1
|
Ding Y, Sha W, Sun Y, Cheng Y. Respiratory Metabolism and Metabolomics of Red Swamp Crayfish Procambarus clarkii Under Low Temperature Stress. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:578-589. [PMID: 40041957 DOI: 10.1002/jez.2912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 05/07/2025]
Abstract
In the integrated rice-crayfish aquaculture systems, crayfish Procambarus clarkii need to spend a long winter in the ring ditch, which is vulnerable to low temperature stress, especially in the northern part of China, where cold waves and other low-temperature climates are frequent. To study the metabolic response of P. clarkii to low temperature stress experimentally, the temperature was lowered from the control (23°C) to the low temperature group (9°C, 5°C, and 1°C) by slow and uniform cooling, and molecular and physiological samples were collected for measurement. The results showed that low temperature stress damaged the gill membrane and the epithelial layer of gill tissues, with an increase in vacuoles area and a reduced and irregular distribution of hemocytes. As the temperature decreased, the oxygen consumption rate, ammonia excretion rate and maximum metabolic rate of P. clarkii decreased gradually, the oxygen-nitrogen ratio decreased but still remained at a high level, and the metabolic energy supply substances were always mainly lipids and carbohydrates. The pyruvate kinase activity tended to increase with decreasing temperature under low temperature stress, while hexokinase, succinate dehydrogenase and lactate dehydrogenase activities decreased gradually. The 183 differential metabolites were screened in the low temperature group compared with the control mostly enriched in amino acid metabolism and citrate cycle metabolic pathways. In conclusion, under low temperature stress, the gill was damaged, respiratory metabolism decreased, and glycolysis was enhanced. Since the citrate cycle metabolism was suppressed, P. clarkii needed to resist low temperature stress by increasing the amino acid metabolism to provide more energy to maintain cellular activity. The results unraveled metabolic response mechanisms of metabolic response mechanism of P. clarkii to low temperature stress, and provided theoretical references for the selection and breeding of low-temperature-tolerant strains of P. clarkii.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Integrated Rice-Fish Farming Ecosystems, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenbin Sha
- Key Laboratory of Integrated Rice-Fish Farming Ecosystems, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yunfei Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecosystems, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Integrated Rice-Fish Farming Ecosystems, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Ding Y, Sha W, Sun Y, Cheng Y. Effects of acute low-temperature stress on respiratory metabolism, antioxidants, and metabolomics of red swamp crayfish, Procambarus clarkii. Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111095. [PMID: 40147539 DOI: 10.1016/j.cbpb.2025.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Crayfish (Procambarus clarkii) aquaculture is threatened by abrupt temperature decreases caused by climatic phenomena, such as cold waves and seasonal fluctuations. In this study, crayfish were exposed to an abrupt temperature change from 17 °C to 7 °C for 24 h to investigate the effects of acute low-temperatures on respiratory metabolism, antioxidants, and metabolomics. The results showed that acute low-temperatures significantly reduced the activities of pyruvate kinase, lactate dehydrogenase, and succinate dehydrogenase in the gills and hemolymph, associated with decreases in anaerobic and aerobic respiratory capacities, and significant decreases in oxygen consumption, ammonia excretion, and maximum metabolic rates. Antioxidant enzymes in the hepatopancreas and hemolymph initially increased then decreased within 24 h. Metabolomics revealed that glycerophospholipid metabolism and glycosylphosphatidylinositol anchor biosynthesis pathways responded to acute low-temperatures, with glycerophospholipids being the most significantly differentially expressed metabolites. These results supported the hypothesis that crayfish exhibit lower metabolic activity at low temperatures. Our data provide mechanistic insight into the biological changes induced by acute low-temperature and may provide insight into culture of P. clarkii in cold waters.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbin Sha
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai 201306, China
| | - Yunfei Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai 201306, China.
| | - Yongxu Cheng
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquaculture Engineering and Technology Research Centre, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Dressler TL, Anlauf-Dunn K, Chandler A, Eliason EJ. Beyond latitude: thermal tolerance and vulnerability of a broadly distributed salmonid across a habitat temperature gradient. CONSERVATION PHYSIOLOGY 2025; 13:coaf030. [PMID: 40313657 PMCID: PMC12043440 DOI: 10.1093/conphys/coaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
Salmonid fishes are a focal point of conservation physiology due to their high value to humans and ecosystems, and their susceptibility to decline from climate change. A significant challenge in conserving these fishes is that populations of the same species can be locally adapted to vastly different habitats within their wild ranges and can therefore have unique tolerance or vulnerability to environmental stressors within those habitats. Within the state of Oregon, USA, summer steelhead (Oncorhynchus mykiss) inhabit both cool, coastal waters most typically associated with Pacific salmonids and arid, inland environments where temperatures are more extreme. Here, we utilized streamside physiological experiments paired with habitat temperature monitoring to assess the thermal tolerance and vulnerability of four populations of summer steelhead from distinct thermal habitats. All populations had unique responses of critical thermal maximum, aerobic scope and exercise recovery to temperature. Despite populations from warm habitats exhibiting higher thermal tolerance than populations from cooler habitats, summer steelhead from warm habitats appear to be more vulnerable to the physiological consequences of warming based on the extreme temperatures they already experience during the summer. These results demonstrate an example of thermal physiology varying between populations within the same portion of their latitudinal range and highlight the need for habitat-specific conservation strategies for this species.
Collapse
Affiliation(s)
- Terra L Dressler
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Stillwater Sciences, 996 S. Seaward Ave, Suite 102, Ventura, CA 93001, USA
| | - Kara Anlauf-Dunn
- Conservation and Recovery, Oregon Department of Fish and Wildlife, 28655 Highway 34, Corvallis, OR 97333, USA
| | - Andrea Chandler
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Conservation and Recovery, Oregon Department of Fish and Wildlife, 28655 Highway 34, Corvallis, OR 97333, USA
| | - Erika J Eliason
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Gamperl AK, Porter ES, Brooks AB. The scaled sardine's unique metabolic phenotype and its implications for the susceptibility of small tropical pelagic fishes to climate change. Sci Rep 2025; 15:14496. [PMID: 40281081 PMCID: PMC12032093 DOI: 10.1038/s41598-025-98638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Small pelagic fishes (e.g., sardines, anchovies and their relatives) are preyed upon by large predatory fishes, birds and mammals, and thus, are key species in marine food webs and with respect to ecosystem health and productivity. However, we know little about their physiology, and such information will be critical to predicting how their populations may be impacted by human-induced rapid environmental change (HIREC) and in implementing effective conservation strategies. As a first step, we determined the maximum swimming speed, aerobic capacity [maximum metabolic rate (MMR) and aerobic scope (AS)] and cost of transport (COT; the energy required to swim a given distance) of scaled sardines (Harengula jaguana) collected in Eleuthera (The Bahamas). The scaled sardine's critical swimming speed (Ucrit) was ~ 5-6 body length's per second, and this agrees with data collected on free-swimming schools of similar fishes in the wild. However, they had unexpectedly high values for MMR and AS (~ 25% and 70% greater than tuna, respectively), and for COT. These findings have important implications with regard to how these ecologically important fishes will potentially respond to HIREC-related challenges such as increased temperature and decreases in the biomass and size of plankton upon which they feed.
Collapse
Affiliation(s)
- Anthony Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, NL, A1C 5S7, Canada.
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, NL, A1C 5S7, Canada
| | - Amy B Brooks
- Cape Eleuthera Institute, The Island School, Eleuthera, Bahamas
| |
Collapse
|
5
|
Antache A, Simionov IA, Petrea ȘM, Nica A, Georgescu PL, Oprică L, Grigore MN, Oroian M, Jitaru D, Liteanu A, Ciobîcă AS, Poroch V. Insect-Antioxidants Symbiotic Nexus-Pathway for Sustainable and Resilient Aquaculture: A Case Study for Evaluating Koi Carp Growth and Oxidative Stress Status. Antioxidants (Basel) 2025; 14:371. [PMID: 40298621 PMCID: PMC12024277 DOI: 10.3390/antiox14040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Various innovative fish feeds were tested for the production of koi carp in a recirculating aquaculture system, considering insect meal (Acheta domestica) as the main protein source and phytogenic additives (Curcuma longa-turmeric and Beta vulgaris-beetroot) as antioxidants, in the spirit of sustainable aquaculture practice. The growth performance, metabolic rate (respirometry), hematological profile, blood biochemical indicators, and oxidative stress of koi carp were determined, using feeds according to the following experimental design: CF-commercial feed, IF-innovative feed based on cricket meal, BIF-innovative feed (IF) with beetroot, and TIF-innovative feed (IF) with turmeric. The TIF recorded the best growth rate. The lowest values of lipid peroxidation (MDA), standard metabolic rate (SMR), and routine metabolic rate (RMR) were registered for the IF and TIF variants. A reduction in MDA was noted, correlated to the decrease in the metabolic rate regarding SMR and RMR for the IF and TIF. An intensification in amylase was recorded in the TIF and BIF. Compared with the CF, it seems that the IF, TIF, and BIF had a beneficial effect on the koi carp by reducing cholesterol, HDL cholesterol, alanine aminotransferase, triglycerides, and urea and by increasing the concentration of calcium and growth hormone in the blood plasma.
Collapse
Affiliation(s)
- Alina Antache
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 800008 Galați, Romania; (A.A.); (Ș.-M.P.); (A.N.)
- Rexdan Research Infrastructure, “Dunărea de Jos” University of Galați, 800008 Galați, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania; (L.O.); (A.-S.C.)
| | - Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 800008 Galați, Romania; (A.A.); (Ș.-M.P.); (A.N.)
- Rexdan Research Infrastructure, “Dunărea de Jos” University of Galați, 800008 Galați, Romania
| | - Ștefan-Mihai Petrea
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 800008 Galați, Romania; (A.A.); (Ș.-M.P.); (A.N.)
- Rexdan Research Infrastructure, “Dunărea de Jos” University of Galați, 800008 Galați, Romania
| | - Aurelia Nica
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, “Dunărea de Jos” University of Galați, 800008 Galați, Romania; (A.A.); (Ș.-M.P.); (A.N.)
| | - Puiu-Lucian Georgescu
- Rexdan Research Infrastructure, “Dunărea de Jos” University of Galați, 800008 Galați, Romania
- Department of Chemistry, Physics and Environment, Faculty of Science and Environment, “Dunărea de Jos” University of Galați, 800008 Galați, Romania
| | - Lăcrămioara Oprică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania; (L.O.); (A.-S.C.)
| | - Marius-Nicușor Grigore
- Doctoral School of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania;
| | - Mircea Oroian
- Faculty of Food Engineering, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
| | - Daniela Jitaru
- Department of Hematology, Regional Institute of Oncology, 700483 Iași, Romania; (D.J.); (A.L.)
| | - Andreea Liteanu
- Department of Hematology, Regional Institute of Oncology, 700483 Iași, Romania; (D.J.); (A.L.)
| | - Alin-Stelian Ciobîcă
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania; (L.O.); (A.-S.C.)
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, 050094 Bucharest, Romania
- “Ioan Haulica” Institute, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Vladimir Poroch
- Department of Medicine III, Faculty of Medicine, “Grigore T Popa” University of Medicine and Pharmacy, 700111 Iași, Romania;
| |
Collapse
|
6
|
Gamperl AK, Nati JJH, Clow KA, Sandrelli RM, Gerber L, Porter ES, Peroni EC. It's a good thing that severely hypoxic salmon (Salmo salar) have a limited capacity to increase heart rate when warmed. J Exp Biol 2025; 228:JEB249594. [PMID: 39882674 PMCID: PMC11925397 DOI: 10.1242/jeb.249594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
With climate change, fish are facing rising temperatures, an increase in the frequency and severity of heat waves and hypoxia, sometimes concurrently. However, only limited studies have examined the combined effects of increases in temperature and hypoxia on fish physiology and survival. We measured the cardiorespiratory physiology of 12°C-acclimated Atlantic salmon when exposed acutely to normoxia [100% air saturation (sat.)] versus 75 and 50% air sat., and then warmed to their critical thermal maximum (CTmax) at 2°C h-1. Fish exposed to 50% air sat. became bradycardic, were unable to increase heart rate (fH) when warmed, and had lower values for metabolic scope and CTmax (21.3 vs 26.1°C in normoxic fish). The effects of 75% air sat. on cardiorespiratory parameters and CTmax were intermediate. We then used atropine (1.2 mg kg-1) and 8-cyclopentyltheophylline (CPT; 50 nmol kg-1) to investigate what role(s) cholinergic tone on the heart and cardiac adenosinergic effects, respectively, play in preventing severely hypoxic salmon (40% air sat.) from increasing fH when warmed. CPT had no/limited effects on salmon cardiorespiratory parameters and thermal tolerance. However, atropine increased fH in hypoxic fish and allowed it to rise with temperature, and this resulted in salmon that were much less tolerant to warming. Collectively, these results: (1) show that fish in severely hypoxic environments will be very susceptible to climate change-associated heat waves; and (2) suggest that cholinergic tone on the heart is not removed when severely hypoxic fish are exposed to rising temperatures to protect the heart's pumping capacity.
