process. By incorporating a locally coated gas-producing layer, we achieve rapid in situ plastron recovery and long-term immersion stability, extending the plastron lifespan by at least 48 times. We also provide a framework for designing an SHM with suitable structural dimensions for gas spreading. Furthermore, an SHM with asymmetric structural dimensions enables unidirectional gas transport by the capillary pressure difference. This SHM surface shows excellent drag reduction properties (37.2%) and has a high slip recovery coefficient (73.4%) after plastron loss. This facile and scalable method is expected to broaden the range of potential applications involving nonwetting-related fields.
Collapse
Affiliation(s)
- Jiaming Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Yuhong Liu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
De Padova J, Anderson NK, Halbauer R, Preininger D, Fuxjager MJ. Acute hypoxia exposure rapidly triggers behavioral changes linked to cutaneous gas exchange in Lake Titicaca frogs. Behav Processes 2024; 219:105047. [PMID: 38762053 DOI: 10.1016/j.beproc.2024.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Ventilation is critical to animal life-it ensures that individuals move air/water across their respiratory surface, and thus it sustains gas exchange with the environment. Many species have evolved highly specialized (if not unusual) ventilatory mechanisms, including the use of behavior to facilitate different aspects of breathing. However, these behavioral traits are often only described anecdotally, and the ecological conditions that elicit them are typically unclear. We study one such "ventilation behavior" in Lake Titicaca frogs (Telmatobius culeus). These frogs inhabit high-altitude (i.e., low oxygen) lakes in the Andean Mountains of South America, and they have become textbook examples of cutaneous gas exchange, which is essentially breathing that occurs across the skin. Accordingly, this species has evolved large, baggy skin-folds that dangle from the body to increase the surface area for ventilation. We show that individuals exposed to acute hypoxic conditions that mirror what free-living individuals likely encounter quickly (within minutes) decrease their activity levels, and thus become very still. If oxygen levels continue to decline, the frogs soon begin to perform push-up behaviors that presumably break the low-oxygen boundary layer around skin-folds to increase the conductance of the water/skin gas exchange pathway. Altogether, we suspect that individuals rapidly adjust aspects of their behavior in response to seemingly sudden changes to the oxygen environment as a mechanism to fine tune cutaneous respiration.
Collapse
Affiliation(s)
- Jordan De Padova
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Nigel K Anderson
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | | | - Doris Preininger
- Vienna Zoo, Vienna, Austria; Department of Evolutionary Biology, University of Vienna, Austria
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
7
|
Leggett MA, Vink CJ, Nelson XJ. Adaptation and Survival of Marine-Associated Spiders (Araneae). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:481-501. [PMID: 37788437 DOI: 10.1146/annurev-ento-062923-102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aquatic environments are an unusual habitat for most arthropods. Nevertheless, many arthropod species that were once terrestrial dwelling have transitioned back to marine and freshwater environments, either as semiaquatic or, more rarely, as fully aquatic inhabitants. Transition to water from land is exceptional, and without respiratory modifications to allow for extended submergence and the associated hypoxic conditions, survival is limited. In this article, we review marine-associated species that have made this rare transition in a generally terrestrial group, spiders. We include several freshwater spider species for comparative purposes. Marine-associated spiders comprise less than 0.3% of spider species worldwide but are found in over 14% of all spider families. As we discuss, these spiders live in environments that, with tidal action, hydraulic forces, and saltwater, are more extreme than freshwater habitats, often requiring physiological and behavioral adaptations to survive. Spiders employ many methods to survive inundation from encroaching tides, such as air bubble respiration, airtight nests, hypoxic comas, and fleeing incoming tides. While airway protection is the primary survival strategy, further survival adaptations include saltwater-induced osmotic regulation, dietary composition, predator avoidance, reproduction, locomotory responses, and adaptation to extreme temperatures and hydrostatic pressures that challenge existence in marine environments.
Collapse
Affiliation(s)
- Marlene A Leggett
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| | - Cor J Vink
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Ximena J Nelson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| |
Collapse
|
8
|
Bai J, Wang W, Liu J. Bioinspired Hydrophobicity for Enhancing Electrochemical CO 2 Reduction. Chemistry 2023; 29:e202302461. [PMID: 37702459 DOI: 10.1002/chem.202302461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 R) is a promising pathway for converting greenhouse gasses into valuable fuels and chemicals using intermittent renewable energy. Enormous efforts have been invested in developing and designing CO2 R electrocatalysts suitable for industrial applications at accelerated reaction rates. The microenvironment, specifically the local CO2 concentration (local [CO2 ]) as well as the water and ion transport at the CO2 -electrolyte-catalyst interface, also significantly impacts the current density, Faradaic efficiency (FE), and operation stability. In nature, hydrophobic surfaces of aquatic arachnids trap appreciable amounts of gases due to the "plastron effect", which could inspire the reliable design of CO2 R catalysts and devices to enrich gaseous CO2 . In this review, starting from the wettability modulation, we summarize CO2 enrichment strategies to enhance CO2 R. To begin, superwettability systems in nature and their inspiration for concentrating CO2 in CO2 R are described and discussed. Moreover, other CO2 enrichment strategies, compatible with the hydrophobicity modulation, are explored from the perspectives of catalysts, electrolytes, and electrolyzers, respectively. Finally, a perspective on the future development of CO2 enrichment strategies is provided. We envision that this review could provide new guidance for further developments of CO2 R toward practical applications.
Collapse
Affiliation(s)
- Jingwen Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| |
Collapse
|
9
|
Tesler AB, Kolle S, Prado LH, Thievessen I, Böhringer D, Backholm M, Karunakaran B, Nurmi HA, Latikka M, Fischer L, Stafslien S, Cenev ZM, Timonen JVI, Bruns M, Mazare A, Lohbauer U, Virtanen S, Fabry B, Schmuki P, Ras RHA, Aizenberg J, Goldmann WH. Long-term stability of aerophilic metallic surfaces underwater. NATURE MATERIALS 2023:10.1038/s41563-023-01670-6. [PMID: 37723337 DOI: 10.1038/s41563-023-01670-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Abstract
Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.
Collapse
Affiliation(s)
- Alexander B Tesler
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Stefan Kolle
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lucia H Prado
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Thievessen
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Böhringer
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matilda Backholm
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | | | - Heikki A Nurmi
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Mika Latikka
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Lena Fischer
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shane Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - Zoran M Cenev
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Mark Bruns
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anca Mazare
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai, Japan
| | - Ulrich Lohbauer
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sannakaisa Virtanen
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science and Engineering, Institute for Surface Science and Corrosion WW4-LKO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| | - Robin H A Ras
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Joanna Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
10
|
Wang Y, Zhao R, He X, Zhang Z, Meng J, Wang S. Water Spider-Inspired Nanofiber Coating with Sustainable Scale Repellency via Air-Replenishing Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209796. [PMID: 36652626 DOI: 10.1002/adma.202209796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
To survive underwater even in severely hypoxic water for a long period, the water spider has to periodically collect and replenish air into the diving bell. Inspired by this natural air-replenishing strategy, a water spider-inspired nanofiber (WSN) coating with underwater superaerophilicity displaying excellent and sustainable scalephobic capability is prepared. Air film on the WSN coating can be well-kept and further employed as the barrier layer for scale repellence. Significantly, scalephobic capability of the WSN coating mainly originates from two aspects: inhibiting interfacial nucleation and reducing interfacial adhesion of scale. Compared with previous studies, this WSN coating achieves excellent and sustainable scale repellence (≈ 98% reduction in scale deposition) even after a one-month dynamic scaling test. Thus, this air-replenishing strategy may raise a new avenue for advanced long-term scalephobic materials.
