1
|
Langeraert J, Gasthuys E, Vermeulen A. Small molecule drug absorption in inflammatory bowel disease and current implementation in physiologically- based pharmacokinetic models. Eur J Pharm Sci 2025; 209:107095. [PMID: 40187540 DOI: 10.1016/j.ejps.2025.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/09/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestinal mucosa, with predominant localization in the colon in ulcerative colitis (UC) or affecting the entire length of the gastrointestinal tract in Crohn's disease (CD). Recent advances in the drug development space have been marked by a return to orally administered small molecules with novel mechanisms of action such as Janus kinase inhibitors. Additionally, the prevalence of certain chronic conditions is higher in IBD patients, many of which are treated with orally administered drugs. Given the pathophysiology and localization of IBD, altered drug absorption from the gastrointestinal tract can be expected. This review discusses several physiological differences between the small and large intestine with the potential to influence drug absorption including pathophysiology related alterations associated with IBD. The main physiological parameters which are identified include luminal fluid volume, luminal pH, transit time, bile salt concentration, microbiome, absorptive surface area, permeability and metabolizing enzymes and transporters. Literature regarding these factors in IBD patients is marked with high heterogeneity in reporting of disease severity and location leading to difficulties in interpreting data across different studies. While the influence of most of these factors has been directly assessed in healthy volunteers, this is rarely the case for IBD patients. Furthermore, studies which used PBPK modelling to describe the PK of an orally administered drug in an IBD population and were able to verify their findings using clinical data are critically examined. These models were able to incorporate the pathophysiological changes associated with IBD and partly succeeded in adequately predicting drug absorption in this population. Given the limited amount of PBPK studies performed on a limited number of drugs, the developed models are most likely not suitable to be used as a general PBPK model for the IBD population.
Collapse
Affiliation(s)
- Jonas Langeraert
- Laboratory of Medicinal Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Elke Gasthuys
- Laboratory of Medicinal Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - An Vermeulen
- Laboratory of Medicinal Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Chen J, Yao Y, Mao X, Chen Y, Ni F. Liver-targeted delivery based on prodrug: passive and active approaches. J Drug Target 2024; 32:1155-1168. [PMID: 39072411 DOI: 10.1080/1061186x.2024.2386416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The liver, a central organ in human metabolism, is often the primary target for drugs. However, conditions such as viral hepatitis, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC) present substantial health challenges worldwide. Existing treatments, which suffer from the non-specific distribution of drugs, frequently fail to achieve desired efficacy and safety, risking unnecessary liver harm and systemic side effects. PURPOSE The aim of this review is to synthesise the latest progress in the design of liver-targeted prodrugs, with a focus on passive and active targeting strategies, providing new insights into the development of liver-targeted therapeutic approaches. METHODS This study conducted an extensive literature search through databases like Google Scholar, PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), systematically collecting and selecting recent research on liver-targeted prodrugs. The focus was on targeting mechanisms, including the Enhanced Permeability and Retention (EPR) effect, the unique microenvironment of liver cancer, and active targeting through specific transporters and receptors. RESULTS Active targeting strategies achieve precise drug delivery by binding specific ligands to liver surface receptors. Passive targeting takes advantage of the EPR effect and tumour characteristics to enrich drugs in liver tumours. The review details successful cases of using small molecule ligands, peptides, antibodies and nanoparticles as drug carriers. CONCLUSION Liver-targeted prodrug strategies show great potential in enhancing the efficacy of drug treatment and reducing side effects for liver diseases. Future research should balance the advantages and limitations of both targeting strategies, focusing on optimising drug design and targeting efficiency, especially for clinical application. In-depth research on liver-specific receptors and the development of innovative targeting molecules are crucial for advancing the field of liver-targeted prodrugs.
Collapse
Affiliation(s)
- Jiaqi Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingrui Yao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoran Mao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Kashobwe L, Sadrabadi F, Braeuning A, Leonards PEG, Buhrke T, Hamers T. In vitro screening of understudied PFAS with a focus on lipid metabolism disruption. Arch Toxicol 2024; 98:3381-3395. [PMID: 38953992 PMCID: PMC11402862 DOI: 10.1007/s00204-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals used in many industrial applications. Exposure to PFAS is associated with several health risks, including a decrease in infant birth weight, hepatoxicity, disruption of lipid metabolism, and decreased immune response. We used the in vitro cell models to screen six less studied PFAS [perfluorooctane sulfonamide (PFOSA), perfluoropentanoic acid (PFPeA), perfluoropropionic acid (PFPrA), 6:2 fluorotelomer alcohol (6:2 FTOH), 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and 8:2 fluorotelomer sulfonic acid (8:2 FTSA)] for their capacity to activate nuclear receptors and to cause differential expression of genes involved in lipid metabolism. Cytotoxicity assays were run in parallel to exclude that observed differential gene expression was due to cytotoxicity. Based on the cytotoxicity assays and gene expression studies, PFOSA was shown to be more potent than other tested PFAS. PFOSA decreased the gene expression of crucial genes involved in bile acid synthesis and detoxification, cholesterol synthesis, bile acid and cholesterol transport, and lipid metabolism regulation. Except for 6:2 FTOH and 8:2 FTSA, all tested PFAS downregulated PPARA gene expression. The reporter gene assay also showed that 8:2 FTSA transactivated the farnesoid X receptor (FXR). Based on this study, PFOSA, 6:2 FTSA, and 8:2 FTSA were prioritized for further studies to confirm and understand their possible effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Liang Y, Chen Y, Lin Y, Huang W, Qiu Q, Sun C, Yuan J, Xu N, Chen X, Xu F, Shang X, Deng Y, Liu Y, Tan F, He C, Li J, Deng Q, Zhang X, Guan H, Liang Y, Fang X, Jiang X, Han L, Huang L, Yang Z. The increased tendency for anemia in traditional Chinese medicine deficient body constitution is associated with the gut microbiome. Front Nutr 2024; 11:1359644. [PMID: 39360281 PMCID: PMC11445043 DOI: 10.3389/fnut.2024.1359644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Background Constitution is a valuable part of traditional Chinese medicine theory; it is defined as the internal foundation for the occurrence, development, transformation and outcome of diseases, and has its characteristic gut microbiota. Previous study showed that deficiency constitution was related to lower Hb counts. However, no research has examined how alterations in the gut microbiome induced by deficiency constitution may increase the tendency for anemia. Methods We used a multiomics strategy to identify and quantify taxonomies and compounds found under deficient constitution individuals and further explore the possible pathological factors that affect red blood cell indices. Results ① People with deficient constitution showed lower hemoglobin (Hb), more Firmicutes, less Bacteroidetes, and higher α diversity. ② We identified Escherichia coli, Clostridium bolteae, Ruminococcus gnavus, Streptococcus parasanguinis and Flavonifractor plautii as potential biomarkers of deficient constitution. ③ Slackia piriformis, Clostridium_sp_L2_50 and Bacteroides plebeius were enriched in balanced-constitution individuals, and Parabacteroides goldsteinii was the key bacterial marker of balanced constitution. ④ Flavonifractor plautii may be a protective factor against the tendency for anemia among deficient individuals. ⑤ Ruminococcus gnavus may be the shared microbe base of deficiency constitution-related the tendency for anemia. ⑥ The microorganism abundance of the anaerobic phenotype was lower in deficient constitution group. ⑦ Alterations in the microbiome of deficient-constitution individuals were associated with worse health status and a greater risk of anemia, involving intestinal barrier function, metabolism and immune responses, regulated by short-chain fatty acids and bile acid production. Conclusion The composition of the gut microbiome was altered in people with deficient constitution, which may explain their poor health status and tendency toward anemia.
Collapse
Affiliation(s)
- Yuanjun Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanzhao Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wei Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinwei Qiu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chen Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiamin Yuan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ning Xu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xinyan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fuping Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Shang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yusheng Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanmin Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fei Tan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chunxiang He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiasheng Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinqin Deng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huahua Guan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yongzhu Liang
- Zhuhai Branch of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Xiaodong Fang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuanting Jiang
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Li Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhimin Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Romero-Ramírez L, Mey J. Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications. Int J Mol Sci 2024; 25:9279. [PMID: 39273226 PMCID: PMC11395147 DOI: 10.3390/ijms25179279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and released into the digestive tract to facilitate lipid uptake during the digestion process. Most of these BAs are reabsorbed and recycled back to the liver. Some of these BAs progress to other tissues through the bloodstream. The presence of BAs in the central nervous system (CNS) has been related to their capacity to cross the blood-brain barrier (BBB) from the systemic circulation. However, the expression of enzymes and receptors involved in their synthesis and signaling, respectively, support the hypothesis that there is an endogenous source of BAs with a specific function in the CNS. Over the last decades, BAs have been tested as treatments for many CNS pathologies, with beneficial effects. Although they were initially reported as neuroprotective substances, they are also known to reduce inflammatory processes. Most of these effects have been related to the activation of the Takeda G protein-coupled receptor 5 (TGR5). This review addresses the new challenges that face BA research for neuroscience, focusing on their molecular functions. We discuss their endogenous and exogenous sources in the CNS, their signaling through the TGR5 receptor, and their mechanisms of action as potential therapeutics for neuropathologies.
Collapse
Affiliation(s)
- Lorenzo Romero-Ramírez
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Jörg Mey
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
6
|
Chiang PI, Chang KH, Tang HY, Wu YR, Cheng ML, Chen CM. Diagnostic Potential of Alternations of Bile Acid Profiles in the Plasma of Patients with Huntington's Disease. Metabolites 2024; 14:394. [PMID: 39057717 PMCID: PMC11278952 DOI: 10.3390/metabo14070394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Huntington's disease (HD) is characterized by progressive involuntary chorea movements and cognitive decline. Recent research indicates that metabolic disturbance may play a role in its pathogenesis. Bile acids, produced during cholesterol metabolism in the liver, have been linked to neurodegenerative conditions. This study investigated variations in plasma bile acid profiles among individuals with HD. Plasma levels of 16 primary and secondary bile acids and their conjugates were analyzed in 20 healthy controls and 33 HD patients, including 24 with symptoms (symHD) and 9 carriers in the presymptomatic stage (preHD). HD patients exhibited significantly higher levels of glycochenodeoxycholic acid (GCDCA) and glycoursodeoxycholic acid (GUDCA) compared to healthy controls. Conversely, isolithocholic acid levels were notably lower in the HD group. Neurotoxic bile acids (glycocholic acid (GCA) + glycodeoxycholic acid (GDCA) + GCDCA) were elevated in symHD patients, while levels of neuroprotective bile acids (ursodeoxycholic acid (UDCA) + GUDCA + tauroursodeoxycholic acid (TUDCA)) were higher in preHD carriers, indicating a compensatory response to early neuronal damage. These results underscore the importance of changes in plasma bile acid profiles in HD and their potential involvement in disease mechanisms. The identified bile acids (GCDCA, GUDCA, and isolithocholic acid) could potentially serve as markers to distinguish between HD stages and healthy individuals. Nonetheless, further research is warranted to fully understand the clinical implications of these findings and their potential as diagnostic or therapeutic tools for HD.