Collapse
Affiliation(s)
- Anthony K. Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Julie J. H. Nati
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Lucie Gerber
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Emma S. Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Ellen C. Peroni
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
7
|
Masó G, García-Berthou E, Merciai R, Latorre D, Vila-Gispert A. Effects of captive-breeding conditions on metabolic and performance traits in an endangered, endemic cyprinidontiform fish. Curr Zool 2025; 71:14-24. [PMID: 39996262 PMCID: PMC11846804 DOI: 10.1093/cz/zoae018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/27/2024] [Indexed: 02/26/2025] Open
Abstract
Captive breeding and stocking are commonly employed strategies for enhancing fisheries and conserving endangered fish species. However, hatchery-raised fish often exhibit reduced performance in the wild, displaying alterations in physiological, morphological, and behavioral traits. We tested for differences in swimming capacity and metabolic traits between wild and hatchery-reared individuals of the Spanish toothcarp (Aphanius iberus) from 2 different populations. Furthermore, we experimentally tested if these changes translated into fitness differences after their stocking into the wild. There were significant differences in swimming capacity and metabolic traits between wild and hatchery-reared individuals and also between the 2 populations. Captive-bred individuals displayed consistently lower metabolic rates than wild individuals from the same population (30-76% lower). Critical swimming speed rather differed between the 2 populations. Sex-specific differences were observed in maximum and standard metabolic rates, with wild individuals and females generally exhibiting higher values but with some exceptions. During a 3-month experiment, survival rates did not significantly differ between wild and captive-bred fish. Captive-bred individuals started smaller but exhibited rapid growth during the experiment. Initially, larger captive-bred fish had lower body conditions than their wild counterparts, but these differences progressively diminished. In summary, captive-bred individuals of this fish species showed lower metabolic rates, although the differences with wild individuals slightly depended on sex and size.
Collapse
Affiliation(s)
- Guillem Masó
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
- Faculty of Sciences and Technology, University of Vic – Central University of Catalonia, Carrer de la Laura 13, 08500 Vic, Catalonia, Spain
| | - Emili García-Berthou
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Roberto Merciai
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Dani Latorre
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Anna Vila-Gispert
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
8
|
Fernández M, Duarte C, Aldana M, Delgado-Rioseco J, Blanco-Herrera F, Varas O, Quijón PA, Quintanilla-Ahumada D, García-Huidobro MR, Pulgar J. The importance of upwelling conditions as drivers of feeding behavior and thermal tolerance in a prominent intertidal fish. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106896. [PMID: 39647425 DOI: 10.1016/j.marenvres.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Upwelling, as a large oceanographic phenomenon, increases coastal productivity and influences all levels of biological complexity. Despite decades of research on it, much remains to be understood about the impact of upwelling on the feeding behavior and thermal tolerance of important groups such as fish. Hence, our aim was to investigate how upwelling conditions modify the feeding behavior and thermal tolerance of a prominent intertidal fish, Girella laevifrons. We collected purple mussels (Perumytilus purpuratus) from upwelling (U) and downwelling sites (DU) in central Chile, and used them as prey in feeding trials and measuring the concentration of organic matter and proteins in their tissues. We assessed fish consumption rates and growth in fish collected from the same U and DU sites, feeding on either U or DU mussels. Lastly, we assessed the thermal tolerance of U and DU fish fed with the aforementioned U vs DU mussels. We found that U mussels held higher concentrations of organic matter and proteins compared to their DU counterparts. U mussels were also selected and consumed in larger amounts than DU mussels, although the origin of the fish also influenced consumption rates. Thermal tolerance assays revealed that U fish exhibited higher maximum performance (Max.pf) and critical thermal maxima (Ctmax) and lower sensitivity to temperature changes (as measured by Q10), compared to DU fish. Altogether, these results point to a strong influence of upwelling on the quality of organisms' tissues, indirectly altering key aspects of fish feeding behavior and thermal tolerance. These findings also contribute to understanding the physiological adjustments organisms make in productive upwelling systems, and how they may change in the future with ongoing climate events.
Collapse
Affiliation(s)
- Melissa Fernández
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Santiago, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para El Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Joaquín Delgado-Rioseco
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Biotecnología Vegetal, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago, Chile; Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Oscar Varas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para El Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
9
|
Timpe AW, Seibel BA. Correcting systematic error in PO 2 measurement to improve measures of oxygen supply capacity (α). Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111737. [PMID: 39244081 DOI: 10.1016/j.cbpa.2024.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
An organism's oxygen supply capacity, measured as a ratio of a metabolic rate to its critical oxygen partial pressure, describes the efficacy of oxygen uptake and transport. This metric is sensitive to errors in oxygen measurement, especially near anoxia where the magnitude of instrument error as a proportion of total signal is magnified. Here, we present a conceptual and mathematical method that uses this sensitivity to identify, quantify, and therefore correct oxygen measurements collected using inaccurately calibrated sensors. When appropriate, adding a small correction value to each oxygen measurement counteracts the effects of this error and provides results that are comparable to data from accurately calibrated oxygen probes. We demonstrate, using simulated, laboratory, and literature datasets, how this method can be used post hoc to diagnose error in, correct the magnitude of, and reduce the variability in repeat measures of traits relevant to oxygen tolerance.
Collapse
Affiliation(s)
- Alexander W Timpe
- College of Marine Science, University of South Florida, 830 1(st) St. S., St. Petersburg, FL 33701, USA.
| | - Brad A Seibel
- College of Marine Science, University of South Florida, 830 1(st) St. S., St. Petersburg, FL 33701, USA
| |
Collapse
|
10
|
Malorey P, Porter ES, Gamperl AK, Briffa M, Wilson ADM. Swimming performance, but not metabolism, is related to a boldness-activity syndrome in schoolmaster snapper (Lutjanus apodus). JOURNAL OF FISH BIOLOGY 2024; 105:1811-1829. [PMID: 39251204 DOI: 10.1111/jfb.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
Commercial overexploitation and climate change can alter the physiology and behavior of marine organisms, although intraspecific phenotypic responses to such changes can vary greatly depending on the environment, species, and severity of the stressor. Under the pace-of-life syndrome (POLS) hypothesis, behavior, physiology, and life-history traits are linked, and thus, affected by selection targeting any aspect of organismal biology. However, these links are understudied in tropical marine fishes, and further work is needed to better understand the impacts of fisheries and climate change on wild stocks. Moreover, tropical regions have a greater reliance on fisheries; thus investigations should focus on species with substantial socioeconomic value to ensure benefits at the local level. This study aimed to address this need by measuring the behavior (boldness and activity), metabolism, and swimming performance (using a critical swim speed [Ucrit] test) of schoolmaster snapper Lutjanus apodus in Eleuthera, the Bahamas. We report a strong positive correlation between boldness and activity, high repeatability of these behavioral metrics, and two groupings that were consistent with "proactive" and "reactive" behavioral types. These behavioral types differed significantly in their swimming performance, with reactive individuals having a 13.1% higher mean Ucrit. In contrast, no significant differences were found in the measured metabolic parameters between behavioral types. This study is the first to investigate the intraspecific links between behavior and physiology in a snapper species, using the novel and ecologically relevant comparison of Ucrit with behavioral syndrome types. These data suggest that additional research is needed to better predict the success of proactive/reactive tropical fish if overexploited and as influenced by climate change.
Collapse
Affiliation(s)
- Peter Malorey
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, Newfoundland and Labrador, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, Newfoundland and Labrador, Canada
| | - Mark Briffa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | |
Collapse
|
11
|
Nati JJH, Malorey P, Gamperl AK. Near-maximally swimming schoolmaster snapper (Lutjanus apodus) have a greater metabolic capacity, and slightly lower thermal tolerance, than when tested at rest. J Exp Biol 2024; 227:jeb249273. [PMID: 39387104 DOI: 10.1242/jeb.249273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
To assess the relationship among various measures of thermal tolerance and performance suggested for use in fish, we determined the critical thermal maximum (CTmax), critical swimming speed (Ucrit), maximum thermal tolerance while swimming [CTSmax] and realistic aerobic scope (ASR) of juvenile schoolmaster snapper (Lutjanus apodus). Their CTSmax (37.5±0.1°C) was only slightly lower than their CTmax (38.9±0.1°C) and this is probably because their maximum metabolic rate (MMR) and ASR during the former test were ∼42 and 65% higher, respectively. Furthermore, we did not observe a transition to unsteady (i.e. anaerobically fueled) swimming in the CTSmax test as we did in the Ucrit protocol. These data strongly suggest that thermal tolerance tests on fishes whose lifestyle involves schooling or sustained activity should be performed at ecologically relevant swimming speeds. Our results do not support the hypothesis that failure during a CTSmax test is due to a fish's inability to meet its tissue oxygen demands.
Collapse
Affiliation(s)
- Julie J H Nati
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, NL A1C 5S7, Canada
| | - Peter Malorey
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. Johns, NL A1C 5S7, Canada
| |
Collapse
|
12
|
Almeida J, Lima ARA, Faria AM, Lopes AR. Sand smelt larvae's resilience to hypoxia and implications for thermal tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174969. [PMID: 39117224 DOI: 10.1016/j.scitotenv.2024.174969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Deoxygenation is a growing threat to marine ecosystems, with an increase in the frequency, extent and intensity of hypoxia events in recent decades. These phenomena will pose various challenges to marine species, as it affects their survival, growth, body condition, metabolism and ability to handle other environmental stressors, such as temperature. Early life stages are particularly vulnerable to these changes. Thus, it is crucial to understand how these initial phases will respond to hypoxia to predict the impacts on marine populations and ecosystems. In this work, we aimed to evaluate the effect of oxygen (O2) availability on fitness related traits (mortality, growth and body condition), metabolism (Routine metabolic rates [RMR]) and thermal tolerance (CTmax), in early stages of Atherina presbyter, exposed for two weeks, to two O2 levels: normoxia (6.5-7.2 mg L-1) and hypoxia (2-2.5 mg L-1), through an experiment setup. Our findings showed that while low oxygen levels did not negatively impact mortality, total length, weight, or body condition (Fulton K), the larvae undergo metabolic depression when exposed to hypoxia, as an energy conservation mechanism. Furthermore, CTmax suffered a significant reduction in low O2 availability, due to the inability of the circulatory and respiratory systems to fulfill energy demands. These outcomes suggest that although early life stages of Atherina presbyter can survive under low oxygen environments, they are less capable of dealing with sudden increases in temperature when oxygen is scarce.
