1
|
Beignon F, Gueguen N, Tricoire-Leignel H, Mattei C, Lenaers G. The multiple facets of mitochondrial regulations controlling cellular thermogenesis. Cell Mol Life Sci 2022; 79:525. [PMID: 36125552 PMCID: PMC11802959 DOI: 10.1007/s00018-022-04523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.
Collapse
Affiliation(s)
- Florian Beignon
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
| | - Naig Gueguen
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
- Service de Biochimie et Biologie Moléculaire, CHU d'Angers, Angers, France
| | | | - César Mattei
- Univ Angers, CarMe, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Guy Lenaers
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
- Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
2
|
Sebastian W, Sukumaran S, Gopalakrishnan A. Comparative mitogenomics of Clupeoid fish provides insights into the adaptive evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes and codon usage in the heterogeneous habitats. Heredity (Edinb) 2022; 128:236-249. [PMID: 35256764 PMCID: PMC8986858 DOI: 10.1038/s41437-022-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022] Open
Abstract
Clupeoid fish can be considered excellent candidates to understand the role of mitochondrial DNA in adaptive evolution, as they have colonized different habitats (marine, brackish, freshwater, tropical and temperate regions) over millions of years. Here, we investigate patterns of tRNA location, codon usage bias, and lineage-specific diversifying selection signals to provide novel insights into how evolutionary improvements of mitochondrial metabolic efficiency have allowed clupeids to adapt to different habitats. Based on whole mitogenome data of 70 Clupeoids with a global distribution we find that purifying selection was the dominant force acting and that the mutational deamination pressure in mtDNA was stronger than the codon/amino acid constraints. The codon usage pattern appears evolved to achieve high translational efficiency (codon/amino acid-related constraints), as indicated by the complementarity of most codons to the GT-saturated tRNA anticodon sites (retained by deamination-induced pressure) and usage of the codons of the tRNA genes situated near to the control region (fixed by deamination pressure) where transcription efficiency was high. The observed shift in codon preference patterns between marine and euryhaline/freshwater Clupeoids indicates possible selection for improved translational efficiency in mitochondrial genes while adapting to low-salinity habitats. This mitogenomic plasticity and enhanced efficiency of the metabolic machinery may have contributed to the evolutionary success and abundance of Clupeoid fish.
Collapse
Affiliation(s)
- Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
3
|
Mitochondrial Uncoupling Proteins (UCPs) as Key Modulators of ROS Homeostasis: A Crosstalk between Diabesity and Male Infertility? Antioxidants (Basel) 2021; 10:antiox10111746. [PMID: 34829617 PMCID: PMC8614977 DOI: 10.3390/antiox10111746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Uncoupling proteins (UCPs) are transmembrane proteins members of the mitochondrial anion transporter family present in the mitochondrial inner membrane. Currently, six homologs have been identified (UCP1-6) in mammals, with ubiquitous tissue distribution and multiple physiological functions. UCPs are regulators of key events for cellular bioenergetic metabolism, such as membrane potential, metabolic efficiency, and energy dissipation also functioning as pivotal modulators of ROS production and general cellular redox state. UCPs can act as proton channels, leading to proton re-entry the mitochondrial matrix from the intermembrane space and thus collapsing the proton gradient and decreasing the membrane potential. Each homolog exhibits its specific functions, from thermogenesis to regulation of ROS production. The expression and function of UCPs are intimately linked to diabesity, with their dysregulation/dysfunction not only associated to diabesity onset, but also by exacerbating oxidative stress-related damage. Male infertility is one of the most overlooked diabesity-related comorbidities, where high oxidative stress takes a major role. In this review, we discuss in detail the expression and function of the different UCP homologs. In addition, the role of UCPs as key regulators of ROS production and redox homeostasis, as well as their influence on the pathophysiology of diabesity and potential role on diabesity-induced male infertility is debated.
Collapse
|
4
|
Giroud M, Jodeleit H, Prentice KJ, Bartelt A. Adipocyte function and the development of cardiometabolic disease. J Physiol 2021; 600:1189-1208. [PMID: 34555180 DOI: 10.1113/jp281979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Obesity is a medical disorder caused by multiple mechanisms of dysregulated energy balance. A major consequence of obesity is an increased risk to develop diabetes, diabetic complications and cardiovascular disease. While a better understanding of the molecular mechanisms linking obesity, insulin resistance and cardiovascular disease is needed, translational research of the human pathology is hampered by the available cellular and rodent model systems. Major barriers are the species-specific differences in energy balance, vascular biology and adipose tissue physiology, especially related to white and brown adipocytes, and adipose tissue browning. In rodents, non-shivering thermogenesis is responsible for a large part of energy expenditure, but humans possess much less thermogenic fat, which means temperature is an important variable in translational research. Mouse models with predisposition to dyslipidaemia housed at thermoneutrality and fed a high-fat diet more closely reflect human physiology. Also, adipocytes play a key role in the endocrine regulation of cardiovascular function. Adipocytes secrete a variety of hormones, lipid mediators and other metabolites that directly influence the local microenvironment as well as distant tissues. This is specifically apparent in perivascular depots, where adipocytes modulate vascular function and inflammation. Altogether, these mechanisms highlight the critical role of adipocytes in the development of cardiometabolic disease.
Collapse
Affiliation(s)
- Maude Giroud
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Henrika Jodeleit
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany
| | - Kacey J Prentice
- Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany.,Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
A Role of Stress Sensor Nrf2 in Stimulating Thermogenesis and Energy Expenditure. Biomedicines 2021; 9:biomedicines9091196. [PMID: 34572382 PMCID: PMC8472024 DOI: 10.3390/biomedicines9091196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
During chronic cold stress, thermogenic adipocytes generate heat through uncoupling of mitochondrial respiration from ATP synthesis. Recent discovery of various dietary phytochemicals, endogenous metabolites, synthetic compounds, and their molecular targets for stimulating thermogenesis has provided promising strategies to treat or prevent obesity and its associated metabolic diseases. Nuclear factor E2 p45-related factor 2 (Nrf2) is a stress response protein that plays an important role in obesity and metabolisms. However, both Nrf2 activation and Nrf2 inhibition can suppress obesity and metabolic diseases. Here, we summarized and discussed conflicting findings of Nrf2 activities accounting for part of the variance in thermogenesis and energy metabolism. We also discussed the utility of Nrf2-activating mechanisms for their potential applications in stimulating energy expenditure to prevent obesity and improve metabolic deficits.
Collapse
|
6
|
Nord A, Metcalfe NB, Page JL, Huxtable A, McCafferty DJ, Dawson NJ. Avian red blood cell mitochondria produce more heat in winter than in autumn. FASEB J 2021; 35:e21490. [PMID: 33829547 DOI: 10.1096/fj.202100107r] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Endotherms in cold regions improve heat-producing capacity when preparing for winter. We know comparatively little about how this change is fueled by seasonal adaptation in cellular respiration. Thus, we studied the changes of mitochondrial function in red blood cells in sympatric Coal (Periparus ater), Blue (Cyanistes caeruleus), and Great (Parus major) tits between autumn and winter. These species differ more than twofold in body mass and in several aspects of their foraging ecology and social dominance, which could require differential seasonal adaptation of energy expenditure. Coal and Great tits in particular upregulated the mitochondrial respiration rate and mitochondrial volume in winter. This was not directed toward ATP synthesis, instead reflecting increased uncoupling of electron transport from ATP production. Because uncoupling is exothermic, this increased heat-producing capacity at the sub-cellular level in winter. This previously unexplored the route of thermogenesis in birds should be addressed in future work.
Collapse
Affiliation(s)
- Andreas Nord
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden.,Institute of Biodiversity, Animal Health and Comparative Medicine, Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, UK
| | - Neil B Metcalfe
- Institute for Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, UK
| | - Jennifer L Page
- Institute of Biodiversity, Animal Health and Comparative Medicine, Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, UK
| | - Anna Huxtable
- Institute of Biodiversity, Animal Health and Comparative Medicine, Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, UK
| | - Dominic J McCafferty
- Institute of Biodiversity, Animal Health and Comparative Medicine, Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, UK
| | - Neal J Dawson
- Institute for Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Fan G, Li Y, Ma F, Zhao R, Yang X. Zinc-α2-glycoprotein promotes skeletal muscle lipid metabolism in cold-stressed mice. Endocr J 2021; 68:53-62. [PMID: 32863292 DOI: 10.1507/endocrj.ej20-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle is the most abundant tissue in the adult body and plays an essential role in maintaining heat production for the entire body. Recently, muscle-derived non-shivering thermogenesis under cold conditions has received much attention. Zinc-α2-glycoprotein (ZAG) is an adipokine that was shown to influence energy metabolism in the adipose tissue. We used ZAG knock-out (ZAG KO) and wild-type (WT) mice to investigate the effect of ZAG on the lipid metabolism of skeletal muscle upon exposure to a low temperature (6°C) for one week. The results show that cold stress significantly increases the level of lipolysis, energy metabolism, and fat browning-related proteins in the gastrocnemius muscle of WT mice. In contrast, ZAG KO mice did not show any corresponding changes. Increased expression of β3-adrenoceptor (β3-AR) and protein kinase A (PKA) might be involved in the ZAG pathway in mice exposed cold stress. Furthermore, expression of lipolysis-related proteins (ATGL and p-HSL) and energy metabolism-related protein (PGC1α, UCP2, UCP3 and COX1) was significantly enhanced in ZAG KO mice after injection of ZAG-recombinant plasmids. These results indicate that ZAG promotes lipid-related metabolism in the skeletal muscle when the animals are exposed to low temperatures. This finding provides a promising target for the development of new therapeutic approaches to improve skeletal muscle energy metabolism.