Collapse
Affiliation(s)
- Ping-I Chiang
- Department of Medical Education, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan-333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
7
|
Sánchez MC, Herráiz A, Ciudad MJ, Arias M, Alonso R, Doblas C, Llama-Palacios A, Collado L. Metabolomics and Biochemical Benefits of Multivitamin and Multimineral Supplementation in Healthy Individuals: A Pilot Study. Foods 2024; 13:2207. [PMID: 39063291 PMCID: PMC11275291 DOI: 10.3390/foods13142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Scientific evidence regarding the effectiveness of vitamin and mineral supplements in healthy individuals remains scarce. In a randomized, double-blind study, 30 healthy individuals were assigned to receive a single daily dose of multivitamin and multimineral supplementation or a double daily dose for 30 days. Before and after the intake, an untargeted metabolomics assay for serum metabolites was conducted by hydrophilic interaction liquid chromatography-mass spectrometry, and clinical assessments of peripheral blood samples were performed. A paired t-test for metabolic analysis, adjusted using the false discovery rate (FDR) and p-value correction method (rate of change > 2 and FDR < 0.05), the Shapiro-Wilk test, Student's t-test, and the Mann-Whitney U test were applied depending on the variable, with a 5% significance level. An impact on oxidative stress was observed, with a significant reduction in homocysteine levels and an increment of pyridoxic acid (vitamin B6). The effect on energy metabolism was shown by a significant increase in diverse metabolites, such as linoleoylcarnitine. Serum iron and calcium levels were also impacted. Overall, we observed a nutritional balance compatible with a good state of health. In conclusion, beneficial effects on adult health were demonstrated in relation to oxidative stress, energy metabolism, and nutritional balance.
Collapse
Affiliation(s)
- María C. Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Ana Herráiz
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
| | - María J. Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Marta Arias
- Occupational Medicine Service, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.A.); (R.A.)
| | - Raquel Alonso
- Occupational Medicine Service, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.A.); (R.A.)
| | - Carmen Doblas
- Human Nutrition and Dietetics, Faculty of Medicine, University Complutense, 28040 Madrid, Spain;
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| |
Collapse
|
8
|
Zhao X, Wang Y, Wang L, Sun S, Li C, Zhang X, Chen L, Tian Y. Differences of serum glucose and lipid metabolism and immune parameters and blood metabolomics regarding the transition cows in the antepartum and postpartum period. Front Vet Sci 2024; 11:1347585. [PMID: 38371596 PMCID: PMC10869552 DOI: 10.3389/fvets.2024.1347585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
This study aims to investigate differences in metabolism regarding the transition cows. Eight cows were selected for the test. Serum was collected on antepartum days 14th (ap14) and 7th (ap7) and postpartum days 1st (pp1), 7th (pp7), and 14th (pp14) to detect biochemical parameters. The experiment screened out differential metabolites in the antepartum (ap) and postpartum (pp) periods and combined with metabolic pathway analysis to study the relationship and role between metabolites and metabolic abnormalities. Results: (1) The glucose (Glu) levels in ap7 were significantly higher than the other groups (p < 0.01). The insulin (Ins) levels of ap7 were significantly higher than pp7 (p = 0.028) and pp14 (p < 0.01), and pp1 was also significantly higher than pp14 (p = 0.016). The insulin resistance (HOMA-IR) levels of ap7 were significantly higher than ap14, pp7, and pp14 (p < 0.01). The cholestenone (CHO) levels of ap14 and pp14 were significantly higher than pp1 (p < 0.01). The CHO levels of pp14 were significantly higher than pp7 (p < 0.01). The high density lipoprotein cholesterol (DHDL) levels of pp1 were significantly lower than ap14 (p = 0.04), pp7 (p < 0.01), and pp14 (p < 0.01), and pp14 was also significantly higher than ap14 and ap7 (p < 0.01). (2) The interferon-gamma (IFN-γ) and tumor necrosis factor α (TNF-α) levels of ap7 were significantly higher than pp1 and pp7 (p < 0.01); the immunoglobulin A (IgA) levels of pp1 were significantly higher than ap7 and pp7 (p < 0.01); the interleukin-4 (IL-4) levels of pp7 were significantly higher than ap7 and pp1 (p < 0.01), the interleukin-6 (IL-6) levels of ap7 and pp1 were significantly higher than pp7 (p < 0.01). (3) Metabolomics identified differential metabolites mainly involved in metabolic pathways, such as tryptophan metabolism, alpha-linolenic acid metabolism, tyrosine metabolism, and lysine degradation. The main relevant metabolism was concentrated in lipid and lipid-like molecules, organic heterocyclic compounds, organic acids, and their derivatives. The results displayed the metabolic changes in the transition period, which laid a foundation for further exploring the mechanism of metabolic abnormalities in dairy cows in the transition period.
Collapse
Affiliation(s)
- Xinya Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yuxin Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Luyao Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Shouqiang Sun
- Tianjin Jialihe Animal Husbandry Group Co., Ltd., Tianjin, China
| | - Chaoyue Li
- Tianjin Jialihe Animal Husbandry Group Co., Ltd., Tianjin, China
| | - Xuewei Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Long Chen
- Beijing Dongfang Lianming Technology Development Co., Ltd., Beijing, China
| | - Yujia Tian
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
9
|
Zhang Y, Li H, Wang F, Liu C, Reddy GVP, Li H, Li Z, Sun Y, Zhao Z. Discovery of a new highly pathogenic toxin involved in insect sepsis. Microbiol Spectr 2023; 11:e0142223. [PMID: 37787562 PMCID: PMC10715044 DOI: 10.1128/spectrum.01422-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/07/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE As a current biocontrol resource, entomopathogenic nematodes and their symbiotic bacterium can produce many toxin factors to trigger insect sepsis, having the potential to promote sustainable pest management. In this study, we found Steinernema feltiae and Xenorhabdus bovienii were highly virulent against the insects. After infective juvenile injection, Galleria mellonella quickly turned black and softened with increasing esterase activity. Simultaneously, X. bovienii attacked hemocytes and released toxic components, resulting in extensive hemolysis and sepsis. Then, we applied high-resolution mass spectrometry-based metabolomics and found multiple substances were upregulated in the host hemolymph. We found extremely hazardous actinomycin D produced via 3-hydroxyanthranilic acid metabolites. Moreover, a combined transcriptomic analysis revealed that gene expression of proteins associated with actinomycin D was upregulated. Our research revealed actinomycin D might be responsible for the infestation activity of X. bovienii, indicating a new direction for exploring the sepsis mechanism and developing novel biotic pesticides.
Collapse
Affiliation(s)
- Yuan Zhang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fang Wang
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Chang Liu
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Gadi V. P. Reddy
- Department of Entomology, Lousiana State University, Baton Rouge, Los Angeles, USA
| | - Hu Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, China Agricultural University, Sanya, China
| | - Zhihong Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, China Agricultural University, Sanya, China
| | - Yucheng Sun
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zihua Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, China Agricultural University, Sanya, China
| |
Collapse
|
10
|
Harnisch LO, Neugebauer S, Mihaylov D, Eidizadeh A, Zechmeister B, Maier I, Moerer O. Quantification of Bile Acids in Cerebrospinal Fluid: Results of an Observational Trial. Biomedicines 2023; 11:2947. [PMID: 38001948 PMCID: PMC10669160 DOI: 10.3390/biomedicines11112947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Bile acids, known as aids in intestinal fat digestion and as messenger molecules in serum, can be detected in cerebrospinal fluid (CSF), although the blood-brain barrier is generally an insurmountable obstacle for bile acids. The exact mechanisms of the occurrence, as well as possible functions of bile acids in the central nervous system, are not precisely understood. (2) Methods: We conducted a single-center observational trial. The concentrations of 15 individual bile acids were determined using an in-house LC-MS/MS method in 54 patients with various acute and severe disorders of the central nervous system. We analyzed CSF from ventricular drainage taken within 24 h after placement, and blood samples were drawn at the same time for the presence and quantifiability of 15 individual bile acids. (3) Results: At a median time of 19.75 h after a cerebral insult, the concentration of bile acids in the CSF was minute and almost negligible. The CSF concentrations of total bile acids (TBAs) were significantly lower compared to the serum concentrations (serum 0.37 µmol/L [0.24, 0.89] vs. 0.14 µmol/L [0.05, 0.43]; p = 0.033). The ratio of serum-to-CSF bile acid levels calculated from the respective total concentrations were 3.10 [0.94, 14.64] for total bile acids, 3.05 for taurocholic acid, 14.30 [1.11, 27.13] for glycocholic acid, 0.0 for chenodeoxycholic acid, 2.19 for taurochenodeoxycholic acid, 1.91 [0.68, 8.64] for glycochenodeoxycholic acid and 0.77 [0.0, 13.79] for deoxycholic acid; other bile acids were not detected in the CSF. The ratio of CSF-to-serum S100 concentration was 0.01 [0.0, 0.02]. Serum total and conjugated (but not unconjugated) bilirubin levels and serum TBA levels were significantly correlated (total bilirubin p = 0.031 [0.023, 0.579]; conjugated bilirubin p = 0.001 [0.193, 0.683]; unconjugated p = 0.387 [-0.181, 0.426]). No correlations were found between bile acid concentrations and age, delirium, intraventricular blood volume, or outcome measured on a modified Rankin scale. (4) Conclusions: The determination of individual bile acids is feasible using the current LC-MS/MS method. The results suggest an intact blood-brain barrier in the patients studied. However, bile acids were detected in the CSF, which could have been achieved by active transport across the blood-brain barrier.