Collapse
Affiliation(s)
- João Almeida
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, 1149 Lisbon, Portugal
| | - André R A Lima
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, 1149 Lisbon, Portugal
| | - Ana Margarida Faria
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Universitário, 1149 Lisbon, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Ana Rita Lopes
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal.
| |
Collapse
|
13
|
Fergusson KN, Tanner JL, Brand JA, Hannington SL, Pettersen AK, Sundin J, Saaristo M, Bertram MG, Martin JM, Wong BBM. Effects of long-term fluoxetine exposure on morphology, but not behaviour or metabolic rate, in male guppies (Poecilia reticulata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107082. [PMID: 39270523 DOI: 10.1016/j.aquatox.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Contamination of aquatic ecosystems by pharmaceuticals is a growing threat worldwide. The antidepressant fluoxetine is one such pharmaceutical that is frequently detected in aquatic ecosystems, and has been found to alter the behaviour and physiology of exposed wildlife. Few studies, however, have investigated potential combined effects on behaviour and metabolic rate. In addition, exposures are often short in duration and rarely conducted under ecologically relevant conditions. Here, we examined the impacts of long-term fluoxetine exposure on boldness (exploration, activity, and antipredator behaviour), metabolic rate, and morphology in male guppies (Poecilia reticulata). Specifically, fish were exposed for 8 months (corresponding to approximately two overlapping generations) in semi-natural mesocosms to one of three treatments: an unexposed control (0 ng L-1), or low or high fluoxetine (mean measured concentrations: 30 ng L-1 and 292 ng L-1, respectively). Following exposure, we quantified male exploratory behaviour and activity in a novel environment (maze arena) and antipredator behaviour in the presence or absence of a live predator (spangled perch, Leiopotherapon unicolor), as well as metabolic rate and morphology (mass, standard length, and scaled mass index). Fluoxetine exposure did not significantly alter boldness, metabolic rate, mass, or standard length. However, fluoxetine exposure did alter body condition, whereby fish in the high treatment had a higher scaled mass index than control fish. Our results, considered alongside previous work, underscore the importance of exposure duration in mediating the effects of fluoxetine on fitness-related traits. Continued research under extended exposure periods (i.e., spanning multiple generations) is essential if we are to accurately predict the ecological impacts of fluoxetine on exposed wildlife, and their underlying mechanism(s).
Collapse
Affiliation(s)
- Kate N Fergusson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - James L Tanner
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - Jack A Brand
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | | | - Amanda K Pettersen
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Josefin Sundin
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden.
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Environment Protection Authority Victoria, EPA Science, Macleod, Victoria, Australia.
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden; School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Australia.
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
14
|
Sandrelli RM, Porter ES, Gamperl AK. Hyperoxia does not improve the acute upper thermal tolerance of a tropical marine fish (Lutjanus apodus). J Exp Biol 2024; 227:jeb247703. [PMID: 39369300 PMCID: PMC11574356 DOI: 10.1242/jeb.247703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Fish can experience hyperoxia in shallow environments due to photosynthetic activity and this has been suggested to provide them with a metabolic refuge during acute warming. However, this hypothesis has never been tested on a tropical marine species. Thus, we fitted 29°C-acclimated wild schoolmaster snapper (Lutjanus apodus; a species known to experience diel hyperoxia in mangrove creeks and coastal waters) with Transonic® flow probes and exposed them to an acute increase in temperature (at 1°C h-1) in respirometers under normoxia and hyperoxia (150% air saturation), until their critical thermal maximum (CTmax). The CTmax of both groups was ∼39°C, and no differences in maximum cardiac function were recorded as the fish were warmed. However, temperature-induced factorial aerobic scope was significantly greater in fish tested under hyperoxia. These data suggest that hyperoxia will not protect coastal tropical fish species during marine heat waves, despite its effects on metabolic scope/capacity.
Collapse
Affiliation(s)
- Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| |
Collapse
|
15
|
Schneider AE, Esbaugh AJ, Cupp AR, Suski CD. Silver carp experience metabolic and behavioral changes when exposed to water from the Chicago Area Waterway. Sci Rep 2024; 14:24689. [PMID: 39455602 PMCID: PMC11511862 DOI: 10.1038/s41598-024-71442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2024] [Indexed: 10/28/2024] Open
Abstract
One of the hallmarks of invasive species is their propensity to spread. Removing an invasive species after establishment is virtually impossible, and so considerable effort is invested in preventing the range expansion of invaders. Silver carp (Hypophthalmichthys molitrix) were discovered in the Mississippi River in 1981 and have spread throughout the basin. Despite their propensity to expand, the 'leading edge' in the Illinois River has stalled south of Chicago and has remained stable for a decade. Studies have indicated that contaminants in the Chicago Area Waterway System (CAWS) may be contributing to the lack of upstream movement, but this hypothesis has not been tested. This study used a laboratory setting to quantify the role of contaminants in deterring upstream movement of silver carp within the CAWS. For this, water was collected from the CAWS near the upstream edge of the distribution and transported to a fish culture facility. Silver carp and one native species were exposed to CAWS water, and activity, behavior, avoidance, and metabolic rates were quantified. Results showed that silver carp experience an elevated metabolic cost in CAWS water, along with reductions in swimming behavior. Together, results indicate a role for components of CAWS water at deterring range expansion.
Collapse
Affiliation(s)
- Amy E Schneider
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61801, USA
| | - A J Esbaugh
- Department of Marine Science, University of Texas Austin, Austin, TX, 78712, USA
| | - Aaron R Cupp
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - C D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
16
|
Reemeyer JE, Rumball D, Mandrak NE, Chapman LJ. Seasonal variation in thermal tolerance and hypoxia tolerance of a threatened minnow and a non-imperilled congener: a cautionary tale for surrogate species in conservation. CONSERVATION PHYSIOLOGY 2024; 12:coae071. [PMID: 39417164 PMCID: PMC11482009 DOI: 10.1093/conphys/coae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Freshwater organisms face multiple threats to their ecosystems, including warming associated with climate change and low dissolved oxygen (environmental hypoxia), which are both increasing in frequency and extent in freshwater systems. Understanding tolerance thresholds for these environmental stressors as well as the plasticity of responses is the key for informing the conservation of imperilled species. Direct measurement of imperilled species can be difficult, and the use of surrogate (non-imperilled but closely related) species has been proposed as a remedy, but the degree to which surrogate data are representative of the imperilled species has not been widely validated. In this study, we measured physiological performance of two species: one federally listed as Threatened in Canada (Pugnose Shiner, Miniellus anogenus) and a non-imperilled congener (Blackchin Shiner, Miniellus heterodon). Hypoxia tolerance (critical oxygen tension and loss of equilibrium) and upper thermal tolerance (CTmax) were measured streamside over a period of 5 months. We found that the Threatened Pugnose Shiner had lower tolerance to both elevated temperature and hypoxia than the non-imperilled Blackchin Shiner. The species also differed in their responses to environmental dissolved oxygen (DO). CTmax of Pugnose Shiner had a positive relationship with DO such that CTmax was lowered when environmental DO was low, whereas there was no effect of DO on CTmax of Blackchin Shiner. Blackchin Shiner also showed plasticity of hypoxia tolerance in response to changes in environmental DO, while Pugnose Shiner showed little plasticity. We conclude that Pugnose Shiner may be more sensitive to heat waves and hypoxia associated with climate change. We also assert that researchers should be cautious when using surrogate species to inform tolerance limits of imperilled species and highlight the value of measuring imperilled species directly when possible.
Collapse
Affiliation(s)
- Jessica E Reemeyer
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, Canada
| | - Dominique Rumball
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada
| | - Nicholas E Mandrak
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada
| | - Lauren J Chapman
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Herrera-Castillo L, Vallejo-Palma G, Saiz N, Sánchez-Jiménez A, Isorna E, Ruiz-Jarabo I, de Pedro N. Metabolic Rate of Goldfish ( Carassius auratus) in the Face of Common Aquaculture Challenges. BIOLOGY 2024; 13:804. [PMID: 39452113 PMCID: PMC11504095 DOI: 10.3390/biology13100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
This study examined the metabolic rate (MO2, oxygen consumption) of goldfish (Carassius auratus) under normal management conditions in aquaculture. Using an intermittent respirometry system, we assessed daily variations and the effects of feeding, handling, temperature increase, and anesthetics. MO2 exhibited a daily rhythm, with higher values during day. Feeding to satiety produced a 35% increase in MO2 compared to fasted animals, with a maximum peak after 3 h and returning to baseline after 7 h. Handling stress (5 min) produced a 140% MO2 peak (from 180 to 252 mg O2 kg-1 h-1), returning to the routine MO2 after 2.5 h. An increase in water temperature (+0.1 °C min-1) up to 30 °C caused MO2 to peak at 200% after 2.5 h from the start of the temperature increase. The use of common anesthetics in aquaculture (MS-222, 2-phenoxyethanol and clove oil in deep anesthesia concentration) affects MO2 during the first few minutes after anesthetic recovery, but also during the following 4 h. It can be concluded that the metabolic rate is a good indicator of the goldfish's response to aquaculture practices involving energy expenditure and stress. Thus, intermittent respirometry is a valuable non-invasive tool for understanding and improving fish welfare in aquaculture.
Collapse
Affiliation(s)
- Lisbeth Herrera-Castillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Germán Vallejo-Palma
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Nuria Saiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Abel Sánchez-Jiménez
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| | - Ignacio Ruiz-Jarabo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
- Department of Aquaculture, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11519 Puerto Real, Cadiz, Spain
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (L.H.-C.); (G.V.-P.); (N.S.); (E.I.); (I.R.-J.)
| |
Collapse
|
18
|
Wu NC, Alton L, Bovo RP, Carey N, Currie SE, Lighton JRB, McKechnie AE, Pottier P, Rossi G, White CR, Levesque DL. Reporting guidelines for terrestrial respirometry: Building openness, transparency of metabolic rate and evaporative water loss data. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111688. [PMID: 38944270 DOI: 10.1016/j.cbpa.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Respirometry is an important tool for understanding whole-animal energy and water balance in relation to the environment. Consequently, the growing number of studies using respirometry over the last decade warrants reliable reporting and data sharing for effective dissemination and research synthesis. We provide a checklist guideline on five key sections to facilitate the transparency, reproducibility, and replicability of respirometry studies: 1) materials, set up, plumbing, 2) subject conditions/maintenance, 3) measurement conditions, 4) data processing, and 5) data reporting and statistics, each with explanations and example studies. Transparency in reporting and data availability has benefits on multiple fronts. Authors can use this checklist to design and report on their study, and reviewers and editors can use the checklist to assess the reporting quality of the manuscripts they review. Improved standards for reporting will enhance the value of primary studies and will greatly facilitate the ability to carry out higher quality research syntheses to address ecological and evolutionary theories.
Collapse
Affiliation(s)
- Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales 2753, Australia.
| | - Lesley Alton
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia. https://twitter.com/lesley_alton
| | - Rafael P Bovo
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, United States. https://twitter.com/bovo_rp
| | - Nicholas Carey
- Marine Directorate for the Scottish Government, Aberdeen, United Kingdom
| | - Shannon E Currie
- Institute for Cell and Systems Biology, University of Hamburg, Martin-Luther-King Plz 3, 20146 Hamburg, Germany; School of Biosciences, University of Melbourne, Victoria, Australia. https://twitter.com/batsinthbelfry
| | - John R B Lighton
- Sable Systems International, North Las Vegas, NV, United States. https://twitter.com/SableSys
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia; Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia. https://twitter.com/PatriceEcoEvo
| | - Giulia Rossi
- Department of Biology, McMaster University, Hamilton, Ontario, Canada. https://twitter.com/giuliasrossi
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Danielle L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States. https://twitter.com/dl_levesque
| |
Collapse
|
19
|
Munson A, DePasquale C. Lessons in cognition: A review of maze designs and procedures used to measure spatial learning in fish. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39267308 DOI: 10.1111/jfb.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
The use of different mazes to assess spatial learning has become more common in fish behavior studies in recent decades. This increase in fish cognition research has opened the door to numerous possibilities for exciting and diverse questions, such as identifying ecological drivers of spatial cognition and understanding the role individual variation plays in navigational abilities. There are many different types of mazes, each with its own specific considerations, making it challenging to determine exactly which spatial test is the most relevant and appropriate for a particular experiment. Many spatial mazes, such as the T-maze and Y-maze, have been successfully adapted from rodent studies, particularly with respect to zebrafish, a widely accepted non-mammalian model in biomedical studies. Standardization across studies is increasing with these easily accessible maze designs, validating them for use in fish; however, variations in design (e.g., length of arms and scale) and procedure still exist, and the impact of these variations on results is largely unknown. The efforts to standardize mazes outside zebrafish work are also more limited. Other mazes have been developed specifically for use on fish, with design modifications varying widely, making it difficult to draw comparisons. In this review, we have highlighted the many design and procedural elements that should be considered for the acquisition of reliable behavioral data, with the goal of drawing readers' attention to aspects of experimentation that are often not given the careful consideration that they deserve. We then argue that additional focused research and reporting is needed to produce more reliable methods in spatial learning research across a broader range of subjects.
