1
|
Krüger N, Laufer SA, Pillaiyar T. An overview of progress in human metapneumovirus (hMPV) research: Structure, function, and therapeutic opportunities. Drug Discov Today 2025; 30:104364. [PMID: 40286981 DOI: 10.1016/j.drudis.2025.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The human metapneumovirus (hMPV), a member of the Pneumoviridae family, is a significant respiratory pathogen that causes severe infections in infants, children, the elderly, adults with chronic illnesses, and individuals with immunocompromised conditions. Globally, hMPV is recognized as the second leading cause of bronchiolitis and pneumonia among children under five. The absence of targeted antiviral treatments or vaccines for hMPV significantly strains the global health-care system. This review summarizes recent advances and scientific findings on hMPV by reviewing the current literature on its life cycle, structure, function, prevention, and treatment options.
Collapse
Affiliation(s)
- Nadine Krüger
- Platform Infection Models, German Primate Center, Leibniz Institute for Primate Research Göttingen 37077 Göttingen, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany; Cluster of Excellence 'Image Guided and Functionally Instructed Tumor Therapies' (iFIT), Eberhard Karls University of Tübingen, Tübingen 72076, Germany; Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany; Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Ruiz-Pozo VA, Cadena-Ullauri S, Tamayo-Trujillo R, Guevara-Ramírez P, Paz-Cruz E, Castañeda Cataña MA, Zambrano AK. Interplay between endogenous hormones and immune systems in human metapneumovirus pathogenesis and management. Front Pharmacol 2025; 16:1568828. [PMID: 40176892 PMCID: PMC11961889 DOI: 10.3389/fphar.2025.1568828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
The present review explores the role of endogenous hormones, such as cortisol, melatonin, thyroid hormones, sex hormones, and insulin, in the modulation of the immune response to a human metapneumovirus (hMPV) infection. hMPV is a respiratory pathogen responsible for severe infections, particularly in vulnerable populations like children and the elderly. The virus triggers inflammatory responses through various molecular processes, including cytokine production and immune signaling pathways. Notably, these processes can be influenced by endocrine factors, such as hormones. Cortisol, through hypothalamic-pituitary-adrenal (HPA) axis activation, modulates inflammation but may contribute to immunosuppression. Melatonin inhibits the NLRP3 inflammasome, reducing lung inflammation. Thyroid hormones regulate immune responses via nuclear factor kappa B (NF-κB) and JAK/STAT pathways, while hypothyroidism may alter infection severity. Sex hormones, particularly estrogens, enhance antiviral immunity, whereas androgens may have variable effects on immune modulation. Insulin influences inflammation through NF-κB suppression, with insulin resistance potentially worsening viral pathogenesis. Therapeutic implications suggest that modulating these hormonal pathways could aid in hMPV management. Strategies such as hormone therapy, glucocorticoid regulation, and nanoparticle-based drug delivery are potential routes of intervention. The aim of the present review is to understand the complex interplay between endogenous hormones and the immune system during an hMPV infection by describing the complex molecular mechanisms associated with these processes.
Collapse
Affiliation(s)
- Viviana A. Ruiz-Pozo
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Elius Paz-Cruz
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Mayra A. Castañeda Cataña
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Laboratorio de Estrategias Antivirales, UBA-CONICET, Buenos Aires, Argentina
| | - Ana Karina Zambrano
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| |
Collapse
|
3
|
Akingbola A, Adegbesan A, TundeAlao S, Adewole O, Ayikoru C, Benson AE, Shekoni M, Chuku J. Human Metapneumovirus: an emerging respiratory pathogen and the urgent need for improved Diagnostics, surveillance, and vaccine development. Infect Dis (Lond) 2025; 57:304-310. [PMID: 39862211 DOI: 10.1080/23744235.2025.2453824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Human Metapneumovirus (HMPV) is a re-emerging respiratory pathogen causing significant morbidity and mortality, particularly among young children, the elderly, and immunocompromised individuals. First identified in 2001, HMPV has since been recognised as a leading cause of acute respiratory tract infections (ARTIs) worldwide. Its transmission occurs through droplets, direct contact, and surface contamination, with crowded spaces and healthcare facilities serving as key environmental amplifiers. HMPV's clinical manifestations, ranging from mild cold-like symptoms to severe pneumonia, often overlap with those of other respiratory pathogens like RSV and COVID-19, complicating timely diagnosis and management. Despite advancements in molecular diagnostics, the limited accessibility of these tools in low-resource settings presents a challenge. Preventive measures, such as hygiene practices and physical distancing, remain critical, as no approved vaccines or targeted antiviral therapies are currently available. However, promising innovations, including AI-guided vaccine design and portable diagnostic tools, highlight the potential for future breakthroughs. This article highlights the urgent need for enhanced surveillance, scalable diagnostics, and intensified research into vaccines and therapeutic strategies. By addressing these gaps, HMPV's global burden can be significantly mitigated, improving outcomes for high-risk populations, and strengthening preparedness against respiratory virus outbreaks.
Collapse
Affiliation(s)
- Adewunmi Akingbola
- Department of Public Health and Primary Care, University of Cambridge Old Schools, Cambridge, UK
| | - Abiodun Adegbesan
- African Cancer Institute, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - Samuel TundeAlao
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
| | - Olajumoke Adewole
- Department of Community Health, Lagos State University College of Medicine, Lagos, Nigeria
| | - Comfort Ayikoru
- Department of Public Health and Primary Care, University of Cambridge Old Schools, Cambridge, UK
| | | | - Mayowa Shekoni
- Department of Community Health, Lagos State University College of Medicine, Lagos, Nigeria
| | - Joel Chuku
- Department of Medicine, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
4
|
Ribó-Molina P, Groen K, Susma B, van Nieuwkoop S, Funk M, Fouchier RAM, van den Hoogen BG. The role of M2 proteins of pneumoviruses in transcription regulation, prevention of hypermutation, and activation of the type I interferon pathway. J Virol 2025; 99:e0124324. [PMID: 39835813 PMCID: PMC11852930 DOI: 10.1128/jvi.01243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Human metapneumovirus (HMPV) is an important causative agent of respiratory tract disease. Fundamental knowledge of the interaction between HMPV and the innate immune system could lead to the design of novel antiviral therapies. Previously, we demonstrated that HMPV M2-2 deletion mutants had hypermutated genomes and contained defective interfering particles (DIs), which are potent inducers of the IFN response. Here, we investigated the role of the HMPV M2-2 protein as IFN antagonist using chimeric HMPV expressing M2 proteins of other pneumoviruses: respiratory syncytial virus (RSV) and avian metapneumovirus type C (AMPV/C). Chimeric HMPVs expressing the M2 proteins of RSV or AMPV/C were attenuated in HEp-2 cells but did not activate the IFN response, and their genomes were not hypermutated. In contrast, chimeric HMPVs expressing the M2-2 proteins of RSV and AMPV/C, in combination with HMPV M2-1, did activate the IFN response, and their genomes were hypermutated. Investigation of the role of the pneumovirus M2 proteins in transcription regulation demonstrated that the M2-2 protein, only in concerted action with autologous M2-1 protein, acted as a transcription elongation factor. As a second approach, chimeric RSV in which the IFN antagonists NS1 and NS2 were replaced by the HMPV M2-2 gene failed to suppress an IFN response, indicating that the HMPV M2-2 protein is not a potent IFN antagonist. These data indicate that expression of autologous M2-1 and M2-2 proteins is important for the fidelity of the RNA-dependent RNA polymerase, necessary to prevent the accumulation of mutations, and possibly DIs, thereby preventing activation of the IFN responses.IMPORTANCEThe M2-2 protein of human metapneumovirus is suggested to function as a type I interferon antagonist, a function so far not assigned to the M2 proteins of other pneumoviruses. Although M2-2 deletion mutants of HMPV activate the type I interferon pathway, these mutants have hypermutated genomes and contain defective interfering RNAs, known to activate the interferon pathway. Here, we show that the M2-2 protein, in concerted action with autologous M2-1 protein, acts as a transcription elongation factor, which could explain the accumulation of DIs in M2-2 deletion mutants. Additionally, chimeric RSV in which the IFN antagonists NS1 and NS2 were replaced by the HMPV M2-2 gene failed to suppress an IFN response. These data indicate that expression of autologous M2-1 and M2-2 proteins is required for the fidelity of the RNA-dependent RNA polymerase to prevent genome hypermutation and activation of the type I IFN pathway.