Collapse
Affiliation(s)
- Lars-Olav Harnisch
- Department of Anaesthesiology, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany;
| | - Sophie Neugebauer
- Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, Am Klinikum 1, D-07747 Jena, Germany; (S.N.); (D.M.)
| | - Diana Mihaylov
- Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, Am Klinikum 1, D-07747 Jena, Germany; (S.N.); (D.M.)
| | - Abass Eidizadeh
- Interdisciplinary UMG Laboratories, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany; (A.E.); (B.Z.)
| | - Bozena Zechmeister
- Interdisciplinary UMG Laboratories, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany; (A.E.); (B.Z.)
| | - Ilko Maier
- Department of Neurology, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany;
| | - Onnen Moerer
- Department of Anaesthesiology, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany;
| |
Collapse
|
11
|
Caballero-Camino FJ, Rodrigues PM, Wångsell F, Agirre-Lizaso A, Olaizola P, Izquierdo-Sanchez L, Perugorria MJ, Bujanda L, Angelin B, Straniero S, Wallebäck A, Starke I, Gillberg PG, Strängberg E, Bonn B, Mattsson JP, Madsen MR, Hansen HH, Lindström E, Åkerblad P, Banales JM. A3907, a systemic ASBT inhibitor, improves cholestasis in mice by multiorgan activity and shows translational relevance to humans. Hepatology 2023; 78:709-726. [PMID: 36999529 PMCID: PMC10442107 DOI: 10.1097/hep.0000000000000376] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIMS Cholestasis is characterized by intrahepatic accumulation of bile constituents, including bile acids (BAs), which promote liver damage. The apical sodium-dependent BA transporter (ASBT) plays an important role in BA reabsorption and signaling in ileum, bile ducts, and kidneys. Our aim was to investigate the pharmacokinetics and pharmacological activity of A3907, an oral and systemically available ASBT inhibitor in experimental mouse models of cholestasis. In addition, the tolerability, pharmacokinetics, and pharmacodynamics of A3907 were examined in healthy humans. APPROACH AND RESULTS A3907 was a potent and selective ASBT inhibitor in vitro. In rodents, orally administered A3907 distributed to the ASBT-expressing organs, that is, ileum, liver, and kidneys, and dose dependently increased fecal BA excretion. A3907 improved biochemical, histological, and molecular markers of liver and bile duct injury in Mdr2-/- mice and also had direct protective effects on rat cholangiocytes exposed to cytotoxic BA concentrations in vitro . In bile duct ligated mice, A3907 increased urinary BA elimination, reduced serum BA levels, and prevented body weight loss, while improving markers of liver injury. A3907 was well tolerated and demonstrated target engagement in healthy volunteers. Plasma exposure of A3907 in humans was within the range of systemic concentrations that achieved therapeutic efficacy in mouse. CONCLUSIONS The systemic ASBT inhibitor A3907 improved experimental cholestatic disease by targeting ASBT function at the intestinal, liver, and kidney levels, resulting in marked clearance of circulating BAs and liver protection. A3907 is well tolerated in humans, supporting further clinical development for the treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Francisco J. Caballero-Camino
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, “Instituto de Salud Carlos III”), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Aloña Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, “Instituto de Salud Carlos III”), Madrid, Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, “Instituto de Salud Carlos III”), Madrid, Spain
| | - Maria J. Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, “Instituto de Salud Carlos III”), Madrid, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, “Instituto de Salud Carlos III”), Madrid, Spain
| | - Bo Angelin
- CardioMetabolic Unit, Department of Medicine and Clinical Department of Endocrinology, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sara Straniero
- CardioMetabolic Unit, Department of Medicine and Clinical Department of Endocrinology, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, “Instituto de Salud Carlos III”), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| |
Collapse
|
12
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
13
|
Xiang F, Niu H, Yao L, Yang J, Cheng S, Zhou Z, Saimaiti R, Matnur Y, Talifu A, Zhou W, Zeper A. Exploring the effect of the Uyghur medicine Munziq Balgam on a collagen-induced arthritis rat model by UPLC-MS/MS-based metabolomics approach. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116437. [PMID: 36977448 DOI: 10.1016/j.jep.2023.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Munziq Balgam (MBm) is a classic preparation of a traditional Uyghur medicine used for many years to treat abnormal body fluid diseases. The formula, as an in-hospital preparation, has already been used in the Hospital of Xinjiang Traditional Uyghur Medicine to treat rheumatoid arthritis (RA) with significant clinical effects. AIM OF THE STUDY This study intends to reveal the intervention effect of MBm on collagen-induced arthritis (CIA) rats, discover the potential biomarkers with efficacy, and explore the mechanisms of metabolic regulation by using metabolomics method. MATERIAL AND METHODS Sprague Dawley (SD) rats were randomly divided into five groups: blank group, CIA model group, Munziq Balgam nomal-dosage, Munziq Balgam high-dosage group and control group. Body weight, paw swelling, arthritis index, immune indices and histopathological experiments were carried out. Plasma from rats were detected by UPLC-MS/MS. Metabolomics of plasma was performed to analyze metabolic profiles, potential biomarkers, and metabolic pathways of MBm for CIA rats. The main metabolic result of Uyghur medicine MBm was compared with that of Zhuang medicine Longzuantongbi granules (LZTBG) to explore the characteristics of two ethnic medicines from different regions for RA. RESULTS MBm could significantly alleviate symptoms of CIA rats by relieving arthritis symptoms on paw redness and swelling, inflammatory cell infiltration, synovial hyperplasia, pannus, cartilage and bone tissue destruction, as well as inhibiting the expression of IL-1β, IL-6, TNF-α, UA and ALP. Linoleic acid, alpha-linolenic acid, pantothenate and CoA biosynthesis, achidonic acid, gycerophospholipid, sphingolipid metabolism, primary bile acid biosynthesis, porphyrin and chlorophyll metabolism and fatty acid degradation served as the main nine pathways of the interventional effect of MBm on CIA rats. Twenty-three different metabolites were screened out and strongly associated with the indicator makes of RA. Eight potential efficacy-related biomarkers were finally discovered in metabolic pathway network (phosphatidylcholine, bilirubin, sphinganine 1-phosphate, phytosphingosine, SM (d18:1/16:0), pantothenic acid, l-palmitoylcarnitine, chenodeoxycholate). Three metabolites (chenodeoxycholate, hyodeoxycholic acid and O-palmitoleoylcarnitine) were changed in both the metabolic study of MBm and LZTBG intervention effects on CIA rats. Additionally, MBm and LZTBG shared the same 6 metabolic pathways including linoleic acid, alpha-linolenic acid, pantothenate and CoA biosynthesis, achidonic acid, gycerophospholipid, and primary bile acid biosynthesis. CONCLUSION The study suggested that MBm may effectively alleviate RA by regulating inflammation, immunity-related pathways and multiple targets. Metabolomics analysis showed that MBm (Xinjiang, the north of China) and LZTBG (Guangxi, the south of China), two ethnic medicines from different regions in China, share common metabolites and pathways but also have distinct differences in their interventions for RA.
Collapse
Affiliation(s)
- Fangfang Xiang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Hongjuan Niu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Lan Yao
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jing Yang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Shuohan Cheng
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, 100081, Beijing, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China
| | - Refuhati Saimaiti
- Hospital of Xinjiang Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Yusup Matnur
- Hospital of Xinjiang Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Ainiwaer Talifu
- Hospital of Xinjiang Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Wenbin Zhou
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, 100081, Beijing, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China.
| | - Abliz Zeper
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, 100081, Beijing, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China.
| |
Collapse
|
14
|
Schlosser P, Scherer N, Grundner-Culemann F, Monteiro-Martins S, Haug S, Steinbrenner I, Uluvar B, Wuttke M, Cheng Y, Ekici AB, Gyimesi G, Karoly ED, Kotsis F, Mielke J, Gomez MF, Yu B, Grams ME, Coresh J, Boerwinkle E, Köttgen M, Kronenberg F, Meiselbach H, Mohney RP, Akilesh S, Schmidts M, Hediger MA, Schultheiss UT, Eckardt KU, Oefner PJ, Sekula P, Li Y, Köttgen A. Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine. Nat Genet 2023:10.1038/s41588-023-01409-8. [PMID: 37277652 DOI: 10.1038/s41588-023-01409-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
The kidneys operate at the interface of plasma and urine by clearing molecular waste products while retaining valuable solutes. Genetic studies of paired plasma and urine metabolomes may identify underlying processes. We conducted genome-wide studies of 1,916 plasma and urine metabolites and detected 1,299 significant associations. Associations with 40% of implicated metabolites would have been missed by studying plasma alone. We detected urine-specific findings that provide information about metabolite reabsorption in the kidney, such as aquaporin (AQP)-7-mediated glycerol transport, and different metabolomic footprints of kidney-expressed proteins in plasma and urine that are consistent with their localization and function, including the transporters NaDC3 (SLC13A3) and ASBT (SLC10A2). Shared genetic determinants of 7,073 metabolite-disease combinations represent a resource to better understand metabolic diseases and revealed connections of dipeptidase 1 with circulating digestive enzymes and with hypertension. Extending genetic studies of the metabolome beyond plasma yields unique insights into processes at the interface of body compartments.
Collapse
Affiliation(s)
- Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Sara Monteiro-Martins
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Burulça Uluvar
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna Mielke
- Research and Early Development, Pharmaceuticals Division, Bayer AG, Wuppertal, Germany
| | - Maria F Gomez
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Bing Yu
- Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Morgan E Grams
- New York University Grossman School of Medicine, New York, NY, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Boerwinkle
- Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael Köttgen
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Miriam Schmidts
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Freiburg University Faculty of Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Zakrzewicz D, Geyer J. Interactions of Na +/taurocholate cotransporting polypeptide with host cellular proteins upon hepatitis B and D virus infection: novel potential targets for antiviral therapy. Biol Chem 2023:hsz-2022-0345. [PMID: 37103224 DOI: 10.1515/hsz-2022-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Na+/taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier (SLC) family 10 transporters (gene symbol SLC10A1) and is responsible for the sodium-dependent uptake of bile salts across the basolateral membrane of hepatocytes. In addition to its primary transporter function, NTCP is the high-affinity hepatic receptor for hepatitis B (HBV) and hepatitis D (HDV) viruses and, therefore, is a prerequisite for HBV/HDV virus entry into hepatocytes. The inhibition of HBV/HDV binding to NTCP and internalization of the virus/NTCP receptor complex has become a major concept in the development of new antiviral drugs called HBV/HDV entry inhibitors. Hence, NTCP has emerged as a promising target for therapeutic interventions against HBV/HDV infections in the last decade. In this review, recent findings on protein-protein interactions (PPIs) between NTCP and cofactors relevant for entry of the virus/NTCP receptor complex are summarized. In addition, strategies aiming to block PPIs with NTCP to dampen virus tropism and HBV/HDV infection rates are discussed. Finally, this article suggests novel directions for future investigations evaluating the functional contribution of NTCP-mediated PPIs in the development and progression of HBV/HDV infection and subsequent chronic liver disorders.