Collapse
Affiliation(s)
- Amelia Munson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Cairsty DePasquale
- Department of Biology, Pennsylvania State University-Altoona, Altoona, Pennsylvania, USA
| |
Collapse
|
20
|
Higgins E, Bouyoucos IA, Downie AT, Illing B, Martins APB, Simpfendorfer CA, Rummer JL. How hot is too hot? Thermal tolerance, performance, and preference in juvenile mangrove whiprays, Urogymnus granulatus. J Therm Biol 2024; 124:103943. [PMID: 39151217 DOI: 10.1016/j.jtherbio.2024.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/18/2024]
Abstract
Mangrove habitats can serve as nursery areas for sharks and rays. Such environments can be thermally dynamic and extreme; yet, the physiological and behavioural mechanisms sharks and rays use to exploit such habitats are understudied. This study aimed to define the thermal niche of juvenile mangrove whiprays, Urogymnus granulatus. First, temperature tolerance limits were determined via the critical thermal maximum (CTMax) and minimum (CTMin) of mangrove whiprays at summer acclimation temperatures (28 °C), which were 17.5 °C and 39.9 °C, respectively. Then, maximum and routine oxygen uptake rates (ṀO2max and ṀO2routine, respectively), post-exercise oxygen debt, and recovery were estimated at current (28 °C) and heatwave (32 °C) temperatures, revealing moderate temperature sensitivities (i.e., Q10) of 2.4 (ṀO2max) and 1.6 (ṀO2routine), but opposing effects on post-exercise oxygen uptake. Finally, body temperatures (Tb) of mangrove whiprays were recorded using external temperature loggers, and environmental temperatures (Te) were recorded using stationary temperature loggers moored in three habitat zones (mangrove, reef flat, and reef crest). As expected, environmental temperatures varied between sites depending on depth. Individual mangrove whiprays presented significantly lower Tb relative to Te during the hottest times of the day. Electivity analysis showed tagged individuals selected temperatures from 24.0 to 37.0 °C in habitats that ranged from 21.1 to 43.5 °C. These data demonstrate that mangrove whiprays employ thermotaxic behaviours and a thermally insensitive aerobic metabolism to thrive in thermally dynamic and extreme habitats. Tropical nursery areas may, therefore, offer important thermal refugia for young rays. However, these tropical nursery areas could become threatened by mangrove and coral habitat loss, and climate change.
Collapse
Affiliation(s)
- Emily Higgins
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.
| | - Adam T Downie
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Björn Illing
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Ana P B Martins
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
21
|
Dubuc A, Rummer JL, Vigliola L, Lemonnier H. Coping with environmental degradation: Physiological and morphological adjustments of wild mangrove fish to decades of aquaculture-induced nutrient enrichment. MARINE POLLUTION BULLETIN 2024; 205:116599. [PMID: 38878416 DOI: 10.1016/j.marpolbul.2024.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
The impact of eutrophication on wild fish individuals is rarely reported. We compared physiological and morphological traits of Siganus lineatus chronically exposed to aquaculture-induced eutrophication in the wild with individuals living at a control site. Eutrophication at the impacted site was confirmed by elevated organic matter (up to 150 % higher), phytoplankton (up to 7 times higher), and reduced oxygen (up to 60 % lower). Physiological and morphological traits of S. lineatus differed significantly between the two sites. Fish from the impacted site exhibited elevated hypoxia tolerance, increased gill surface area, shorter oxygen diffusion distances, and altered blood oxygen-carrying capacity. Elevated blood lactate and scope for anaerobic ATP production were observed, suggesting enhanced survival below critical oxygen levels. A significant 8.5 % increase in metabolic costs and altered allometric scaling, related to environmental degradation, were recorded. Our study underscores eutrophication's profound impact at the organism-level and the importance to mitigate it.
Collapse
Affiliation(s)
- A Dubuc
- Institut Français de Recherche pour l'Exploitation de la MER (IFREMER), UMR Entropie (IFREMER, IRD, UNC, UR, CNRS), Nouméa, New Caledonia; School of Life Sciences, University of Essex, Colchester, United Kingdom.
| | - J L Rummer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - L Vigliola
- Institut de Recherche pour le Développement (IRD), UMR Entropie (IRD, IFREMER, UNC, UR, CNRS), Nouméa, New Caledonia
| | - H Lemonnier
- Institut Français de Recherche pour l'Exploitation de la MER (IFREMER), UMR Entropie (IFREMER, IRD, UNC, UR, CNRS), Nouméa, New Caledonia
| |
Collapse
|
22
|
O'Gorman EJ, Vieira RP, Sturrock AM. Fish habitat ecology in a changing climate. JOURNAL OF FISH BIOLOGY 2024; 105:385-391. [PMID: 39113395 DOI: 10.1111/jfb.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK
| | - Rui P Vieira
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Suffolk, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Anna M Sturrock
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
23
|
Wassenaar LI, Crespel A, Barth JAC, Koeck B, Závorka L. Non-invasive determination of critical dissolved oxygen thresholds for stress physiology in fish using triple-oxygen stable isotopes and aquatic respirometry. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2024; 60:365-379. [PMID: 38949394 DOI: 10.1080/10256016.2024.2366470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
Understanding the critical thresholds of dissolved oxygen (O2) that trigger adaptive physiological responses in aquatic organisms is long hampered by a lack of robust, non-lethal or non-invasive methodologies. The isotope fractionation of triple O2 isotopes (18O/17O/16O) during respiration is linked to the amount of oxygen utilised, offering a potential avenue for new insights. Our experimental research involved measuring the oxygen isotope fractionation of dissolved O2 in closed-system aquatic respirometry experiments with wild sticklebacks (Gasterosteus aculeatus). These fish were either naturally adapted or experimentally acclimated to hypoxic and normoxic conditions. The aim was to observe their oxygen usage and isotope fractionation in response to increasingly severe hypoxia. Initial observations revealed a progressive 18O enrichment from the preferential uptake of 16O to a dissolved oxygen threshold of 3-5 mg O2 L-1, followed by an apparent reversal in oxygen isotope fractionation, which is mixing of 16O and 17O with the remaining O2 pool across all populations and indicative of a systematic change in oxygen metabolism among the fish. Unexpectedly, sticklebacks adapted to hypoxia but acclimated to normoxia exhibited stronger oxygen isotope fractionation compared to those adapted to normoxia and acclimated to hypoxia, contradicting the hypothesis that hypoxia adaptation would lead to reduced isotope discrimination due to more efficient oxygen uptake. These preliminary experimental results highlight the novel potential of using dissolved O2 isotopes as a non-invasive, non-lethal method to quantitatively assess metabolic thresholds in aquatic organisms. This approach could significantly improve our understanding of the critical oxygen responses and adaptation mechanisms in fish and other aquatic organisms across different oxygen environments, marking a significant step forward in aquatic ecological and physiological research.
Collapse
Affiliation(s)
- Leonard I Wassenaar
- WasserCluster Lunz Biologische Station GmbH, Lunz am See, Austria
- Danube University Krems, Krems, Austria
| | - Amélie Crespel
- Department of Biology, University of Turku, Turku, Finland
| | - Johannes A C Barth
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nu¨rnberg, Erlangen, Germany
| | - Barbara Koeck
- WasserCluster Lunz Biologische Station GmbH, Lunz am See, Austria
| | - Libor Závorka
- WasserCluster Lunz Biologische Station GmbH, Lunz am See, Austria
- Danube University Krems, Krems, Austria
| |
Collapse
|
24
|
Rees BB, Reemeyer JE, Binning SA, Brieske SD, Clark TD, De Bonville J, Eisenberg RM, Raby GD, Roche D, Rummer JL, Zhang Y. Estimating maximum oxygen uptake of fishes during swimming and following exhaustive chase - different results, biological bases and applications. J Exp Biol 2024; 227:jeb246439. [PMID: 38819376 DOI: 10.1242/jeb.246439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The maximum rate at which animals take up oxygen from their environment (ṀO2,max) is a crucial aspect of their physiology and ecology. In fishes, ṀO2,max is commonly quantified by measuring oxygen uptake either during incremental swimming tests or during recovery from an exhaustive chase. In this Commentary, we compile recent studies that apply both techniques to the same fish and show that the two methods typically yield different mean estimates of ṀO2,max for a group of individuals. Furthermore, within a group of fish, estimates of ṀO2,max determined during swimming are poorly correlated with estimates determined during recovery from chasing (i.e. an individual's ṀO2,max is not repeatable across methods). One explanation for the lack of agreement is that these methods measure different physiological states, each with their own behavioural, anatomical and biochemical determinants. We propose that these methods are not directly interchangeable but, rather, each is suited to address different questions in fish biology. We suggest that researchers select the method that reflects the biological contexts of their study, and we advocate for the use of accurate terminology that acknowledges the technique used to elevate ṀO2 (e.g. peak ṀO2,swim or peak ṀO2,recovery). If the study's objective is to estimate the 'true' ṀO2,max of an individual or species, we recommend that pilot studies compare methods, preferably using repeated-measures designs. We hope that these recommendations contribute new insights into the causes and consequences of variation in ṀO2,max within and among fish species.
Collapse
Affiliation(s)
- Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | | | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Samantha D Brieske
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Timothy D Clark
- School of Life and Environmental Science, Deakin University, Geelong, Victoria, Australia3216
| | - Jeremy De Bonville
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Rachel M Eisenberg
- Department of Zoology, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, CanadaK9L 0G2
| | - Dominique Roche
- Social Sciences and Humanities Research Council of Canada, Ottawa, ON, CanadaK1R 0E3
| | - Jodie L Rummer
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Yangfan Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Eisenberg RM, Sandrelli RM, Gamperl AK. Comparing methods for determining the metabolic capacity of lumpfish (Cyclopterus lumpus Linnaeus 1758). JOURNAL OF FISH BIOLOGY 2024; 104:1813-1823. [PMID: 38486407 DOI: 10.1111/jfb.15716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 06/27/2024]
Abstract
Lumpfish (Cyclopterus lumpus) mortalities have been reported during the summer at some North Atlantic salmon cage-sites where they serve as "cleaner fish." To better understand this species' physiology and whether limitations in their metabolic capacity and thermal tolerance can explain this phenomenon, we compared the aerobic scope (AS) of 6°C-acclimated lumpfish (~50 g and 8.8 cm in length at the beginning of experiments) when all individuals (N = 12) were given a chase to exhaustion, a critical swim speed (Ucrit) test, and a critical thermal maximum (CTMax) test (rate of warming 2°C h-1). The Ucrit and CTMax of the lumpfish were 2.36 ± 0.08 body lengths per second and 20.6 ± 0.3°C. The AS of lumpfish was higher during the Ucrit test (206.4 ± 8.5 mg O2 kg-1 h-1) versus that measured in either the CTMax test or after the chase to exhaustion (141.0 ± 15.0 and 124.7 ± 15.5 mg O2 kg-1 h-1, respectively). Maximum metabolic rate (MMR), AS, and "realistic" AS (ASR) measured using the three different protocols were not significantly correlated, indicating that measurements of metabolic capacity using one of these methods cannot be used to estimate values that would be obtained using another method. Additional findings include that (1) the lumpfish's metabolic capacity is comparable to that of Atlantic cod, suggesting that they are not as "sluggish" as previously suggested in the literature, and (2) their CTMax (20.6°C when acclimated to 6°C), in combination with their recently determined ITMax (20.6°C when acclimated to 10°C), indicates that high sea-cage temperatures are unlikely to be the primary cause of lumpfish mortalities at salmon sea-cages during the summer.