Collapse
Affiliation(s)
- Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kevin Groen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
5
|
Iyer VG, Deb N, Javed M, Jaiswal V, Sah R. Human metapneumovirus-understanding a growing respiratory threat. QJM 2025; 118:77-78. [PMID: 39873721 DOI: 10.1093/qjmed/hcaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Indexed: 01/30/2025] Open
Affiliation(s)
| | - Novonil Deb
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, West Bengal, India
| | - Mubeena Javed
- Department of Internal Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Vikash Jaiswal
- Department of Research and Academic Affairs, Larkin Community Hospital, South Miami, FL, USA
| | - Ranjit Sah
- Department of Microbiology, Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth (Deemed-to-be-University), Pune, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Microbiology, SR Sanjeevani Hospital, Siraha, Nepal
| |
Collapse
|
6
|
Mishra B, Mohapatra D, Tripathy M, Mamidi P, Mohapatra PR. A Re-emerging Respiratory Virus: Human Metapneumovirus (hMPV). Cureus 2025; 17:e78354. [PMID: 40034641 PMCID: PMC11875555 DOI: 10.7759/cureus.78354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
Human metapneumovirus (hMPV) is identified as a pathogenic agent responsible for respiratory tract infections in paediatric, adult and elderly populations. It is a spherical, enveloped virus with a diameter of 209nm, consisting of a single-stranded, non-segmented, and negative-sense RNA genome of around 13.3 kb in length. hMPV infection is prevalent all around the globe, with peak positivity rates detected mostly during later winter and spring seasons. Mostly transmitted through droplet or aerosol contamination, this viral infection may manifest clinical characteristics indicative of both upper and lower respiratory tract infections like fever, cough, rhinorrhea, pneumonia, bronchiolitis, and croup. The recommended laboratory diagnostic approach is reverse transcription polymerase chain reaction, given the challenges associated with culturing the virus. This review article focuses on the structure, replication, genotype, epidemiology, seasonality, transmission methods, clinical manifestations in humans, treatment methodology, and outbreaks of hMPV that have been reported worldwide.
Collapse
Affiliation(s)
- Baijayantimala Mishra
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Diksha Mohapatra
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Manisha Tripathy
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Prabhudutta Mamidi
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Prasanta R Mohapatra
- Pulmonary Medicine and Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
7
|
Costa-Filho RC, Saddy F, Costa JLF, Tavares LR, Castro Faria Neto HC. The Silent Threat of Human Metapneumovirus: Clinical Challenges and Diagnostic Insights from a Severe Pneumonia Case. Microorganisms 2025; 13:73. [PMID: 39858840 PMCID: PMC11767637 DOI: 10.3390/microorganisms13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Human metapneumovirus (hMPV) is a respiratory pathogen that has gained increasing recognition due to advancements in molecular diagnostic tools, which have improved its detection and characterization. While severe disease manifestations are traditionally associated with pediatric, elderly, or immunocompromised patients, hMPV-related pneumonia in immunocompetent adults remains underexplored. METHODS This case report describes a 68-year-old male who developed severe community-acquired pneumonia (CAP) caused by hMPV despite being immunocompetent and having no significant comorbidities. The diagnosis was confirmed via multiplex RT-PCR, excluding bacterial and viral coinfections. Laboratory and imaging findings supported a viral etiology, while empirical antibiotics were initially prescribed due to diagnostic uncertainty. RESULTS The patient presented with respiratory symptoms that progressed to hypoxia, productive cough, and fatigue, requiring hospitalization. Imaging revealed bilateral ground-glass opacities and consolidations typical of viral pneumonia. Molecular diagnostics enabled accurate pathogen identification and guiding appropriate management, and the patient fully recovered with supportive care. CONCLUSION This case underscores the importance of rapid molecular diagnostics for hMPV, reducing unnecessary antibiotics and enhancing management. Routine incorporation of hMPV testing into clinical protocols could improve the diagnosis and resource use. The development of vaccines, such as the IVX-A12 in phase II trials, offers hope for targeted prevention, underscoring the need for further research and therapeutic innovations.
Collapse
Affiliation(s)
- Rubens Carmo Costa-Filho
- Immunopharmacology Laboratory, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro 21040-361, RJ, Brazil;
| | - Felipe Saddy
- Intensive Care Unit, Pró-Cardíaco Hospital, Rio de Janeiro 21040-361, RJ, Brazil; (F.S.); (J.L.F.C.)
| | - João Luiz Ferreira Costa
- Intensive Care Unit, Pró-Cardíaco Hospital, Rio de Janeiro 21040-361, RJ, Brazil; (F.S.); (J.L.F.C.)
| | - Leandro Reis Tavares
- D’Or Institute Research and Education (IDOR), Rio de Janeiro 21040-361, RJ, Brazil;
| | | |
Collapse
|
8
|
Wilkhoo HS, Islam AW, Wilkhoo HS, Hussain S, Singh B, Kadam SR. Clinical Insights and Advancements in Human Metapneumovirus Management and Prognosis. Discoveries (Craiova) 2025; 13:e204. [PMID: 40351504 PMCID: PMC12061465 DOI: 10.15190/d.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Human metapneumovirus is a respiratory pathogen that infects children, the elderly, and immunocompromised individuals. Despite its global prevalence, underdiagnosis persists because of clinical overlap with other respiratory viruses. The current approach is mostly supportive, with oxygen therapy and hydration being crucial interventions. Ribavirin contains antiviral properties but has little clinical application. Vaccine development is moving forward, with prospects including live-attenuated, subunit-based, and virus-like particle vaccines. Molecular diagnostics, such as RT-PCR and metagenomic sequencing, have increased detection rates, which aids epidemiological monitoring. Monoclonal antibodies targeting the fusion (F) protein are being studied for passive immunity, while immunomodulatory treatments such as corticosteroids and intravenous immunoglobulins may help treat severe cases. Emerging treatments include fusion inhibitors and pan-pneumovirus vaccinations that protect against HMPV and RSV. Future research should concentrate on optimizing antiviral methods, increasing vaccination trials, and improving surveillance to detect outbreaks. A multidisciplinary approach that combines virology, immunology, and epidemiology is required to reduce HMPV's effect and improve patient outcomes. This review serves as a comprehensive literature about HMPV which provides all the crucial clinical perspectives and the latest advancements in management, antivirals, patient prognosis as well and diagnostic modalities.
Collapse
Affiliation(s)
- Harsahaj Singh Wilkhoo
- Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
- ClinNova International, Tbilisi, Georgia
| | - Afra Wasama Islam
- Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
- ClinNova International, Tbilisi, Georgia
| | | | - Suhaib Hussain
- Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
- ClinNova International, Tbilisi, Georgia
| | - Bharat Singh
- Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
| | | |
Collapse
|
9
|
Verma M, Panchal NS, Yadav PK. Exploring Chemical Space to Identify Partial Binders Against hMPV Nucleocapsid Protein. J Cell Biochem 2025; 126:e30618. [PMID: 39286955 DOI: 10.1002/jcb.30618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 09/19/2024]
Abstract
Human metapneumovirus (hMPV) has gained prominence in recent times as the predominant etiological agent of acute respiratory tract infections. This virus targets children, the elderly, and individuals with compromised immune systems. Given the protracted duration of hMPV transmission, it is probable that the majority of children will have acquired the virus by the age of 5. In individuals with compromised immune systems, recurrence of hMPV infection is possible. As hMPV matures, it remains latent from the time of acquisition. The genome of hMPV encompasses a pivotal protein referred to as the nucleocapsid protein (N). This protein assumes the form of a left-handed helical nucleocapsid, enveloping the viral RNA genome. The primary function of this structure is to protect nucleases, rendering it a potentially promising target for therapeutic advancements. The present study employs a methodology that involves structure-based virtual screening, followed by molecular dynamics simulation at a 250-ns time scale, to identify potential natural molecules or their derivatives from the ZINC Database. These molecules are investigated for their binding properties against the hMPV nucleoprotein. Based on an evaluation of the docking score, binding site interaction, and molecular dynamics studies, it has been found that two naturally occurring molecules, namely M1 (ZINC85629735) and M3 (ZINC85569125), have shown notable docking scores of -9.6 and -10.7 kcal/mol, acceptable RMSD, RMSF, Rg, and so on calculated from molecular dynamics trajectory associated with MMGBSA binding energy of -81.94 and -99.63 kcal/mol, respectively. These molecules have shown the highest binding affinity toward nucleocapsid protein and demonstrated promising attributes as potential binders against hMPV.
Collapse
Affiliation(s)
- Monika Verma
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Nikita S Panchal
- Department of Pharmaceutical Chemistry, Maliba Pharmacy College, Uka Tarsadia University, Surat, Gujarat, India
| | - Pramod Kumar Yadav
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
10
|
Kierbiedź-Guzik N, Sozańska B. The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs. Int J Mol Sci 2024; 26:120. [PMID: 39795977 PMCID: PMC11720134 DOI: 10.3390/ijms26010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Viral respiratory infections are a significant clinical problem among the pediatric population and are one of the leading causes of hospitalization. Most often, upper respiratory tract infections are self-limiting. Still, those that involve the lower respiratory tract are usually associated with asthma exacerbations, leading to worsening or even the initiation of the disease. A key role in regulating the immune response and inflammation during viral infections and their impact on the progression of asthma has been demonstrated for miRNA molecules (microRNA). Their interaction with mRNA (messenger RNA) regulates gene expression in innate and acquired immune responses, making them valuable biomarkers for diagnostics, monitoring, and predicting asthma exacerbations. The following paper presents changes in the expression of miRNAs during the five most common viral infections causing asthma worsening, with particular emphasis on the pediatric population. In addition, we describe the molecular mechanisms by which miRNAs influence the pathogenesis of viral infection, immune responses, and asthma exacerbations. These molecules represent promising targets for future innovative therapeutic strategies, paving the way for developing personalized medicine for patients with viral-induced asthma exacerbations.