Collapse
Affiliation(s)
- Guoqiang Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yanfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Fuli Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
8
|
Koch RE, Buchanan KL, Casagrande S, Crino O, Dowling DK, Hill GE, Hood WR, McKenzie M, Mariette MM, Noble DWA, Pavlova A, Seebacher F, Sunnucks P, Udino E, White CR, Salin K, Stier A. Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends Ecol Evol 2021; 36:321-332. [PMID: 33436278 DOI: 10.1016/j.tree.2020.12.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research.
Collapse
Affiliation(s)
- Rebecca E Koch
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia.
| | - Katherine L Buchanan
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Stefania Casagrande
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, Seewiesen, Eberhard-Gwinner-Str. Haus 5, 82319, Seewiesen, Germany
| | - Ondi Crino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Damian K Dowling
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Geoffrey E Hill
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Wendy R Hood
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Matthew McKenzie
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Mylene M Mariette
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Daniel W A Noble
- The Australian National University, Division of Ecology and Evolution, Research School of Biology, Canberra, ACT, 2600, Australia
| | - Alexandra Pavlova
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Frank Seebacher
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, 2006, Australia
| | - Paul Sunnucks
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Eve Udino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Craig R White
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Karine Salin
- Université de Brest, Ifremer, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, 29280, France
| | - Antoine Stier
- University of Turku, Department of Biology, Turku, Finland; University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, UK
| |
Collapse
|
9
|
Kozłowski J, Konarzewski M, Czarnoleski M. Coevolution of body size and metabolic rate in vertebrates: a life-history perspective. Biol Rev Camb Philos Soc 2020; 95:1393-1417. [PMID: 32524739 PMCID: PMC7540708 DOI: 10.1111/brv.12615] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Despite many decades of research, the allometric scaling of metabolic rates (MRs) remains poorly understood. Here, we argue that scaling exponents of these allometries do not themselves mirror one universal law of nature but instead statistically approximate the non-linearity of the relationship between MR and body mass. This 'statistical' view must be replaced with the life-history perspective that 'allows' organisms to evolve myriad different life strategies with distinct physiological features. We posit that the hypoallometric allometry of MRs (mass scaling with an exponent smaller than 1) is an indirect outcome of the selective pressure of ecological mortality on allocation 'decisions' that divide resources among growth, reproduction, and the basic metabolic costs of repair and maintenance reflected in the standard or basal metabolic rate (SMR or BMR), which are customarily subjected to allometric analyses. Those 'decisions' form a wealth of life-history variation that can be defined based on the axis dictated by ecological mortality and the axis governed by the efficiency of energy use. We link this variation as well as hypoallometric scaling to the mechanistic determinants of MR, such as metabolically inert component proportions, internal organ relative size and activity, cell size and cell membrane composition, and muscle contributions to dramatic metabolic shifts between the resting and active states. The multitude of mechanisms determining MR leads us to conclude that the quest for a single-cause explanation of the mass scaling of MRs is futile. We argue that an explanation based on the theory of life-history evolution is the best way forward.
Collapse
Affiliation(s)
- Jan Kozłowski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| | - Marek Konarzewski
- Institute of BiologyUniversity of BiałystokCiołkowskiego 1J, 15‐245, BiałystokPoland
| | - Marcin Czarnoleski
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa7, 30‐387KrakówPoland
| |
Collapse
|
10
|
Stier A, Metcalfe NB, Monaghan P. Pace and stability of embryonic development affect telomere dynamics: an experimental study in a precocial bird model. Proc Biol Sci 2020; 287:20201378. [PMID: 32842933 DOI: 10.1098/rspb.2020.1378] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prenatal effects on telomere length are increasingly recognized as a potential contributor to the developmental origin of health and adult disease. While it is becoming clear that telomere length is influenced by prenatal conditions, the factors affecting telomere dynamics during embryogenesis remain poorly understood. We manipulated both the pace and stability of embryonic development through varying incubation temperature and its stability in Japanese quail. We investigated the impact on telomere dynamics from embryogenesis to adulthood, together with three potential drivers of telomere shortening, growth rate, oxidative damage and prenatal glucocorticoid levels. Telomere length was not affected by our prenatal manipulation for the first 75% of embryogenesis, but was reduced at hatching in groups experiencing faster (i.e. high temperature) or less stable embryonic development. These early life differences in telomere length persisted until adulthood. The effect of developmental instability on telomere length at hatching was potentially mediated by an increased secretion of glucocorticoid hormones during development. Both the pace and the stability of embryo development appear to be key factors determining telomere length and dynamics into adulthood, with fast and less stable development leading to shorter telomeres, with the potential for adverse associated outcomes in terms of reduced longevity.
Collapse
Affiliation(s)
- Antoine Stier
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Department of Biology, University of Turku, Turku, Finland
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Jefimow M, Przybylska-Piech AS, Wojciechowski MS. Predictive and reactive changes in antioxidant defence system in a heterothermic rodent. J Comp Physiol B 2020; 190:479-492. [PMID: 32435827 PMCID: PMC7311498 DOI: 10.1007/s00360-020-01280-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Abstract
Living in a seasonal environment requires periodic changes in animal physiology, morphology and behaviour. Winter phenotype of small mammals living in Temperate and Boreal Zones may differ considerably from summer one in multiple traits that enhance energy conservation or diminish energy loss. However, there is a considerable variation in the development of winter phenotype among individuals in a population and some, representing the non-responding phenotype (non-responders), are insensitive to shortening days and maintain summer phenotype throughout a year. Differences in energy management associated with the development of different winter phenotypes should be accompanied by changes in antioxidant defence capacity, leading to effective protection against oxidative stress resulting from increased heat production in winter. To test it, we analysed correlation of winter phenotypes of Siberian hamsters (Phodopus sungorus) with facultative non-shivering thermogenesis capacity (NST) and oxidative status. We found that in both phenotypes acclimation to winter-like conditions increased NST capacity and improved antioxidant defence resulting in lower oxidative stress (OS) than in summer, and females had always lower OS than males. Although NST capacity did not correlate with the intensity of OS, shortly after NST induction responders had lower OS than non-responders suggesting more effective mechanisms protecting from detrimental effects of reactive oxygen metabolites generated during rewarming from torpor. We suggest that seasonal increase in antioxidant defence is programmed endogenously to predictively prevent oxidative stress in winter. At the same time reactive upregulation of antioxidant defence protects against reactive oxygen species generated during NST itself. It suggests that evolution of winter phenotype with potentially harmful characteristics was counterbalanced by the development of protective mechanisms allowing for the maintenance of phenotypic adjustments to seasonally changing environment.
Collapse
Affiliation(s)
- Małgorzata Jefimow
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland.
| | - Anna S Przybylska-Piech
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
12
|
Ghnaimawi S, Baum J, Liyanage R, Huang Y. Concurrent EPA and DHA Supplementation Impairs Brown Adipogenesis of C2C12 Cells. Front Genet 2020; 11:531. [PMID: 32595696 PMCID: PMC7303889 DOI: 10.3389/fgene.2020.00531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/01/2020] [Indexed: 12/27/2022] Open
Abstract
Maternal dietary supplementation of n−3 polyunsaturated fatty acids (n−3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is considered to play positive roles in fetal neuro system development. However, maternal n−3 PUFAs may induce molecular reprogramming of uncommitted fetal myoblasts into adipocyte phenotype, in turn affecting lipid metabolism and energy expenditure of the offspring. The objective of this in vitro study was to investigate the combined effects of EPA and DHA on C2C12 cells undergoing brown adipogenic differentiation. C2C12 myoblasts were cultured to confluency and then treated with brown adipogenic differentiation medium with and without 50 μM EPA and 50 μM DHA. After differentiation, mRNA and protein samples were collected. Gene expression and protein levels were analyzed by real-time PCR and western blot. General Proteomics analysis was conducted using mass spectrometric evaluation. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XFP Analyzer. Cells treated with n−3 PUFAs had significantly less (P < 0.05) expression of the brown adipocyte marker genes PGC1α, DIO2, and UCP3. Expression of mitochondrial biogenesis-related genes TFAM, PGC1α, and PGC1β were significantly downregulated (P < 0.05) by n−3 PUFAs treatment. Expression of mitochondrial electron transportation chain (ETC)-regulated genes were significantly inhibited (P < 0.05) by n−3 PUFAs, including ATP5J2, COX7a1, and COX8b. Mass spectrometric and western blot evaluation showed protein levels of enzymes which regulate the ETC and Krebs cycle, including ATP synthase α and β (F1F0 complex), citrate synthase, succinate CO-A ligase, succinate dehydrogenase (complex II), ubiquinol-cytochrome c reductase complex subunits (complex III), aconitate hydratase, cytochrome c, and pyruvate carboxylase were all decreased in the n−3 PUFAs group (P < 0.05). Genomic and proteomic changes were accompanied by mitochondrial dysfunction, represented by significantly reduced oxygen consumption rate, ATP production, and proton leak (P < 0.05). This study suggested that EPA and DHA may alter the BAT fate of myoblasts by inhibiting mitochondrial biogenesis and activity and induce white-like adipogenesis, shifting the metabolism from lipid oxidation to synthesis.