Collapse
Affiliation(s)
- Rachel M Eisenberg
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| | - Anthony Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
26
|
Montgomery DW, Finlay J, Simpson SD, Engelhard GH, Birchenough SNR, Wilson RW. Respiratory acidosis and O 2 supply capacity do not affect the acute temperature tolerance of rainbow trout ( Oncorhynchus mykiss). CONSERVATION PHYSIOLOGY 2024; 12:coae026. [PMID: 38779432 PMCID: PMC11109029 DOI: 10.1093/conphys/coae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
The mechanisms that determine the temperature tolerances of fish are poorly understood, creating barriers to disentangle how additional environmental challenges-such as CO2-induced aquatic acidification and fluctuating oxygen availability-may exacerbate vulnerability to a warming climate and extreme heat events. Here, we explored whether two acute exposures (~0.5 hours or ~72 hours) to increased CO2 impact acute temperature tolerance limits in a freshwater fish, rainbow trout (Oncorhynchus mykiss). We separated the potential effects of acute high CO2 exposure on critical thermal maximum (CTmax), caused via either respiratory acidosis (reduced internal pH) or O2 supply capacity (aerobic scope), by exposing rainbow trout to ~1 kPa CO2 (~1% or 10 000 μatm) in combination with normoxia or hyperoxia (~21 or 42 kPa O2, respectively). In normoxia, acute exposure to high CO2 caused a large acidosis in trout (blood pH decreased by 0.43 units), while a combination of hyperoxia and ~1 kPa CO2 increased the aerobic scope of trout by 28%. Despite large changes in blood pH and aerobic scope between treatments, we observed no impacts on the CTmax of trout. Our results suggest that the mechanisms that determine the maximum temperature tolerance of trout are independent of blood acid-base balance or the capacity to deliver O2 to tissues.
Collapse
Affiliation(s)
| | - Jennifer Finlay
- Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Stephen D Simpson
- Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Georg H Engelhard
- International Marine Climate Change Centre (iMC3), Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT, UK
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Silvana N R Birchenough
- International Marine Climate Change Centre (iMC3), Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT, UK
| | - Rod W Wilson
- Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
27
|
Brieske SD, Mullen SC, Rees BB. Method dependency of maximum oxygen uptake rate and its repeatability in the Gulf killifish, Fundulus grandis. JOURNAL OF FISH BIOLOGY 2024; 104:1537-1547. [PMID: 38403734 DOI: 10.1111/jfb.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
The maximum rate at which fish can take up oxygen from their environment to fuel aerobic metabolism is an important feature of their physiology and ecology. Methods to quantify maximum oxygen uptake rate (ṀO2), therefore, should reliably and reproducibly estimate the highest possible ṀO2 by an individual or species under a given set of conditions (peak ṀO2). This study determined peak ṀO2 and its repeatability in Gulf killifish, Fundulus grandis, subjected to three methods to elevate metabolism: swimming at increasing water speeds, during recovery after an exhaustive chase, and after ingestion of a large meal. Estimates of peak ṀO2 during swimming and after an exhaustive chase were repeatable across two trials, whereas peak ṀO2 after feeding was not. Peak ṀO2 determined by the three methods was significantly different from one another, being highest during swimming, lowest after an exhaustive chase, and intermediate after feeding. In addition, peak ṀO2 during recovery from an exhaustive chase depended on the length of time of recovery: in nearly 60% of the trials, values within the first hour of the chase were lower than those measured later. A novel and important finding was that an individual's peak ṀO2 was not repeatable when compared across methods. Therefore, the peak ṀO2 estimated for a group of fish, as well as the ranking of individual ṀO2 within that group, depends on the method used to elevate aerobic metabolism.
Collapse
Affiliation(s)
- Samantha D Brieske
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Sylvia C Mullen
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
28
|
Dai Q, Suski CD. Differing physiological performance of coexisting cool- and warmwater fish species under heatwaves in the Midwestern United States. PLoS One 2024; 19:e0301130. [PMID: 38517899 PMCID: PMC10959393 DOI: 10.1371/journal.pone.0301130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/08/2024] [Indexed: 03/24/2024] Open
Abstract
Heatwaves are becoming more frequent and intensified with climate change. Freshwater ecosystems are among the most threatened, within which, differing responses between cool- and warmwater species to heatwaves can lead to fundamental changes in communities. Physiological experiments can identify potential mechanisms underlying the impacts of such heatwaves on fish communities. In the current study, we quantified the oxygen consumption rate, aerobic scope and swimming performance of cool- and warmwater fish species following the simulation of short-term heatwaves currently occurring in streams in the Midwestern United States. The coolwater predator walleye (Sander vitreus) showed clear thermal disadvantages relative to the warmwater predator largemouth bass (Micropterus salmoides), based on a high metabolic cost during the heatwave, low metabolic activity when encountering prey, and reduced swimming performance following the heatwave. Largemouth bass also showed a thermal advantage relative to the warmwater prey fathead minnow (Pimephales promelas) related to swimming performance and energetic costs, highlighting differing thermal responses between predators and prey. This study demonstrates the importance of considering short-term extreme thermal events in the response of aquatic communities to climate stressors.
Collapse
Affiliation(s)
- Qihong Dai
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Cory D. Suski
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
29
|
Dilernia NJ, Woodcock S, Camp EF, Hughes DJ, Kühl M, Suggett DJ. Intra-colony spatial variance of oxyregulation and hypoxic thresholds for key Acropora coral species. Ecol Evol 2024; 14:e11100. [PMID: 38444722 PMCID: PMC10914553 DOI: 10.1002/ece3.11100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Oxygen (O2) availability is essential for healthy coral reef functioning, yet how continued loss of dissolved O2 via ocean deoxygenation impacts performance of reef building corals remains unclear. Here, we examine how intra-colony spatial geometry of important Great Barrier Reef (GBR) coral species Acropora may influence variation in hypoxic thresholds for upregulation, to better understand capacity to tolerate future reductions in O2 availability. We first evaluate the application of more streamlined models used to parameterise Hypoxia Response Curve data, models that have been used historically to identify variable oxyregulatory capacity. Using closed-system respirometry to analyse O2 drawdown rate, we show that a two-parameter model returns similar outputs as previous 12th-order models for descriptive statistics such as the average oxyregulation capacity (Tpos) and the ambient O2 level at which the coral exerts maximum regulation effort (Pcmax), for diverse Acropora species. Following an experiment to evaluate whether stress induced by coral fragmentation for respirometry affected O2 drawdown rate, we subsequently identify differences in hypoxic response for the interior and exterior colony locations for the species Acropora abrotanoides, Acropora cf. microphthalma and Acropora elseyi. Average regulation capacity across species was greater (0.78-1.03 ± SE 0.08) at the colony interior compared with exterior (0.60-0.85 ± SE 0.08). Moreover, Pcmax occurred at relatively low pO2 of <30% (±1.24; SE) air saturation for all species, across the colony. When compared against ambient O2 availability, these factors corresponded to differences in mean intra-colony oxyregulation, suggesting that lower variation in dissolved O2 corresponds with higher capacity for oxyregulation. Collectively, our data show that intra-colony spatial variation affects coral oxyregulation hypoxic thresholds, potentially driving differences in Acropora oxyregulatory capacity.
Collapse
Affiliation(s)
- Nicole J. Dilernia
- Climate Change ClusterUniversity of Technology Sydney (UTS)UltimoNew South WalesAustralia
| | - Stephen Woodcock
- School of Mathematical and Physical SciencesUniversity of Technology Sydney (UTS)UltimoNew South WalesAustralia
| | - Emma F. Camp
- Climate Change ClusterUniversity of Technology Sydney (UTS)UltimoNew South WalesAustralia
| | - David J. Hughes
- National Sea SimulatorAustralian Institute of Marine Science (AIMS)TownsvilleQueenslandAustralia
| | - Michael Kühl
- Department of Biology, Marine Biological SectionUniversity of CopenhagenHelsingørDenmark
| | - David J. Suggett
- Climate Change ClusterUniversity of Technology Sydney (UTS)UltimoNew South WalesAustralia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC)King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
30
|
Norin T, Rowsey LE, Houslay TM, Reeve C, Speers-Roesch B. Among-individual variation in thermal plasticity of fish metabolic rates causes profound variation in temperature-specific trait repeatability, but does not co-vary with behavioural plasticity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220488. [PMID: 38186278 PMCID: PMC10772605 DOI: 10.1098/rstb.2022.0488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 01/09/2024] Open
Abstract
Conspecifics of the same age and size differ consistently in the pace with which they expend energy. This among-individual variation in metabolic rate is thought to influence behavioural variation, since differences in energy requirements should motivate behaviours that facilitate energy acquisition, such as being bold or active in foraging. While there is evidence for links between metabolic rate and behaviour in constant environments, we know little about whether metabolic rate and behaviour change together when the environment changes-that is, if metabolic and behavioural plasticity co-vary. We investigated this using a fish that becomes dormant in winter and strongly reduces its activity when the environment cools, the cunner (Tautogolabrus adspersus). We found strong and predictable among-individual variation in thermal plasticity of metabolic rates, from resting to maximum levels, but no evidence for among-individual variation in thermal plasticity of movement activity, meaning that these key physiological and behavioural traits change independently when the environment changes. The strong among-individual variation in metabolic rate plasticity resulted in much higher repeatability (among-individual consistency) of metabolic rates at warm than cold temperatures, indicating that the potential for metabolic rate to evolve under selection is temperature-dependent, as repeatability can set the upper limit to heritability. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Henrik Dams Allé 202, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Lauren E. Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Thomas M. Houslay
- Centre of Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Connor Reeve
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| |
Collapse
|
31
|
Gvoždík L. Individual variation in thermally induced plasticity of metabolic rates: ecological and evolutionary implications for a warming world. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220494. [PMID: 38186270 PMCID: PMC10772608 DOI: 10.1098/rstb.2022.0494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/11/2023] [Indexed: 01/09/2024] Open
Abstract
Energy metabolism is a fundamental property of life providing the energy for all processes and functions within an organism. As it is temperature-dependent, it mediates the effects of changing climate on ectotherm fitness and population dynamics. Though resting metabolic rate is a highly labile trait, part of its variation is individually consistent. Recent findings show that resting metabolic rate contains consistent variation not only in the elevations (intercepts) but also in the slopes of individual thermal dependence curves, challenging the thermal dependence assumption for this trait in several ectotherm taxa. I argue that among-individual variation in thermal metabolic curves represents a previously undetected component of ectotherm response to climate change, potentially affecting their adaptive capacity and population resilience under increasing stochasticity of thermal environment. Future studies need to examine not only the amount of among-individual variation in thermal metabolic curves across phylogenetic contexts but also other aspects concerning its mechanisms and adaptive significance to improve predictions about the impact of climate change on ectotherm population dynamics. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60300 Brno, Czech Republic
| |
Collapse
|
32
|
Lonthair JK, Wegner NC, Cheng BS, Fangue NA, O'Donnell MJ, Regish AM, Swenson JD, Argueta E, McCormick SD, Letcher BH, Komoroske LM. Smaller body size under warming is not due to gill-oxygen limitation in a cold-water salmonid. J Exp Biol 2024; 227:jeb246477. [PMID: 38380449 PMCID: PMC11093110 DOI: 10.1242/jeb.246477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Declining body size in fishes and other aquatic ectotherms associated with anthropogenic climate warming has significant implications for future fisheries yields, stock assessments and aquatic ecosystem stability. One proposed mechanism seeking to explain such body-size reductions, known as the gill oxygen limitation (GOL) hypothesis, has recently been used to model future impacts of climate warming on fisheries but has not been robustly empirically tested. We used brook trout (Salvelinus fontinalis), a fast-growing, cold-water salmonid species of broad economic, conservation and ecological value, to examine the GOL hypothesis in a long-term experiment quantifying effects of temperature on growth, resting metabolic rate (RMR), maximum metabolic rate (MMR) and gill surface area (GSA). Despite significantly reduced growth and body size at an elevated temperature, allometric slopes of GSA were not significantly different than 1.0 and were above those for RMR and MMR at both temperature treatments (15°C and 20°C), contrary to GOL expectations. We also found that the effect of temperature on RMR was time-dependent, contradicting the prediction that heightened temperatures increase metabolic rates and reinforcing the importance of longer-term exposures (e.g. >6 months) to fully understand the influence of acclimation on temperature-metabolic rate relationships. Our results indicate that although oxygen limitation may be important in some aspects of temperature-body size relationships and constraints on metabolic supply may contribute to reduced growth in some cases, it is unlikely that GOL is a universal mechanism explaining temperature-body size relationships in aquatic ectotherms. We suggest future research focus on alternative mechanisms underlying temperature-body size relationships, and that projections of climate change impacts on fisheries yields using models based on GOL assumptions be interpreted with caution.