Collapse
Affiliation(s)
- Natalia Kierbiedź-Guzik
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland
| | | |
Collapse
|
11
|
Wang C, Huang YM, Zhao J, Bai YM, Yan CQ, Du GH, Zheng LS, Liu AL. Fumarprotocetraric acid and geraniin were identified as novel inhibitors of human respiratory syncytial virus infection in vitro. Front Cell Infect Microbiol 2024; 14:1484245. [PMID: 39776441 PMCID: PMC11703719 DOI: 10.3389/fcimb.2024.1484245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Respiratory syncytial virus (RSV) remains a major international public health concern. However, disease treatment is limited to preventive care with monoclonal antibodies and supportive care. In this study, natural products were screened to identify novel anti-RSV inhibitors. Methods The antiviral effect of 320 compounds on RSV in HEp-2 cells was tested using a Cytopathic effect (CPE) inhibition assay. The antiviral effect of fumarprotocetraric acid (FUM) and geraniin (GE) were confirmed by Real-time reverse transcription quantitative PCR (Real-time RT-PCR), plaque reduction test, immunofluorescence assay, and Western blot analysis. Real-time PCR was used to detect inflammatory factor expression. ATP assay and JC-1 stain were used to evaluate mitochondrial protection function. The experiment of administration time was used to determine the stages in the RSV life cycle inhibited by FUM and GE. Human metapneumovirus (HMPV) and human rhinovirus (HRV) were used to evaluate the antiviral activities of other respiratory viruses of FUM and GE. Finally, Air-liquid interface human airway epithelium (ALI-HAE) cells were used to evaluate the antiviral effect and mechanism of FUM and GE to RSV. Results The results showed that FUM and GE can inhibit the replication of RSV in multiple-cell models. Both compounds could dose-dependent inhibit the viral load, RSV nucleic acids level, and RSV-F protein level. Besides, FUM and GE showed good anti-inflammatory activity, mitochondrial protection, and antiviral activity to HMPV and HRV. Meanwhile, our result indicated that FUM and GE can inhibit RSV replication in ALI-HAE cells. Conclusions FUM and GE were identified as new inhibitors of RSV infection. At the same time, FUM and GE have anti-inflammatory activity, mitochondrial protection function, and broad-spectrum antiviral activity. These results provide evidence that FUM and GE are potential candidates for the development of novel anti-RSV drugs.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi-Man Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi-Ming Bai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cai-Qin Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li-Shu Zheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Ai-Lin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Brynes A, Zhang Y, Williams JV. Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling. J Virol 2024; 98:e0110424. [PMID: 39412256 PMCID: PMC11575145 DOI: 10.1128/jvi.01104-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions (K. M. Edwards et al., N Engl J Med 368:633-643, 2013, https://doi.org/10.1056/NEJMoa1204630; A. R. Falsey et al., J Infect Dis 187:785-790, 2003, https://doi.org/10.1086/367901; J. S. Kahn, Clin Microbiol Rev 19:546-557, 2006, https://doi.org/10.1128/CMR.00014-06; N. Shafagati and J. Williams, F1000Res 7:135, 2018, https://doi.org/10.12688/f1000research.12625.1). HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors in vitro in part by preventing STAT1 phosphorylation (A. K. Hastings et al., Virology (Auckl) 494:248-256, 2016, https://doi.org/10.1016/j.virol.2016.04.022). HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for the inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wild-type, but not ΔSH virus, blocked IL-6-mediated STAT3 activation. Furthermore, JAK1 protein (but not RNA) was significantly reduced in cells infected with wild-type, but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by the addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.IMPORTANCEHuman metapneumovirus (HMPV) is a common cause of severe respiratory illness, especially in children and older adults, in whom it is a leading cause of hospitalization. Prior research suggests that severe HMPV infection is driven by a strong immune response to the virus, especially by inflammatory immune signals like interferons (IFN). HMPV produces a small hydrophobic (SH) protein that is known to block IFN signaling, but the mechanism by which it functions and its ability to inhibit other important immune signals remains unexplored. This paper demonstrates that SH can inhibit another related immune signal, IL-6, and that SH depletes JAKs, which are critical proteins involved in both IL-6 and IFN signaling. A robust understanding of how HMPV and related viruses interfere with immune signals important for disease could pave the way for future treatments aimed at mitigating severe infections.
Collapse
Affiliation(s)
- Adam Brynes
- Program in Microbiology and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Martínez-Espinoza I, Babawale PI, Miletello H, Cheemarla NR, Guerrero-Plata A. Interferon Epsilon-Mediated Antiviral Activity Against Human Metapneumovirus and Respiratory Syncytial Virus. Vaccines (Basel) 2024; 12:1198. [PMID: 39460364 PMCID: PMC11511582 DOI: 10.3390/vaccines12101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Interferon epsilon (IFN-ε) is a type I IFN that plays a critical role in the host immune response against pathogens. Despite having demonstrated antiviral activity in macrophages and mucosal tissues such as the female reproductive tract and the constitutive expression in mucosal tissues such as the lung, the relevance of IFN-ε against respiratory viral infections remains elusive. RESULTS We present, for the first time, the expression of IFN-ε in alveolar epithelial cells and primary human bronchial epithelial cells grown in an air-liquid interface (ALI) in response to human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) infection. The molecular characterization of the IFN-ε induction by the viruses indicates that the expression of RIG-I is necessary for an optimal IFN-ε expression. Furthermore, treatment of the airway epithelial cells with rhIFN-ε induced the expression of IFN-stimulated genes (ISGs) and significantly restricted the viral replication of HMPV and RSV. CONCLUSIONS These findings underscore the relevance of IFN-ε against viral infections in the respiratory tract.
Collapse
Affiliation(s)
| | | | | | | | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
14
|
Brynes A, Williams JV. Small hydrophobic (SH) proteins of Pneumoviridae and Paramyxoviridae: small but mighty. J Virol 2024; 98:e0080924. [PMID: 39177356 PMCID: PMC11407002 DOI: 10.1128/jvi.00809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Small hydrophobic (SH) proteins are a class of viral accessory proteins expressed by many members of the negative-stranded RNA viral families Paramyxoviridae and Pneumoviridae. Identified SH proteins are type I or II transmembrane (TM) proteins with a single-pass TM domain. Little is known about the functions of SH proteins; however, several possess viroporin activity, enhancing membrane permeability of infected cells or those expressing SH protein. Moreover, several SH proteins inhibit apoptosis and immune signaling pathways within infected cells, including TNF and interferon signaling, or activate inflammasomes. SH proteins are generally nonessential for viral replication in vitro, but loss of SH is often associated with reduced replication in vivo, suggesting a role in enhancing viral replication or evading host immunity. Analogous proteins are expressed by a variety of pathogens of public health importance; thus, understanding the functional importance and mechanisms of SH proteins provides insight into the pathogenesis and replication of negative-sense RNA viruses.
Collapse
Affiliation(s)
- Adam Brynes
- Program in Microbiology & Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Du Y, Liu X, Gao H, Liu X, Huang M, Chai Q, Xing Z, Zhang T, Ma D. Rapid and one-tube detection of human metapneumovirus using the RT-RPA and CRISPR/Cas12a. J Virol Methods 2024; 329:115001. [PMID: 39038660 DOI: 10.1016/j.jviromet.2024.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Human metapneumovirus (HMPV) is a common pathogen that can cause acute respiratory tract infections and is prevalent worldwide. There is yet no effective vaccine or specific treatment for HMPV. Early, rapid, and accurate detection is essential to treat the disease and control the spread of infection. In this study, we created the One-tube assay by combining Reverse Transcription-Recombinase Polymerase Amplification (RT-RPA) with the CRISPR/Cas12a system. By targeting the nucleoprotein (N) gene of HMPV to design specific primers and CRISPR RNAs (crRNAs), combining RT-RPA and CRISPR/Cas12a, established the One-tube assay. Meanwhile, the reaction conditions of the One-tube assay were optimized to achieve rapid and visual detection of HMPV. This assay could detect HMPV at 1 copy/μL in 30 min, without cross-reactivity with nine other respiratory pathogens. We validated the detection performance using clinical specimens and showed that the coincidence rate was 98.53 %,compared to the quantitative reverse-transcription polymerase chain reaction. The One-tube assay reduced the detection time and simplified the manual operation, while maintaining the detection performance and providing a new platform for HMPV detection.