Collapse
Affiliation(s)
- Saeed Ghnaimawi
- Department of Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Jamie Baum
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
13
|
Galigniana NM, Charó NL, Uranga R, Cabanillas AM, Piwien-Pilipuk G. Oxidative stress induces transcription of telomeric repeat-containing RNA (TERRA) by engaging PKA signaling and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118643. [DOI: 10.1016/j.bbamcr.2020.118643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
14
|
Jimenez AG, O'Connor ES, Elliott KH. Muscle myonuclear domain, but not oxidative stress, decreases with age in a long-lived seabird with high activity costs. ACTA ACUST UNITED AC 2019; 222:jeb.211185. [PMID: 31488626 DOI: 10.1242/jeb.211185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
Abstract
In birds, many physiological parameters appear to remain constant with increasing age, showing no deterioration until 'catastrophic' mortality sets in. Given their high whole-organism metabolic rate and the importance of flight in foraging and predator avoidance, flight muscle deterioration and accumulated oxidative stress and tissue deterioration may be an important contributor to physiological senescence in wild birds. As a by-product of aerobic respiration, reactive oxygen species are produced and can cause structural damage within cells. The anti-oxidant system deters oxidative damage to macromolecules. We examined oxidative stress and muscle ultrastructure in thick-billed murres aged 8 to 37 years (N=50) in pectoralis muscle biopsies. When considered in general linear models with body mass, body size and sex, no oxidative stress parameter varied with age. In contrast, there was a decrease in myonuclear domain similar to that seen in human muscle aging. We conclude that for wild birds with very high flight activity levels, muscle ultrastructural changes may be an important contributor to demographic senescence. Such gradual, linear declines in muscle morphology may eventually contribute to 'catastrophic' failure in foraging or predator avoidance abilities, leading to demographic senescence.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Erin S O'Connor
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Kyle H Elliott
- McGill University, Department of Natural Resources Sciences, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3L9
| |
Collapse
|
15
|
Xu DL, Xu MM, Wang DH. Effects of air temperatures on antioxidant defense and immunity in Mongolian gerbils. J Therm Biol 2019; 84:111-120. [DOI: 10.1016/j.jtherbio.2019.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
|
16
|
Beige Fat, Adaptive Thermogenesis, and Its Regulation by Exercise and Thyroid Hormone. BIOLOGY 2019; 8:biology8030057. [PMID: 31370146 PMCID: PMC6783838 DOI: 10.3390/biology8030057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 01/01/2023]
Abstract
While it is now understood that the proper expansion of adipose tissue is critically important for metabolic homeostasis, it is also appreciated that adipose tissues perform far more functions than simply maintaining energy balance. Adipose tissue performs endocrine functions, secreting hormones or adipokines that affect the regulation of extra-adipose tissues, and, under certain conditions, can also be major contributors to energy expenditure and the systemic metabolic rate via the activation of thermogenesis. Adipose thermogenesis takes place in brown and beige adipocytes. While brown adipocytes have been relatively well studied, the study of beige adipocytes has only recently become an area of considerable exploration. Numerous suggestions have been made that beige adipocytes can elicit beneficial metabolic effects on body weight, insulin sensitivity, and lipid levels. However, the potential impact of beige adipocyte thermogenesis on systemic metabolism is not yet clear and an understanding of beige adipocyte development and regulation is also limited. This review will highlight our current understanding of beige adipocytes and select factors that have been reported to elicit the development and activation of thermogenesis in beige cells, with a focus on factors that may represent a link between exercise and 'beiging', as well as the role that thyroid hormone signaling plays in beige adipocyte regulation.
Collapse
|
17
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
18
|
Xu DL, Xu MM, Wang DH. Effect of temperature on antioxidant defense and innate immunity in Brandt's voles. Zool Res 2019; 40:305-316. [PMID: 31310064 PMCID: PMC6680122 DOI: 10.24272/j.issn.2095-8137.2019.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/22/2019] [Indexed: 11/23/2022] Open
Abstract
Ambient temperature is an important factor influencing many physiological processes, including antioxidant defense and immunity. In the present study, we tested the hypothesis that antioxidant defense and immunity are suppressed by high and low temperature treatment in Brandt's voles (Lasiopodomys brandtii). Thirty male voles were randomly assigned into different temperature groups (4, 23, and 32 °C, n=10 for each group), with the treatment course lasting for 27 d. Results showed that low temperature increased gross energy intake (GEI) and liver, heart, and kidney mass, but decreased body fat mass and dry carcass mass. With the decline in temperature, hydrogen peroxide (H2O2) concentration, which is indicative of reactive oxygen species (ROS) levels, increased in the liver, decreased in the heart, and was unchanged in the kidney, testis, and small intestine. Lipid peroxidation indicated by malonaldehyde (MDA) content in the liver, heart, kidney, testis, and small intestine did not differ among groups, implying that high and low temperature did not cause oxidative damage. Similarly, superoxide dismutase (SOD) and catalase (CAT) activities and total antioxidant capacity (T-AOC) in the five tissues did not respond to low or high temperature, except for elevation of CAT activity in the testis upon cold exposure. Bacteria killing capacity, which is indicative of innate immunity, was nearly suppressed in the 4 °C group in contrast to the 23 °C group, whereas spleen mass and white blood cells were unaffected by temperature treatment. The levels of testosterone, but not corticosterone, were influenced by temperature treatment, though neither were correlated with innate immunity, H2O2 and MDA levels, or SOD, CAT, and T-AOC activity in any detected tissues. Overall, these results showed that temperature had different influences on oxidative stress, antioxidant enzymes, and immunity, which depended on the tissues and parameters tested. Up-regulation or maintenance of antioxidant defense might be an important mechanism for voles to survive highly variable environmental temperatures.
Collapse
Affiliation(s)
- De-Li Xu
- College of Life Sciences, Qufu Normal University, Qufu Shandong 273165, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Sebaa R, Johnson J, Pileggi C, Norgren M, Xuan J, Sai Y, Tong Q, Krystkowiak I, Bondy-Chorney E, Davey NE, Krogan N, Downey M, Harper ME. SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Mol Metab 2019; 25:35-49. [PMID: 31060926 PMCID: PMC6601363 DOI: 10.1016/j.molmet.2019.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) is important for thermoregulation in many mammals. Uncoupling protein 1 (UCP1) is the critical regulator of thermogenesis in BAT. Here we aimed to investigate the deacetylation control of BAT and to investigate a possible functional connection between UCP1 and sirtuin 3 (SIRT3), the master mitochondrial lysine deacetylase. METHODS We carried out physiological, molecular, and proteomic analyses of BAT from wild-type and Sirt3KO mice when BAT is activated. Mice were either cold exposed for 2 days or were injected with the β3-adrenergic agonist, CL316,243 (1 mg/kg; i.p.). Mutagenesis studies were conducted in a cellular model to assess the impact of acetylation lysine sites on UCP1 function. Cardiac punctures were collected for proteomic analysis of blood acylcarnitines. Isolated mitochondria were used for functional analysis of OXPHOS proteins. RESULTS Our findings showed that SIRT3 absence in mice resulted in impaired BAT lipid use, whole body thermoregulation, and respiration in BAT mitochondria, without affecting UCP1 expression. Acetylome profiling of BAT mitochondria revealed that SIRT3 regulates acetylation status of many BAT mitochondrial proteins including UCP1 and crucial upstream proteins. Mutagenesis work in cells suggested that UCP1 activity was independent of direct SIRT3-regulated lysine acetylation. However, SIRT3 impacted BAT mitochondrial proteins activities of acylcarnitine metabolism and specific electron transport chain complexes, CI and CII. CONCLUSIONS Our data highlight that SIRT3 likely controls BAT thermogenesis indirectly by targeting pathways upstream of UCP1.