Collapse
Affiliation(s)
- Joshua K. Lonthair
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
- National Research Council under contract to Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037-1508, USA
| | - Nicholas C. Wegner
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla 92037-1508, CA, USA
| | - Brian S. Cheng
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| | - Nann A. Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Matthew J. O'Donnell
- US Geological Survey, Eastern Ecological Science Center at the S. O. Conte Research Laboratory, Turners Falls, MA 01376-1000, USA
| | - Amy M. Regish
- US Geological Survey, Eastern Ecological Science Center at the S. O. Conte Research Laboratory, Turners Falls, MA 01376-1000, USA
| | - John D. Swenson
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| | - Estefany Argueta
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| | - Stephen D. McCormick
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
- US Geological Survey, Eastern Ecological Science Center at the S. O. Conte Research Laboratory, Turners Falls, MA 01376-1000, USA
| | - Benjamin H. Letcher
- US Geological Survey, Eastern Ecological Science Center at the S. O. Conte Research Laboratory, Turners Falls, MA 01376-1000, USA
| | - Lisa M. Komoroske
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003-9285, USA
| |
Collapse
|
33
|
Maskrey DK, Killen SS, Sneddon LU, Arnold KE, Wolfenden DCC, Thomson JS. Differential metabolic responses in bold and shy sea anemones during a simulated heatwave. J Exp Biol 2024; 227:jeb244662. [PMID: 38235786 PMCID: PMC10912810 DOI: 10.1242/jeb.244662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
As climate change-induced heatwaves become more common, phenotypic plasticity at multiple levels is a key mitigation strategy by which organisms can optimise selective outcomes. In ectotherms, changes to both metabolism and behaviour can help alleviate thermal stress. Nonetheless, no study in any ectotherm has yet empirically investigated how changing temperatures affect among-individual differences in the associations between these traits. Using the beadlet anemone (Actinia equina), an intertidal species from a thermally heterogeneous environment, we investigated how individual metabolic rates, linked to morphotypic differences in A. equina, and boldness were related across changing temperatures. A crossed-over design and a temporal control were used to test the same individuals at a non-stressful temperature, 13°C, and under a simulated heatwave at 21°C. At each temperature, short-term repeated measurements of routine metabolic rate (RMR) and a single measurement of a repeatable boldness-related behaviour, immersion response time (IRT), were made. Individual differences, but not morphotypic differences, were highly predictive of metabolic plasticity, and the plasticity of RMR was associated with IRT. At 13°C, shy animals had the highest metabolic rates, while at 21°C, this relationship was reversed. Individuals that were bold at 13°C also exhibited the highest metabolic rates at 21°C. Additional metabolic challenges during heatwaves could be detrimental to fitness in bold individuals. Equally, lower metabolic rates at non-stressful temperatures could be necessary for optimal survival as heatwaves become more common. These results provide novel insight into the relationship between metabolic and behavioural plasticity, and its adaptive implications in a changing climate.
Collapse
Affiliation(s)
- Daniel K. Maskrey
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, Nicholson Building, University of Liverpool, Liverpool L69 3GP, UK
| | - Shaun S. Killen
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lynne U. Sneddon
- Department of Biological & Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden
| | - Kathryn E. Arnold
- Department of Environment and Geography, Wentworth Way, University of York, Heslington, York YO10 5NG, UK
| | - David C. C. Wolfenden
- Department of Biological & Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden
| | - Jack S. Thomson
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, Nicholson Building, University of Liverpool, Liverpool L69 3GP, UK
| |
Collapse
|
34
|
Ojelade O, Storm Z, Fu C, Cortese D, Munson A, Boulamail S, Pineda M, Kochhann D, Killen S. Capture and discard practises associated with an ornamental fishery affect the metabolic rate and aerobic capacity of three-striped dwarf cichlids Apistogramma trifasciata. CONSERVATION PHYSIOLOGY 2024; 12:coad105. [PMID: 38293637 PMCID: PMC10823353 DOI: 10.1093/conphys/coad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Fishing causes direct removal of individuals from wild populations but can also cause a physiological disturbance in fish that are released or discarded after capture. While sublethal physiological effects of fish capture have been well studied in commercial and recreational fisheries, this issue has been overlooked for the ornamental fish trade, where it is common to capture fish from the wild and discard non-target species. We examined metabolic responses to capture and discard procedures in the three-striped dwarf cichlid Apistogramma trifasciata, a popular Amazonian aquarium species that nonetheless may be discarded when not a target species. Individuals (n = 34) were tagged and exposed to each of four treatments designed to simulate procedures during the capture and discard process: 1) a non-handling control; 2) netting; 3) netting +30 seconds of air exposure; and 4) netting +60 seconds of air exposure. Metabolic rates were estimated using intermittent-flow respirometry, immediately following each treatment then throughout recovery overnight. Increasing amounts of netting and air exposure caused an acute increase in oxygen uptake and decrease in available aerobic scope. In general, recovery occurred quickly, with rapid decreases in oxygen uptake within the first 30 minutes post-handling. Notably, however, male fish exposed to netting +60 seconds of air exposure showed a delayed response whereby available aerobic scope was constrained <75% of maximum until ~4-6 hours post-stress. Larger fish showed a greater initial increase in oxygen uptake post-stress and slower rates of recovery. The results suggest that in the period following discard, this species may experience a reduced aerobic capacity for additional behavioural/physiological responses including feeding, territory defence and predator avoidance. These results are among the first to examine impacts of discard practises in the ornamental fishery and suggest ecophysiological research can provide valuable insight towards increasing sustainable practises in this global trade.
Collapse
Affiliation(s)
- Oluwaseun Ojelade
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Zoe Storm
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Cheng Fu
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
- Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| | - Daphne Cortese
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Amelia Munson
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Sarah Boulamail
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Mar Pineda
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Daiani Kochhann
- Laboratory of Behavioural Ecophysiology, Center of Agrarian and Biological Sciences, Acaraú Valley State University, 850 Avenue da Universidade, Sobral, Ceará, Brazil, 62040370
| | - Shaun Killen
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| |
Collapse
|
35
|
Kraskura K, Hardison EA, Eliason EJ. Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci Rep 2023; 13:17900. [PMID: 37857749 PMCID: PMC10587238 DOI: 10.1038/s41598-023-44574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Environmental warming is associated with reductions in ectotherm body sizes, suggesting that larger individuals may be more vulnerable to climate change. The mechanisms driving size-specific vulnerability to temperature are unknown but are required to finetune predictions of fisheries productivity and size-structure community responses to climate change. We explored the potential metabolic and cardiac mechanisms underlying these body size vulnerability trends in a eurythermal fish, barred surfperch. We acutely exposed surfperch across a large size range (5-700 g) to four ecologically relevant temperatures (16 °C, 12 °C, 20 °C, and 22 °C) and subsequently, measured their metabolic capacity (absolute and factorial aerobic scopes, maximum and resting metabolic rates; AAS, FAS, MMR, RMR). Additionally, we estimated the fish's cardiac thermal tolerance by measuring their maximum heart rates (fHmax) across acutely increasing temperatures. Barred surfperch had parallel hypoallometric scaling of MMR and RMR (exponent 0.81) and a weaker hypoallometric scaling of fHmax (exponent - 0.05) across all test temperatures. In contrast to our predictions, the fish's aerobic capacity was maintained across sizes and acute temperatures, and larger fish had greater cardiac thermal tolerance than smaller fish. These results demonstrate that thermal performance may be limited by different physiological constraints depending on the size of the animal and species of interest.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
36
|
Yoon GR, Thorstensen MJ, Bugg WS, Bouyoucos IA, Deslauriers D, Anderson WG. Comparison of metabolic rate between two genetically distinct populations of lake sturgeon. Ecol Evol 2023; 13:e10470. [PMID: 37664502 PMCID: PMC10468615 DOI: 10.1002/ece3.10470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Environmental temperatures differ across latitudes in the temperate zone, with relatively lower summer and fall temperatures in the north leading to a shorter growing season prior to winter. As an adaptive response, during early life stages, fish in northern latitudes may grow faster than their conspecifics in southern latitudes, which potentially manifests as different allometric relationships between body mass and metabolic rate. In the present study, we examined if population or year class had an effect on the variation of metabolic rate and metabolic scaling of age-0 lake sturgeon (Acipenser fulvescens) by examining these traits in both a northern (Nelson River) and a southern (Winnipeg River) population. We compiled 6 years of data that used intermittent flow respirometry to measure metabolic rate within the first year of life for developing sturgeon that were raised in the same environment at 16°C. We then used a Bayesian modeling approach to examine the impacts of population and year class on metabolic rate and mass-scaling of metabolic rate. Despite previous reports of genetic differences between populations, our results showed that there were no significant differences in standard metabolic rate, routine metabolic rate, maximum metabolic rate, and metabolic scaling between the two geographically separated populations at a temperature of 16°C. Our analysis implied that the lack of metabolic differences between populations could be due to family effects/parental contribution, or the rearing temperature used in the study. The present research provided insights for conservation and reintroduction strategies for these populations of lake sturgeon, which are endangered or threatened across most of their natural range.
Collapse
Affiliation(s)
- Gwangseok R. Yoon
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Matt J. Thorstensen
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - William S. Bugg
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Pacific Salmon FoundationVancouverBritish ColumbiaCanada
| | - Ian A. Bouyoucos
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - David Deslauriers
- Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQuébecCanada
| | - W. Gary Anderson
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
37
|
Porter ES, Gamperl AK. Cardiorespiratory physiology and swimming capacity of Atlantic salmon (Salmo salar) at cold temperatures. J Exp Biol 2023; 226:jeb245990. [PMID: 37661722 PMCID: PMC10499030 DOI: 10.1242/jeb.245990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
We investigated how acclimation to 8, 4 and 1°C, and acute cooling from 8 to 1°C, affected the Atlantic salmon's aerobic and anaerobic metabolism, and cardiac function, during a critical swim speed (Ucrit) test. This study revealed several interesting temperature-dependent effects. First, while differences in resting heart rate (fH) between groups were predictable based on previous research (range ∼28-65 beats min-1), with values for 1°C-acclimated fish slightly higher than those of acutely exposed conspecifics, the resting cardiac output () of 1°C-acclimated fish was much lower and compensated for by a higher resting blood oxygen extraction (ṀO2/). In contrast, the acutely exposed fish had a ∼2-fold greater resting stroke volume (VS) compared with that of the other groups. Second, increases in fH (1.2- to 1.4-fold) contributed little to during the Ucrit test, and the contributions of (VS) versus ṀO2/ to aerobic scope (AS) were very different in the two groups tested at 1°C (1°C-acclimated and 8-1°C fish). Finally, Ucrit was 2.08 and 1.69 body lengths (BL) s-1 in the 8 and 4°C-acclimated groups, but only 1.27 and 1.44 BL s-1 in the 1°C-acclimated and 8-1°C fish, respectively - this lower value in 1°C versus 8-1°C fish despite higher values for maximum metabolic rate and AS. These data: support recent studies which suggest that the capacity to increase fH is constrained at low temperatures; show that cardiorespiratory function at cold temperatures, and its response to increased demands, depends on exposure duration; and suggest that AS does not constrain swimming capacity in salmon when chronically exposed to temperatures approaching their lower limit.
Collapse
Affiliation(s)
- Emma S. Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
38
|
Guscelli E, Noisette F, Chabot D, Blier PU, Hansen T, Cassista-Da Ros M, Pepin P, Skanes KR, Calosi P. Northern shrimp from multiple origins show similar sensitivity to global change drivers, but different cellular energetic capacity. J Exp Biol 2023; 226:jeb245400. [PMID: 37497774 DOI: 10.1242/jeb.245400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Species with a wide distribution can experience significant regional variation in environmental conditions, to which they can acclimatize or adapt. Consequently, the geographic origin of an organism can influence its responses to environmental changes, and therefore its sensitivity to combined global change drivers. This study aimed at determining the physiological responses of the northern shrimp, Pandalus borealis, at different levels of biological organization and from four different geographic origins, exposed to elevated temperature and low pH to define its sensitivity to future ocean warming and acidification. Shrimp sampled within the northwest Atlantic were exposed for 30 days to combinations of three temperature (2, 6 or 10°C) and two pH levels (7.75 or 7.40). Survival, metabolic rates, whole-organism aerobic performance and cellular energetic capacity were assessed at the end of the exposure. Our results show that shrimp survival was negatively affected by temperature above 6°C and low pH, regardless of their origin. Additionally, shrimp from different origins show overall similar whole-organism performances: aerobic scope increasing with increasing temperature and decreasing with decreasing pH. Finally, the stability of aerobic metabolism appears to be related to cellular adjustments specific to shrimp origin. Our results show that the level of intraspecific variation differs among levels of biological organization: different cellular capacities lead to similar individual performances. Thus, the sensitivity of the northern shrimp to ocean warming and acidification is overall comparable among origins. Nonetheless, shrimp vulnerability to predicted global change scenarios for 2100 could differ among origins owing to different regional environmental conditions.