Collapse
Affiliation(s)
- Yao Du
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China; Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen 518034, China.
| | - Xiaorong Liu
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen 518034, China.
| | - Hongdan Gao
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China; Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen 518034, China.
| | - Xiaoqian Liu
- School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China; Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen 518034, China.
| | - Meng Huang
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen 518034, China.
| | - Qiang Chai
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen 518034, China.
| | - Zhihao Xing
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen 518034, China.
| | - Tao Zhang
- Department of Pathogenic Biology, Bengbu Medical University, Bengbu 233030, China.
| | - Dongli Ma
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen 518034, China.
| |
Collapse
|
16
|
Min X, Wang Y, Dong X, Dong X, Wang N, Wang Z, Shi L. Epidemiological characteristics of human metapneumovirus among children in Nanjing, China. Eur J Clin Microbiol Infect Dis 2024; 43:1445-1452. [PMID: 38801487 DOI: 10.1007/s10096-024-04858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE The objective of this study was to examine the molecular epidemiology and clinical characteristics of HMPV infection among children with ARIs in Nanjing. METHODS The respiratory samples were collected from 2078 children (≤ 14 years) with acute respiratory infections and were tested for HMPV using real-time RT-PCR. Amplification and sequencing of the HMPV G gene were followed by phylogenetic analysis using MEGA 7.0. RESULT The detection rate of HMPV among children was 4.7% (97/2078), with a concentration in those under 5 years of age. Notably, the peak season for HMPV prevalence was observed in winter. Among the 97 HMPV-positive samples, 51.5% (50/97) were available for characterization of the HMPV G protein gene. Phylogenetic analysis indicated that the sequenced HMPV strains were classified into three sublineages: A2c111nt - dup (84.0%), B1 (2.0%), and B2 (14.0%). CONCLUSION There was an incidence of HMPV among hospitalized children during 2021-2022 in Nanjing with A2c111nt - dup being the dominant strain. This study demonstrated the molecular epidemiological characteristics of HMPV among children with respiratory infections in Nanjing, China.
Collapse
Affiliation(s)
- Xiaoyu Min
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Yaqian Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Xiaoxiao Dong
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Xiaoqing Dong
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Nan Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Ziyu Wang
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Liming Shi
- Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| |
Collapse
|
17
|
Shinkai M, Ota S, Ishikawa N, Tanimoto T, Suzuki H, Abe S, Vandendijck Y, Nakayama Y, Murata Y. Burden of respiratory syncytial virus, human metapneumovirus and influenza virus infections in Japanese adults in the Hospitalized Acute Respiratory Tract Infection study. Respir Investig 2024; 62:717-725. [PMID: 38823191 DOI: 10.1016/j.resinv.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and influenza virus are responsible for acute respiratory tract infections (ARTIs) in adults. We assessed the clinical burden of RSV, hMPV and influenza virus infection among Japanese adults hospitalized with ARTIs. METHODS The Hospitalized Acute Respiratory Tract Infection (HARTI) study was a multinational, prospective cohort study in adults with ARTIs across the 2017-2019 epidemic seasons. Enrolment in Japan began in Sept 2018 and ran until Oct 2019. The clinical diagnosis of ARTI and the decision to hospitalize the patient were made according to local standard of care practices. Viral testing was performed by reverse transcription polymerase chain reaction. RESULTS Of the 173 adults hospitalized with ARTI during this period at the Japan sites, 7 (4.0%), 9 (5.2%), and 11 (6.4%) were positive for influenza virus, RSV, and hMPV, respectively. RSV season was observed from Oct 2018 to Jan 2019, followed by influenza from Dec 2018 to Apr 2019. hMPV was detected across both the RSV and influenza seasons. Two patients with RSV and 1 patient with hMPV required ICU admission whereas none with influenza. Use of antibiotics, bronchodilators and inhaled corticosteroids was high amongst patients with RSV and hMPV at 1, 2, and 3 months' post-discharge compared with patients with influenza, with few exceptions. CONCLUSION These findings highlight the need for a high degree of clinical suspicion for RSV and hMPV infection in adults hospitalized with ARTIs.
Collapse
Affiliation(s)
- Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, 6-3-22 Higashioi, Shinagawa-ku, Tokyo, 140-8522, Japan.
| | - Shinichiro Ota
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, 6-3-22 Higashioi, Shinagawa-ku, Tokyo, 140-8522, Japan
| | - Nobuhisa Ishikawa
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, 734-8530, Japan
| | - Takuya Tanimoto
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, 734-8530, Japan
| | - Hiroki Suzuki
- Department of Respiratory Medicine, Yamagata Prefectural Central Hospital, 1800 Aoyagi, Yamagata-Shi, Yamagata, 990-2292, Japan
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, 1800 Aoyagi, Yamagata-Shi, Yamagata, 990-2292, Japan
| | - Yannick Vandendijck
- Janssen Research & Development, LLC, Turnhoutseweg 30, B-2340, Beerse, Belgium
| | - Yoshikazu Nakayama
- Janssen Pharmaceutical K.K., 3-5-2 Nishi-kanda, Chiyoda-ku, Tokyo, 101-0065, Japan
| | - Yoko Murata
- Janssen Pharmaceutical K.K., 3-5-2 Nishi-kanda, Chiyoda-ku, Tokyo, 101-0065, Japan
| |
Collapse
|
18
|
Bell C, He C, Norton D, Goss M, Chen G, Temte J. Household transmission of human metapneumovirus and seasonal coronavirus. Epidemiol Infect 2024; 152:e90. [PMID: 38770587 PMCID: PMC11736445 DOI: 10.1017/s0950268824000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 05/22/2024] Open
Abstract
We analyzed data from a community-based acute respiratory illness study involving K-12 students and their families in southcentral Wisconsin and assessed household transmission of two common seasonal respiratory viruses - human metapneumovirus (HMPV) and human coronaviruses OC43 and HKU1 (HCOV). We found secondary infection rates of 12.2% (95% CI: 8.1%-17.4%) and 19.2% (95% CI: 13.8%-25.7%) for HMPV and HCOV, respectively. We performed individual- and family-level regression models and found that HMPV transmission was positively associated age of the index case (individual model: p = .016; family model: p = .004) and HCOV transmission was positively associated with household density (family model: p = .048). We also found that the age of the non-index case was negatively associated with transmission of both HMPV (individual model: p = .049) and HCOV (individual model: p = .041), but we attributed this to selection bias from the original study design. Understanding household transmission of common respiratory viruses like HMPV and HCOV may help to broaden our understanding of the overall disease burden and establish methods to prevent the spread of disease from low- to high-risk populations.
Collapse
Affiliation(s)
- Cristalyne Bell
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Cecilia He
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Derek Norton
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Maureen Goss
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Guanhua Chen
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jonathan Temte
- Department of Family Medicine and Community Health, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
19
|
Brynes A, Zhang Y, Williams JV. Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593594. [PMID: 38798421 PMCID: PMC11118450 DOI: 10.1101/2024.05.10.593594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions 1,2,3,4. HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors in vitro, in part by preventing STAT1 phosphorylation5. HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling, and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wildtype, but not ΔSH virus, blocked IL-6 mediated STAT3 activation. Further, JAK1 protein (but not RNA) was significantly reduced in cells infected with wildtype but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.
Collapse
Affiliation(s)
- Adam Brynes
- Program in Microbiology and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Sojati J, Parks OB, Zhang Y, Walters S, Lan J, Eddens T, Lou D, Fan L, Chen K, Oury TD, Williams JV. IFN-λ drives distinct lung immune landscape changes and antiviral responses in human metapneumovirus infection. mBio 2024; 15:e0055024. [PMID: 38530032 PMCID: PMC11077986 DOI: 10.1128/mbio.00550-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Human metapneumovirus (HMPV) is a primary cause of acute respiratory infection, yet there are no approved vaccines or antiviral therapies for HMPV. Early host responses to HMPV are poorly characterized, and further understanding could identify important antiviral pathways. Type III interferon (IFN-λ) displays potent antiviral activity against respiratory viruses and is being investigated for therapeutic use. However, its role in HMPV infection remains largely unknown. Here, we show that IFN-λ is highly upregulated during HMPV infection in vitro in human and mouse airway epithelial cells and in vivo in mice. We found through several immunological and molecular assays that type II alveolar cells are the primary producers of IFN-λ. Using mouse models, we show that IFN-λ limits lung HMPV replication and restricts virus spread from upper to lower airways but does not contribute to clinical disease. Moreover, we show that IFN-λ signaling is predominantly mediated by CD45- non-immune cells. Mice lacking IFN-λ signaling showed diminished loss of ciliated epithelial cells and decreased recruitment of lung macrophages in early HMPV infection along with higher inflammatory cytokine and interferon-stimulated gene expression, suggesting that IFN-λ may maintain immunomodulatory responses. Administration of IFN-λ for prophylaxis or post-infection treatment in mice reduced viral load without inflammation-driven weight loss or clinical disease. These data offer clinical promise for IFN-λ in HMPV treatment. IMPORTANCE Human metapneumovirus (HMPV) is a common respiratory pathogen and often contributes to severe disease, particularly in children, immunocompromised people, and the elderly. There are currently no licensed HMPV antiviral treatments or vaccines. Here, we report novel roles of host factor IFN-λ in HMPV disease that highlight therapeutic potential. We show that IFN-λ promotes lung antiviral responses by restricting lung HMPV replication and spread from upper to lower airways but does so without inducing lung immunopathology. Our data uncover recruitment of lung macrophages, regulation of ciliated epithelial cells, and modulation of inflammatory cytokines and interferon-stimulated genes as likely contributors. Moreover, we found these roles to be distinct and non-redundant, as they are not observed with knockout of, or treatment with, type I IFN. These data elucidate unique antiviral functions of IFN-λ and suggest IFN-λ augmentation as a promising therapeutic for treating HMPV disease and promoting effective vaccine responses.