Collapse
Affiliation(s)
- Rajaa Sebaa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Medical Laboratories, College of Applied Medical Sciences, University of Shaqra, Duwadimi, Saudi Arabia
| | - Jeff Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Norgren
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jian Xuan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yuka Sai
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiang Tong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Bondy-Chorney
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Downey
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
20
|
Stier A, Schull Q, Bize P, Lefol E, Haussmann M, Roussel D, Robin JP, Viblanc VA. Oxidative stress and mitochondrial responses to stress exposure suggest that king penguins are naturally equipped to resist stress. Sci Rep 2019; 9:8545. [PMID: 31189949 PMCID: PMC6561961 DOI: 10.1038/s41598-019-44990-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/23/2019] [Indexed: 12/26/2022] Open
Abstract
Exposure to unpredictable environmental stressors could influence animal health and fitness by inducing oxidative stress, potentially through downstream effects of glucocorticoid stress hormones (e.g. corticosterone) on mitochondrial function. Yet, it remains unclear whether species that have evolved in stochastic and challenging environments may present adaptations to alleviate the effects of stress exposure on oxidative stress. We tested this hypothesis in wild king penguins by investigating mitochondrial and oxidative stress responses to acute restraint-stress, and their relationships with baseline (potentially mirroring exposure to chronic stress) and stress-induced increase in corticosterone levels. Acute restraint-stress did not significantly influence mitochondrial function. However, acute restraint-stress led to a significant increase in endogenous antioxidant defences, while oxidative damage levels were mostly not affected or even decreased. High baseline corticosterone levels were associated with an up-regulation of the glutathione antioxidant system and a decrease in mitochondrial efficiency. Both processes might contribute to prevent oxidative damage, potentially explaining the negative relationship observed between baseline corticosterone and plasma oxidative damage to proteins. While stress exposure can represent an oxidative challenge for animals, protective mechanisms like up-regulating antioxidant defences and decreasing mitochondrial efficiency seem to occur in king penguins, allowing them to cope with their stochastic and challenging environment.
Collapse
Affiliation(s)
- Antoine Stier
- Department of Biology, University of Turku, Turku, Finland. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK. .,Université d'Angers, Angers, France.
| | - Quentin Schull
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Emilie Lefol
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France.,Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Mark Haussmann
- Department of Biology, Bucknell University, Lewisburg, USA
| | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS UMR 5023, Université de Lyon, Lyon, France
| | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| |
Collapse
|
21
|
Stier A, Schull Q, Bize P, Lefol E, Haussmann M, Roussel D, Robin JP, Viblanc VA. Oxidative stress and mitochondrial responses to stress exposure suggest that king penguins are naturally equipped to resist stress. Sci Rep 2019. [PMID: 31189949 DOI: 10.1002/10.1038/s41598-019-44990-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Exposure to unpredictable environmental stressors could influence animal health and fitness by inducing oxidative stress, potentially through downstream effects of glucocorticoid stress hormones (e.g. corticosterone) on mitochondrial function. Yet, it remains unclear whether species that have evolved in stochastic and challenging environments may present adaptations to alleviate the effects of stress exposure on oxidative stress. We tested this hypothesis in wild king penguins by investigating mitochondrial and oxidative stress responses to acute restraint-stress, and their relationships with baseline (potentially mirroring exposure to chronic stress) and stress-induced increase in corticosterone levels. Acute restraint-stress did not significantly influence mitochondrial function. However, acute restraint-stress led to a significant increase in endogenous antioxidant defences, while oxidative damage levels were mostly not affected or even decreased. High baseline corticosterone levels were associated with an up-regulation of the glutathione antioxidant system and a decrease in mitochondrial efficiency. Both processes might contribute to prevent oxidative damage, potentially explaining the negative relationship observed between baseline corticosterone and plasma oxidative damage to proteins. While stress exposure can represent an oxidative challenge for animals, protective mechanisms like up-regulating antioxidant defences and decreasing mitochondrial efficiency seem to occur in king penguins, allowing them to cope with their stochastic and challenging environment.
Collapse
Affiliation(s)
- Antoine Stier
- Department of Biology, University of Turku, Turku, Finland. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK. .,Université d'Angers, Angers, France.
| | - Quentin Schull
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Emilie Lefol
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France.,Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Mark Haussmann
- Department of Biology, Bucknell University, Lewisburg, USA
| | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS UMR 5023, Université de Lyon, Lyon, France
| | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| |
Collapse
|
22
|
Stout R, Birch-Machin M. Mitochondria's Role in Skin Ageing. BIOLOGY 2019; 8:E29. [PMID: 31083540 PMCID: PMC6627661 DOI: 10.3390/biology8020029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Skin ageing is the result of a loss of cellular function, which can be further accelerated by external factors. Mitochondria have important roles in skin function, and mitochondrial damage has been found to accumulate with age in skin cells, but also in response to solar light and pollution. There is increasing evidence that mitochondrial dysfunction and oxidative stress are key features in all ageing tissues, including skin. This is directly linked to skin ageing phenotypes: wrinkle formation, hair greying and loss, uneven pigmentation and decreased wound healing. The loss of barrier function during skin ageing increases susceptibility to infection and affects wound healing. Therefore, an understanding of the mechanisms involved is important clinically and also for the development of antiageing skin care products.
Collapse
Affiliation(s)
- Roisin Stout
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mark Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
23
|
Antioxidant capacity is repeatable across years but does not consistently correlate with a marker of peroxidation in a free-living passerine bird. J Comp Physiol B 2019; 189:283-298. [DOI: 10.1007/s00360-019-01211-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/22/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
|
24
|
Abstract
Brown and beige adipocytes can catabolize stored energy to generate heat, and this distinct capacity for thermogenesis could be leveraged as a therapy for metabolic diseases like obesity and type 2 diabetes. Thermogenic adipocytes drive heat production through close coordination of substrate supply with the mitochondrial oxidative machinery and effectors that control the rate of substrate oxidation. Together, this apparatus affords these adipocytes with tremendous capacity to drive thermogenesis. The best characterized thermogenic effector is uncoupling protein 1 (UCP1). Importantly, additional mechanisms for activating thermogenesis beyond UCP1 have been identified and characterized to varying extents. Acute regulation of these thermogenic pathways has been an active area of study, and numerous regulatory factors have been uncovered in recent years. Here we will review the evidence for regulators of heat production in thermogenic adipocytes in the context of the thermodynamic and kinetic principles that govern their therapeutic utility.
Collapse
Affiliation(s)
- Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Ali Khan A, Hansson J, Weber P, Foehr S, Krijgsveld J, Herzig S, Scheideler M. Comparative Secretome Analyses of Primary Murine White and Brown Adipocytes Reveal Novel Adipokines. Mol Cell Proteomics 2018; 17:2358-2370. [PMID: 30135203 PMCID: PMC6283297 DOI: 10.1074/mcp.ra118.000704] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The adipose organ, including white and brown adipose tissues, is an important player in systemic energy homeostasis, storing excess energy in form of lipids while releasing energy upon various energy demands. Recent studies have demonstrated that white and brown adipocytes also function as endocrine cells and regulate systemic metabolism by secreting factors that act locally and systemically. However, a comparative proteomic analysis of secreted factors from white and brown adipocytes and their responsiveness to adrenergic stimulation has not been reported yet. Therefore, we studied and compared the secretome of white and brown adipocytes, with and without norepinephrine (NE) stimulation. Our results reveal that carbohydrate-metabolism-regulating proteins are preferably secreted from white adipocytes, while brown adipocytes predominantly secrete a large variety of proteins. Upon NE stimulation, an increased secretion of known adipokines is favored by white adipocytes while brown adipocytes secreted higher amounts of novel adipokines. Furthermore, the secretory response between NE-stimulated and basal state was multifaceted addressing lipid and glucose metabolism, adipogenesis, and antioxidative reactions. Intriguingly, NE stimulation drastically changed the secretome in brown adipocytes. In conclusion, our study provides a comprehensive catalogue of novel adipokine candidates secreted from white and brown adipocytes with many of them responsive to NE. Given the beneficial effects of brown adipose tissue activation on its endocrine function and systemic metabolism, this study provides an archive of novel batokine candidates and biomarkers for activated brown adipose tissue.