Collapse
Affiliation(s)
- Ella Guscelli
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Fanny Noisette
- Institut des sciences de la mer, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Denis Chabot
- Institut Maurice-Lamontagne, Fisheries and Oceans Canada, 850 Rte de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | - Pierre U Blier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Tanya Hansen
- Institut Maurice-Lamontagne, Fisheries and Oceans Canada, 850 Rte de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | | | - Pierre Pepin
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, 80 E White Hills Rd, St. John's, NL A1C 5X1, Canada
| | - Katherine R Skanes
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, 80 E White Hills Rd, St. John's, NL A1C 5X1, Canada
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
39
|
Zhang JH, Long R, Jing YY, Zhang P, Xu Y, Xiong W, Zhu YQ, Luo YP. Loss of behavioral stress response in blind cavefish reduces energy expenditure. Zool Res 2023; 44:678-692. [PMID: 37147886 PMCID: PMC10415775 DOI: 10.24272/j.issn.2095-8137.2022.354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The stress response is essential for animal self-defense and survival. However, species may exhibit stress response variation depending on their specific environmental and selection pressures. Blind cavefish dwell in cave environments, which differ markedly in stressors and resource availability compared to surface aquatic environments. However, whether blind cavefish exhibit differences in stress response as an adaptation to their cave environments remains unclear. Here, we investigated differences in stress response in six closely related Triplophysa species, including three blind cavefish (T. longibarbata, T. jiarongensis, and T. rosa) and three normal-sighted river fish (T. nasobarbatula, T. dongsaiensis, and T. bleekeri). Results showed that blind cavefish exhibited a range of distinct behavioral responses compared to sighted river fish, including greater levels of activity, shorter duration of freezing, absence of erratic movements or thrashing behavior, and opposite behavioral trends over time. Furthermore, the cavefish species demonstrated attenuated increases in metabolic rate in response to stressors related to novel environments. Cave-dwelling T. rosa also exhibited lower basal hypothalamic-pituitary-inter-renal (HPI) axis-related gene expression levels and stress hormone concentrations compared to river-dwelling T. bleekeri. These results suggest that blind cavefish may have lost their behavioral stress response, potentially mediated by a reduction in basal activity of the HPI axis, thus enabling the conservation of energy by reducing unnecessary expenditure in energy-limited caves.
Collapse
Affiliation(s)
- Jiang-Hui Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Rui Long
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yang-Yang Jing
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Pan Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wei Xiong
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yan-Qiu Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yi-Ping Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:
| |
Collapse
|
40
|
Duncan MI, Micheli F, Boag TH, Marquez JA, Deres H, Deutsch CA, Sperling EA. Oxygen availability and body mass modulate ectotherm responses to ocean warming. Nat Commun 2023; 14:3811. [PMID: 37369654 PMCID: PMC10300008 DOI: 10.1038/s41467-023-39438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In an ocean that is rapidly warming and losing oxygen, accurate forecasting of species' responses must consider how this environmental change affects fundamental aspects of their physiology. Here, we develop an absolute metabolic index (ΦA) that quantifies how ocean temperature, dissolved oxygen and organismal mass interact to constrain the total oxygen budget an organism can use to fuel sustainable levels of aerobic metabolism. We calibrate species-specific parameters of ΦA with physiological measurements for red abalone (Haliotis rufescens) and purple urchin (Strongylocentrotus purpuratus). ΦA models highlight that the temperature where oxygen supply is greatest shifts cooler when water loses oxygen or organisms grow larger, providing a mechanistic explanation for observed thermal preference patterns. Viable habitat forecasts are disproportionally deleterious for red abalone, revealing how species-specific physiologies modulate the intensity of a common climate signal, captured in the newly developed ΦA framework.
Collapse
Affiliation(s)
- Murray I Duncan
- Earth and Planetary Science, Stanford University, Stanford, CA, USA.
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Department of Environment, University of Seychelles, Anse Royale, Seychelles.
- Blue Economy Research Institute, University of Seychelles, Anse Royale, Seychelles.
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa.
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| | - Thomas H Boag
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06511, USA
| | - J Andres Marquez
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
| | - Hailey Deres
- Earth Systems, Stanford University, Stanford, CA, USA
| | - Curtis A Deutsch
- Department of Geosciences and the High Meadows Environmental Institute, Princeton, NJ, USA
| | - Erik A Sperling
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
41
|
Harding L, Jackson AL, Payne N. Energetic costs increase with faster heating in an aquatic ectotherm. CONSERVATION PHYSIOLOGY 2023; 11:coad042. [PMID: 38026795 PMCID: PMC10660381 DOI: 10.1093/conphys/coad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 12/01/2023]
Abstract
The thermal sensitivity of metabolism is widely studied due to its perceived importance for organismal fitness and resilience to future climate change. Almost all such studies estimate metabolism at a variety of constant temperatures, with very little work exploring how metabolism varies during temperature change. However, temperature in nature is rarely static, so our existing understanding from experiments may not reflect how temperature influences metabolism in natural systems. Using closed-chamber respirometry, we estimated the aerobic metabolic rate of an aquatic ectotherm, the Atlantic ditch shrimp Palaemonetes varians, under varying thermal conditions. We continuously measured oxygen consumption of shrimp during heating, cooling and constant temperatures, starting trials at a range of acclimation temperatures and exposing shrimp to a variety of rates of temperature change. In a broad sense, cumulative oxygen consumption estimated from static temperature exposures corresponded to estimates derived from ramping experiments. However, further analyses showed that oxygen consumption increases for both faster heating and faster cooling, with rapid heating driving higher metabolic rates than if shrimp were warmed slowly. These results suggest a systematic influence of heating rate on the thermal sensitivity of metabolism. With influential concepts such as the metabolic theory of ecology founded in data from constant temperature experiments, our results encourage further exploration of how variable temperature impacts organism energetics, and to test the generality of our findings across species. This is especially important given climate forecasts of heat waves that are characterised by both increased temperatures and faster rates of change.
Collapse
Affiliation(s)
- Lucy Harding
- Department of Zoology, Trinity College Dublin, D02PN40 Dublin, Ireland
| | - Andrew L Jackson
- Department of Zoology, Trinity College Dublin, D02PN40 Dublin, Ireland
| | - Nicholas Payne
- Department of Zoology, Trinity College Dublin, D02PN40 Dublin, Ireland
| |
Collapse
|
42
|
Metcalfe NB, Bellman J, Bize P, Blier PU, Crespel A, Dawson NJ, Dunn RE, Halsey LG, Hood WR, Hopkins M, Killen SS, McLennan D, Nadler LE, Nati JJH, Noakes MJ, Norin T, Ozanne SE, Peaker M, Pettersen AK, Przybylska-Piech A, Rathery A, Récapet C, Rodríguez E, Salin K, Stier A, Thoral E, Westerterp KR, Westerterp-Plantenga MS, Wojciechowski MS, Monaghan P. Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species. Bioessays 2023; 45:e2300026. [PMID: 37042115 DOI: 10.1002/bies.202300026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.
Collapse
Affiliation(s)
- Neil B Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Jakob Bellman
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Bize
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Pierre U Blier
- Département de Biologie, Université de Québec à Rimouski, Rimouski, Canada
| | - Amélie Crespel
- Department of Biology, University of Turku, Turku, Finland
| | - Neal J Dawson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Ruth E Dunn
- Lancaster Environment Centre, University of Lancaster, Lancaster, UK
| | - Lewis G Halsey
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Mark Hopkins
- School of Food Science and Nutrition, Leeds University, Leeds, UK
| | - Shaun S Killen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Darryl McLennan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Lauren E Nadler
- Ocean and Earth Science, NOC, University of Southampton, Southampton, UK
| | - Julie J H Nati
- Ocean Sciences Center, Memorial University of Newfoundland, St John's, Canada
| | - Matthew J Noakes
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Amanda K Pettersen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Life & Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Anna Przybylska-Piech
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Alann Rathery
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Charlotte Récapet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-, Nivelle, France
| | - Enrique Rodríguez
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Karine Salin
- IFREMER, Univ Brest, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, France
| | - Antoine Stier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Elisa Thoral
- Department of Biology, Lund University, Lund, Sweden
| | - Klaas R Westerterp
- Department of Nutrition & Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Michał S Wojciechowski
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Pat Monaghan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
43
|
Pringle BA, Duncan MI, Winkler AC, Mafwila S, Jagger C, McKeown NJ, Shaw PW, Henriques R, Potts WM. Ocean warming favours a northern Argyrosomus species over its southern congener, whereas preliminary metabolic evidence suggests that hybridization may promote their adaptation. CONSERVATION PHYSIOLOGY 2023; 11:coad026. [PMID: 37179704 PMCID: PMC10170327 DOI: 10.1093/conphys/coad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Anthropogenic-induced climate change is having profound impacts on aquatic ecosystems, and the resilience of fish populations will be determined by their response to these impacts. The northern Namibian coast is an ocean warming hotspot, with temperatures rising faster than the global average. The rapid warming in Namibia has had considerable impacts on marine fauna, such as the southern extension of the distribution of Argyrosomus coronus from southern Angola into northern Namibian waters, where it now overlaps and hybridizes with the closely related Namibian species, A. inodorus. Understanding how these species (and their hybrids) perform at current and future temperatures is vital to optimize adaptive management for Argyrosomus species. Intermittent flow-through respirometry was used to quantify standard and maximum metabolic rates for Argyrosomus individuals across a range of temperatures. The modelled aerobic scope (AS) of A. inodorus was notably higher at cooler temperatures (12, 15, 18 and 21°C) compared with that of A. coronus, whereas the AS was similar at 24°C. Although only five hybrids were detected and three modelled, their AS was in the upper bounds of the models at 15, 18 and 24°C. These findings suggest that the warming conditions in northern Namibia may increasingly favour A. coronus and promote the poleward movement of the leading edge of their southern distribution. In contrast, the poor aerobic performance of both species at cold temperatures (12°C) suggests that the cold water associated with the permanent Lüderitz Upwelling Cell in the south may constrain both species to central Namibia. This is most concerning for A. inodorus because it may be subjected to a considerable coastal squeeze.
Collapse
Affiliation(s)
- Brett A Pringle
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- Advance Africa Management Services, Johannesburg, South Africa
| | - Murray I Duncan
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- University of Seychelles and Blue Economy Research Institute, Anse Royale, Mahe, Seychelles
| | - Alexander C Winkler
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Samuel Mafwila
- Department of Fisheries and Aquatic Sciences, Sam Nujoma Campus, University of Namibia, Henties Bay, Namibia
| | - Charmaine Jagger
- Department of Fisheries and Aquatic Sciences, Sam Nujoma Campus, University of Namibia, Henties Bay, Namibia
- Ministry of Fisheries and Marine Resources, Swakopmund, Namibia
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Romina Henriques
- Marine Genomics Group, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Warren M Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
44
|
Somo DA, Chu K, Richards JG. Gill surface area allometry does not constrain the body mass scaling of maximum oxygen uptake rate in the tidepool sculpin, Oligocottus maculosus. J Comp Physiol B 2023:10.1007/s00360-023-01490-9. [PMID: 37149515 DOI: 10.1007/s00360-023-01490-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
The gill oxygen limitation hypothesis (GOLH) suggests that hypometric scaling of metabolic rate in fishes is a consequence of oxygen supply constraints imposed by the mismatched growth rates of gill surface area (a two-dimensional surface) and body mass (a three-dimensional volume). GOLH may, therefore, explain the size-dependent spatial distribution of fish in temperature- and oxygen-variable environments through size-dependent respiratory capacity, but this question is unstudied. We tested GOLH in the tidepool sculpin, Oligocottus maculosus, a species in which body mass decreases with increasing temperature- and oxygen-variability in the intertidal, a pattern consistent with GOLH. We statistically evaluated support for GOLH versus distributed control of [Formula: see text] allometry by comparing scaling coefficients for gill surface area, standard and maximum [Formula: see text] ([Formula: see text],Standard and [Formula: see text],Max, respectively), ventricle mass, hematocrit, and metabolic enzyme activities in white muscle. To empirically evaluate whether there is a proximate constraint on oxygen supply capacity with increasing body mass, we measured [Formula: see text],Max across a range of Po2s from normoxia to Pcrit, calculated the regulation value (R), a measure of oxyregulatory capacity, and analyzed the R-body mass relationship. In contrast with GOLH, gill surface area scaling either matched or was more than sufficient to meet [Formula: see text] demands with increasing body mass and R did not change with body mass. Ventricle mass (b = 1.22) scaled similarly to [Formula: see text],Max (b = 1.18) suggesting a possible role for the heart in the scaling of [Formula: see text],Max. Together our results do not support GOLH as a mechanism structuring the distribution of O. maculosus and suggest distributed control of oxyregulatory capacity.