Collapse
Affiliation(s)
- Jorna Sojati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Olivia B. Parks
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sara Walters
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Taylor Eddens
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dequan Lou
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Li Fan
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kong Chen
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute for Infection, Immunity, and Inflammation in Children, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Sojati J, Zhang Y, Williams JV. Clinical human metapneumovirus isolates show distinct pathogenesis and inflammatory profiles but similar CD8 + T cell impairment. mSphere 2024; 9:e0057023. [PMID: 38197640 PMCID: PMC10826344 DOI: 10.1128/msphere.00570-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
Human metapneumovirus (HMPV) is a negative-sense single-stranded RNA virus in the Pneumoviridae family and a leading cause of acute upper and lower respiratory infections, particularly in children, immunocompromised patients, and the elderly. Although nearly every person is infected with HMPV during early childhood, re-infections occur often, highlighting difficulty in building long-term immunity. Inflammatory responses, including PD-1-mediated impairment of virus-specific CD8+ T cells (TCD8), contribute to HMPV disease severity. HMPV strains are divided into four lineages: A1, A2, B1, and B2. However, little is known about immune responses to different viral subtypes. Here, we characterize responses to four HMPV clinical isolates-TN/94-344 (A1), TN/94-49 (A2), C2-202 (B1), and TN/96-35 (B2)-in vivo in C57BL/6 (B6) mice. TN/94-49 was avirulent, while TN/94-344, C2-202, and TN/96-35 showed varying degrees of weight loss and clinical disease. Differences in disease did not correlate to virus burden in upper or lower tracts. TN/94-49 HMPV exhibited highest nose titers and delayed lung clearance. Cytokine profiles differed between HMPV isolates, with TN/96-35 inducing the broadest lung inflammatory cytokines. TN/96-35 also showed lower HMPV burden and less weight loss than other virulent isolates, suggesting a more efficient antiviral response. Interestingly, disease correlated with higher expression of T-cell chemoattractant CXCL9. All isolates elicited PD-1 upregulation and decreased IFNγ and CD107a expression in virus-specific TCD8, with little difference between HMPV subtypes. This work uncovers previously uncharacterized variations in immune responses to clinical HMPV isolates of different lineages.IMPORTANCEThis study extensively explored differences in T-cell-mediated immunity between human metapneumovirus (HMPV) clinical isolates. Much existing HMPV research has been done with strains passaged extensively in cell lines, likely acquiring mutations advantageous to in vitro replication. Clinical isolates are collected directly from human patients and have undergone <10 passages, serving as more physiologically relevant models of HMPV infection. Additionally, existing animal studies of HMPV disease mainly focus on lung pathogenesis, while HMPV infects both upper and lower airways of humans. This work highlights distinct differences in HMPV burden in upper and lower tracts between clinical isolates. Lastly, this study uniquely explores differences in host immunity between all four HMPV genetic lineages. The predominant HMPV subtype in circulation varies seasonally; thus, understanding host responses to all subgroups is critical for developing effective HMPV vaccines.
Collapse
Affiliation(s)
- Jorna Sojati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Program in Microbiology & Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute for Infection, Immunity, and Inflammation in Children, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Piñana JL, Tridello G, Xhaard A, Wendel L, Montoro J, Vazquez L, Heras I, Ljungman P, Mikulska M, Salmenniemi U, Perez A, Kröger N, Cornelissen J, Sala E, Martino R, Geurten C, Byrne J, Maertens J, Kerre T, Martin M, Pascual MJ, Yeshurun M, Finke J, Groll AH, Shaw PJ, Blijlevens N, Arcese W, Ganser A, Suarez-Lledo M, Alzahrani M, Choi G, Forcade E, Paviglianiti A, Solano C, Wachowiak J, Zuckerman T, Bader P, Clausen J, Mayer J, Schroyens W, Metafuni E, Knelange N, Averbuch D, de la Camara R. Upper and/or Lower Respiratory Tract Infection Caused by Human Metapneumovirus After Allogeneic Hematopoietic Stem Cell Transplantation. J Infect Dis 2024; 229:83-94. [PMID: 37440459 DOI: 10.1093/infdis/jiad268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Human metapneumovirus (hMPV) epidemiology, clinical characteristics and risk factors for poor outcome after allogeneic stem cell transplantation (allo-HCT) remain a poorly investigated area. METHODS This retrospective multicenter cohort study examined the epidemiology, clinical characteristics, and risk factors for poor outcomes associated with human metapneumovirus (hMPV) infections in recipients of allo-HCT. RESULTS We included 428 allo-HCT recipients who developed 438 hMPV infection episodes between January 2012 and January 2019. Most recipients were adults (93%). hMPV infections were diagnosed at a median of 373 days after allo-HCT. The infections were categorized as upper respiratory tract disease (URTD) or lower respiratory tract disease (LRTD), with 60% and 40% of cases, respectively. Patients with hMPV LRTD experienced the infection earlier in the transplant course and had higher rates of lymphopenia, neutropenia, corticosteroid use, and ribavirin therapy. Multivariate analysis identified lymphopenia and corticosteroid use (>30 mg/d) as independent risk factors for LRTD occurrence. The overall mortality at day 30 after hMPV detection was 2% for URTD, 12% for possible LRTD, and 21% for proven LRTD. Lymphopenia was the only independent risk factor associated with day 30 mortality in LRTD cases. CONCLUSIONS These findings highlight the significance of lymphopenia and corticosteroid use in the development and severity of hMPV infections after allo-HCT, with lymphopenia being a predictor of higher mortality in LRTD cases.
Collapse
Affiliation(s)
- Jose Luis Piñana
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
| | - Gloria Tridello
- Azienda Ospedaliera, Universitaria Integrata Verona, Verona, Italy
| | - Aliénor Xhaard
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, Université Paris-Diderot, Paris, France
| | - Lotus Wendel
- Leiden Study Unit, EBMT, Leiden, The Netherlands
| | - Juan Montoro
- Hematology División, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Lourdes Vazquez
- Hematology Department, Hospital Clinico Universitario de Salamanca, Salamanca, Spain
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Malgorzata Mikulska
- Division of Infectious Diseases, Dipartimento di scienze della salute, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Urpu Salmenniemi
- Hematology Department, Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Ariadna Perez
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
| | - Nicolaus Kröger
- Department for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Cornelissen
- Hematology Department, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Elisa Sala
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Rodrigo Martino
- Hematology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Claire Geurten
- Hematology Department, Birmingham Children's Hospital, Birmingham, United Kingdom
- Centre Hospitalier Universitaire de Liege, Liege, Belgium
| | - Jenny Byrne
- Hematology Department, Nottingham University, Nottingham, United Kingdom
| | - Johan Maertens
- Hematology Department, University Hospital Gasthuisberg, Leuven, Belgium
| | - Tessa Kerre
- Hematology Department, Ghent University Hospital, Gent, Belgium
| | - Murray Martin
- Hematology Department, Leicester Royal Infirmary, Leicester, United Kingdom
| | | | - Moshe Yeshurun
- Institution of Hematology, Rabin Medical Center, Petach-Tikva, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jürgen Finke
- Hematology Department, University of Freiburg, Freiburg, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hemtology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital, Muenster, Germany
| | - Peter J Shaw
- The Children`s Hospital at Westmead, Sydney, Australia
| | | | - William Arcese
- Hematology Department, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Mohsen Alzahrani
- Department of Oncology, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Goda Choi
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edouard Forcade
- Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | | | - Carlos Solano
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology, and Hematopoietic Cell Transplantation, University of Medical Sciences, Poznan, Poland
| | | | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Pediatrics and Adolescent Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Johannes Clausen
- Department of Internal Medicine I, Ordensklinikum Linz-Elisabethinen, Johannes Kepler University, Linz, Austria
| | - Jiri Mayer
- Masaryk University Hospital Brno, Brno, Czech Republic
| | | | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e EmatologiaGemelli Research Institute, Fondazione Policlinico Universitario Agostino Gemelli Research Institute, Roma, Italy
| | | | - Dina Averbuch
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Rafael de la Camara
- Hematology Department, Hospital de la Princesa, Madrid, Spain
- Hematology Department, Hospital Universitario Sanitas La Zarzuela, Madrid, Spain
| |
Collapse
|
23
|
Sen ES, Ramanan AV. Cytokine Storm Syndrome Associated with Hemorrhagic Fever and Other Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:249-267. [PMID: 39117819 DOI: 10.1007/978-3-031-59815-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A wide variety of infections can trigger cytokine storm syndromes including those caused by bacteria, viruses, fungi and parasites. The most frequent viral trigger is Epstein-.Barr virus which is covered in Chapter 16. CSS associated with COVID-19 is also discussed separately (Chapter 22). This chapter will focus on other viruses including the hemorrhagic fever viruses, influenza, parainfluenza, adenovirus, parvovirus, hepatitis viruses, measles, mumps, rubella, enterovirus, parechovirus, rotavirus, human metapneumovirus and human T-lymphotropic virus. The published literature consists of many single case reports and moderate-sized case series reporting CSS, in most circumstances meeting the 2004 diagnostic criteria for hemophagocytic lymphohistiocytosis (HLH). There is no published clinical trial evidence specifically for management of HLH associated with these viruses. In some situations, patients received supportive therapy and blood product transfusions only but in most cases, they were treated with one or more of intravenous corticosteroids, intravenous immunoglobulin and/or etoposide. These were successful in many patients although in significant numbers progression of infection to CSS was associated with mortality.