Collapse
Affiliation(s)
- Dariusz Zakrzewicz
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| |
Collapse
|
16
|
Gao X, Lin X, Xin Y, Zhu X, Li X, Chen M, Huang Z, Guo H. Dietary cholesterol drives the development of non-alcoholic steatohepatitis by altering gut microbiota mediated bile acid metabolism in high-fat diet fed mice. J Nutr Biochem 2023; 117:109347. [PMID: 37031879 DOI: 10.1016/j.jnutbio.2023.109347] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most widespread chronic liver disorder globally. Unraveling the pathogenesis of simple fatty liver to non-alcoholic steatohepatitis (NASH) has important clinical significance for improving the prognosis of NAFLD. Here, we explored the role of a high-fat diet alone or combined with high cholesterol in causing NASH progression. Our results demonstrated that high dietary cholesterol intakes accelerate the progression of spontaneous NAFLD and induces liver inflammation in mice. An elevation of hydrophobic unconjugated bile acids cholic acid (CA), deoxycholic acid (DCA), muricholic acid and chenodeoxycholic acid, was observed in high-fat and high-cholesterol diet fed mice. Full-length sequencing of the 16S rRNA gene of gut microbiota revealed a significant increase in the abundance of Bacteroides, Clostridium and Lactobacillus that possess bile salt hydrolase activity. Furthermore, the relative abundance of these bacterial species was positively correlated with content of unconjugated bile acids in liver. Moreover, the expression of genes related to bile acid reabsorption (organic anion-transporting polypeptides, Na+-taurocholic acid cotransporting polypeptide, apical sodium dependent bile acid transporter and organic solute transporter β) was found to be increased in mice with a high-cholesterol diet. Lastly, we observed that hydrophobic bile acids CA and DCA induce an inflammatory response in free fatty acids-induced steatotic HepG2 cells. In conclusion, high dietary cholesterol promotes the development of NASH by altering gut microbiota composition and abundance and thereby influencing with bile acid metabolism.
Collapse
Affiliation(s)
- Xuebin Gao
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Department of Science and Education, Yuebei People's Hospital, Shaoguan 512026, China
| | - Xiaozhuan Lin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yan Xin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xuan Zhu
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiang Li
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Ming Chen
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zhigang Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
17
|
Kiriyama Y, Nochi H. Role of Microbiota-Modified Bile Acids in the Regulation of Intracellular Organelles and Neurodegenerative Diseases. Genes (Basel) 2023; 14:825. [PMID: 37107583 PMCID: PMC10137455 DOI: 10.3390/genes14040825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Bile acids (BAs) are amphiphilic steroidal molecules generated from cholesterol in the liver and facilitate the digestion and absorption of fat-soluble substances in the gut. Some BAs in the intestine are modified by the gut microbiota. Because BAs are modified in a variety of ways by different types of bacteria present in the gut microbiota, changes in the gut microbiota can affect the metabolism of BAs in the host. Although most BAs absorbed from the gut are transferred to the liver, some are transferred to the systemic circulation. Furthermore, BAs have also been detected in the brain and are thought to migrate into the brain through the systemic circulation. Although BAs are known to affect a variety of physiological functions by acting as ligands for various nuclear and cell-surface receptors, BAs have also been found to act on mitochondria and autophagy in the cell. This review focuses on the BAs modified by the gut microbiota and their roles in intracellular organelles and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
- Institute of Neuroscience, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
18
|
Zhang W, Cui Y, Zhang J. Multi metabolomics-based analysis of application of Astragalus membranaceus in the treatment of hyperuricemia. Front Pharmacol 2022; 13:948939. [PMID: 35935868 PMCID: PMC9355468 DOI: 10.3389/fphar.2022.948939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperuricemia (HUA) is a common metabolic disease that is an independent risk factor for comorbidities such as hypertension, chronic kidney disease, and coronary artery disease. The prevalence of HUA has increased over the last several decades with improved living standards and increased lifespans. Metabolites are considered the most direct reflection of individual physiological and pathological conditions, and represent attractive candidates to provide deep insights into disease phenotypes. Metabolomics, a technique used to profile metabolites in biofluids and tissues, is a powerful tool for identification of novel biomarkers, and can be used to provide valuable insights into the etiopathogenesis of metabolic diseases and to evaluate the efficacy of drugs. In this study, multi metabolomics-based analysis of the blood, urine, and feces of rats with HUA showed that HUA significantly altered metabolite profiles. Astragalus membranaceus (AM) and benbromomalone significantly mitigated these changes in blood and feces, but not in urine. Some crucial metabolic pathways including lipid metabolism, lipid signaling, hormones synthesis, unsaturated fatty acid (UFAs) absorption, and tryptophan metabolism, were seriously disrupted in HUA rats. In addition, AM administration exerted better treatment effects on HUA than benbromomalone. Furthermore, additional supplementation with UFAs and tryptophan may also induce therapeutic effects against HUA.
Collapse
Affiliation(s)
- Wenwen Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yifang Cui
- The School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang,
| |
Collapse
|
19
|
Kiriyama Y, Nochi H. Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms 2021; 10:68. [PMID: 35056517 PMCID: PMC8777643 DOI: 10.3390/microorganisms10010068] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are produced from cholesterol in the liver and are termed primary BAs. Primary BAs are conjugated with glycine and taurine in the liver and then released into the intestine via the gallbladder. After the deconjugation of glycine or taurine by the gut microbiome, primary BAs are converted into secondary BAs by the gut microbiome through modifications such as dehydroxylation, oxidation, and epimerization. Most BAs in the intestine are reabsorbed and transported to the liver, where both primary and secondary BAs are conjugated with glycine or taurine and rereleased into the intestine. Thus, unconjugated primary Bas, as well as conjugated and unconjugated secondary BAs, have been modified by the gut microbiome. Some of the BAs reabsorbed from the intestine spill into the systemic circulation, where they bind to a variety of nuclear and cell-surface receptors in tissues, whereas some of the BAs are not reabsorbed and bind to receptors in the terminal ileum. BAs play crucial roles in the physiological regulation of various tissues. Furthermore, various factors, such as diet, age, and antibiotics influence BA composition. Here, we review recent findings regarding the physiological roles of BAs modified by the gut microbiome in the metabolic, immune, and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
- Laboratory of Neuroendocrinology, Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
| |
Collapse
|
20
|
Fang Y, Hegazy L, Finck BN, Elgendy B. Recent Advances in the Medicinal Chemistry of Farnesoid X Receptor. J Med Chem 2021; 64:17545-17571. [PMID: 34889100 DOI: 10.1021/acs.jmedchem.1c01017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR) is an important regulator of bile acid, lipid, amino acid, and glucose homeostasis, hepatic inflammation, regeneration, and fibrosis. FXR has been recognized as a promising drug target for various metabolic diseases such as lipid disorders, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), and chronic kidney disease. A large number of FXR ligands have been developed by pharmaceutical companies and academic institutions, and several candidates have progressed into clinical trials in the past decade. However, it is continually a challenge to discover drugs targeting FXR due to side effects associated with long-term administration. In this perspective, we summarize the research progress on medicinal chemistry of FXR modulators from 2018 to the present by discussing the diverse structures of synthetic FXR modulators including steroidal and non-steroidal ligands, their structure-activity relationships (SARs), and their therapeutic applications.
Collapse
Affiliation(s)
- Yuanying Fang
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Lamees Hegazy
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Brian N Finck
- Department of Medicine, Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States.,Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
21
|
Panahi N, Arjmand B, Ostovar A, Kouhestani E, Heshmat R, Soltani A, Larijani B. Metabolomic biomarkers of low BMD: a systematic review. Osteoporos Int 2021; 32:2407-2431. [PMID: 34309694 DOI: 10.1007/s00198-021-06037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Due to the metabolic nature of osteoporosis, this study was conducted to identify metabolomic studies investigating the metabolic profile of low bone mineral density (BMD) and osteoporosis. A comprehensive systematic literature search was conducted through PubMed, Web of Science, Scopus, and Embase databases up to April 08, 2020, to identify observational studies with cross-sectional or case-control designs investigating the metabolic profile of low BMD in adults using biofluid specimen via metabolomic platform. The quality assessment panel specified for the "omics"-based diagnostic research (QUADOMICS) tool was used to estimate the methodologic quality of the included studies. Ten untargeted and one targeted approach metabolomic studies investigating biomarkers in different biofluids through mass spectrometry or nuclear magnetic resonance platforms were included in the systematic review. Some metabolite panels, rather than individual metabolites, showed promising results in differentiating low BMD from normal. Candidate metabolites were of different categories including amino acids, followed by lipids and carbohydrates. Besides, certain pathways were suggested by some of the studies to be involved. This systematic review suggested that metabolic profiling could improve the diagnosis of low BMD. Despite valuable findings attained from each of these studies, there was great heterogeneity regarding the ethnicity and age of participants, samples, and the metabolomic platform. Further longitudinal studies are needed to validate the results and confirm the predictive role of metabolic profile on low BMD and fracture. It is also mandatory to address and minimize the heterogeneity in future studies by using reliable quantitative methods. Summary: Due to the metabolic nature of osteoporosis, researchers have considered metabolomic studies recently. This systematic review showed that metabolic profiling including different categories of metabolites could improve the diagnosis of low BMD. However, great heterogeneity was observed and it is mandatory to address and minimize the heterogeneity in future studies.
Collapse
Affiliation(s)
- N Panahi
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - B Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - A Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - E Kouhestani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - A Soltani
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - B Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Reiter S, Dunkel A, Dawid C, Hofmann T. Targeted LC-MS/MS Profiling of Bile Acids in Various Animal Tissues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10572-10580. [PMID: 34490775 DOI: 10.1021/acs.jafc.1c03433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bile acids are being increasingly investigated in humans and laboratory animals as markers for various diseases in addition to their important functions, such as promoting the emulsification in fat digestion and preventing gallstone formation. In humans and animals, primary bile acids are formed from cholesterol in the liver, converted in the intestine into various secondary bile acids by the intestinal microbiota and reabsorbed in the terminal ileum, and partially returned to the liver. A universal high-throughput workflow, including a simple workup, was applied as a tool for bile acid analysis in animal studies. The complex bile acid profiles in various tissues, organs, and body fluids from different animals were mapped using a newly developed comprehensive liquid chromatography-tandem mass spectrometry method. The method can also be used in screening food to obtain information about the nutritional content of bile acids. This could be relevant to investigations on various animal diseases and on the bioavailability of bile acids that pass through the gastric tract.
Collapse
Affiliation(s)
- Sinah Reiter
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
- ZIEL-Institute for Food and Health, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
23
|
Lei K, Yuan M, Zhou T, Ye Q, Zeng B, Zhou Q, Wei A, Guo L. Research progress in the application of bile acid-drug conjugates: A "trojan horse" strategy. Steroids 2021; 173:108879. [PMID: 34181976 DOI: 10.1016/j.steroids.2021.108879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Bile acid transporters are highly expressed in intestinal cells and hepatocytes, and they determine the uptake of drugs in cells by modulating cellular entry and exit. In order to improve the oral bioavailability of drugs and investigate the potential application prospects of drugs used to target cancer, numerous studies have adopted these transporters to identify prodrug strategies. Through the connection of covalent bonds between drugs and bile acids, the resulting bile acid-drug conjugates continue to be recognized as similar to natural unmodified bile acid and is translocated by the transporter. The present mini-review provides a brief summary of recent progress of the application of bile acid-drug conjugates based primarily on ASBT, NTCP, and OATP, with the hope of contributing to subsequent research.