Collapse
Affiliation(s)
- Asrar Ali Khan
- Institute for Diabetes and Cancer (IDC); Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jenny Hansson
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Peter Weber
- Institute for Diabetes and Cancer (IDC); Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sophia Foehr
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC); Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC); Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
26
|
Bury S, Cichoń M, Bauchinger U, Sadowska ET. High oxidative stress despite low energy metabolism and vice versa: Insights through temperature acclimation in an ectotherm. J Therm Biol 2018; 78:36-41. [DOI: 10.1016/j.jtherbio.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 01/30/2023]
|
27
|
Bond LM, Burhans MS, Ntambi JM. Uncoupling protein-1 deficiency promotes brown adipose tissue inflammation and ER stress. PLoS One 2018; 13:e0205726. [PMID: 30427862 PMCID: PMC6235278 DOI: 10.1371/journal.pone.0205726] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammation and endoplasmic reticulum (ER) stress are hallmarks of metabolic syndrome. While these metabolic derangements have been well-investigated in white adipose tissue, their existence and etiology in brown adipose tissue (BAT) are poorly understood. Here, we aimed to investigate ER homeostasis and the inflammatory status and of BAT lacking uncoupling protein-1 (UCP1), a protein required for BAT thermogenesis. H&E staining illustrated lipid accumulation and crown-like structures surrounding adipocytes in BAT of UCP1-/- mice housed at room temperature compared to control mice. Further, immunohistological evaluation of F4/80 and gene expression studies demonstrated BAT macrophage infiltration and robust elevation of pro-inflammatory markers in UCP1-/- BAT. ER stress was also present in BAT of UCP1-/- mice, as evidenced by elevated gene expression and post-translational modifications of unfolded protein response components. After four weeks of thermoneutral housing, UCP1-/- mice did not exhibit elevated BAT inflammation and ER stress gene expression compared to WT mice, but depot expansion persisted. Collectively, we demonstrate that the effects of UCP1 deficiency in BAT are not restricted to mitochondrial uncoupling. We conclude that brown adipose tissue of UCP1-/- mice exhibits pro-inflammatory immune cell infiltration and perturbations in ER homeostasis and that this phenotype is driven by cold exposure rather than lipid accumulation.
Collapse
Affiliation(s)
- Laura M. Bond
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Maggie S. Burhans
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
28
|
Clookey SL, Welly RJ, Zidon TM, Gastecki ML, Woodford ML, Grunewald ZI, Winn NC, Eaton D, Karasseva NG, Sacks HS, Padilla J, Vieira-Potter VJ. Increased susceptibility to OVX-associated metabolic dysfunction in UCP1-null mice. J Endocrinol 2018; 239:107-120. [PMID: 30089681 PMCID: PMC7340174 DOI: 10.1530/joe-18-0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023]
Abstract
Premenopausal females are protected against adipose tissue inflammation and insulin resistance, until loss of ovarian hormone production (e.g., menopause). There is some evidence that females have greater brown adipose tissue (BAT) thermogenic capacity. Because BAT mass correlates inversely with insulin resistance, we hypothesized that increased uncoupling protein 1 (UCP1) expression contributes to the superior metabolic health of females. Given that UCP1 transiently increases in BAT following ovariectomy (OVX), we hypothesized that UCP1 may 'buffer' OVX-mediated metabolic dysfunction. Accordingly, female UCP1-knockout (KO) and WT mice received OVX or sham (SHM) surgeries at 12 weeks of age creating four groups (n = 10/group), which were followed for 14 weeks and compared for body weight and adiposity, food intake, energy expenditure and spontaneous physical activity (metabolic chambers), insulin resistance (HOMA-IR, ADIPO-IR and glucose tolerance testing) and adipose tissue phenotype (histology, gene and protein expression). Two-way ANOVA was used to assess the main effects of genotype (G), OVX treatment (O) and genotype by treatment (GxO) interactions, which were considered significant when P ≤ 0.05. UCP1KO mice experienced a more adverse metabolic response to OVX than WT. Whereas OVX-induced weight gain was not synergistically greater for KO compared to WT (GxO, NS), OVX-induced insulin resistance was significantly exacerbated in KO compared to WT (GxO for HOMA-IR, P < 0.05). These results suggest UCP1 is protective against metabolic dysfunction associated with loss of ovarian hormones and support the need for more research into therapeutics to selectively target UCP1 for prevention and treatment of metabolic dysfunction following ovarian hormone loss.
Collapse
Affiliation(s)
- Stephanie L. Clookey
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Rebecca J. Welly
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Terese M. Zidon
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Michelle L. Gastecki
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Makenzie L. Woodford
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Zachary I. Grunewald
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | - Nathan C. Winn
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
| | | | | | - Harold S. Sacks
- Endocrine and Diabetes Division, Veterans Greater Los
Angeles Healthcare System, Los Angeles, CA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University
of Missouri, Columbia
- Dalton Cardiovascular Research Center, University of
Missouri, Columbia, MO
- Department of Child Health, University of Missouri,
Columbia, MO
| | | |
Collapse
|
29
|
Reichert S, Stier A. Does oxidative stress shorten telomeres in vivo? A review. Biol Lett 2018; 13:rsbl.2017.0463. [PMID: 29212750 DOI: 10.1098/rsbl.2017.0463] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
The length of telomeres, the protective caps of chromosomes, is increasingly used as a biomarker of individual health state because it has been shown to predict chances of survival in a range of endothermic species including humans. Oxidative stress is presumed to be a major cause of telomere shortening, but most evidence to date comes from in vitro cultured cells. The importance of oxidative stress as a determinant of telomere shortening in vivo remains less clear and has recently been questioned. We, therefore, reviewed correlative and experimental studies investigating the links between oxidative stress and telomere shortening in vivo While correlative studies provide equivocal support for a connection between oxidative stress and telomere attrition (10 of 18 studies), most experimental studies published so far (seven of eight studies) partially or fully support this hypothesis. Yet, this link seems to be tissue-dependent in some cases, or restricted to particular categories of individual (e.g. sex-dependent) in other cases. More experimental studies, especially those decreasing antioxidant protection or increasing pro-oxidant generation, are required to further our understanding of the importance of oxidative stress in determining telomere length in vivo Studies comparing growing versus adult individuals, or proliferative versus non-proliferative tissues would provide particularly important insights.
Collapse
Affiliation(s)
- Sophie Reichert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Department of Animal and Plant Science, University of Sheffield, Sheffield, UK
| | - Antoine Stier
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Lu Y, Fujioka H, Joshi D, Li Q, Sangwung P, Hsieh P, Zhu J, Torio J, Sweet D, Wang L, Chiu SY, Croniger C, Liao X, Jain MK. Mitophagy is required for brown adipose tissue mitochondrial homeostasis during cold challenge. Sci Rep 2018; 8:8251. [PMID: 29844467 PMCID: PMC5974273 DOI: 10.1038/s41598-018-26394-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue (BAT) is a specialized thermogenic organ in mammals. The ability of BAT mitochondria to generate heat in response to cold-challenge to maintain core body temperature is essential for organismal survival. While cold activated BAT mitochondrial biogenesis is recognized as critical for thermogenic adaptation, the contribution of mitochondrial quality control to this process remains unclear. Here, we show mitophagy is required for brown adipocyte mitochondrial homeostasis during thermogenic adaptation. Mitophagy is significantly increased in BAT from cold-challenged mice (4 °C) and in β-agonist treated brown adipocytes. Blockade of mitophagy compromises brown adipocytes mitochondrial oxidative phosphorylation (OX-PHOS) capacity, as well as BAT mitochondrial integrity. Mechanistically, cold-challenge induction of BAT mitophagy is UCP1-dependent. Furthermore, our results indicate that mitophagy coordinates with mitochondrial biogenesis, maintaining activated BAT mitochondrial homeostasis. Collectively, our in vivo and in vitro findings identify mitophagy as critical for brown adipocyte mitochondrial homeostasis during cold adaptation.
Collapse
Affiliation(s)
- Yuan Lu
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| | - Hisashi Fujioka
- Electron Microscopy Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dinesh Joshi
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qiaoyuan Li
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Capital Medical University, Beijing, China
| | - Panjamaporn Sangwung
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Paishiun Hsieh
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Jiyun Zhu
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Jose Torio
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - David Sweet
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Lan Wang
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shing Yan Chiu
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Colleen Croniger
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Xudong Liao
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Mukesh K Jain
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
31
|
Jastroch M, Oelkrug R, Keipert S. Insights into brown adipose tissue evolution and function from non-model organisms. ACTA ACUST UNITED AC 2018. [PMID: 29514888 DOI: 10.1242/jeb.169425] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brown adipose tissue (BAT) enables adaptive thermoregulation through heat production that is catalyzed by mitochondrial uncoupling protein 1 (UCP1). BAT is frequently studied in rodent model organisms, and recently in adult humans to treat metabolic diseases. However, complementary studies of many non-model species, which have diversified to many more ecological niches, may significantly broaden our understanding of BAT regulation and its physiological roles. This Review highlights the research on non-model organisms, which was instrumental to the discovery of BAT function, and the unique evolutionary history of BAT/UCP1 in mammalian thermogenesis. The comparative biology of BAT provides a powerful integrative approach that could identify conserved and specialized functional changes in BAT and UCP1 by considering species diversity, ecology and evolution, and by fusing multiple scientific disciplines such as physiology and biochemistry. Thus, resolving the complete picture of BAT biology may fail if comparative studies of non-model organisms are neglected.