Collapse
Affiliation(s)
- Ethan S Sen
- Consultant in Paediatric Rheumatology, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - A V Ramanan
- Consultant in Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
24
|
Myklebust Å, Rae Simpson M, Valand J, Stenhaug Langaas V, Jartti T, Døllner H, Risnes K. Bronchial reactivity and asthma at school age after early-life metapneumovirus infection. ERJ Open Res 2024; 10:00832-2023. [PMID: 38259817 PMCID: PMC10801746 DOI: 10.1183/23120541.00832-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background The association between early-life lower respiratory tract infection (LRTI) and asthma is well established. Knowledge about bronchial hyperresponsiveness (BHR) and asthma after metapneumovirus (MPV) LRTI is scarce. The aim of this study was to assess BHR and current asthma in school-aged children after hospital admission for early-life LRTI with MPV, and to compare with more well-known viruses, rhinovirus (RV) and respiratory syncytial virus (RSV), and with controls. Methods A cohort consisting of children admitted for LRTI and controls was followed-up at school age with a clinical research assessment and lung function tests, including a methacholine provocation test. Current asthma was defined based on objective variable airway obstruction and clinical symptoms. BHR and asthma were compared according to viral groups. Results 135 children (median age 9.3 years) were included (16 MPV, 34 RV, 51 RSV, 13 mixed infections and 21 controls). Compared with controls there was increased BHR after MPV and RV LRTI (provocative dose causing a 20% fall in forced expiratory volume in 1 s and dose-response slope; p<0.05). Using Kaplan-Meier statistics, BHR was increased for MPV compared with both controls and RSV (p=0.02 and p=0.01). The proportion of children with current asthma at follow-up was higher in the LRTI children compared with the controls (46% versus 24%; p=0.06). Among children who had undergone MPV and RV infection, 50% fulfilled the asthma criteria compared with 43% in the RSV group (p=0.37). Conclusion We found increased BHR and a high prevalence of asthma in school-aged children after early-life MPV infection, and findings were similar to RV, and less to RSV, compared with controls.
Collapse
Affiliation(s)
- Åsne Myklebust
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Valand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Henrik Døllner
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Risnes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
25
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
26
|
Ma S, Zhu F, Xu Y, Wen H, Rao M, Zhang P, Peng W, Cui Y, Yang H, Tan C, Chen J, Pan P. Development of a novel multi-epitope mRNA vaccine candidate to combat HMPV virus. Hum Vaccin Immunother 2023; 19:2293300. [PMID: 38172569 PMCID: PMC10824151 DOI: 10.1080/21645515.2023.2293300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Human metapneumovirus (HMPV) is one of the main pathogens causing severe respiratory infections in children, as a common cause of immunodeficiency-related deaths in children and elderly individuals, the prevalence of HMPV has been showing an increasing trend during the last years. However, no vaccines or effective treatment plans are available currently. In this present, based on candidate proteins highly associated with viral virulence and has promising protective potential, we screened for immunodominant cytotoxic T cells, helper T cells, and Linear B-cell epitopes from the most promising candidate Fusion protein, together with G, SH, M, and M2. All epitopes were predicted to have strong antigenicity by Vaxijen and pose no potential toxicity, allergenicity, or hormonology to human proteins by Toxinpred, Allerpred, and Blast analysis, meanwhile, high conservancy is demanded to cover different subtypes. adjuvants β-defensin II and Pam2Cys was attached with EAAAK linkers to improve vaccine's efficiency. Then, calculation of physicochemical properties proved the protein vaccine as a product can stably exist in the human body. Besides, we assessed the docking between the vaccine and immune receptors to evaluate its ability to stimulate immune responses, and the dynamic simulation further confirmed that the vaccine can tightly bind with immune receptors, which approved that the construction has the potential to induce strong humoral and cellular immune response. Finally, the vaccine was constructed into a multi-epitope mRNA vaccine, the immune simulations suggest that this is a vaccine candidate for controlling HMPV infection.
Collapse
Affiliation(s)
- Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Haicheng Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Mingjun Rao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Caixia Tan
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
27
|
Ye H, Zhang S, Zhang K, Li Y, Chen D, Tan Y, Liang L, Liu M, Liang J, An S, Wu J, Zhu X, Li M, He Z. Epidemiology, genetic characteristics, and association with meteorological factors of human metapneumovirus infection in children in southern China: A 10-year retrospective study. Int J Infect Dis 2023; 137:40-47. [PMID: 37816430 DOI: 10.1016/j.ijid.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES This study aimed to determine the epidemiological and genetic features of human metapneumovirus (HMPV) infection in children in southern China, and the effect of meteorological factors on infection. METHODS 14,817 children (≤14 years) with acute respiratory tract infections from 2010 to 2019 were examined for HMPV and other respiratory viruses by real-time quantitative polymerase chain reaction. Full-length F gene of 54 positive samples were sequenced and subjected to phylogenetic analysis. The correlation between the HMPV-positive rate and meteorological factors was analyzed by linear regression analysis. RESULTS HMPV was detected in 524 (3.5%) children, who were mostly younger than 1 year. The seasonal peak of HMPV prevalence mainly occurred in spring. Respiratory syncytial virus was the most common virus coinfected with HMPV (5.3%). Phylogenetic analysis revealed that the sequenced HMPV strains belonged to four sublineages, including A2b (1.9%), A2c (31.5%), B1 (50.0%), and B2 (16.7%). After adjusting for all meteorological factors, sunshine duration was inversely correlated with the HMPV-positive rate. CONCLUSION HMPV is an important respiratory pathogen that causes acute respiratory tract infections in children in southern China, particularly in children ≤5 years old. The prevalence peak of HMPV in this area appeared in spring, and the predominant subtype was B1. Meteorological factors, especially long sunshine duration, might decrease the HMPV prevalence.
Collapse
Affiliation(s)
- Hengming Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Public Health Service Center of Bao'an District, Shenzhen, China
| | - Shuqing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yizhe Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Delin Chen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongyao Tan
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linyue Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minjie Liu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyao Liang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shu An
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Cancer Institute, Southern Medical University, Guangzhou, China
| | - Zhenjian He
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
28
|
Varela-Lasheras I, Perfeito L, Mesquita S, Gonçalves-Sá J. The effects of weather and mobility on respiratory viruses dynamics before and during the COVID-19 pandemic in the USA and Canada. PLOS DIGITAL HEALTH 2023; 2:e0000405. [PMID: 38127792 PMCID: PMC10734953 DOI: 10.1371/journal.pdig.0000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
The flu season is caused by a combination of different pathogens, including influenza viruses (IVS), that cause the flu, and non-influenza respiratory viruses (NIRVs), that cause common colds or influenza-like illness. These viruses exhibit similar dynamics and meteorological conditions have historically been regarded as a principal modulator of their epidemiology, with outbreaks in the winter and almost no circulation during the summer, in temperate regions. However, after the emergence of SARS-CoV2, in late 2019, the dynamics of these respiratory viruses were strongly perturbed worldwide: some infections displayed near-eradication, while others experienced temporal shifts or occurred "off-season". This disruption raised questions regarding the dominant role of weather while also providing an unique opportunity to investigate the roles of different determinants on the epidemiological dynamics of IVs and NIRVs. Here, we employ statistical analysis and modelling to test the effects of weather and mobility in viral dynamics, before and during the COVID-19 pandemic. Leveraging epidemiological surveillance data on several respiratory viruses, from Canada and the USA, from 2016 to 2023, we found that whereas in the pre-COVID-19 pandemic period, weather had a strong effect, in the pandemic period the effect of weather was strongly reduced and mobility played a more relevant role. These results, together with previous studies, indicate that behavioral changes resulting from the non-pharmacological interventions implemented to control SARS-CoV2, interfered with the dynamics of other respiratory viruses, and that the past dynamical equilibrium was disturbed, and perhaps permanently altered, by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Irma Varela-Lasheras
- Nova School of Business and Economics, Universidade Nova de Lisboa, Carcavelos, Portugal
| | - Lilia Perfeito
- LIP, Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal
| | - Sara Mesquita
- LIP, Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal
- Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Sá
- Nova School of Business and Economics, Universidade Nova de Lisboa, Carcavelos, Portugal
- LIP, Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal
| |
Collapse
|
29
|
Wall SC, Suryadevara N, Kim C, Shiakolas AR, Holt CM, Irbe EB, Wasdin PT, Suresh YP, Binshtein E, Chen EC, Zost SJ, Canfield E, Crowe JE, Thompson-Arildsen MA, Sheward DJ, Carnahan RH, Georgiev IS. SARS-CoV-2 antibodies from children exhibit broad neutralization and belong to adult public clonotypes. Cell Rep Med 2023; 4:101267. [PMID: 37935199 PMCID: PMC10694659 DOI: 10.1016/j.xcrm.2023.101267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.