Collapse
Affiliation(s)
- Yixuan Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Ran Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Xiao He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Zhe Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Binzhou, 256600, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Bello E, Chen Y, Alleyne M. Staying Dry and Clean: An Insect's Guide to Hydrophobicity. INSECTS 2022; 14:42. [PMID: 36661970 PMCID: PMC9861782 DOI: 10.3390/insects14010042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Insects demonstrate a wide diversity of microscopic cuticular and extra-cuticular features. These features often produce multifunctional surfaces which are greatly desired in engineering and material science fields. Among these functionalities, hydrophobicity is of particular interest and has gained recent attention as it often results in other properties such as self-cleaning, anti-biofouling, and anti-corrosion. We reviewed the historical and contemporary scientific literature to create an extensive review of known hydrophobic and superhydrophobic structures in insects. We found that numerous insects across at least fourteen taxonomic orders possess a wide variety of cuticular surface chemicals and physical structures that promote hydrophobicity. We discuss a few bioinspired design examples of how insects have already inspired new technologies. Moving forward, the use of a bioinspiration framework will help us gain insight into how and why these systems work in nature. Undoubtedly, our fundamental understanding of the physical and chemical principles that result in functional insect surfaces will continue to facilitate the design and production of novel materials.
Collapse
Affiliation(s)
- Elizabeth Bello
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yutao Chen
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marianne Alleyne
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Rawlinson JM, Cox HJ, Hopkins G, Cahill P, Badyal JPS. Nature-Inspired Trapped Air Cushion Surfaces for Environmentally Sustainable Antibiofouling. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Rather AM, Xu Y, Chang Y, Dupont RL, Borbora A, Kara UI, Fang JC, Mamtani R, Zhang M, Yao Y, Adera S, Bao X, Manna U, Wang X. Stimuli-Responsive Liquid-Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110085. [PMID: 35089623 DOI: 10.1002/adma.202110085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Biomimetic artificial surfaces that enable the manipulation of gas bubble mobility have been explored in a wide range of applications in nanomaterial synthesis, surface defouling, biomedical diagnostics, and therapeutics. Although many superhydrophobic surfaces and isotropic-lubricant-infused porous surfaces have been developed to manipulate gas bubbles, the simultaneous control over the adhesion and transport of gas bubbles underwater remains a challenge. Thermotropic liquid crystals (LCs), a class of structured fluids, provide an opportunity to tune the behavior of gas bubbles through LC mesophase transitions using a variety of external stimuli. Using this central idea, the design and synthesis of LC-infused porous surfaces (LCIPS) is reported and the effects of the LC mesophase on the transport and adhesion of gas bubbles on LCIPS immersed in water elucidated. LCIPS are demonstrated to be a promising class of surfaces with an unprecedented level of responsiveness and functionality, which enables the design of cyanobacteria-inspired object movement, smart catalysts, and bubble gating devices to sense and sort volatile organic compounds and control oxygen levels in biomimetic cell cultures.
Collapse
Affiliation(s)
- Adil Majeed Rather
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yun Chang
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert Lewis Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Ufuoma Israel Kara
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Rajdeep Mamtani
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Solomon Adera
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
14
|
Weinstein T, Gilon H, Filc O, Sammartino C, Pinchasik BE. Automated Manipulation of Miniature Objects Underwater Using Air Capillary Bridges: Pick-and-Place, Surface Cleaning, and Underwater Origami. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9855-9863. [PMID: 35080367 PMCID: PMC8874901 DOI: 10.1021/acsami.1c23845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Various insects can entrap and stabilize air plastrons and bubbles underwater. When these bubbles interact with surfaces underwater, they create air capillary bridges that de-wet surfaces and even allow underwater reversible adhesion. In this study, a robotic arm with interchangeable three-dimensional (3D)-printed bubble-stabilizing units is used to create air capillary bridges underwater for manipulation of small objects. Particles of various sizes and shapes, thin sheets and substrates of diverse surface tensions, from hydrophilic to superhydrophobic, can be lifted, transported, placed, and oriented using one- or two-dimensional arrays of bubbles. Underwater adhesion, derived from the air capillary bridges, is quantified depending on the number, arrangement, and size of bubbles and the contact angle of the counter surface. This includes a variety of commercially available materials and chemically modified surfaces. Overall, it is possible to manipulate millimeter- to sub-millimeter-scale objects underwater. This includes cleaning submerged surfaces from colloids and arbitrary contaminations, folding thin sheets to create three-dimensional structures, and precisely placing and aligning objects of various geometries. The robotic underwater manipulator can be used for automation and control in cell culture experiments, lab-on-chip devices, and manipulation of objects underwater. It offers the ability to control the transport and release of small objects without the need for chemical adhesives, suction-based adhesion, anchoring devices, or grabbers.
Collapse
|
15
|
Sudersan P, Kappl M, Pinchasik BE, Butt HJ, Endlein T. Wetting of the tarsal adhesive fluid determines underwater adhesion in ladybird beetles. J Exp Biol 2021; 224:jeb242852. [PMID: 34581416 PMCID: PMC8545753 DOI: 10.1242/jeb.242852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022]
Abstract
Many insects can climb smooth surfaces using hairy adhesive pads on their legs, mediated by tarsal fluid secretions. It was previously shown that a terrestrial beetle can even adhere and walk underwater. The naturally hydrophobic hairs trap an air bubble around the pads, allowing the hairs to make contact with the substrate as in air. However, it remained unclear to what extent such an air bubble is necessary for underwater adhesion. To investigate the role of the bubble, we measured the adhesive forces in individual legs of live but constrained ladybird beetles underwater in the presence and absence of a trapped bubble and compared these with its adhesion in air. Our experiments revealed that on a hydrophobic substrate, even without a bubble, the pads show adhesion comparable to that in air. On a hydrophilic substrate, underwater adhesion is significantly reduced, with or without a trapped bubble. We modelled the adhesion of a hairy pad using capillary forces. Coherent with our experiments, the model demonstrates that the wetting properties of the tarsal fluid alone can determine the ladybird beetles' adhesion to smooth surfaces in both air and underwater conditions and that an air bubble is not a prerequisite for their underwater adhesion. This study highlights how such a mediating fluid can serve as a potential strategy to achieve underwater adhesion via capillary forces, which could inspire artificial adhesives for underwater applications.
Collapse
Affiliation(s)
- Pranav Sudersan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Thomas Endlein
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
16
|
Su Y, Li Z, Zhu S, Fan X, Chen C, Bian Y, Wang D, Li C, Zhang C, Xu L, Wang Y, Hu Y, Li J, Wu D. Biomimetic Mechanoswitchable Interfaces for High-Performance Spatial Gas Bubble Maneuvering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43769-43776. [PMID: 34476944 DOI: 10.1021/acsami.1c13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The on-demand manipulation of gas bubbles in aqueous ambient environments is fundamental to many fields such as microfluidics and biochemical microanalysis. However, most bubble manipulation strategies are limited to restricted locomotion on the confined surfaces without spatial convenience of transport. Herein, we report a kind of biomimetic bubble manipulator with mechanoswitchable interfaces (MSIs), featuring the advantages of parallel bubble control and spatial maneuvering flexibility. By the synergic action between Janus aluminum membrane and superaerophilic microfiber array, the gas-MSI interfacial adhesion can be reversibly switched to achieve capturing/releasing underwater bubbles. Moreover, the adhesion force of MSI can be readily tuned by diverse experimental parameters including surface roughness, fiber number, diameter, and spacing of the neighboring microfibers, which are further systematically investigated. Relying on this mobile platform, we demonstrate a series of powerful applications including bubble parallel control, bubble array regrouping, arbitrary bubble transport and even manipulating underwater solids through bubbles, which are otherwise challenging for conventional approaches. We envision that this versatile platform will bring new insights into potential applications, such as cross-species sample control and handheld gas microsyringe.