Collapse
Affiliation(s)
- Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Department of Animal Physiology, Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany
| | - Rebecca Oelkrug
- Department of Molecular Endocrinology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23562 Lübeck, Germany
| | - Susanne Keipert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
32
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Chouchani ET, Kazak L, Spiegelman BM. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms. J Biol Chem 2017; 292:16810-16816. [PMID: 28842500 DOI: 10.1074/jbc.r117.789628] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brown and beige adipose tissues can catabolize stored energy to generate heat, relying on the principal effector of thermogenesis: uncoupling protein 1 (UCP1). This unique capability could be leveraged as a therapy for metabolic disease. Numerous animal and cellular models have now demonstrated that mitochondrial reactive oxygen species (ROS) signal to support adipocyte thermogenic identity and function. Herein, we contextualize these findings within the established principles of redox signaling and mechanistic studies of UCP1 function. We provide a framework for understanding the role of mitochondrial ROS signaling in thermogenesis together with testable hypotheses for understanding mechanisms and developing therapies.
Collapse
Affiliation(s)
- Edward T Chouchani
- From the Dana-Farber Cancer Institute, Harvard Medical School and.,Department of Cell Biology, Harvard University Medical School, Boston, Massachusetts 02115
| | - Lawrence Kazak
- From the Dana-Farber Cancer Institute, Harvard Medical School and.,Department of Cell Biology, Harvard University Medical School, Boston, Massachusetts 02115
| | - Bruce M Spiegelman
- From the Dana-Farber Cancer Institute, Harvard Medical School and .,Department of Cell Biology, Harvard University Medical School, Boston, Massachusetts 02115
| |
Collapse
|
34
|
Keipert S, Kutschke M, Ost M, Schwarzmayr T, van Schothorst EM, Lamp D, Brachthäuser L, Hamp I, Mazibuko SE, Hartwig S, Lehr S, Graf E, Plettenburg O, Neff F, Tschöp MH, Jastroch M. Long-Term Cold Adaptation Does Not Require FGF21 or UCP1. Cell Metab 2017; 26:437-446.e5. [PMID: 28768181 DOI: 10.1016/j.cmet.2017.07.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/31/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022]
Abstract
Brown adipose tissue (BAT)-dependent thermogenesis and its suggested augmenting hormone, FGF21, are potential therapeutic targets in current obesity and diabetes research. Here, we studied the role of UCP1 and FGF21 for metabolic homeostasis in the cold and dissected underlying molecular mechanisms using UCP1-FGF21 double-knockout mice. We report that neither UCP1 nor FGF21, nor even compensatory increases of FGF21 serum levels in UCP1 knockout mice, are required for defense of body temperature or for maintenance of energy metabolism and body weight. Remarkably, cold-induced browning of inguinal white adipose tissue (iWAT) is FGF21 independent. Global RNA sequencing reveals major changes in response to UCP1- but not FGF21-ablation in BAT, iWAT, and muscle. Markers of mitochondrial failure and inflammation are observed in BAT, but in particular the enhanced metabolic reprogramming in iWAT supports the thermogenic role of UCP1 and excludes an important thermogenic role of endogenous FGF21 in normal cold acclimation.
Collapse
Affiliation(s)
- Susanne Keipert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maria Kutschke
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Mario Ost
- German Institute of Human Nutrition, Nuthetal, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Daniel Lamp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Laura Brachthäuser
- Institute of Pathology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Isabel Hamp
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Sithandiwe E Mazibuko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Animal Physiology, Faculty of Biology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
35
|
Kazak L, Chouchani ET, Stavrovskaya IG, Lu GZ, Jedrychowski MP, Egan DF, Kumari M, Kong X, Erickson BK, Szpyt J, Rosen ED, Murphy MP, Kristal BS, Gygi SP, Spiegelman BM. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci U S A 2017; 114:7981-7986. [PMID: 28630339 PMCID: PMC5544316 DOI: 10.1073/pnas.1705406114] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology.
Collapse
Affiliation(s)
- Lawrence Kazak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Irina G Stavrovskaya
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215
| | - Gina Z Lu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | - Daniel F Egan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Manju Kumari
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Xingxing Kong
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Brian K Erickson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Bruce S Kristal
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115;
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
36
|
Neuroprotective Effects of a Novel Antioxidant Mixture Twendee X in Mouse Stroke Model. J Stroke Cerebrovasc Dis 2017; 26:1191-1196. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/31/2022] Open
|
37
|
Marasco V, Stier A, Boner W, Griffiths K, Heidinger B, Monaghan P. Environmental conditions can modulate the links among oxidative stress, age, and longevity. Mech Ageing Dev 2017; 164:100-107. [PMID: 28487181 DOI: 10.1016/j.mad.2017.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/17/2017] [Accepted: 04/29/2017] [Indexed: 12/14/2022]
Abstract
Understanding the links between environmental conditions and longevity remains a major focus in biological research. We examined within-individual changes between early- and mid-adulthood in the circulating levels of four oxidative stress markers linked to ageing, using zebra finches (Taeniopygia guttata): a DNA damage product (8-hydroxy-2'-deoxyguanosine; 8-OHdG), protein carbonyls (PC), non-enzymatic antioxidant capacity (OXY), and superoxide dismutase activity (SOD). We further examined whether such within-individual changes differed among birds living under control (ad lib food) or more challenging environmental conditions (unpredictable food availability), having previously found that the latter increased corticosterone levels when food was absent but improved survival over a three year period. Our key findings were: (i) 8-OHdG and PC increased with age in both environments, with a higher increase in 8-OHdG in the challenging environment; (ii) SOD increased with age in the controls but not in the challenged birds, while the opposite was true for OXY; (iii) control birds with high levels of 8-OHdG died at a younger age, but this was not the case in challenged birds. Our data clearly show that while exposure to the potentially damaging effects of oxidative stress increases with age, environmental conditions can modulate the pace of this age-related change.
Collapse
Affiliation(s)
- Valeria Marasco
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Antoine Stier
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
38
|
Stier A, Dupoué A, Picard D, Angelier F, Brischoux F, Lourdais O. Oxidative stress in a capital breeder ( Vipera aspis) facing pregnancy and water constraints. ACTA ACUST UNITED AC 2017; 220:1792-1796. [PMID: 28292781 DOI: 10.1242/jeb.156752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/08/2017] [Indexed: 12/30/2022]
Abstract
The physiological mechanisms underlying the 'cost of reproduction' remain under debate, though oxidative stress has emerged as a potential candidate. The 'oxidative cost of reproduction' has received considerable attention with regards to food and antioxidant availability; however, the limitation of water availability has thus far been neglected. In this study, we experimentally examined the combined effect of pregnancy and water deprivation on oxidative status in a viviparous snake (Vipera aspis), a species naturally exposed to periods of water and food deprivation. We predicted a cumulative effect of pregnancy and dehydration on oxidative stress levels. Our results support the occurrence of an oxidative cost of reproduction as we found higher oxidative damage levels in pregnant females than in non-reproductive individuals, despite an up-regulation of antioxidant defences. Surprisingly, water deprivation was associated with an up-regulation of antioxidant defences, and did not increase oxidative damage, either alone or in combination with reproduction.
Collapse
Affiliation(s)
- Antoine Stier
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK .,Université d'Angers, Angers 49000, France
| | - Andréaz Dupoué
- CNRS UPMC, UMR 7618, iEES Paris, Université Pierre et Marie Curie, 7 Quai St Bernard, Paris 75005, France
| | | | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS Université de La Rochelle UMR 7372, La Rochelle, Villiers en Bois 79360, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS Université de La Rochelle UMR 7372, La Rochelle, Villiers en Bois 79360, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS Université de La Rochelle UMR 7372, La Rochelle, Villiers en Bois 79360, France
| |
Collapse
|
39
|
Stier A, Romestaing C, Schull Q, Lefol E, Robin J, Roussel D, Bize P. How to measure mitochondrial function in birds using red blood cells: a case study in the king penguin and perspectives in ecology and evolution. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Stier
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS UMR 5023 Université de Lyon Lyon France
| | - Quentin Schull
- Université de Strasbourg CNRS IPHC UMR 7178 F‐67000 Strasbourg France
| | - Emilie Lefol
- Université de Strasbourg CNRS IPHC UMR 7178 F‐67000 Strasbourg France
- Département de biologie Université de Sherbrooke 2500 boul. de l'Université Sherbrooke QC Canada J1K 2R1
| | | | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS UMR 5023 Université de Lyon Lyon France
| | - Pierre Bize
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
| |
Collapse
|
40
|
Hajmousa G, Vogelaar P, Brouwer LA, van der Graaf AC, Henning RH, Krenning G. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells. Biomaterials 2016; 119:43-52. [PMID: 28006657 DOI: 10.1016/j.biomaterials.2016.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 02/09/2023]
Abstract
Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their specific growth media offers an alternative and simple preservation method to liquid nitrogen cryopreservation or commercial preservation fluids for short-term storage and transport. However, accumulation of cell damage during hypothermia may result in cell injury and death upon rewarming through the production of excess reactive oxygen species (ROS). Here, the ability of the cell culture medium additive SUL-109, a modified 6-chromanol, to protect ASC from hypothermia and rewarming damage is examined. SUL-109 conveys protective effects against cold-induced damage in ASC as is observed by preservation of cell viability, adhesion properties and growth potential. SUL-109 does not reduce the multilineage differentiation capacity of ASC. SUL-109 conveys its protection against hypothermic damage by the preservation of the mitochondrial membrane potential through the activation of mitochondrial membrane complexes I and IV, and increases maximal oxygen consumption in FCCP uncoupled mitochondria. Consequently, SUL-109 alleviates mitochondrial ROS production and preserves ATP production. In summary, here we describe the generation of a single molecule cell preservation agent that protects ASC from hypothermic damage associated with short-term cell preservation that does not affect the differentiation capacity of ASC.