Collapse
Affiliation(s)
- Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma B Irbe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elaine C Chen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Canfield
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ann Thompson-Arildsen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
30
|
Parks OB, Antos D, Eddens T, Walters S, Johnson M, Oury TD, Gottschalk RA, Erickson JJ, Williams JV. PD-1 Impairs CD8+ T Cell Granzyme B Production in Aged Mice during Acute Viral Respiratory Infection. Immunohorizons 2023; 7:771-787. [PMID: 38015461 PMCID: PMC10696419 DOI: 10.4049/immunohorizons.2300094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
CD8+ T cell dysfunction contributes to severe respiratory viral infection outcomes in older adults. CD8+ T cells are the primary cell type responsible for viral clearance. With increasing age, CD8+ T cell function declines in conjunction with an accumulation of cytotoxic tissue-resident memory (TRM) CD8+ T cells. We sought to elucidate the role of PD-1 signaling on aged CD8+ T cell function and accumulation of CD8+ TRM cells during acute viral respiratory tract infection, given the importance of PD-1 regulating CD8+ T cells during acute and chronic infections. PD-1 blockade or genetic ablation in aged mice yielded improved CD8+ T cell granzyme B production comparable to that in young mice during human metapneumovirus and influenza viral infections. Syngeneic transplant and adoptive transfer strategies revealed that improved granzyme B production in aged Pdcd1-/- CD8+ T cells was primarily cell intrinsic because aged wild-type CD8+ T cells did not have increased granzyme B production when transplanted into a young host. PD-1 signaling promoted accumulation of cytotoxic CD8+ TRM cells in aged mice. PD-1 blockade of aged mice during rechallenge infection resulted in improved clinical outcomes that paralleled reduced accumulation of CD8+ TRM cells. These findings suggest that PD-1 signaling impaired CD8+ T cell granzyme B production and contributed to CD8+ TRM cell accumulation in the aged lung. These findings have implications for future research investigating PD-1 checkpoint inhibitors as a potential therapeutic option for elderly patients with severe respiratory viral infections.
Collapse
Affiliation(s)
- Olivia B. Parks
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Danielle Antos
- Division of Pulmonology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Taylor Eddens
- Division of Allergy/Immunology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sara Walters
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Monika Johnson
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rachel A. Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - John J. Erickson
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH
| | - John V. Williams
- Division of Infectious Diseases, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA
| |
Collapse
|
31
|
Leister N, Commotio S, Menzel C, Yücetepe S, Ulrichs C, Wendt S, Dedden C, Trieschmann U, Hannes T. Human metapneumovirus infection in the cardiac paediatric ICU before and during COVID-19 pandemic: a retrospective cohort analysis. Cardiol Young 2023; 33:1517-1522. [PMID: 35920053 PMCID: PMC9379262 DOI: 10.1017/s1047951122002645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
INTRODUCTION This study investigates the hygiene standards in the context of the COVID-19 pandemic and their impact on the perioperative incidence of human metapneumovirus as well as the typical symptom burden of human metapneumovirus-infected children with CHDs. MATERIALS AND METHODS Between March 2018 and July 2021, all patients of a cardiac paediatric ICU of a German university hospital were included in this retrospective cohort analysis. RESULTS A total of 589 patients with CHD were included in the analysis. Three hundred and fifty-two patients (148 females and 204 males) were admitted before the introduction of social distancing and face masks between March 2018 and 15 April 2020 (cohort A). Two hundred and thirty-seven patients (118 females and 119 males) were admitted after the introduction between April 16 and July 2021 (cohort B). In cohort A, human metapneumovirus was detected in 11 out of 352 patients (3.1%) during their stay at cardiac paediatric ICU. In cohort B, one patient out of 237 (0.4%) tested positive for human metapneumovirus. Patients who tested positive for human metapneumovirus stayed in cardiac paediatric ICU for a median of 17.5 days (range, 2-45 days). Patients without a detected human metapneumovirus infection stayed in the cardiac paediatric ICU for a median of 4 days (range, 0.5-114 days). Nine out of 12 (75%) human metapneumovirus-positive patients showed atelectasis. CONCLUSION Perioperative human metapneumovirus infections prolong cardiac paediatric ICU stay in children with CHD. In affected patients, pulmonary impairment with typical symptoms appears. Under certain circumstances, a complication-rich perioperative infection with human metapneumovirus could be prevented in paediatric cardiac high-risk patients by prophylactic hygiene intervention.
Collapse
Affiliation(s)
- Nicolas Leister
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Simone Commotio
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Christoph Menzel
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Sirin Yücetepe
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Christoph Ulrichs
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Stefanie Wendt
- Department of Cardiothoracic Surgery and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Christoph Dedden
- Department of Paediatric Cardiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Uwe Trieschmann
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Tobias Hannes
- Department of Anaesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
- Department of Paediatric Cardiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
- Department of Neonatology and Paediatric Intensive Care Medicine, Asklepios Children’s Hospital St. Augustin, Sankt Augustin, Germany
| |
Collapse
|
32
|
Lamichhane J, Upreti M, Nepal K, Upadhyay BP, Maharjan U, Shrestha RK, Chapagain RH, Banjara MR, Shrestha UT. Burden of human metapneumovirus infections among children with acute respiratory tract infections attending a Tertiary Care Hospital, Kathmandu. BMC Pediatr 2023; 23:388. [PMID: 37550689 PMCID: PMC10405573 DOI: 10.1186/s12887-023-04208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Acute respiratory infections (ARIs) are one of the most common causes of mortality and morbidity worldwide. Every year millions of children suffer from viral respiratory tract infections (RTIs) ranging from mild to severe illnesses. Human Metapneumovirus (HMPV) is among the most frequent viruses responsible for RTIs. However, HMPV infections and their severity among children have not been explored yet in Nepal. PURPOSE Therefore, the study was focused on HMPV infections and other potential viral etiologies or co-infections using multiplex PCR among children attending Kanti Children's Hospital and assessed the clinical characteristics of the infections as well as found the co-infections. A hospital-based cross-sectional study was designed and a convenience sampling method was used to enroll children of less than 15 years with flu-like symptoms from both outpatients and inpatients departments over three months of the study period. RESULTS HMPV infection (13.3%) was the most predominant infection among the different viral infections in children with ARIs in Kanti Children's Hospital. The HMPV was more prevalent in the age group less than three years (21.8%). Cough and fever were the most common clinical features present in all children infected with HMPV followed by rhinorrhea, sore throat, and wheezing. HMPV-positive children were diagnosed with pneumonia (42.9%), bronchiolitis (28.5%), upper respiratory tract infections (14.3%), and asthma (14.3%). The prevalence of HMPV was high in late winter (14.3%) followed by early spring (13.5%). CONCLUSIONS This study provides the baseline information on HMPV and associated co-infection with other respiratory viruses for the differential diagnosis based on molecular methods and also the comparison of clinical presentations among the different respiratory syndromes.
Collapse
Affiliation(s)
- Jyoti Lamichhane
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Milan Upreti
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Krishus Nepal
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | | | - Urusha Maharjan
- Central Diagnostic Laboratory & Research Center, Kamalpokhari, Kathmandu, Nepal
| | | | | | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | |
Collapse
|
33
|
Guterres A. Viral load: We need a new look at an old problem? J Med Virol 2023; 95:e29061. [PMID: 37638475 DOI: 10.1002/jmv.29061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
The concept of viral load was introduced in the 1980s to measure the amount of viral genetic material in a person's blood, primarily for human immunodeficiency virus (HIV). It has since become crucial for monitoring HIV infection progression and assessing the efficacy of antiretroviral therapy. However, during the coronavirus disease 2019 pandemic, the term "viral load" became widely popularized, not only for the scientific community but for the general population. Viral load plays a critical role in both clinical patient management and research, providing valuable insights for antiviral treatment strategies, vaccination efforts, and epidemiological control measures. As measuring viral load is so important, why don't researchers discuss the best way to do it? Is it simply acceptable to use raw Ct values? Relying solely on Ct values for viral load estimation can be problematic due to several reasons. First, Ct values can vary between different quantitative polymerase chain reaction assays, platforms, and laboratories, making it difficult to compare data across studies. Second, Ct values do not directly measure the quantity of viral particles in a sample and they can be influenced by various factors such as initial viral load, sample quality, and assay sensitivity. Moreover, variations in viral RNA extraction and reverse-transcription steps can further impact the accuracy of viral load estimation, emphasizing the need for careful interpretation of Ct values in viral load assessment. Interestingly, we did not observe scientific articles addressing different strategies to quantify viral load. The absence of standardized and validated methods impedes the implementation of viral load monitoring in clinical management. The variability in cell quantities within samples and the variation in viral particle numbers within infected cells further challenge accurate viral load measurement and interpretation. To advance the field and improve patient outcomes, there is an urgent need for the development and validation of tailored, standardized methods for precise viral load quantification.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Parks OB, Eddens T, Sojati J, Lan J, Zhang Y, Oury TD, Ramsey M, Erickson JJ, Byersdorfer CA, Williams JV. Terminally exhausted CD8 + T cells contribute to age-dependent severity of respiratory virus infection. Immun Ageing 2023; 20:40. [PMID: 37528458 PMCID: PMC10391960 DOI: 10.1186/s12979-023-00365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Lower respiratory infections are a leading cause of severe morbidity and mortality among older adults. Despite ubiquitous exposure to common respiratory pathogens throughout life and near universal seropositivity, antibodies fail to effectively protect the elderly. Therefore, we hypothesized that severe respiratory illness in the elderly is due to deficient CD8+ T cell responses. RESULTS Here, we establish an aged mouse model of human metapneumovirus infection (HMPV) wherein aged C57BL/6 mice exhibit worsened weight loss, clinical disease, lung pathology and delayed viral clearance compared to young adult mice. Aged mice generate fewer lung-infiltrating HMPV epitope-specific CD8+ T cells. Those that do expand demonstrate higher expression of PD-1 and other inhibitory receptors and are functionally impaired. Transplant of aged T cells into young mice and vice versa, as well as adoptive transfer of young versus aged CD8+ T cells into Rag1-/- recipients, recapitulates the HMPV aged phenotype, suggesting a cell-intrinsic age-associated defect. HMPV-specific aged CD8+ T cells exhibit a terminally exhausted TCF1/7- TOX+ EOMES+ phenotype. We confirmed similar terminal exhaustion of aged CD8+ T cells during influenza viral infection. CONCLUSIONS This study identifies terminal CD8+ T cell exhaustion as a mechanism of severe disease from respiratory viral infections in the elderly.