Collapse
Affiliation(s)
- Yahui Su
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
| | - Zhicheng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xinran Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei 230039, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yucheng Bian
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chuanzong Li
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Liqun Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yue Wang
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Jones KK, Seymour RS. Gas exchange and dive behaviour in the diving beetle Platynectes decempunctatus (Coleoptera: Dytiscidae). JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104286. [PMID: 34293336 DOI: 10.1016/j.jinsphys.2021.104286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Many aquatic insects use bubbles on the body surface to store and supply O2 for their dives. There are two types of bubbles: air stores, which store O2 gained from air at the surface, and gas gills that allow passive extraction of O2 from water. Many insects using air stores and gas gills return to the surface to replenish their bubbles and, therefore, their requirement for O2 influences dive behaviour. In this study, we investigate gas exchange and dive behaviour in the diving beetle Platynectes decempunctatus that uses a sub-elytral air store and a small compressible gas gill. We measure the PO2 within the air store during tethered dives, as well as the amount of O2 exchanged during surfacing events. Buoyancy experiments monitor the volume of gas in the gas gill and how it changes during dives. We also directly link O2-consumption rate at three temperatures (10, 15 and 20 °C) with dive duration, surfacing frequency and movement activity. These data are incorporated in a gas exchange model, which shows that the small gas gill of P. decempunctatus contributes less than 10% of the total O2 used during the dive, while up to 10% is supplied by cutaneous uptake.
Collapse
Affiliation(s)
- Karl K Jones
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Roger S Seymour
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
18
|
Boccia CK, Swierk L, Ayala-Varela FP, Boccia J, Borges IL, Estupiñán CA, Martin AM, Martínez-Grimaldo RE, Ovalle S, Senthivasan S, Toyama KS, Del Rosario Castañeda M, García A, Glor RE, Mahler DL. Repeated evolution of underwater rebreathing in diving Anolis lizards. Curr Biol 2021; 31:2947-2954.e4. [PMID: 33984265 DOI: 10.1016/j.cub.2021.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/15/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Air-based respiration limits the use of aquatic environments by ancestrally terrestrial animals. To overcome this challenge, diving arthropods have evolved to respire without resurfacing using air held between their cuticle and surrounding water.1-4 Inspired by natural history observations in Haiti (unpublished data) and Costa Rica,5,6 we conducted experiments documenting routine air-based underwater respiration in several distantly related semi-aquatic Anolis lizard species. Semi-aquatic anoles live along neotropical streams and frequently dive for refuge or food,7-12 remaining underwater for up to 18 min. While submerged, these lizards iteratively expire and re-inspire narial air bubbles-underwater "rebreathing." Rebreathed air is used in respiration, as the partial pressure of oxygen in the bubbles decreases with experimental submersion time in living anoles, but not in mechanical controls. Non-aquatic anoles occasionally rebreathe when submerged but exhibit more rudimentary rebreathing behaviors. Anole rebreathing is facilitated by a thin air layer (i.e., a "plastron," sensu Brocher13) supported by the animal's rugose skin upon submergence. We suggest that hydrophobic skin, which we observed in all sampled anoles,14,15 may have been exaptative, facilitating the repeated evolution of specialized rebreathing in species that regularly dive. Phylogenetic analyses strongly suggest that specialized rebreathing is adaptive for semi-aquatic habitat specialists. Air-based rebreathing may enhance dive performance by incorporating dead space air from the buccal cavity or plastron into the lungs, facilitating clearance of carbon dioxide, or allowing uptake of oxygen from surrounding water (i.e., a "physical gill" mechanism4,16).
Collapse
Affiliation(s)
- Christopher K Boccia
- Department of Ecology and Evolutionary Biology, University of Toronto, ON M5S 3B2, Canada.
| | - Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, New York, NY 13902, USA; Environmental Studies Program, Binghamton University, State University of New York, New York, NY 13902, USA
| | - Fernando P Ayala-Varela
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, 12 de Octubre y Roca, Quito, Ecuador
| | - James Boccia
- Department of Ecology and Evolutionary Biology, University of Toronto, ON M5S 3B2, Canada
| | - Isabela L Borges
- Department of Integrative Biology, College of Natural Sciences, Michigan State University, East Lansing, MI 48824, USA; W.K. Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Drive, Hickory Corners, MI 49060, USA
| | - Camilo Andres Estupiñán
- Departamento de Ciencias Biológicas, Facultad de Ciencias Naturales, Universidad Icesi, Cali, Colombia
| | - Alexandra M Martin
- Department of Biological Sciences, Binghamton University, State University of New York, New York, NY 13902, USA
| | - Ramón E Martínez-Grimaldo
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sebastian Ovalle
- Departamento de Ciencias Biológicas, Facultad de Ciencias Naturales, Universidad Icesi, Cali, Colombia
| | - Shreeram Senthivasan
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ken S Toyama
- Department of Ecology and Evolutionary Biology, University of Toronto, ON M5S 3B2, Canada
| | | | - Andrés García
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, A.P. 21, San Patricio-Melaque, Jalisco, México
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology, University of Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
19
|
Air-encapsulating elastic mechanism of submerged Taraxacum blowballs. Mater Today Bio 2021; 9:100095. [PMID: 33718857 PMCID: PMC7933492 DOI: 10.1016/j.mtbio.2021.100095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/02/2021] [Accepted: 01/08/2021] [Indexed: 11/25/2022] Open
Abstract
In this article, we report the observation of an air-encapsulating elastic mechanism of Dandelion spherical seed heads, namely blowballs, when submerged underwater. This peculiarity seems to be fortuitous since Taraxacum is living outside water; nevertheless, it could become beneficial for a better survival under critical conditions, e.g. of temporary flooding. The scaling of the volume of the air entrapped suggests its fractal nature with a dimension of 2.782 and a fractal air volume fraction of 4.82 × 10−2 m0.218, resulting in nominal air volume fractions in the range of 14–23%. This aspect is essential for the optimal design of bioinspired materials made up of Dandelion-like components. The miniaturization of such components leads to an increase in the efficiency of the air encapsulation up to the threshold (efficiency = 1) achieved for an optimal critical size. Thus, the optimal design is accomplished using small elements, with the optimal size, rather than using larger elements in a lower number. The described phenomenon, interesting per se, also brings bioinspired insights toward new related technological solutions for underwater air-trapping and air-bubbles transportation, e.g. the body surface of a man could allow an apnea (air consumption of 5–10 l/min) of about 10 min if it is covered by a material made up of a periodic repetition of Dandelion components of diameter ≅18 μm and having a total thickness of about 3–6 cm.