Collapse
Affiliation(s)
- Kelu Lei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Yuan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Ye
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bin Zeng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ailing Wei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
24
|
Persaud AK, Nair S, Rahman MF, Raj R, Weadick B, Nayak D, McElroy C, Shanmugam M, Knoblaugh S, Cheng X, Govindarajan R. Facilitative lysosomal transport of bile acids alleviates ER stress in mouse hematopoietic precursors. Nat Commun 2021; 12:1248. [PMID: 33623001 PMCID: PMC7902824 DOI: 10.1038/s41467-021-21451-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Mutations in human equilibrative nucleoside transporter 3 (ENT3) encoded by SLC29A3 results in anemia and erythroid hypoplasia, suggesting that ENT3 may regulate erythropoiesis. Here, we demonstrate that lysosomal ENT3 transport of taurine-conjugated bile acids (TBA) facilitates TBA chemical chaperone function and alleviates endoplasmic reticulum (ER) stress in expanding mouse hematopoietic stem and progenitor cells (HSPCs). Slc29a3−/− HSPCs accumulate less TBA despite elevated levels of TBA in Slc29a3−/− mouse plasma and have elevated basal ER stress, reactive oxygen species (ROS), and radiation-induced apoptosis. Reintroduction of ENT3 allows for increased accumulation of TBA into HSPCs, which results in TBA-mediated alleviation of ER stress and erythroid apoptosis. Transplanting TBA-preconditioned HSPCs expressing ENT3 into Slc29a3−/− mice increase bone marrow repopulation capacity and erythroid pool size and prevent early mortalities. Together, these findings suggest a putative role for a facilitative lysosomal transporter in the bile acid regulation of ER stress in mouse HSPCs which may have implications in erythroid biology, the treatment of anemia observed in ENT3-mutated human genetic disorders, and nucleoside analog drug therapy. Mutations in ENT3, encoded by SLC29A3, result in anaemia and erythroid hypoplasia, suggesting roles in erythropoiesis. Here the authors show that ENT3 acts as a lysosomal bile acid transporter, and mutation compromises taurine conjugated bile acid transport in erythroid progenitors leading to ER stress, and anaemia.
Collapse
Affiliation(s)
- Avinash K Persaud
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Sreenath Nair
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Md Fazlur Rahman
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Radhika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Debasis Nayak
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Craig McElroy
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Muruganandan Shanmugam
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Sue Knoblaugh
- Depatment of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA. .,Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
Huang TE, Deng YN, Hsu JL, Leu WJ, Marchesi E, Capobianco ML, Marchetti P, Navacchia ML, Guh JH, Perrone D, Hsu LC. Evaluation of the Anticancer Activity of a Bile Acid-Dihydroartemisinin Hybrid Ursodeoxycholic-Dihydroartemisinin in Hepatocellular Carcinoma Cells. Front Pharmacol 2020; 11:599067. [PMID: 33343369 PMCID: PMC7748086 DOI: 10.3389/fphar.2020.599067] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults and accounts for 85-90% of all primary liver cancer. Based on the estimation by the International Agency for Research on Cancer in 2018, liver cancer is the fourth leading cause of cancer death globally. Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is a well-known drug for the treatment of malaria. Previous studies have demonstrated that DHA exhibits antitumor effects toward a variety of human cancers and has a potential for repurposing as an anticancer drug. However, its short half-life is a concern and may limit the application in cancer therapy. We have reported that UDC-DHA, a hybrid of bile acid ursodeoxycholic acid (UDCA) and DHA, is ∼12 times more potent than DHA against a HCC cell line HepG2. In this study, we found that UDC-DHA was also effective against another HCC cell line Huh-7 with an IC50 of 2.16 μM, which was 18.5-fold better than DHA with an IC50 of 39.96 μM. UDC-DHA was much more potent than the combination of DHA and UDCA at 1:1 molar ratio, suggesting that the covalent linkage rather than a synergism between UDCA and DHA is critical for enhancing DHA potency in HepG2 cells. Importantly, UDC-DHA was much less toxic to normal cells than DHA. UDC-DHA induced G0/G1 arrest and apoptosis. Both DHA and UDC-DHA significantly elevated cellular reactive oxygen species generation but with different magnitude and timing in HepG2 cells; whereas only DHA but not UDC-DHA induced reactive oxygen species in Huh-7 cells. Depolarization of mitochondrial membrane potential was detected in both HepG2 and Huh-7 cells and may contribute to the anticancer effect of DHA and UDC-DHA. Furthermore, UDC-DHA was much more stable than DHA based on activity assays and high performance liquid chromatography-MS/MS analysis. In conclusion, UDC-DHA and DHA may exert anticancer actions via similar mechanisms but a much lower concentration of UDC-DHA was required, which could be attributed to a better stability of UDC-DHA. Thus, UDC-DHA could be a better drug candidate than DHA against HCC and further investigation is warranted.
Collapse
Affiliation(s)
- Tzu-En Huang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Yi-Ning Deng
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Massimo L Capobianco
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna, Italy
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna, Italy
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Bile Acids: A Communication Channel in the Gut-Brain Axis. Neuromolecular Med 2020; 23:99-117. [PMID: 33085065 DOI: 10.1007/s12017-020-08625-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Bile acids are signalling hormones involved in the regulation of several metabolic pathways. The ability of bile acids to bind and signal through their receptors is modulated by the gut microbiome, since the microbiome contributes to the regulation and synthesis of bile acids as well to their physiochemical properties. From the gut, bacteria have been shown to send signals to the central nervous system via their metabolites, thus affecting the behaviour and brain function of the host organism. In the last years it has become increasingly evident that bile acids affect brain function, during normal physiological and pathological conditions. Although bile acids may be synthesized locally in the brain, the majority of brain bile acids are taken up from the systemic circulation. Since the composition of the brain bile acid pool may be regulated by the action of intestinal bacteria, it is possible that bile acids function as a communication bridge between the gut microbiome and the brain. However, little is known about the molecular mechanisms and the physiological roles of bile acids in the central nervous system. The possibility that bile acids may be a direct link between the intestinal microbiome and the brain is also an understudied subject. Here we review the influence of gut bacteria on the bile acid pool composition and properties, as well as striking evidence showing the role of bile acids as neuroactive molecules.
Collapse
|
27
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
28
|
van Nierop FS, Meessen ECE, Nelissen KGM, Achterbergh R, Lammers LA, Vaz FM, Mathôt RAA, Klümpen HJ, Olde Damink SW, Schaap FG, Romijn JA, Kemper EM, Soeters MR. Differential effects of a 40-hour fast and bile acid supplementation on human GLP-1 and FGF19 responses. Am J Physiol Endocrinol Metab 2019; 317:E494-E502. [PMID: 31237451 DOI: 10.1152/ajpendo.00534.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids, glucagon-like peptide-1 (GLP-1), and fibroblast growth factor 19 (FGF19) play an important role in postprandial metabolism. In this study, we investigated the postprandial bile acid response in plasma and its relation to insulin, GLP-1, and FGF19. First, we investigated the postprandial response to 40-h fast. Then we administered glycine-conjugated deoxycholic acid (gDCA) with the meal. We performed two separate observational randomized crossover studies on healthy, lean men. In experiment 1: we tested 4-h mixed meal after an overnight fast and a 40-h fast. In experiment 2, we tested a 4-h mixed meal test with and without gDCA supplementation. Both studies measured postprandial glucose, insulin, bile acids, GLP-1, and FGF19. In experiment 1, 40 h of fasting induced insulin resistance and increased postprandial GLP-1 and FGF19 concentrations. After an overnight fast, we observed strong correlations between postprandial insulin and gDCA levels at specific time points. In experiment 2, administration of gDCA increased GLP-1 levels and lowered late postprandial glucose without effect on FGF19. Energy expenditure was not affected by gDCA administration. Unexpectedly, 40 h of fasting increased both GLP-1 and FGF19, where the former appeared bile acid independent and the latter bile acid dependent. Second, a single dose of gDCA increased postprandial GLP-1. Therefore, our data add complexity to the physiological regulation of the enterokines GLP-1 and FGF19 by bile acids.
Collapse
Affiliation(s)
- F Samuel van Nierop
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Kyra G M Nelissen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Roos Achterbergh
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - Laureen A Lammers
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Frédéric M Vaz
- Department of Clinical Chemistry, Amsterdam University Medical Centers, The Netherlands
| | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, The Netherlands
| | - Steven W Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - E Marleen Kemper
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
29
|
Baker KS, Kopec AK, Pant A, Poole LG, Cline-Fedewa H, Ivkovich D, Olyaee M, Woolbright BL, Miszta A, Jaeschke H, Wolberg AS, Luyendyk JP. Direct Amplification of Tissue Factor:Factor VIIa Procoagulant Activity by Bile Acids Drives Intrahepatic Coagulation. Arterioscler Thromb Vasc Biol 2019; 39:2038-2048. [PMID: 31412737 DOI: 10.1161/atvbaha.119.313215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Regulation of TF (tissue factor):FVIIa (coagulation factor VIIa) complex procoagulant activity is especially critical in tissues where plasma can contact TF-expressing cells. One example is the liver, where hepatocytes are routinely exposed to plasma because of the fenestrated sinusoidal endothelium. Although liver-associated TF contributes to coagulation, the mechanisms controlling the TF:FVIIa complex activity in this tissue are not known. Approach and Results: Common bile duct ligation in mice triggered rapid hepatocyte TF-dependent intrahepatic coagulation coincident with increased plasma bile acids, which occurred at a time before observable liver damage. Similarly, plasma TAT (thrombin-antithrombin) levels increased in cholestatic patients without concurrent hepatocellular injury. Pathologically relevant concentrations of the bile acid glycochenodeoxycholic acid rapidly increased hepatocyte TF-dependent procoagulant activity in vitro, independent of de novo TF synthesis and necrotic or apoptotic cell death. Glycochenodeoxycholic acid increased hepatocyte TF activity even in the presence of the phosphatidylserine-blocking protein lactadherin. Interestingly, glycochenodeoxycholic acid and taurochenodeoxycholic acid increased the procoagulant activity of the TF:FVIIa complex relipidated in unilamellar phosphatidylcholine vesicles, which was linked to an apparent decrease in the Km for FX (coagulation factor X). Notably, the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, a bile acid structural analog, did not increase relipidated TF:FVIIa activity. Bile acids directly enhanced factor X activation by recombinant soluble TF:FVIIa complex but had no effect on FVIIa alone. CONCLUSIONS The results indicate that bile acids directly accelerate TF:FVIIa-driven coagulation reactions, suggesting a novel mechanism whereby elevation in a physiological mediator can directly increase TF:FVIIa procoagulant activity.