Collapse
Affiliation(s)
- Ghazaleh Hajmousa
- Cardiovascular Regenerative Medicine, Dept. Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | - Pieter Vogelaar
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726GN, Groningen, The Netherlands
| | - Linda A Brouwer
- Cardiovascular Regenerative Medicine, Dept. Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands
| | | | - Robert H Henning
- Dept. Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EB71), 9713GZ, Groningen, The Netherlands
| | - Guido Krenning
- Cardiovascular Regenerative Medicine, Dept. Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ, Groningen, The Netherlands; Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726GN, Groningen, The Netherlands.
| |
Collapse
|
41
|
Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. J Nutr Biochem 2016; 39:101-109. [PMID: 27833050 DOI: 10.1016/j.jnutbio.2016.08.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/08/2023]
Abstract
Brown adipose tissue (BAT) plays a key role in energy expenditure through its specialized thermogenic function. Therefore, BAT activation may help prevent and/or treat obesity. Interestingly, subcutaneous white adipose tissue (WAT) also has the ability to differentiate into brown-like adipocytes and may potentially contribute to increased thermogenesis. We have previously reported that eicosapentaenoic acid (EPA) reduces high-fat (HF)-diet-induced obesity and insulin resistance in mice. Whether BAT mediates some of these beneficial effects of EPA has not been determined. We hypothesized that EPA activates BAT thermogenic program, contributing to its antiobesity effects. BAT and WAT were harvested from B6 male mice fed HF diets supplemented with or without EPA. HIB 1B clonal brown adipocytes treated with or without EPA were also used. Gene and protein expressions were measured in adipose tissues and H1B 1B cells by quantitative polymerase chain reaction and immunoblotting, respectively. Our results show that BAT from EPA-supplemented mice expressed significantly higher levels of thermogenic genes such as PRDM16 and PGC1α and higher levels of uncoupling protein 1 compared to HF-fed mice. By contrast, both WATs (subcutaneous and visceral) had undetectable levels of these markers with no up regulation by EPA. HIB 1B cells treated with EPA showed significantly higher mRNA expression of PGC1α and SIRT2. EPA treatment significantly increased maximum oxidative and peak glycolytic metabolism in H1B 1B cells. Our results demonstrate a novel and promising role for EPA in preventing obesity via activation of BAT, adding to its known beneficial anti-inflammatory effects.
Collapse
|
42
|
Lettieri Barbato D, Tatulli G, Aquilano K, Ciriolo MR. Mitochondrial Hormesis links nutrient restriction to improved metabolism in fat cell. Aging (Albany NY) 2016; 7:869-81. [PMID: 26540513 PMCID: PMC4637211 DOI: 10.18632/aging.100832] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the expression of mitochondrial-and nuclear-encoded oxidative phosphorylation genes as well as mitochondrial stress defensive proteins (UCP1, SOD2). Such adaptation is placed in a canonical mitohormetic response that proceeds via mitochondrial reactive oxygen species (mtROS) production and redistribution of FoxO1 transcription factor into nucleus. Nuclear FoxO1 (nFoxO1) mediates retrograde communication by inducing the expression of mitochondrial oxidative and stress defensive genes. Collectively, our findings describe an unusual white/beige fat cell response to nutrient availability highlighting another health-promoting mechanism of fasting.
Collapse
Affiliation(s)
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy.,IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Maria R Ciriolo
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
43
|
Récapet C, Zahariev A, Blanc S, Arrivé M, Criscuolo F, Bize P, Doligez B. Differences in the oxidative balance of dispersing and non-dispersing individuals: an experimental approach in a passerine bird. BMC Evol Biol 2016; 16:125. [PMID: 27296460 PMCID: PMC4907255 DOI: 10.1186/s12862-016-0697-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dispersal is often associated with a suite of phenotypic traits that might reduce dispersal costs, but can be energetically costly themselves outside dispersal. Hence, dispersing and philopatric individuals might differ throughout their life cycle in their management of energy production. Because higher energy expenditure can lead to the production of highly reactive oxidative molecules that are deleterious to the organism if left uncontrolled, dispersing and philopatric individuals might differ in their management of oxidative balance. Here, we experimentally increased flight costs during reproduction via a wing load manipulation in female collared flycatchers (Ficedula albicollis) breeding in a patchy population. We measured the effects of the manipulation on plasmatic markers of oxidative balance and reproductive success in dispersing and philopatric females. RESULTS The impact of the wing load manipulation on the oxidative balance differed according to dispersal status. The concentration of reactive oxygen metabolites (ROMs), a marker of pro-oxidant status, was higher in philopatric than dispersing females in the manipulated group only. Differences between dispersing and philopatric individuals also depended on habitat quality, as measured by local breeding density. In low quality habitats, ROMs as well as nestling body mass were higher in philopatric females compared to dispersing ones. Independently of the manipulation or of habitat quality, plasma antioxidant capacity differed according to dispersal status: philopatric females showed higher antioxidant capacity than dispersing ones. Nestlings raised by philopatric females also had a higher fledging success. CONCLUSIONS Our results suggest that dispersing individuals maintain a stable oxidative balance when facing challenging environmental conditions, at the cost of lower reproductive success. Conversely, philopatric individuals increase their effort, and thus oxidative costs, in challenging conditions thereby maintaining their reproductive success. Our study sheds light on energetics and oxidative balance as possible processes underlying phenotypic differences between dispersing and philopatric individuals.
Collapse
Affiliation(s)
- Charlotte Récapet
- Université de Lyon, F-69000, Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France. .,Département d'Ecologie et d'Evolution (DEE), Université de Lausanne, Lausanne, Switzerland.
| | - Alexandre Zahariev
- Institut Pluridisciplinaire Hubert Curien (IPHC), Départment d'Ecologie, Physiologie, Ethologie (DEPE), UMR 7178 CNRS-Université de Strasbourg, Strasbourg, France
| | - Stéphane Blanc
- Institut Pluridisciplinaire Hubert Curien (IPHC), Départment d'Ecologie, Physiologie, Ethologie (DEPE), UMR 7178 CNRS-Université de Strasbourg, Strasbourg, France
| | - Mathilde Arrivé
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS-Université de Strasbourg, Strasbourg, France
| | - François Criscuolo
- Institut Pluridisciplinaire Hubert Curien (IPHC), Départment d'Ecologie, Physiologie, Ethologie (DEPE), UMR 7178 CNRS-Université de Strasbourg, Strasbourg, France
| | - Pierre Bize
- Département d'Ecologie et d'Evolution (DEE), Université de Lausanne, Lausanne, Switzerland.,School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, UK
| | - Blandine Doligez
- Université de Lyon, F-69000, Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France.,Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Food restriction attenuates oxidative stress in brown adipose tissue of striped hamsters acclimated to a warm temperature. J Therm Biol 2016; 58:72-9. [DOI: 10.1016/j.jtherbio.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/30/2022]
|
45
|
Venditti P, Napolitano G, Barone D, Di Meo S. "Cold training" affects rat liver responses to continuous cold exposure. Free Radic Biol Med 2016; 93:23-31. [PMID: 26808664 DOI: 10.1016/j.freeradbiomed.2016.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/20/2022]
Abstract
Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated.
Collapse
Affiliation(s)
- Paola Venditti
- Department of Biology, University of Naples, I-80126 Naples, Italy.
| | | | - Daniela Barone
- Department of Biology, University of Naples, I-80126 Naples, Italy
| | - Sergio Di Meo
- Department of Biology, University of Naples, I-80126 Naples, Italy
| |
Collapse
|
46
|
Smith SM, Nager RG, Costantini D. Meta-analysis indicates that oxidative stress is both a constraint on and a cost of growth. Ecol Evol 2016; 6:2833-42. [PMID: 27217942 PMCID: PMC4863009 DOI: 10.1002/ece3.2080] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress (OS) as a proximate mechanism for life‐history trade‐offs is widespread in the literature. One such resource allocation trade‐off involves growth rate, and theory suggests that OS might act as both a constraint on and a cost of growth, yet studies investigating this have produced conflicting results. Here, we use meta‐analysis to investigate whether increased OS levels impact on growth (OS as a constraint on growth) and whether greater growth rates can increase OS (OS as a cost of growth). The role of OS as a constraint on growth was supported by the meta‐analysis. Greater OS, in terms of either increased damage or reduced levels of antioxidants, was associated with reduced growth although the effect depended on the experimental manipulation used. Our results also support an oxidative cost of growth, at least in terms of increased oxidative damage, although faster growth was not associated with a change in antioxidant levels. These findings that OS can act as a constraint on growth support theoretical links between OS and animal life histories and provide evidence for a growth–self‐maintenance trade‐off. Furthermore, the apparent oxidative costs of growth imply individuals cannot alter this trade‐off when faced with enhanced growth. We offer a starting platform for future research and recommend the use of oxidative damage biomarkers in nonlethal tissue to investigate the growth–OS relationship further.