Collapse
|
20
|
Yao C, Zhang J, Xue Z, Yu K, Yu X, Yang X, Qu Q, Gan W, Wang J, Jiang L. Bioinspired Cavity Regulation on Superhydrophobic Spheres for Drag Reduction in an Aqueous Medium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4796-4803. [PMID: 33448779 DOI: 10.1021/acsami.0c20073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrodynamic drag not only results in high-energy consumption for water vehicles but also impedes the increase of vehicle speed. The introduction of a low-viscosity gas lubricating film is assumed to be an effective and promising method to reduce hydrodynamic drag. However, the poor stability of the gas film and massive extra energy consumption restricts the practical application of the gas lubricating method. Herein, inspired by the microhairs with low surface energy wax covering the abdomen of water spiders, superhydrophobic sphere surfaces were designed. Attributed to numerous neighboring nanoneedle branches with low surface energy chemicals, an air-entrained cavity with a large surface area was captured and stabilized by the superhydrophobic sphere, changing its shape from a sphere to a streamlined body. The cavity continued attaching to the superhydrophobic sphere without bursting at a depth of 70.0-90.0 cm underwater and reduced the hydrodynamic drag by more than 90%. This work provides a simple, cost-effective, and energy-efficient way to stabilize the underwater gas-liquid interface to achieve a reduction in the hydrodynamic drag.
Collapse
Affiliation(s)
- Changzhuang Yao
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Future Technology College, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jingjing Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- BAIC Motor Corporation Ltd., Beijing 101300, P. R. China
| | - Zihan Xue
- Key Laboratory of Advanced Technology of Intelligent Unmanned Flight System of Ministry of Industry and Information Technology, Beihang University, Beijing 100191, P. R. China
| | - Kang Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Xinping Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Xiaoxiao Yang
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Qiulin Qu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Wenbiao Gan
- Key Laboratory of Advanced Technology of Intelligent Unmanned Flight System of Ministry of Industry and Information Technology, Beihang University, Beijing 100191, P. R. China
| | - Jingming Wang
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Future Technology College, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
21
|
Kovalev A, Rebora M, Salerno G, Gorb S. Air-entrapping capacity in the hair coverage of Malacosoma castrensis (Lasiocampidae: Lepidoptera) caterpillar: a case study. J Exp Biol 2020; 223:jeb225029. [PMID: 32527961 DOI: 10.1242/jeb.225029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022]
Abstract
The moth Malacosoma castrensis (Lasiocampidae) is commonly found along the Northern Germany coasts, the habitats of which are mainly represented by salt marshes subjected to sea level variations. Surprisingly, terrestrial caterpillars can withstand many hours of being flooded by seawater. The ability to withstand periods of submersion in a terrestrial insect raises the problem of respiration related to avoiding water percolation into the tracheal system. In the present study, we investigated under laboratory conditions the role of water-repellent cuticle structures in oxygen supply in caterpillars of M. castrensis submerged in water. For this purpose, air-layer stability tests using force measurements, and micromorphology of cuticle structures using SEM and fluorescence microscopy, were performed. A plastron appeared when a caterpillar is underwater. The stability, gas composition and internal pressure of the plastron were estimated. The plastron is stabilized by long and scarce hairs, which are much thicker than the corresponding hairs of aquatic insects. Thick and stiff hairs with sclerotized basal and middle regions protrude into the water through the plastron-water interface, while substantial regions of thin and flexible hairs are aligned along the plastron-water interface and their side walls can support pressure in the plastron even below atmospheric pressure. Additional anchoring points between hair's stalk and microtrichia near the hair base provide enhanced stiffness to the hair layer and prevent the hair layer from collapse and water entering between hairs. The advancing contact angle on hairs is more than 90 deg, which is close to the effective contact angle for the whole caterpillar.
Collapse
Affiliation(s)
- Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
22
|
Zhang X, Dong Y, He Z, Gong H, Xu X, Zhao M, Qin H. Efficient Gas Transportation Using Bioinspired Superhydrophobic Yarn as the Gas-Siphon Underwater. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18174-18181. [PMID: 32202403 DOI: 10.1021/acsami.0c03366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the gas-trapped mechanism underwater of Argyroneta aquatica, we prepared a superhydrophobic yarn with a fiber network structure via a facile and environmentally friendly method. Attributed to the low surface energy, the superhydrophobic fiber network structure on the yarn is able to trap and transport bubbles directionally underwater. The functional yarn has good superhydrophobic and superaerophilic properties underwater to realize the directional transport of bubbles underwater without being pumped. We designed demonstration experiments on the antibuoyancy directional bubble transportation, which indicated the feasibility in the applications of gas-related fields. Significantly, on further testing, where the superhydrophobic yarn is put into a U-shaped pipe, we obtain a gas-siphon underwater with a high flux. The superhydrophobic fiber structure yarn can trap the gas underwater to enable the self-starting behavior while no manual intervention is used. The gas-siphon can convey gas over the edge of a vessel and deliver it at a higher level without energy input, which is driven by the differential pressure. The relationship between the differential pressure and the volume flux of transport bubbles is investigated. The experimental results show that the prepared superhydrophobic yarn has the advantages of good stability, easy preparation, and low cost in bubble continuous transportation underwater, which provides a novel strategy for the development and application of new technologies such as directional transportation, separation, exhaustion, and collection of gases in water.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Dong
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Zhao He
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Hanyuan Gong
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Xiang Xu
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Meiyun Zhao
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Hongling Qin
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
23
|
Anisotropic Spreading of Bubbles on Superaerophilic Straight Trajectories beneath a Slide in Water. WATER 2020. [DOI: 10.3390/w12030798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the bubble contacting a uniformly superaerophilic surface has caused concern due to its application potential in various engineering equipment, such as mineral flotation, very little is known about the mechanism of how the bubble spreads on a surface with anisotropic superaerophilicity. To unveil this mystery, we experimentally studied the anisotropic behavior of a bubble (2 mm in diameter) spreading on the superaerophilic straight trajectories (SALTs) of different widths (0.5 mm–5 mm) in water using a high-speed shadowgraphy system. The 1–3 bounces mostly happened as the bubble approached the SALTs before its spreading. It is first observed that the bubble would be split into two highly symmetrical sub-bubbles with similar migration velocity in opposite directions during the anisotropic spreading. Two essential mechanisms are found to be responsible for the anisotropic spreading on the narrow SALTs (W ≤ 2 mm with two subregimes) and the wide SALTs (W ≥ 3 mm with four subregimes). Considering the combined effect of the surface tension effect of SALT and Laplace pressure, a novel model has been developed to predict the contact size r(t) as a function of time. The nice agreement between this model and our experiments reconfirms that the surface tension effect and Laplace pressure prevail over the hydrostatic pressure.