Collapse
Affiliation(s)
- Kevin S Baker
- From the Department of Pharmacology and Toxicology (K.S.B., J.P.L.), Michigan State University, East Lansing.,Institute for Integrative Toxicology (K.S.B., A.K.K., J.P.L.), Michigan State University, East Lansing
| | - Anna K Kopec
- Institute for Integrative Toxicology (K.S.B., A.K.K., J.P.L.), Michigan State University, East Lansing.,Department of Pathobiology and Diagnostic Investigation (A.K.K., A.P. L.G.P., H.C.-F., D.I., J.P.L.), Michigan State University, East Lansing
| | - Asmita Pant
- Department of Pathobiology and Diagnostic Investigation (A.K.K., A.P. L.G.P., H.C.-F., D.I., J.P.L.), Michigan State University, East Lansing
| | - Lauren G Poole
- Department of Pathobiology and Diagnostic Investigation (A.K.K., A.P. L.G.P., H.C.-F., D.I., J.P.L.), Michigan State University, East Lansing
| | - Holly Cline-Fedewa
- Department of Pathobiology and Diagnostic Investigation (A.K.K., A.P. L.G.P., H.C.-F., D.I., J.P.L.), Michigan State University, East Lansing
| | - Dora Ivkovich
- Department of Pathobiology and Diagnostic Investigation (A.K.K., A.P. L.G.P., H.C.-F., D.I., J.P.L.), Michigan State University, East Lansing
| | - Mojtaba Olyaee
- Division of Gastroenterology/Hepatology (M.O.), University of Kansas Medical Center, Kansas City
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics (B.L.W., H.J.), University of Kansas Medical Center, Kansas City
| | - Adam Miszta
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (A.M., A.S.W.)
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics (B.L.W., H.J.), University of Kansas Medical Center, Kansas City
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (A.M., A.S.W.)
| | - James P Luyendyk
- From the Department of Pharmacology and Toxicology (K.S.B., J.P.L.), Michigan State University, East Lansing.,Institute for Integrative Toxicology (K.S.B., A.K.K., J.P.L.), Michigan State University, East Lansing.,Department of Pathobiology and Diagnostic Investigation (A.K.K., A.P. L.G.P., H.C.-F., D.I., J.P.L.), Michigan State University, East Lansing
| |
Collapse
|
30
|
Sassi K, Nury T, Zarrouk A, Sghaier R, Khalafi-Nezhad A, Vejux A, Samadi M, Aissa-Fennira FB, Lizard G. Induction of a non-apoptotic mode of cell death associated with autophagic characteristics with steroidal maleic anhydrides and 7β-hydroxycholesterol on glioma cells. J Steroid Biochem Mol Biol 2019; 191:105371. [PMID: 31034873 DOI: 10.1016/j.jsbmb.2019.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 01/07/2023]
Abstract
Steroidal maleic anhydrides were prepared in one step: lithocholic, chenodeoxicholic, deoxicholic, ursocholic, and hyodeoxicholic acid derivatives. Their capability to induce cell death was studied on C6 rat glioma cells, and 7β-hydroxycholesterol was used as positive cytotoxic control. The highest cytotoxicity was observed with lithocholic and chenodeoxicholic acid derivatives (23-(4-methylfuran-2,5-dione)-3α-hydroxy-24-nor-5β-cholane (compound 1a), and 23-(4-methylfuran-2,5-dione)-3α,7α-dihydroxy-24-nor-5β-cholane (compound 1b), respectively), which induce a non-apoptotic mode of cell death associated with mitochondrial membrane potential loss and reactive oxygen species overproduction. No cells with condensed and/or fragmented nuclei, no PARP degradation and no cleaved-caspase-3, which are apoptotic criteria, were observed. Similar effects were found with 7β-hydroxycholesterol. The cell clonogenic survival assay showed that compound 1b was more cytotoxic than compound 1a and 7β-hydroxycholesterol. Compound 1b and 7β-hydroxycholesterol also induce cell cycle modifications. In addition, compounds 1a and 1b, and 7β-hydroxycholesterol favour the formation of large acidic vacuoles revealed by staining with acridine orange and monodansylcadaverine evocating autophagic vacuoles; they also induce an increased ratio of [LC3-II / LC3-I], and modify the expression of mTOR, Beclin-1, Atg12, and Atg5-Atg12 which is are autophagic criteria. The ratio [LC3-II / LC3-I] is also strongly modified by bafilomycin acting on the autophagic flux. Rapamycin, an autophagic inducer, and 3-methyladenine, an autophagic inhibitor, reduce and increase 7β-hydroxycholesterol-induced cell death, respectively, supporting that 7β-hydroxycholesterol induces survival autophagy. Alpha-tocopherol also strongly attenuates 7β-hydroxycholesterol-induced cell death. However, rapamycin, 3-methyladenine, and α-tocopherol have no effect on compounds 1a and 1b-induced cell death. It is concluded that these compounds trigger a non apoptotic mode of cell death, involving the mitochondria and associated with several characteristics of autophagy.
Collapse
Affiliation(s)
- K Sassi
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France; Univ. Tunis El Manar, Laboratory of Onco-Hematology (LR05ES05), Faculty of Medicine, Tunis, Tunisia
| | - T Nury
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France
| | - A Zarrouk
- Univ. Monastir, Lab-NAFS 'Nutrition - Functional Food & Vascular Health' (LR12ES05), Monastir, & Faculty of Medicine, Laboratory of Biochemistry, Sousse, Tunisia
| | - R Sghaier
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France; Univ. Monastir, Lab-NAFS 'Nutrition - Functional Food & Vascular Health' (LR12ES05), Monastir, & Faculty of Medicine, Laboratory of Biochemistry, Sousse, Tunisia; Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Geo Ressources, Higher Institute of Biotechnology (LR11ES31), Sidi Thabet, Tunisia
| | - A Khalafi-Nezhad
- Dept. of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - A Vejux
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France
| | - M Samadi
- LCPMC-A2, ICPM, Dept of Chemistry, Univ. Lorraine, Metz Technopôle, Metz, France.
| | - F Ben Aissa-Fennira
- Univ. Tunis El Manar, Laboratory of Onco-Hematology (LR05ES05), Faculty of Medicine, Tunis, Tunisia
| | - G Lizard
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France.
| |
Collapse
|
31
|
The Biosynthesis, Signaling, and Neurological Functions of Bile Acids. Biomolecules 2019; 9:biom9060232. [PMID: 31208099 PMCID: PMC6628048 DOI: 10.3390/biom9060232] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BA) are amphipathic steroid acids synthesized from cholesterol in the liver. They act as detergents to expedite the digestion and absorption of dietary lipids and lipophilic vitamins. BA are also considered to be signaling molecules, being ligands of nuclear and cell-surface receptors, including farnesoid X receptor and Takeda G-protein receptor 5. Moreover, BA also activate ion channels, including the bile acid-sensitive ion channel and epithelial Na+ channel. BA regulate glucose and lipid metabolism by activating these receptors in peripheral tissues, such as the liver and brown and white adipose tissue. Recently, 20 different BA have been identified in the central nervous system. Furthermore, BA affect the function of neurotransmitter receptors, such as the muscarinic acetylcholine receptor and γ-aminobutyric acid receptor. BA are also known to be protective against neurodegeneration. Here, we review recent findings regarding the biosynthesis, signaling, and neurological functions of BA.
Collapse
|
32
|
Suga T, Yamaguchi H, Ogura J, Mano N. Characterization of conjugated and unconjugated bile acid transport via human organic solute transporter α/β. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1023-1029. [DOI: 10.1016/j.bbamem.2019.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023]
|
33
|
Jia C, Xu H, Xu Y, Xu Y, Shi Q. Serum metabolomics analysis of patients with polycystic ovary syndrome by mass spectrometry. Mol Reprod Dev 2019; 86:292-297. [PMID: 30624822 DOI: 10.1002/mrd.23104] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a set of symptoms caused by elevated androgens (male hormones) in females. PCOS is the most common endocrine disorder among women between 18 and 44 years. Currently, the pathogenesis of PCOS remains unclear. Liquid chromatography-mass spectrometry (LC/MS)-based metabolomics is becoming more and more useful for medical research, especially in revealing the mechanism of the disease. The aim of this study was to investigate the difference of serum metabolic profiles in patients with PCOS and healthy control to better understand the mechanism of this disease. Ten patients with PCOS and 10 healthy people were recruited for this study. The serum samples were collected for LC/MS analysis. Multivariate statistical analysis was performed to discover and identify the potential biomarkers. Six biomarkers were found and identified. The biomarkers belonged to different metabolic pathway including lipid metabolism, carnitine metabolism, androgen metabolism, and bile acid metabolism. Those biomarkers also played different roles in disease progression. Metabolomics is a powerful tool used in research of the mechanism involved in this disease to provide useful information for better understanding of PCOS.
Collapse
Affiliation(s)
- Chunshu Jia
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| | - Hongmei Xu
- Department of Obstetrics, First Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Nephrology, First Hospital of Jilin University, China
| | - Qingyang Shi
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Masaoutis C, Theocharis S. The farnesoid X receptor: a potential target for expanding the therapeutic arsenal against kidney disease. Expert Opin Ther Targets 2018; 23:107-116. [PMID: 30577722 DOI: 10.1080/14728222.2019.1559825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR) is a nuclear bile acid (BA) receptor widely distributed among tissues, a major sensor of BA levels, primary suppressor of hepatic BA synthesis and secondary regulator of lipid metabolism and inflammation. Chronic kidney disease is a common, multifactorial condition with metabolic and inflammatory causes and implications. An array of natural and synthetic FXR agonists has been developed, but not yet studied clinically in kidney disease. Areas covered: Following a summary of FXR's physiological functions in the kidney, we discuss its effects in renal disease with emphasis on chronic and acute kidney disease, chemotherapy-induced nephrotoxicity, and renal neoplasia. Most information is derived from animal models; no relevant clinical study has been conducted to date. Expert opinion: Most available preclinical data indicates a promising outlook for clinical research in this direction. We believe FXR agonism to be an auspicious approach to treating renal disease, considering that multifactorial diseases call for ideally wide-reaching therapies.
Collapse
Affiliation(s)
- Christos Masaoutis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Stamatios Theocharis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
35
|
Tailoring acyclovir prodrugs with enhanced antiviral activity: rational design, synthesis, human plasma stability and in vitro evaluation. Amino Acids 2018; 50:1131-1143. [DOI: 10.1007/s00726-018-2590-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022]
|
36
|
Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System. Front Neurosci 2017; 11:617. [PMID: 29163019 PMCID: PMC5681992 DOI: 10.3389/fnins.2017.00617] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
Bile acids are best known as detergents involved in the digestion of lipids. In addition, new data in the last decade have shown that bile acids also function as gut hormones capable of influencing metabolic processes via receptors such as FXR (farnesoid X receptor) and TGR5 (Takeda G protein-coupled receptor 5). These effects of bile acids are not restricted to the gastrointestinal tract, but can affect different tissues throughout the organism. It is still unclear whether these effects also involve signaling of bile acids to the central nervous system (CNS). Bile acid signaling to the CNS encompasses both direct and indirect pathways. Bile acids can act directly in the brain via central FXR and TGR5 signaling. In addition, there are two indirect pathways that involve intermediate agents released upon interaction with bile acids receptors in the gut. Activation of intestinal FXR and TGR5 receptors can result in the release of fibroblast growth factor 19 (FGF19) and glucagon-like peptide 1 (GLP-1), both capable of signaling to the CNS. We conclude that when plasma bile acids levels are high all three pathways may contribute in signal transmission to the CNS. However, under normal physiological circumstances, the indirect pathway involving GLP-1 may evoke the most substantial effect in the brain.