Collapse
Affiliation(s)
- Derek A Somo
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Ken Chu
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
45
|
Dey P, Bradley TM, Boymelgreen A. The impact of selected abiotic factors on Artemia hatching process through real-time observation of oxygen changes in a microfluidic platform. Sci Rep 2023; 13:6370. [PMID: 37076493 PMCID: PMC10115827 DOI: 10.1038/s41598-023-32873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
Current studies on abiotic impacts on Artemia, a crustacean which is widely used in aquaculture, and ecotoxicology, often focus on endpoint analysis (e.g., hatching rates, survival). Here, we demonstrate that a mechanistic understanding can be obtained through measurement of oxygen consumption in real-time over an extended time period in a microfluidic platform. The platform enables high level control of the microenvironment and direct observation of morphological changes. As a demonstration, temperature and salinity are chosen to represent critical abiotic parameters that are also threatened by climate change. The hatching process of Artemia consists of four different stages: hydration, differentiation, emergence, and hatching. Different temperatures (20, 35, and 30 °C) and salinities (0, 25, 50, and 75 ppt) are shown to significantly alter the duration of hatching stages, metabolic rates, and hatchability. Specifically, the metabolic resumption of dormant Artemia cysts was significantly enhanced at higher temperatures and moderate salinity, however, the time needed for this resumption was only dependent on higher temperatures. Hatchability was inversely related to the duration of the differentiation stage of hatching, which persisted longer at lower temperatures and salinities. The current approach of investigation of metabolism and corresponding physical changes can be employed to study hatching processes of other aquatic species, even those with low metabolic rate.
Collapse
Affiliation(s)
- Preyojon Dey
- Department of Mechanical and Materials Engineering, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA
| | - Terence M Bradley
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, 02881, USA
| | - Alicia Boymelgreen
- Department of Mechanical and Materials Engineering, Florida International University, 10555 W Flagler St, Miami, FL, 33174, USA.
| |
Collapse
|
46
|
Grimmelpont M, Milinkovitch T, Dubillot E, Lefrançois C. Individual aerobic performance and anaerobic compensation in a temperate fish during a simulated marine heatwave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160844. [PMID: 36528094 DOI: 10.1016/j.scitotenv.2022.160844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Marine heatwaves (MHWs) are becoming more frequent and intense due to climate change and have strong negative effects on ecosystem. Few studies have reproduced the complex nature of temperature changes of a MHW, while it is suggested that ectotherms may be more vulnerable to rapid changes such as during MHWs. Effects of an experimental MHW were investigated in the golden grey mullet Chelon auratus. Juveniles acclimated to 20 °C were exposed to a rapid 5 °C increase in temperature, followed by a five-day period at 25 °C, before quickly returning to 20°C. Metabolic variables (SMR-standard, MMR-maximum rate, AS-aerobic scope, EPOC-excess post‑oxygen consumption) and critical swimming speed (Ucrit) were measured at different phases of this MHW and after a thermally stable recovery phase. Although the pattern was only significant for the SMR, the aerobic three variables describing aerobic metabolism (SMR, MMR and AS) immediately increased in fish exposed to the acute elevation of temperature, and remained elevated when fish stayed at 25 °C for five days. A similar increase of these metabolic variables was observed for fish that were progressively acclimated to 25 °C. This suggests that temperature increases contribute to increases in metabolism; however, the acute nature of the MHW had no influence. At the end of the MHW, the SMR remained elevated, suggesting an additional cost of obligatory activities due to the extreme event. In parallel, Ucrit did not vary regardless of the thermal conditions. Concerning EPOC, it significantly increased only when fish were acutely exposed to 25 °C. This strongly suggests that fish may buffer the effects of acute changes in temperature by shifting to anaerobic metabolism. Globally, this species appears able to cope with this MHW, but that's without taking into consideration future projections describing an increase in both intensity and frequency of such events, as well as other stressors like pollution or hypoxia.
Collapse
Affiliation(s)
- Margot Grimmelpont
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| | - Thomas Milinkovitch
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| | - Emmanuel Dubillot
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| | - Christel Lefrançois
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| |
Collapse
|
47
|
Brandl SJ, Lefcheck JS, Bates AE, Rasher DB, Norin T. Can metabolic traits explain animal community assembly and functioning? Biol Rev Camb Philos Soc 2023; 98:1-18. [PMID: 36054431 DOI: 10.1111/brv.12892] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/12/2023]
Abstract
All animals on Earth compete for free energy, which is acquired, assimilated, and ultimately allocated to growth and reproduction. Competition is strongest within communities of sympatric, ecologically similar animals of roughly equal size (i.e. horizontal communities), which are often the focus of traditional community ecology. The replacement of taxonomic identities with functional traits has improved our ability to decipher the ecological dynamics that govern the assembly and functioning of animal communities. Yet, the use of low-resolution and taxonomically idiosyncratic traits in animals may have hampered progress to date. An animal's metabolic rate (MR) determines the costs of basic organismal processes and activities, thus linking major aspects of the multifaceted constructs of ecological niches (where, when, and how energy is obtained) and ecological fitness (how much energy is accumulated and passed on to future generations). We review evidence from organismal physiology to large-scale analyses across the tree of life to propose that MR gives rise to a group of meaningful functional traits - resting metabolic rate (RMR), maximum metabolic rate (MMR), and aerobic scope (AS) - that may permit an improved quantification of the energetic basis of species coexistence and, ultimately, the assembly and functioning of animal communities. Specifically, metabolic traits integrate across a variety of typical trait proxies for energy acquisition and allocation in animals (e.g. body size, diet, mobility, life history, habitat use), to yield a smaller suite of continuous quantities that: (1) can be precisely measured for individuals in a standardized fashion; and (2) apply to all animals regardless of their body plan, habitat, or taxonomic affiliation. While integrating metabolic traits into animal community ecology is neither a panacea to disentangling the nuanced effects of biological differences on animal community structure and functioning, nor without challenges, a small number of studies across different taxa suggest that MR may serve as a useful proxy for the energetic basis of competition in animals. Thus, the application of MR traits for animal communities can lead to a more general understanding of community assembly and functioning, enhance our ability to trace eco-evolutionary dynamics from genotypes to phenotypes (and vice versa), and help predict the responses of animal communities to environmental change. While trait-based ecology has improved our knowledge of animal communities to date, a more explicit energetic lens via the integration of metabolic traits may further strengthen the existing framework.
Collapse
Affiliation(s)
- Simon J Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX, 78373, USA
| | - Jonathan S Lefcheck
- Tennenbaum Marine Observatories Network and MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Amanda E Bates
- Biology Department, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Douglas B Rasher
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
48
|
Social isolation does not alter the relationship between flexibility in metabolic rate and growth in grass carp (Ctenopharyngodon idella) under changing food availability. J Comp Physiol B 2023; 193:95-108. [PMID: 36355208 DOI: 10.1007/s00360-022-01467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Growth and energy metabolism are highly flexible in fish species in response to food availability, and these two traits depend to some extent on the social rearing environment (e.g., isolated vs. group rearing). Currently, how social rearing environments influence flexibility in metabolic rate of fish and their ecological consequences (e.g., somatic growth) remain largely unknown. Here, we investigated how social isolation (i.e., group-reared vs. isolation-reared) and food availability (i.e., high vs. low) affect metabolic rates, growth and their correlations in a group-living fish, grass carp (Ctenopharyngodon idella), which were subjected to a 4-week growth experiment. The metabolic rates (e.g., standard metabolic rate, SMR; maximum metabolic rate, MMR; aerobic scope, AS = MMR-SMR) and morphology (e.g., body mass and length) of the fish in four treatments were measured at the beginning and end of the growth experiment, and then the growth parameters (e.g., food intake, FI; feeding efficiency, FE; and specific growth rate, SGR) were also obtained. We found that social isolation did impair growth of fish with individuals showing a lower SGR compared to those group-reared fish irrespective of food availability. However, the growth advantage of group-reared fish under two food availabilities did not result from their FIs or FEs. Metabolic rates (i.e., SMR) seemed to decrease in response to social isolation, but increased greater when fish were reared at high food ration. These shifts in metabolic rates were positively linked with individual differences in somatic growth; individuals who increased metabolic rates more grew faster, while those who increased their metabolic rates less or even reduced had a lower growth, but these links were independent on both social isolation and food ration. These results suggested that social isolation can inhibit the growth of individual fish, but not the AS. Flexibility in metabolic rates could confer a growth advantage under changing food availability, but the links between variation in energy metabolism and growth were not altered by social deprivation. Our study demonstrates the importance of metabolic plasticity accounting for inter-individual difference in growth performance under the challenges of changing food resource.
Collapse
|
49
|
Samaras A, Tsoukali P, Katsika L, Pavlidis M, Papadakis IE. Chronic impact of exposure to low dissolved oxygen on the physiology of Dicentrarchus labrax and Sparus aurata and its effects on the acute stress response. AQUACULTURE 2023; 562:738830. [DOI: 10.1016/j.aquaculture.2022.738830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Thambithurai D, Lanthier I, Contant E, Killen SS, Binning SA. Fish vulnerability to capture by trapping is modulated by individual parasite density. Proc Biol Sci 2022; 289:20221956. [PMID: 36515121 PMCID: PMC9748777 DOI: 10.1098/rspb.2022.1956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Commercial fishery harvest is a powerful evolutionary agent, but we know little about whether environmental stressors affect harvest-associated selection. We test how parasite infection relates to trapping vulnerability through selective processes underlying capture. We used fish naturally infected with parasites, including trematodes causing black spots under fish skin. We first assessed how individual parasite density related to standard metabolic rate (SMR), maximum metabolic rate (MMR) and absolute aerobic scope (AAS)-then used laboratory fishing simulations to test how capture vulnerability was related to parasite density. We further explored group-trapping dynamics using experimental shoals containing varying proportions of infected fish (groups of six with either 0, 2, 4 or 6 infected individuals). At the individual level, we found a positive relationship between parasite presence and SMR, but not MMR or AAS. While we saw no relationship between individual metabolic capacity and vulnerability to trapping, we found the length of time fish spent in traps increased with increasing parasite density, a predictor of trapping-related capture probability. At the group level, the number of infected individuals in a shoal did not affect overall group trapping vulnerability. Our results suggest that parasite infection has some capacity to shift individual vulnerability patterns in fisheries, and potentially influence the evolutionary outcomes of fisheries-induced evolution.
Collapse
Affiliation(s)
- Davide Thambithurai
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- MARBEC, University of Montpellier, Ifremer, Sète 32400, France
| | - Isabel Lanthier
- Département de sciences biologiques, l'Université de Montréal, Montréal, Québec, Canada
| | - Eloi Contant
- École Pratique des Hautes Études, Université Paris Sciences et Lettres, 4-14 rue Ferrus, Paris 75014, France
| | - Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sandra A. Binning
- Département de sciences biologiques, l'Université de Montréal, Montréal, Québec, Canada
- Ressources Aquatiques Québec (RAQ), Institut des sciences de la mer (ISMER), Université de Québec à Rimouski, 310 avenue des Ursulines, Rimouski, Québec, Canada G5L 2Z9
| |
Collapse
|