Collapse
|
24
|
Xiao X, Zhang C, Ma H, Zhang Y, Liu G, Cao M, Yu C, Jiang L. Bioinspired Slippery Cone for Controllable Manipulation of Gas Bubbles in Low-Surface-Tension Environment. ACS NANO 2019; 13:4083-4090. [PMID: 30884223 DOI: 10.1021/acsnano.8b08480] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Manipulating bubbles in surfactant solutions or oil mediums is of vital importance in daily life and industries concerned with cosmetics, food, fermentation, mineral flotation, etc. However, realizing controllable regulation of a bubble's behavior is quite challenging in a low-surface-tension aqueous environment, which is mainly attributed to the strong affinity of liquid molecules to a solid surface to prevent the efficient interaction of gas bubbles with the solid surface. To address these issues, herein, we have taken inspiration from cactus spines and pitcher plants to develop a slippery copper cone (SCC), which can facilely manipulate gas bubble in surfactant solutions (as low as ∼29.9 mN/m, 20 °C), e. g., directional and continuous transportation of gas bubbles. This intriguing capability mainly originates from the cooperation of the conical morphology engendering a Laplace pressure and the slippery surface with low friction force but high affinity to bubbles. In addition, the SCC also shows an elegant capability of transporting gas bubbles in various organic solvents, such as formamide (57.4 mN/m, 20 °C), glycol (46.5 mN/m, 20 °C), dibutyl phthalate (37.0 mN/m, 20 °C), and dimethylformamide (35.8 mN/m, 20 °C). Furthermore, the prepared SCC also demonstrated distinguished feasibility in antibuoyancy bubble delivery, efficient collection of acidic CO2 microbubbles, and the underwater reaction of hydrogen and oxygen, endowing it with promising applications in various complex low-surface-tension environments.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
| | - Chunhui Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Hongyu Ma
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Yuheng Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Guoliang Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Moyuan Cao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education , Tianjin University , Tianjin 300072 , China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
- Laboratory of Bio-inspired Materials and Interface Sciences , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
25
|
Jones KK, Cooper SJB, Seymour RS. Cutaneous respiration by diving beetles from underground aquifers of Western Australia (Coleoptera: Dytiscidae). J Exp Biol 2019; 222:222/7/jeb196659. [DOI: 10.1242/jeb.196659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/18/2019] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Insects have a gas-filled respiratory system, which provides a challenge for those that have become aquatic secondarily. Diving beetles (Dytiscidae) use bubbles on the surface of their bodies to supply O2 for their dives and passively gain O2 from the water. However, these bubbles usually require replenishment at the water's surface. A highly diverse assemblage of subterranean dytiscids has evolved in isolated calcrete aquifers of Western Australia with limited/no access to an air–water interface, raising the question of how they are able to respire. We explored the hypothesis that they use cutaneous respiration by studying the mode of respiration in three subterranean dytiscid species from two isolated aquifers. The three beetle species consume O2 directly from the water, but they lack structures on their bodies that could have respiratory function. They also have a lower metabolic rate than other insects. O2 boundary layers surrounding the beetles are present, indicating that O2 diffuses into the surface of their bodies via cutaneous respiration. Cuticle thickness measurements and other experimental results were incorporated into a mathematical model to understand whether cutaneous respiration limits beetle size. The model indicates that the cuticle contributes considerably to resistance in the O2 cascade. As the beetles become larger, their metabolic scope narrows, potentially limiting their ability to allocate energy to mating, foraging and development at sizes above approximately 5 mg. However, the ability of these beetles to utilise cutaneous respiration has enabled the evolution of the largest assemblage of subterranean dytiscids in the world.
Collapse
Affiliation(s)
- Karl K. Jones
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steven J. B. Cooper
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia
- Australian Centre for Evolutionary Biology and Biodiversity, University of Adelaide, Adelaide, SA 5005, Australia
| | - Roger S. Seymour
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
26
|
Wu Y, Feng J, Gao H, Feng X, Jiang L. Superwettability-Based Interfacial Chemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800718. [PMID: 30592333 DOI: 10.1002/adma.201800718] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/13/2018] [Indexed: 06/09/2023]
Abstract
Superwetting interfaces arising from the cooperation of surface energy and multiscale micro/nanostructures are extensively studied in biological systems. Fundamental understandings gained from biological interfaces boost the control of wettability under different dimensionalities, such as 2D surfaces, 1D fibers and channels, and 3D architectures, thus permitting manipulation of the transport physics of liquids, gases, and ions, which profoundly impacts chemical reactions and material fabrication. In this context, the progress of new chemistry based on superwetting interfaces is highlighted, beginning with mass transport dynamics, including liquid, gas, and ion transport. In the following sections, the impacts of the superwettability-mediated transport dynamics on chemical reactions and material fabrication is discussed. Superwettability science has greatly enhanced the efficiency of chemical reactions, including photocatalytic, bioelectronic, electrochemical, and organic catalytic reactions, by realizing efficient mass transport. For material fabrication, superwetting interfaces are pivotal in the manipulation of the transport and microfluidic dynamics of liquids on solid surfaces, leading to the spatially regulated growth of low-dimensional single-crystalline arrays and high-quality polymer films. Finally, a perspective on future directions is presented.
Collapse
Affiliation(s)
- Yuchen Wu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiangang Feng
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Hanfei Gao
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Huang C, Guo Z. The wettability of gas bubbles: from macro behavior to nano structures to applications. NANOSCALE 2018; 10:19659-19672. [PMID: 30335112 DOI: 10.1039/c8nr07315e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, various interfaces related to bubble wettability have been fabricated, which have already been widely applied in various disciplines and fields. Therefore, to better research and understand the wettability of gas bubbles, recent progress with interfaces and wettability of bubbles in aqueous media, including superaerophilicity and superaerophobicity, is summarized. Many biological interfaces which exhibit marvelous characteristics are discussed for reference. Because of the similar behavior between gas bubbles in aqueous media and droplets in air, the two wetting conditions are compared together to better illustrate theories of gas bubble wettability. Based on these theories, effective and available manipulation of gas bubbles' wettability provides a novel idea and method to solve practical problems in various aspects, i.e., superaerophobic electrodes for gas evolution reactions, superaerophilic electrodes for gas compensation reactions, superaerophilic interfaces for directional collection and transportation of gas bubbles, and so on.
Collapse
Affiliation(s)
- Can Huang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
28
|
Cao M, Li Z, Ma H, Geng H, Yu C, Jiang L. Is Superhydrophobicity Equal to Underwater Superaerophilicity: Regulating the Gas Behavior on Superaerophilic Surface via Hydrophilic Defects. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20995-21000. [PMID: 29845857 DOI: 10.1021/acsami.8b05410] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Superhydrophobic surfaces have long been considered as superaerophilic surfaces while being placed in the aqueous environment. However, versatile gas/solid interacting phenomena were reported by utilizing different superhydrophobic substrates, indicating that these two wetting states cannot be simply equated. Herein, we demonstrate how the hydrophilic defects on the superhydrophobic track manipulate the underwater gas delivery, without deteriorating the water repellency of the surface in air. The versatile gas-transporting processes can be achieved on the defected superhydrophobic surfaces; on the contrary, in air, a water droplet is able to roll on those surfaces indistinguishably. Results show that the different media pressures applied on the two wetting states determine the diversified fluid-delivering phenomena; that is, the pressure-induced hydrophilic defects act as a gas barrier to regulate the bubble motion behavior under water. Through the rational incorporation of hydrophilic defects, a series of gas-transporting behaviors are achieved purposively, for example, gas film delivery, bubble transporting, and anisotropic bubble gating, which proves the feasibility of this underwater air-controlling strategy.