Collapse
Affiliation(s)
- Kim L Mertens
- Master's Program in Biomedical Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hannah M Eggink
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
37
|
Samadi M, Nury T, Khalafi-Nezhad A, Lizard G. Protecting group-free radical decarboxylation of bile acids: Synthesis of novel steroidal substituted maleic anhydrides and maleimides and evaluation of their cytotoxicity on C6 rat glioma cells. Steroids 2017; 125:124-130. [PMID: 28711707 DOI: 10.1016/j.steroids.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022]
Abstract
We report the first Barton radical decarboxylation of unprotected bile acids via in situ irradiation of their thiohydroxamic esters in the presence of citraconic anhydride and citracoimide, leading to the synthesis a series of steroidal maleic anhydrides and maleimides as novel hybrid bile acids. The cytotoxic activities were evaluated on C6 rat glioma cells.
Collapse
Affiliation(s)
- Mohammad Samadi
- Laboratoire de Chimie et Physique Approche Multi-échelle de Milieux Complexes (LCP-A2MC), ICPM, Département de Chimie, Université de Lorraine, 1, Bd Arago, Metz-Technopôle, 57078 Metz, France.
| | - Thomas Nury
- Université de Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Inserm, Faculté des Sciences Gabriel, 6 Bd Gabriel, 21000 Dijon, France
| | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Gérard Lizard
- Université de Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Inserm, Faculté des Sciences Gabriel, 6 Bd Gabriel, 21000 Dijon, France
| |
Collapse
|
38
|
Lim DW, Bose S, Wang JH, Choi HS, Kim YM, Chin YW, Jeon SH, Kim JE, Kim H. Modified SJH alleviates FFAs-induced hepatic steatosis through leptin signaling pathways. Sci Rep 2017; 7:45425. [PMID: 28358008 PMCID: PMC5371820 DOI: 10.1038/srep45425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
Samjunghwan (SJH) is an herbal formula used in traditional Korean medicine. This prescription has long been used in treatment of aging and lifestyle diseases. The current study showed the effect and mechanisms of anti-hepatic steatosis action of modified SJH (mSJH) in vitro and in vivo. Treatment with mSJH resulted in significantly decreased intracellular lipid accumulation in steatosis-induced cells. Furthermore, mSJH triggered the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase as well as increased the expression of leptin at both protein and gene levels. In addition, C57BL6 mice fed high-fat diet (HFD) showed significant improvements in body, liver weights and fat weights; and serum, hepatic and fecal lipid parameters in response to the treatment with mSJH. Furthermore, mSJH showed favorable effects on the hepatic expression of several genes related to lipid metabolism. Betaine, one of constituents of mSJH exerted fundamental beneficial impact on FFAs-induced cells. However, the beneficial effects of mSJH were diminished upon blocking of leptin signaling by dexamethasone, suggesting the leptin signaling as a key component in mSJH-mediated modulation of lipid homeostasis. Our results suggest that mSJH exerts an anti-hepatic steatosis effect via activation of leptin and associated signaling cascades related to lipid metabolism.
Collapse
Affiliation(s)
- Dong-Woo Lim
- Department of Pathology, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
- Departments of Rehabilitation Medicine, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| | - Shambhunath Bose
- Applied Surface Technology Inc., 11th Floor, Bldg. A, Advance Institutes of Convergence Technology, Suwon, 16229, Republic of Korea
| | - Jing-Hua Wang
- Departments of Rehabilitation Medicine, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| | - Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Song-Hee Jeon
- Research Institute of Biotechnology, Dongguk University, Goyang, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| | - Hojun Kim
- Departments of Rehabilitation Medicine, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
39
|
Yang Y, Wang S, Bao YR, Li TJ, Yang GL, Chang X, Meng XS. Anti-ulcer effect and potential mechanism of licoflavone by regulating inflammation mediators and amino acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:175-182. [PMID: 28159726 DOI: 10.1016/j.jep.2017.01.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza is the dry root and rhizome of the leguminous plant, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat. or Glycyrrhiza glabra L., which was firstly cited in Shennong's Herbal Classic in Han dynasty and was officially listed in the Chinese Pharmacopoeia, has been widely used in China during the past millennia. Licoflavone is the major component of Glycyrrhiza with anti-ulcer activity. The present study is based on clarifying the anti-ulcer effect of licoflavone, aiming at elucidating the possible molecule mechanisms of its action for treating gastric ulcer rats induced by acetic acid. MATERIALS AND METHODS Rats were divided into 7 groups, and drugs were administered from on the day after the onset of gastric ulcer (day 3) until day 11 of the experiment once daily continuously. The plasma were analyzed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS), significant different metabolites were investigated to explain its therapeutic mechanism. Furthermore, quantitative real time polymerase chain reaction (RT-PCR) analysis was performed to detect the expression of RNA in stomach tissue for verifying the above results. RESULTS Licoflavone can effectively cure the gastric ulcer, particularly the middle dose group. According to the statistical analysis of the plasma different metabolites from each groups and the expression of genes in tissues, sixteen significant different metabolites, including histamine, tryptophan, arachidonic acid, phingosine-1-phosphate etc., contributing to the treatment of gastric ulcer were discovered and identified. In RT-PCR analysis, the results of the expression of RNA were corresponded with what we discovered. CONCLUSIONS Our study indicated licoflavone plays the role of treating gastric ulcer by regulating inflammation mediators and amino acid metabolism. We demonstrated that metabolomics technology combined with gene technology is a useful tool to search different metabolites and to dissect the potential mechanisms of traditional Chinese medicine (TCM) in treating gastric ulcer.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China.
| | - Yong-Rui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China.
| | - Tian-Jiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China.
| | - Guan-Lin Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Xin Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Xian-Sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China.
| |
Collapse
|
40
|
Nizamutdinov D, DeMorrow S, McMillin M, Kain J, Mukherjee S, Zeitouni S, Frampton G, Bricker PCS, Hurst J, Shapiro LA. Hepatic alterations are accompanied by changes to bile acid transporter-expressing neurons in the hypothalamus after traumatic brain injury. Sci Rep 2017; 7:40112. [PMID: 28106051 PMCID: PMC5247752 DOI: 10.1038/srep40112] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Annually, there are over 2 million incidents of traumatic brain injury (TBI) and treatment options are non-existent. While many TBI studies have focused on the brain, peripheral contributions involving the digestive and immune systems are emerging as factors involved in the various symptomology associated with TBI. We hypothesized that TBI would alter hepatic function, including bile acid system machinery in the liver and brain. The results show activation of the hepatic acute phase response by 2 hours after TBI, hepatic inflammation by 6 hours after TBI and a decrease in hepatic transcription factors, Gli 1, Gli 2, Gli 3 at 2 and 24 hrs after TBI. Bile acid receptors and transporters were decreased as early as 2 hrs after TBI until at least 24 hrs after TBI. Quantification of bile acid transporter, ASBT-expressing neurons in the hypothalamus, revealed a significant decrease following TBI. These results are the first to show such changes following a TBI, and are compatible with previous studies of the bile acid system in stroke models. The data support the emerging idea of a systemic influence to neurological disorders and point to the need for future studies to better define specific mechanisms of action.
Collapse
Affiliation(s)
- Damir Nizamutdinov
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA.,Department of Neurosurgery, Neuroscience Research Institute, Baylor Scott &White Health, Temple, Texas, 76504, USA
| | - Sharon DeMorrow
- Departent of Internal Medicine, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA.,Central Texas Veterans Health Care System, Temple, Texas, 76504, USA
| | - Matthew McMillin
- Departent of Internal Medicine, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA.,Central Texas Veterans Health Care System, Temple, Texas, 76504, USA
| | - Jessica Kain
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA
| | - Sanjib Mukherjee
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA
| | - Suzanne Zeitouni
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA
| | - Gabriel Frampton
- Departent of Internal Medicine, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA.,Central Texas Veterans Health Care System, Temple, Texas, 76504, USA
| | - Paul Clint S Bricker
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA
| | - Jacob Hurst
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA
| | - Lee A Shapiro
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, Texas, 76504, USA.,Department of Neurosurgery, Neuroscience Research Institute, Baylor Scott &White Health, Temple, Texas, 76504, USA
| |
Collapse
|
41
|
Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS One 2017; 12:e0169719. [PMID: 28060902 PMCID: PMC5218478 DOI: 10.1371/journal.pone.0169719] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.
Collapse
|
42
|
Zhang Y, Liu P, Li Y, Zhang AH. Exploration of metabolite signatures using high-throughput mass spectrometry coupled with multivariate data analysis. RSC Adv 2017. [DOI: 10.1039/c6ra27461g] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Disease impacts important metabolic pathways and the alteration of metabolites may serve as a potential biomarker for early-stage diagnosis.
Collapse
Affiliation(s)
- Yanli Zhang
- Experiment Center
- College of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Peng Liu
- Experiment Center
- College of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Yuanfeng Li
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Ai-Hua Zhang
- Experiment Center
- College of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|
43
|
Leung JH, Chang JC, Foltz E, Bell SM, Pi C, Azad S, Everett ML, Holzknecht ZE, Sanders NL, Parker W, Davis RD, Keshavjee S, Lin SS. Clearance of bile and trypsin in rat lungs following aspiration of human gastric fluid. Exp Lung Res 2016; 42:37-43. [PMID: 26873328 PMCID: PMC4819880 DOI: 10.3109/01902148.2016.1139213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Purpose: In the clinical setting, there is no reliable tool for diagnosing gastric aspiration. A potential way of diagnosing gastric fluid aspiration entails bronchoalveolar lavage (BAL) with subsequent examination of the BAL fluid for gastric fluid components that are exogenous to the lungs. The objective of this study was to determine the longevity of the gastric fluid components bile and trypsin in the lung, in order to provide an estimate of the time frame in which assessment of these components in the BAL might effectively be used as a measure of aspiration. Materials and Methods: Human gastric fluid (0.5 mg/kg) was infused in the right lung of intubated male Fischer 344 rats (n = 30). Animals were sacrificed at specified times following the experimentally induced aspiration, and bronchoalveolar lavage fluid (BALF) was collected. Bile concentrations were analyzed by an enzyme-linked chromatogenic method, and the concentration of trypsin was quantified using an ELISA. Data were analyzed using non-linear regression and a one-phase decay equation. Results: In this experimental model, the half-life of bile was 9.3 hours (r2 = 0.81), and the half-life of trypsin was 9.0 hours (r2 = 0.68). Conclusions: The half-lives of bile and trypsin in the rodent aspiration model suggest that the ability to detect aspiration may be limited to a few days post-aspiration. If studies using rats are any indication, it may be most effective to collect BAL samples within the first 24 hours of suspected aspiration events in order to detect aspiration.