Collapse
Affiliation(s)
- Shona M Smith
- Institute of Biodiversity, Animal Health & Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Ruedi G Nager
- Institute of Biodiversity, Animal Health & Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - David Costantini
- Institute of Biodiversity, Animal Health & Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK; Department of Biology University of Antwerp Antwerp 2610 Belgium
| |
Collapse
|
47
|
Schull Q, Viblanc VA, Stier A, Saadaoui H, Lefol E, Criscuolo F, Bize P, Robin JP. The oxidative debt of fasting: evidence for short to medium-term costs of advanced fasting in adult king penguins. J Exp Biol 2016; 219:3284-3293. [DOI: 10.1242/jeb.145250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
In response to prolonged periods of fasting, animals have evolved metabolic adaptations helping to mobilize body reserves and/or reducing metabolic rate, to ensure a longer usage of reserves. Those metabolic changes can however be associated with higher exposure to oxidative stress, raising the question how species that naturally fast during their life cycle avoid an accumulation of oxidative damage over time. King penguins repeatedly cope with fasting periods up to several weeks. Here we investigated how adult male penguins deal with oxidative stress after an experimentally induced moderate fasting period (PII) or an advanced fasting period (PIII). After fasting in captivity, birds were released to forage at sea. We measured plasmatic oxidative stress on the same individuals at the start and end of the fasting period and when they returned from foraging at sea. We found an increase in activity of the antioxidant enzyme superoxide dismutase along with fasting. However, PIII individuals showed higher oxidative damage at the end of the fast compared to PII individuals. When they returned from re-feeding at sea, all birds had recovered their initial body mass and exhibited low levels of oxidative damage. Notably, levels of oxidative damage after the foraging trip were correlated to the rate of mass gain at sea in PIII individuals but not in PII individuals. Altogether, our results suggest that fasting induces a transitory exposure to oxidative stress and that effort to recover in body mass after an advanced fasting period may be a neglected carry-over cost of fasting.
Collapse
Affiliation(s)
- Quentin Schull
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| | | | - Antoine Stier
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| | - Hédi Saadaoui
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| | - Emilie Lefol
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| | | | - Pierre Bize
- Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK
| | | |
Collapse
|
48
|
Speakman JR, Blount JD, Bronikowski AM, Buffenstein R, Isaksson C, Kirkwood TBL, Monaghan P, Ozanne SE, Beaulieu M, Briga M, Carr SK, Christensen LL, Cochemé HM, Cram DL, Dantzer B, Harper JM, Jurk D, King A, Noguera JC, Salin K, Sild E, Simons MJP, Smith S, Stier A, Tobler M, Vitikainen E, Peaker M, Selman C. Oxidative stress and life histories: unresolved issues and current needs. Ecol Evol 2015; 5:5745-57. [PMID: 26811750 PMCID: PMC4717350 DOI: 10.1002/ece3.1790] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
Life‐history theory concerns the trade‐offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life‐history trade‐offs, but the details remain obscure. As life‐history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life‐history trade‐offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life‐history information is available, cannot generally be performed without compromising the aims of the studies that generated the life‐history data. There is a need therefore for novel non‐invasive measurements of multi‐tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life‐history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life‐history trade‐offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life‐history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade‐offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other.
Collapse
Affiliation(s)
- John R Speakman
- Institute of Biological and Environmental Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK; State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Jonathan D Blount
- Centre for Ecology and Conservation University of Exeter Penryn Campus Cornwall TR10 9FE UK
| | - Anne M Bronikowski
- Department of Ecology, Evolution and Organismal Biology Iowa State University 251 Bessey Hall Ames Iowa 50011
| | - Rochelle Buffenstein
- Physiology, Barshop Institute for Aging and Longevity Research UTHSCSA 15355 Lambda Drive San Antonio Texas 78245
| | - Caroline Isaksson
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Tom B L Kirkwood
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Level 4 Wellcome Trust-MRC Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ UK
| | - Michaël Beaulieu
- Zoological Institute and Museum University of Greifswald Johann-Sebastian Bach Str. 11/12 Greifswald 17489 Germany
| | - Michael Briga
- Behavioral Biology University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Sarah K Carr
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Level 4 Wellcome Trust-MRC Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ UK
| | - Louise L Christensen
- Institute of Biological and Environmental Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK
| | - Helena M Cochemé
- MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus Du Cane Road London W12 0NN UK
| | - Dominic L Cram
- Department of Zoology University of Cambridge Cambridge CB2 3EJ UK
| | - Ben Dantzer
- Department of Psychology University of Michigan Ann Arbor Michigan 48109
| | - Jim M Harper
- Department of Biological Sciences Sam Houston State University 1900 Avenue I LDB 100B Huntsville Texas 77341
| | - Diana Jurk
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Annette King
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Jose C Noguera
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Elin Sild
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Mirre J P Simons
- Department of Animal and Plant Sciences University of Sheffield Alfred Denny Building, Western Bank Sheffield S10 2TN UK
| | - Shona Smith
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Antoine Stier
- Department Ecology, Physiology et Ethology University of Strasbourg - IPHC (UMR7178) 23, rue Becquerel Strasbourg 67087 France
| | - Michael Tobler
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Emma Vitikainen
- Centre for Ecology and Conservation University of Exeter Penryn Campus Cornwall TR10 9FE UK
| | | | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| |
Collapse
|
49
|
Emaresi G, Henry I, Gonzalez E, Roulin A, Bize P. Sex- and melanism-specific variations in the oxidative status of adult tawny owls in response to manipulated reproductive effort. ACTA ACUST UNITED AC 2015; 219:73-9. [PMID: 26567343 DOI: 10.1242/jeb.128959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023]
Abstract
Oxidative stress, determined by the balance between the production of damaging reactive oxygen species (ROS) and antioxidant defences, is hypothesized to play an important role in shaping the cost of reproduction and life history trade-offs. To test this hypothesis, we manipulated reproductive effort in 94 breeding pairs of tawny owls (Strix aluco) to investigate the sex- and melanism-specific effects on markers of oxidative stress in red blood cells (RBCs). This colour polymorphic bird species shows sex-specific division of labour and melanism-specific history strategies. Brood sizes at hatching were experimentally enlarged or reduced to increase or decrease reproductive effort, respectively. We obtained an integrative measure of the oxidative balance by measuring ROS production by RBCs, intracellular antioxidant glutathione levels and membrane resistance to ROS. We found that light melanic males (the sex undertaking offspring food provisioning) produced more ROS than darker conspecifics, but only when rearing an enlarged brood. In both sexes, light melanic individuals had also a larger pool of intracellular antioxidant glutathione than darker owls under relaxed reproductive conditions (i.e. reduced brood), but not when investing substantial effort in current reproduction (enlarged brood). Finally, resistance to oxidative stress was differently affected by the brood size manipulation experiment in males and females independently of their plumage coloration. Altogether, our results support the hypothesis that reproductive effort can alter the oxidative balance in a sex- and colour-specific way. This further emphasizes the close link between melanin-based coloration and life history strategies.
Collapse
Affiliation(s)
- Guillaume Emaresi
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Isabelle Henry
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Esther Gonzalez
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Bize
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
50
|
Oelkrug R, Polymeropoulos ET, Jastroch M. Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 2015; 185:587-606. [PMID: 25966796 DOI: 10.1007/s00360-015-0907-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 01/11/2023]
Abstract
In modern eutherian (placental) mammals, brown adipose tissue (BAT) evolved as a specialized thermogenic organ that is responsible for adaptive non-shivering thermogenesis (NST). For NST, energy metabolism of BAT mitochondria is increased by activation of uncoupling protein 1 (UCP1), which dissipates the proton motive force as heat. Despite the presence of UCP1 orthologues prior to the divergence of teleost fish and mammalian lineages, UCP1's significance for thermogenic adipose tissue emerged at later evolutionary stages. Recent studies on the presence of BAT in metatherians (marsupials) and eutherians of the afrotherian clade provide novel insights into the evolution of adaptive NST in mammals. In particular studies on the 'protoendothermic' lesser hedgehog tenrec (Afrotheria) suggest an evolutionary scenario linking BAT to the onset of eutherian endothermy. Here, we review the physiological function and distribution of BAT in an evolutionary context by focusing on the latest research on phylogenetically distinct species.
Collapse
Affiliation(s)
- R Oelkrug
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Straße 8, 35043, Marburg, Germany,
| | | | | |
Collapse
|