Collapse
Affiliation(s)
- Moyuan Cao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300072 , China
| | - Zhe Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300072 , China
| | - Hongyu Ma
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Hui Geng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering , Tianjin University , Tianjin 300072 , China
| | - Cunming Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100191 , China
| |
Collapse
|
29
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
30
|
Jones KK, Hetz SK, Seymour RS. The effects of temperature, activity and convection on the plastron PO 2 of the aquatic bug Aphelocheirus aestivalis (Hemiptera; Aphelocheiridae). JOURNAL OF INSECT PHYSIOLOGY 2018; 106:155-162. [PMID: 28688893 DOI: 10.1016/j.jinsphys.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The aquatic bug Aphelocheirus aestivalis (Fabricius 1794) utilises a plastron, a thin bubble layer on the surface of its body to extract O2 from the water. Millions of tiny hairs keep the bubble from collapsing, enabling the bug to remain submerged indefinitely. The development of fibre optic O2-probes has allowed measurements of O2 pressure (PO2) surrounding the plastron, and within the plastron although only for short periods. Here we developed methods to continuously measure plastron PO2, and investigate how it is affected by temperature (15, 20, 25°C), activity, and water circulation. We also made measurements of water PO2, temperature and velocity in the field and swimming velocity at the treatment temperatures. Results show that plastron PO2 is inversely related to temperature, associated with differences in metabolic demand, and that small bouts of activity or changes in water convection result in rapid changes in plastron PO2. A model was developed to calculate the conditions under which Aphelocheirus would exist without becoming O2-limited in relation to water temperature, PO2 and boundary layer thickness. This suggests that Aphelocheirus at one of two field sites may have a reduced metabolic scope even in well convected water in association with low PO2 and moderate temperature, and that in well convected, air-saturated water, bugs may have a reduced metabolic scope where water temperatures are between 20 and 25°C. If exposed to 5kPa PO2, Aphelocheirus cannot sustain resting metabolic rate even in well-convected water and would die at temperatures above approximately 25°C.
Collapse
Affiliation(s)
- Karl K Jones
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia.
| | - Stefan K Hetz
- Humboldt-Universität zu Berlin, Department of Animal Physiology, Systems Neurobiology and Neural Computation, Philippstrasse 13, 10115 Berlin, Germany.
| | - Roger S Seymour
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia.
| |
Collapse
|
31
|
Ubhi R, Matthews PGD. The transition from water to air in aeshnid dragonflies is associated with a change in ventilatory responses to hypoxia and hypercapnia. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:172-178. [PMID: 28965969 DOI: 10.1016/j.jinsphys.2017.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Dragonflies are amphibiotic, spending most of their lives as aquatic nymphs before metamorphosing into terrestrial, winged imagoes. Both the nymph and the adult use rhythmic abdominal pumping movements to ventilate their gas exchange systems: the nymph tidally ventilates its rectal gill with water, while the imago pumps air into its tracheal system through its abdominal spiracles. The transition from water to air is known to be associated with changes in both respiratory chemosensitivity and ventilatory control in vertebrates and crustaceans, but the changes experienced by amphibiotic insects have been poorly explored. In this study, dragonfly nymphs (Anax junius) and imagoes (Anax junius and Aeshna multicolor) were exposed to hypoxia and hypercapnia while their abdominal ventilation frequency and amplitude was recorded. Water-breathing nymphs showed a significant increase in abdominal pumping frequency when breathing hypoxic water (<10 kPa O2), but no strong response to CO2, even in severe hypercapnia (up to 10 kPa CO2). In contrast, both species of air-breathing imago increased their abdominal pumping amplitude when exposed to either hypoxia or hypercapnia, but did not show any significant increase in frequency. These results demonstrate that aquatic dragonfly nymphs possess a respiratory sensitivity that is more like other water breathing animals, being sensitive to hypoxia but not hypercapnia, while their air-breathing adult form responds to both respiratory challenges, like other terrestrial insects. Shifting from ventilating a rectal gill with water to ventilating a tracheal system with air is also associated with a change in how abdominal ventilation is controlled; nymphs regulate gas exchange by varying frequency while imagoes respond by varying amplitude.
Collapse
Affiliation(s)
- Ramandeep Ubhi
- Department of Zoology, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
| | - Philip G D Matthews
- Department of Zoology, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada.
| |
Collapse
|
32
|
Reid A, Hardie DJW, Mackie D, Jackson JC, Windmill JFC. Extreme call amplitude from near-field acoustic wave coupling in the stridulating water insect Micronecta scholtzi (Micronectinae). J R Soc Interface 2018; 15:rsif.2017.0768. [PMID: 29321267 DOI: 10.1098/rsif.2017.0768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Underwater acoustic transducers, particularly at low frequencies, are beset by problems of scale and inefficiency due to the large wavelengths of sound in water. In insect mating calls, a high call volume is usually desirable, increasing the range of signal transmission and providing a form of advertisement of the signaller's quality to a potential mate; however, the strength of the call is constrained by body size and by the need to avoid predators who may be listening in. Male crickets and water boatmen avoid some of the limitations of body size by exploiting resonant structures, which produce sharply tuned species-specific songs, but call frequency and volume remain linked to body size. Recently, the water boatman Micronecta scholtzi was found to circumvent this rule, producing a louder mating call than that of similar, but much larger, Corixa The resonant structure in Corixidae and Micronectinae is believed to be the trapped air reserves around the insect as it dives, driven by a stridulatory apparatus. However, the method by which energy is transferred from the striated area to the bubble is unknown. Here, we present modelling of a system of near-field coupling of acoustic sources to bubbles showing an exponential increase in sound power gain with decreasing distance that provides a simple solution to the stimulus of the air bubbles in Corixidae and Micronectinae and explains the discrepancy of M. scholtzi's extreme call volume. The findings suggest a possible route to engineered systems using near-field coupling to overcome size constraints in low-frequency (less than 500 Hz) underwater transducers, where the input efficiency of a piezoelectric device can be coupled through the hydrodynamic field to the high radiative efficiency of a near-ideal monopole emitter.
Collapse
Affiliation(s)
- Andrew Reid
- Department of Electronic and Electrical Engineering, Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow G1 1XW, UK
| | | | - David Mackie
- Department of Electronic and Electrical Engineering, Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow G1 1XW, UK
| | - Joseph C Jackson
- Department of Electronic and Electrical Engineering, Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow G1 1XW, UK
| | - James F C Windmill
- Department of Electronic and Electrical Engineering, Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow G1 1XW, UK
| |
Collapse
|
33
|
Lane SJ, Moran AL, Shishido CM, Tobalske BW, Woods HA. Cuticular gas exchange by Antarctic sea spiders. J Exp Biol 2018; 221:jeb.177568. [DOI: 10.1242/jeb.177568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/16/2018] [Indexed: 11/20/2022]
Abstract
Many marine organisms and life stages lack specialized respiratory structures, like gills, and rely instead on cutaneous respiration, which they facilitate by having thin integuments. This respiratory mode may limit body size, especially if the integument also functions in support or locomotion. Pycnogonids, or sea spiders, are marine arthropods that lack gills and rely on cutaneous respiration but still grow to large sizes. Their cuticle contains pores, which may play a role in gas exchange. Here, we examined alternative paths of gas exchange in sea spiders: 1) oxygen diffuses across pores in the cuticle, a common mechanism in terrestrial eggshells, 2) oxygen diffuses directly across the cuticle, a common mechanism in small aquatic insects, or 3) oxygen diffuses across both pores and cuticle. We examined these possibilities by modeling diffusive oxygen fluxes across all pores in the body of sea spiders and asking whether those fluxes differed from measured metabolic rates. We estimated fluxes across pores using Fick's law parameterized with measurements of pore morphology and oxygen gradients. Modeled oxygen fluxes through pores closely matched oxygen consumption across a range of body sizes, which means the pores facilitate oxygen diffusion. Furthermore, pore volume scaled hypermetrically with body size, which helps larger species facilitate greater diffusive oxygen fluxes across their cuticle. This likely presents a functional trade-off between gas exchange and structural support, in which cuticle must be thick enough to prevent buckling due to external forces but porous enough to allow sufficient gas exchange.