Collapse
Affiliation(s)
- Jason H Leung
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA.,b Department of Pathology , Duke University Medical Center , Durham , North Carolina , USA
| | - Jui-Chih Chang
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA.,b Department of Pathology , Duke University Medical Center , Durham , North Carolina , USA.,c Division of Thoracic and Cardiovascular Surgery, Hualien Tzu Chi Hospital , Hualien , Taiwan.,d Department of Surgery , Tzu Chi University , Hualien , Taiwan
| | - Emily Foltz
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Sadé M Bell
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Cinthia Pi
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Sassan Azad
- e Toronto General Research Institute, Toronto General Hospital , Toronto , Ontario , Canada
| | - Mary Lou Everett
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Zoie E Holzknecht
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Nathan L Sanders
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - William Parker
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - R Duane Davis
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA
| | - Shaf Keshavjee
- e Toronto General Research Institute, Toronto General Hospital , Toronto , Ontario , Canada
| | - Shu S Lin
- a Department of Surgery , Duke University Medical Center , Durham , North Carolina , USA.,b Department of Pathology , Duke University Medical Center , Durham , North Carolina , USA.,f Department of Immunology , Duke University Medical Center , Durham , North Carolina , USA
| |
Collapse
|
44
|
Mitochondrial gene expression profiles are associated with intrahepatic cholestasis of pregnancy. Placenta 2016; 45:16-23. [DOI: 10.1016/j.placenta.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022]
|
45
|
Establishment of a Drug-Induced, Bile Acid–Dependent Hepatotoxicity Model Using HepaRG Cells. J Pharm Sci 2016; 105:1550-60. [DOI: 10.1016/j.xphs.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 01/29/2023]
|
46
|
Bile Acid Signaling Is Involved in the Neurological Decline in a Murine Model of Acute Liver Failure. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:312-23. [PMID: 26683664 DOI: 10.1016/j.ajpath.2015.10.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022]
Abstract
Hepatic encephalopathy is a serious neurological complication of liver failure. Serum bile acids are elevated after liver damage and may disrupt the blood-brain barrier and enter the brain. Our aim was to assess the role of serum bile acids in the neurological complications after acute liver failure. C57Bl/6 or cytochrome p450 7A1 knockout (Cyp7A1(-/-)) mice were fed a control, cholestyramine-containing, or bile acid-containing diet before azoxymethane (AOM)-induced acute liver failure. In parallel, mice were given an intracerebroventricular infusion of farnesoid X receptor (FXR) Vivo-morpholino before AOM injection. Liver damage, neurological decline, and molecular analyses of bile acid signaling were performed. Total bile acid levels were increased in the cortex of AOM-treated mice. Reducing serum bile acids via cholestyramine feeding or using Cyp7A1(-/-) mice reduced bile acid levels and delayed AOM-induced neurological decline, whereas cholic acid or deoxycholic acid feeding worsened AOM-induced neurological decline. The expression of bile acid signaling machinery apical sodium-dependent bile acid transporter, FXR, and small heterodimer partner increased in the frontal cortex, and blocking FXR signaling delayed AOM-induced neurological decline. In conclusion, circulating bile acids may play a pathological role during hepatic encephalopathy, although precisely how they dysregulate normal brain function is unknown. Strategies to minimize serum bile acid concentrations may reduce the severity of neurological complications associated with liver failure.
Collapse
|
47
|
Carr RM, Reid AE. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Curr Atheroscler Rep 2015; 17:500. [PMID: 25690590 DOI: 10.1007/s11883-015-0500-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and a risk factor for both cardiovascular and hepatic related morbidity and mortality. The increasing prevalence of this disease requires novel therapeutic approaches to prevent disease progression. Farnesoid X receptors are bile acid receptors with roles in lipid, glucose, and energy homeostasis. Synthetic farnesoid X receptor (FXR) agonists have been developed to specifically target these receptors for therapeutic use in NAFLD patients. Here, we present a review of bile acid physiology and how agonism of FXR receptors has been examined in pre-clinical and clinical NAFLD. Early evidence suggests a potential role for synthetic FXR agonists in the management of NAFLD; however, additional studies are needed to clarify their effects on lipid and glucose parameters in humans.
Collapse
Affiliation(s)
- Rotonya M Carr
- Division of Gastroenterology, University of Pennsylvania, 421 Curie Boulevard, 907 Biomedical Research Building, Philadelphia, PA, 19104, USA,
| | | |
Collapse
|
48
|
McMillin M, Frampton G, Quinn M, Divan A, Grant S, Patel N, Newell-Rogers K, DeMorrow S. Suppression of the HPA Axis During Cholestasis Can Be Attributed to Hypothalamic Bile Acid Signaling. Mol Endocrinol 2015; 29:1720-30. [PMID: 26431088 DOI: 10.1210/me.2015-1087] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Suppression of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to occur during cholestatic liver injury. Furthermore, we have demonstrated that in a model of cholestasis, serum bile acids gain entry into the brain via a leaky blood brain barrier and that hypothalamic bile acid content is increased. Therefore, the aim of the current study was to determine the effects of bile acid signaling on the HPA axis. The data presented show that HPA axis suppression during cholestatic liver injury, specifically circulating corticosterone levels and hypothalamic corticotropin releasing hormone (CRH) expression, can be attenuated by administration of the bile acid sequestrant cholestyramine. Secondly, treatment of hypothalamic neurons with various bile acids suppressed CRH expression and secretion in vitro. However, in vivo HPA axis suppression was only evident after the central injection of the bile acids taurocholic acid or glycochenodeoxycholic acid but not the other bile acids studied. Furthermore, we demonstrate that taurocholic acid and glycochenodeoxycholic acid are exerting their effects on hypothalamic CRH expression after their uptake through the apical sodium-dependent bile acid transporter and subsequent activation of the glucocorticoid receptor. Taken together with previous studies, our data support the hypothesis that during cholestatic liver injury, bile acids gain entry into the brain, are transported into neurons through the apical sodium-dependent bile acid transporter and can activate the glucocorticoid receptor to suppress the HPA axis. These data also lend themselves to the broader hypothesis that bile acids may act as central modulators of hypothalamic peptides that may be altered during liver disease.
Collapse
Affiliation(s)
- Matthew McMillin
- Central Texas Veterans Health Care System 76504 (M.M., G.F., S.G., S.D.); Department of Internal Medicine (M.M., G.F., S.G., N.P., S.D.), Texas A&M Health Science Center College of Medicine 76508; Digestive Disease Research Center (M.M., G.F., S.G., S.D.) 76508; and Department of Surgery (A.D., M.K.N.-R.), Baylor Scott & White Health, Temple 76508, Texas; and Signal Transduction Laboratory (M.Q.), National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Gabriel Frampton
- Central Texas Veterans Health Care System 76504 (M.M., G.F., S.G., S.D.); Department of Internal Medicine (M.M., G.F., S.G., N.P., S.D.), Texas A&M Health Science Center College of Medicine 76508; Digestive Disease Research Center (M.M., G.F., S.G., S.D.) 76508; and Department of Surgery (A.D., M.K.N.-R.), Baylor Scott & White Health, Temple 76508, Texas; and Signal Transduction Laboratory (M.Q.), National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Matthew Quinn
- Central Texas Veterans Health Care System 76504 (M.M., G.F., S.G., S.D.); Department of Internal Medicine (M.M., G.F., S.G., N.P., S.D.), Texas A&M Health Science Center College of Medicine 76508; Digestive Disease Research Center (M.M., G.F., S.G., S.D.) 76508; and Department of Surgery (A.D., M.K.N.-R.), Baylor Scott & White Health, Temple 76508, Texas; and Signal Transduction Laboratory (M.Q.), National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Ali Divan
- Central Texas Veterans Health Care System 76504 (M.M., G.F., S.G., S.D.); Department of Internal Medicine (M.M., G.F., S.G., N.P., S.D.), Texas A&M Health Science Center College of Medicine 76508; Digestive Disease Research Center (M.M., G.F., S.G., S.D.) 76508; and Department of Surgery (A.D., M.K.N.-R.), Baylor Scott & White Health, Temple 76508, Texas; and Signal Transduction Laboratory (M.Q.), National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Stephanie Grant
- Central Texas Veterans Health Care System 76504 (M.M., G.F., S.G., S.D.); Department of Internal Medicine (M.M., G.F., S.G., N.P., S.D.), Texas A&M Health Science Center College of Medicine 76508; Digestive Disease Research Center (M.M., G.F., S.G., S.D.) 76508; and Department of Surgery (A.D., M.K.N.-R.), Baylor Scott & White Health, Temple 76508, Texas; and Signal Transduction Laboratory (M.Q.), National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Nisha Patel
- Central Texas Veterans Health Care System 76504 (M.M., G.F., S.G., S.D.); Department of Internal Medicine (M.M., G.F., S.G., N.P., S.D.), Texas A&M Health Science Center College of Medicine 76508; Digestive Disease Research Center (M.M., G.F., S.G., S.D.) 76508; and Department of Surgery (A.D., M.K.N.-R.), Baylor Scott & White Health, Temple 76508, Texas; and Signal Transduction Laboratory (M.Q.), National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Karen Newell-Rogers
- Central Texas Veterans Health Care System 76504 (M.M., G.F., S.G., S.D.); Department of Internal Medicine (M.M., G.F., S.G., N.P., S.D.), Texas A&M Health Science Center College of Medicine 76508; Digestive Disease Research Center (M.M., G.F., S.G., S.D.) 76508; and Department of Surgery (A.D., M.K.N.-R.), Baylor Scott & White Health, Temple 76508, Texas; and Signal Transduction Laboratory (M.Q.), National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Sharon DeMorrow
- Central Texas Veterans Health Care System 76504 (M.M., G.F., S.G., S.D.); Department of Internal Medicine (M.M., G.F., S.G., N.P., S.D.), Texas A&M Health Science Center College of Medicine 76508; Digestive Disease Research Center (M.M., G.F., S.G., S.D.) 76508; and Department of Surgery (A.D., M.K.N.-R.), Baylor Scott & White Health, Temple 76508, Texas; and Signal Transduction Laboratory (M.Q.), National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
49
|
Lozano E, Monte MJ, Briz O, Hernández-Hernández A, Banales JM, Marin JJ, Macias RI. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT). J Control Release 2015; 216:93-102. [DOI: 10.1016/j.jconrel.2015.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
|
50
|
Basal efflux of bile acids contributes to drug-induced bile acid-dependent hepatocyte toxicity in rat sandwich-cultured hepatocytes. Toxicol In Vitro 2015; 29:1454-63. [DOI: 10.1016/j.tiv.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/22/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
|