Collapse
Affiliation(s)
- Steven J. Lane
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Amy L. Moran
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, USA
| | - Caitlin M. Shishido
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, USA
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
34
|
Yu C, Zhang P, Wang J, Jiang L. Superwettability of Gas Bubbles and Its Application: From Bioinspiration to Advanced Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703053. [PMID: 28902967 DOI: 10.1002/adma.201703053] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Gas bubbles in aqueous media are common and inevitable in, for example, agriculture and industrial processes. The behaviors of gas bubbles on solid interfaces, including generation, growth, coalescence, release, transport, and collection, are crucial to gas-bubble-related applications, which are always determined by gas-bubble wettability on solid interfaces. Here, the recent progress regarding the study of interfaces with gas-bubble superwettability in aqueous media, i.e., superaerophilicity and superaerophobicity, is summarized. Some examples illustrate how to design microstructures and chemical compositions to achieve reliable and effective manipulation of gas-bubble wettability on artificial interfaces. These designed interfaces exhibit excellent performance in gas-evolution reactions, gas-adsorption reactions, and directional gas-bubble transportation. Moreover, progress in the theoretical investigation of gas-bubble superwettability is reported. Lastly, some challenges are presented, such as the reliable manipulation of gas-bubble wettability and the establishment of mature theory for exactly and systematically explaining gas-bubble wetting phenomena.
Collapse
Affiliation(s)
- Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Peipei Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jingming Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
35
|
Sun M, Chen Y, Zheng Y, Zhen M, Shu C, Dai Z, Liang A, Gorb SN. Wettability gradient on the elytra in the aquatic beetle Cybister chinensis and its role in angular position of the beetle at water-air interface. Acta Biomater 2017; 51:408-417. [PMID: 28069503 DOI: 10.1016/j.actbio.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/13/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022]
Abstract
The surface of the elytra in some species of aquatic beetles displays relatively low contact angles (CAs), even showing hydrophilic properties. In this study, we report on an observation that both sexes of Cybister chinensis beetle fresh elytral surface do not exhibit uniform CA, but rather a wettability gradient along the longitudinal axis in posterior direction. The wettability is very different between females and males due to the presence (female) or absence (male) of channels on the elytral surface. When a small drop of water touches the elytra surface, it tends to slide towards the anterior having a lower CA on the elytra. This gradient presumably supports a breathing-associated behavior of beetles in which they cause the tip of their abdomen to protrude into the surface of the water in order to collect an air bubble for oxygen uptake and, when floating on the surface, to keep the body inclined at a small angle to the water's surface with their heads immersed. STATEMENT OF SIGNIFICANCE Hydrophobicity on surfaces is a fundamental property which has attracted great interest across all scientific disciplines, here we have demonstrated that the gradually changing chemistry of the elytral surface facilitates the tilted beetle posture on the water's surface. The mechanism of water interacting with the elytra demonstrated the most energetically favorable posture in the diving beetles. Surfaces with directional wetting properties that promote droplet drainage are of significant practical importance in many fields. The anisotropic topography and wetting properties of the elytra may inspire microfluidic devices for medical and robotic applications.
Collapse
Affiliation(s)
- Mingxia Sun
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 1000101, China; Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany.
| | - Yuan Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Xueyuan Road 37, Haidian District, Beijing 100191, China.
| | - Yongmei Zheng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Xueyuan Road 37, Haidian District, Beijing 100191, China.
| | - Mingming Zhen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing 100190, China.
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing 100190, China.
| | - Zhendong Dai
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, China.
| | - Aiping Liang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 1000101, China.
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany.
| |
Collapse
|
36
|
Barthlott W, Mail M, Bhushan B, Koch K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. NANO-MICRO LETTERS 2017; 9:23. [PMID: 30464998 PMCID: PMC6223843 DOI: 10.1007/s40820-016-0125-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/04/2016] [Indexed: 05/19/2023]
Abstract
An overview of plant surface structures and their evolution is presented. It combines surface chemistry and architecture with their functions and refers to possible biomimetic applications. Within some 3.5 billion years biological species evolved highly complex multifunctional surfaces for interacting with their environments: some 10 million living prototypes (i.e., estimated number of existing plants and animals) for engineers. The complexity of the hierarchical structures and their functionality in biological organisms surpasses all abiotic natural surfaces: even superhydrophobicity is restricted in nature to living organisms and was probably a key evolutionary step with the invasion of terrestrial habitats some 350-450 million years ago in plants and insects. Special attention should be paid to the fact that global environmental change implies a dramatic loss of species and with it the biological role models. Plants, the dominating group of organisms on our planet, are sessile organisms with large multifunctional surfaces and thus exhibit particular intriguing features. Superhydrophilicity and superhydrophobicity are focal points in this work. We estimate that superhydrophobic plant leaves (e.g., grasses) comprise in total an area of around 250 million km2, which is about 50% of the total surface of our planet. A survey of structures and functions based on own examinations of almost 20,000 species is provided, for further references we refer to Barthlott et al. (Philos. Trans. R. Soc. A 374: 20160191, 1). A basic difference exists between aquatic non-vascular and land-living vascular plants; the latter exhibit a particular intriguing surface chemistry and architecture. The diversity of features is described in detail according to their hierarchical structural order. The first underlying and essential feature is the polymer cuticle superimposed by epicuticular wax and the curvature of single cells up to complex multicellular structures. A descriptive terminology for this diversity is provided. Simplified, the functions of plant surface characteristics may be grouped into six categories: (1) mechanical properties, (2) influence on reflection and absorption of spectral radiation, (3) reduction of water loss or increase of water uptake, moisture harvesting, (4) adhesion and non-adhesion (lotus effect, insect trapping), (5) drag and turbulence increase, or (6) air retention under water for drag reduction or gas exchange (Salvinia effect). This list is far from complete. A short overview of the history of bionics and the impressive spectrum of existing and anticipated biomimetic applications are provided. The major challenge for engineers and materials scientists, the durability of the fragile nanocoatings, is also discussed.
Collapse
Affiliation(s)
- Wilhelm Barthlott
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University of Bonn, Venusbergweg 22, 53115 Bonn, Germany
| | - Matthias Mail
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms University of Bonn, Venusbergweg 22, 53115 Bonn, Germany
- Institute of Crop Science and Resource Conservation (INRES) – Horticultural Science, Rheinische Friedrich-Wilhelms University of Bonn, Auf dem Hügel 6, 53121 Bonn, Germany
| | - Bharat Bhushan
- Nanoprobe Laboratory for Bio & Nanotechnology and Biomimetics, The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142 USA
| | - Kerstin Koch
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie Curie-Straße 1, 47533 Kleve, Germany
| |
Collapse
|
37
|
Barthlott W, Mail M, Bhushan B, Koch K. Plant Surfaces: Structures and Functions for Biomimetic Applications. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
38
|
Woods HA, Lane SJ. Metabolic recovery from drowning by insect pupae. J Exp Biol 2016; 219:3126-3136. [DOI: 10.1242/jeb.144105] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Many terrestrial insects live in environments that flood intermittently, and some life stages may spend days underwater without access to oxygen. We tested the hypothesis that terrestrial insects with underground pupae show respiratory adaptations for surviving anoxia and subsequently reestablishing normal patterns of respiration. Pupae of Manduca sexta were experimentally immersed in water for between 0 and 13 days. All pupae survived up to 5 days of immersion regardless of whether the water was aerated or anoxic. By contrast, fifth-instar larvae survived a maximum of 4 h of immersion. There were no effects of immersion during the pupal period on adult size and morphology. After immersion, pupae initially emitted large pulses of CO2. After a subsequent trough in CO2 emission, spiracular activity resumed and average levels of CO2 emission were then elevated for approximately 1 day in the group immersed for 1 day and for at least 2 days in the 3- and 5-day immersion treatments. Although patterns of CO2 emission were diverse, most pupae went through a period during which they emitted CO2 in a cyclic pattern with periods of 0.78–2.2 min. These high-frequency cycles are not predicted by the recent models of Förster and Hetz (2010) and Grieshaber and Terblanche (2015), and we suggest several potential ways to reconcile the models with our observations. During immersion, pupae accumulated lactate, which then declined to low levels over 12–48 h. Pupae in the 3- and 5-day immersion groups still had elevated rates of CO2 emission after 48 h, suggesting that they continued to spend energy on reestablishing homeostasis even after lactate had returned to low levels. Despite their status as terrestrial insects, pupae of M. sexta can withstand long periods of immersion and anoxia and can reestablish homeostasis subsequently.
Collapse
Affiliation(s)
- H. Arthur Woods
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Steven J. Lane
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| |
Collapse
|
39
|
Golovin KB, Gose JW, Perlin M, Ceccio SL, Tuteja A. Bioinspired surfaces for turbulent drag reduction. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0189. [PMID: 27354731 PMCID: PMC4928507 DOI: 10.1098/rsta.2016.0189] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 05/03/2023]
Abstract
In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
Collapse
Affiliation(s)
- Kevin B Golovin
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James W Gose
- Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marc Perlin
- Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven L Ceccio
- Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anish Tuteja
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
40
|
Gudowska A, Boardman L, Terblanche JS. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper, Paracinema tricolor. J Exp Biol 2016; 219:2423-5. [DOI: 10.1242/jeb.135129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/04/2016] [Indexed: 11/20/2022]
Abstract
The discontinuous gas exchange (DGE) pattern of respiration shown by many arthropods includes periods of spiracle closure (C-phase) and is largely thought to serve as a physiological adaptation to restrict water loss in terrestrial environments. One major challenge to this hypothesis is to explain the presence of DGE in insects in moist environments. Here, we show a novel ecological correlate of the C-phase, namely diving behaviour in mesic Paracinema tricolor grasshoppers. Notably, maximal dive duration is positively correlated with C-phase length, even after accounting for mass scaling and absolute metabolic rate. Here, we propose that an additional advantage of DGE may be conferred by allowing the tracheal system to act as a sealed underwater oxygen reservoir. Spiracle closure may facilitate underwater submersion, which in turn, may contribute to predator avoidance, the survival of accidental immersion or periodic flooding and aid exploiting underwater resources.
Collapse
Affiliation(s)
| | - Leigh Boardman
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, South Africa
| |
Collapse
|
41
|
Thermal biology and immersion tolerance of the Beringian pseudoscorpion Wyochernes asiaticus. Polar Biol 2015. [DOI: 10.1007/s00300-015-1849-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Jones KK, Snelling EP, Watson AP, Seymour RS. Gas exchange and dive characteristics of the free-swimming backswimmer Anisops deanei. J Exp Biol 2015; 218:3478-86. [DOI: 10.1242/jeb.125047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Many aquatic insects utilise air bubbles on the surface of their bodies to supply O2 while they dive. The bubbles can simply store O2, as in the case of an ‘air store’, or they can act as a physical ‘gas gill’, extracting O2 from the water. Backswimmers of the genus Anisops augment their air store with O2 from haemoglobin cells located in the abdomen. The O2 release from the haemoglobin helps stabilise bubble volume, enabling backswimmers to remain near neutrally buoyant for a period of the dive. It is generally assumed that the backswimmer air store does not act as a gas gill and that gas exchange with the water is negligible. This study combines measurements of dive characteristics under different exotic gases (N2, He, SF6, CO) with mathematical modelling, to show that the air store of the backswimmer Anisops deanei does exchange gases with the water. Our results indicate that approximately 20% of O2 consumed during a dive is obtained directly from the water. Oxygen from the water complements that released from the haemoglobin, extending the period of near-neutral buoyancy and increasing dive duration.
Collapse
Affiliation(s)
- Karl K. Jones
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Edward P. Snelling
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Amy P. Watson
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Roger S. Seymour
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
43
|
Seymour RS, Jones KK, Hetz SK. Respiratory function of the plastron in the aquatic bug, Aphelocheirus aestivalis (Hemiptera, Aphelocheiridae). J Exp Biol 2015. [DOI: 10.1242/jeb.125328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The river bug Aphelocheirus aestivalis is a 40 mg aquatic insect that, as an adult, relies totally on an incompressible physical gill to exchange respiratory gases with the water. The gill (called a ‘plastron’) consists of a stationary layer of air held in place on the body surface by millions of tiny hairs that support a permanent air-water interface, so that the insect never has to renew the gas at the water's surface. The volume of air in the plastron is extremely small (0.14 mm3), under slightly negative pressure, and connected to the gas-filled tracheal system through spiracles on the cuticle. Here, we measure Po2 of the water and within the plastron gas with O2-sensing fibre optics to understand the effectiveness and limitations of the gas exchanger. The difference in Po2 is highest in stagnant water and decreases with increasing convection over the surface. Respiration of bugs in water-filled vials varies between 33 and 296 pmol O2 s−1, depending on swimming activity. The effective thickness of the boundary layer around the plastron is calculated from respiration rate, Po2 difference and plastron surface area according to the Fick diffusion equation and verified by direct measurements with the fibre-optic probes. In stagnant water, the boundary layer is approximately 500 µm thick, which nevertheless can satisfy the demands of resting bugs, even if the Po2 of the free water decreases to half of air-saturation. Active bugs require thinner boundary layers (ca. 100 µm) that are achieved by living in moving water or by swimming.
Collapse
Affiliation(s)
- Roger S. Seymour
- School of Biological Sciences, University of Adelaide, Adelaide SA 5005, Australia
| | - Karl K. Jones
- School of Biological Sciences, University of Adelaide, Adelaide SA 5005, Australia
| | - Stefan K. Hetz
- Humboldt-Universität zu Berlin, Department of Animal Physiology, Systems Neurobiology and Neural Computation, Philippstrasse 13, 10115 Berlin, Germany
| |
Collapse
|
44
|
Abstract
The microstructures on elytral surface of aquatic beetles belonging to Hydrophilidae and Dytiscidae were observed under an environment scanning microscope, and the wettabilities were determined with an optical contact angle meter. The results show the elytral surfaces are relatively smooth compared to the structures of other insects such as the butterfly wing scales or cicada wing protrusions. They exhibit a polygonal structuring with grooves and pores being the main constituent units. The contact angles (CAs) range from 47.1oto 82.1o. The advancing and receding angles were measured by injecting into and withdrawing a small amount of water on the most hydrophilic (with a contact angle of 47.1o) and hydrophobic (with a contact angle of 82.1o) elytral surfaces, which illustrates the vital role of three-phase contact line (TCL) in the wetting mechanism of aquatic beetle elytral surfaces.
Collapse
|