Collapse
Affiliation(s)
- Olivia B Parks
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taylor Eddens
- Department of Pediatrics, Division of Allergy/Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jorna Sojati
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jie Lan
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yu Zhang
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Manda Ramsey
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John J Erickson
- Department of Pediatrics, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Craig A Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John V Williams
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, USA.
- University of Pittsburgh, Rangos Research Building, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
35
|
Loevenich S, Montaldo NP, Wickenhagen A, Sherstova T, van Loon B, Boyartchuk V, Anthonsen MW. Human metapneumovirus driven IFN-β production antagonizes macrophage transcriptional induction of IL1-β in response to bacterial pathogens. Front Immunol 2023; 14:1173605. [PMID: 37435074 PMCID: PMC10330783 DOI: 10.3389/fimmu.2023.1173605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Human metapneumovirus (HMPV) is a pneumovirus that may cause severe respiratory disease in humans. HMPV infection has been found to increase susceptibility to bacterial superinfections leading to increased morbidity and mortality. The molecular mechanisms underlying HMPV-mediated increase in bacterial susceptibility are poorly understood and largely understudied. Type I interferons (IFNs), while critical for antiviral defenses, may often have detrimental effects by skewing the host immune response and cytokine output of immune cells. It is currently unknown if HMPV skews the inflammatory response in human macrophages triggered by bacterial stimuli. Here we report that HMPV pre-infection impacts production of specific cytokines. HMPV strongly suppresses IL-1β transcription in response to LPS or heat-killed Pseudomonas aeruginosa and Streptococcus pneumonia, while enhancing mRNA levels of IL-6, TNF-α and IFN-β. We demonstrate that in human macrophages the HMPV-mediated suppression of IL-1β transcription requires TANK-binding kinase 1 (TBK1) and signaling via the IFN-β-IFNAR axis. Interestingly, our results show that HMPV pre-infection did not impair the LPS-stimulated activation of NF-κB and HIF-1α, transcription factors that stimulate IL-1β mRNA synthesis in human cells. Furthermore, we determined that sequential HMPV-LPS treatment resulted in accumulation of the repressive epigenetic mark H3K27me3 at the IL1B promoter. Thus, for the first time we present data revealing the molecular mechanisms by which HMPV shapes the cytokine output of human macrophages exposed to bacterial pathogens/LPS, which appears to be dependent on epigenetic reprogramming at the IL1B promoter leading to reduced synthesis of IL-1β. These results may improve current understanding of the role of type I IFNs in respiratory disease mediated not only by HMPV, but also by other respiratory viruses that are associated with superinfections.
Collapse
Affiliation(s)
- Simon Loevenich
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Nicola P. Montaldo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arthur Wickenhagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Tatyana Sherstova
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Victor Boyartchuk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St Olav Hospital HF, Trondheim, Norway
| | - Marit W. Anthonsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
36
|
Eccles R. Common cold. FRONTIERS IN ALLERGY 2023; 4:1224988. [PMID: 37426629 PMCID: PMC10324571 DOI: 10.3389/falgy.2023.1224988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The common cold is a unique human disease, as it is arguably the most common disease and because of the large number of respiratory viruses causing colds it is one of the most complex of human diseases. This review discusses the respiratory viruses and notes that all these viruses may cause the illness complex recognised as the common cold. The common cold is discussed as part of the "iceberg concept" of disease which ranges from asymptomatic infection to severe illness and death. The factors influencing the incidence of colds are discussed: crowding and sociability, stress, smoking and alcohol, immune status, sex, age, sleep, season, chilling, nutrition and exercise. The mechanism of symptoms related to the innate immune response is explained and symptomatic treatments are tabulated. Morbidity associated with common cold is discussed and possible vaccines.
Collapse
|
37
|
Kleiner VA, O Fischmann T, Howe JA, Beshore DC, Eddins MJ, Hou Y, Mayhood T, Klein D, Nahas DD, Lucas BJ, Xi H, Murray E, Ma DY, Getty K, Fearns R. Conserved allosteric inhibitory site on the respiratory syncytial virus and human metapneumovirus RNA-dependent RNA polymerases. Commun Biol 2023; 6:649. [PMID: 37337079 DOI: 10.1038/s42003-023-04990-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are related RNA viruses responsible for severe respiratory infections and resulting disease in infants, elderly, and immunocompromised adults1-3. Therapeutic small molecule inhibitors that bind to the RSV polymerase and inhibit viral replication are being developed, but their binding sites and molecular mechanisms of action remain largely unknown4. Here we report a conserved allosteric inhibitory site identified on the L polymerase proteins of RSV and HMPV that can be targeted by a dual-specificity, non-nucleoside inhibitor, termed MRK-1. Cryo-EM structures of the inhibitor in complexes with truncated RSV and full-length HMPV polymerase proteins provide a structural understanding of how MRK-1 is active against both viruses. Functional analyses indicate that MRK-1 inhibits conformational changes necessary for the polymerase to engage in RNA synthesis initiation and to transition into an elongation mode. Competition studies reveal that the MRK-1 binding pocket is distinct from that of a capping inhibitor with an overlapping resistance profile, suggesting that the polymerase conformation bound by MRK-1 may be distinct from that involved in mRNA capping. These findings should facilitate optimization of dual RSV and HMPV replication inhibitors and provide insights into the molecular mechanisms underlying their polymerase activities.
Collapse
Affiliation(s)
- Victoria A Kleiner
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | | | | | | | - Yan Hou
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | | | - He Xi
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
38
|
Parks OB, Eddens T, Zhang Y, Oury TD, McElroy A, Williams JV. Human Metapneumovirus Reinfection in Aged Mice Recapitulates Increased Disease Severity in Elderly Humans Infected with Human Metapneumovirus. Immunohorizons 2023; 7:398-411. [PMID: 37261717 PMCID: PMC10321313 DOI: 10.4049/immunohorizons.2300026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of respiratory infection in adults >65 y. Nearly all children worldwide are seropositive for HMPV by age 5 y, but reinfections occur throughout life, and there is no licensed vaccine. Recurrent HMPV infection is mild and self-resolving in immunocompetent individuals. However, elderly individuals develop severe respiratory disease on HMPV reinfection that leads to a high risk for morbidity and mortality. In this study, we developed a mouse model to mirror HMPV reinfection in elderly humans. C57BL/6J mice were infected with HMPV at 6-7 wk old, aged in-house, and rechallenged with high-dose virus at 70 wk. Aged rechallenged mice had profound weight loss similar to primary infected mice, increased lung histopathology, and accumulated cytotoxic CD8+CD44+CD62L-CD69+CD103+ memory cells despite having undetectable lung virus titer. When aged mice 14 mo postinfection (p.i.) or young mice 5 wk p.i. were restimulated with HMPV cognate Ag to mimic epitope vaccination, aged mice had an impaired CD8+ memory response. Convalescent serum transfer from young naive or 5 wk p.i. mice into aged mice on day of infection did not protect. Aged mice vaccinated with UV-inactivated HMPV also exhibited diminished protection and poor CD8+ memory response compared with young mice. These results suggest aged individuals with HMPV reinfection have a dysregulated CD8+ memory T cell response that fails to protect and exacerbates disease. Moreover, aged mice exhibited a poor memory response to either epitope peptide or UV-inactivated vaccination, suggesting that aged CD8+ T cell dysfunction presents a barrier to effective vaccination strategies.
Collapse
Affiliation(s)
- Olivia B. Parks
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Taylor Eddens
- Department of Pediatrics, Division of Allergy/Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yu Zhang
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anita McElroy
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - John V. Williams
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
39
|
Thompson RE, Edmonds K, Dutch RE. Specific Residues in the C-Terminal Domain of the Human Metapneumovirus Phosphoprotein Are Indispensable for Formation of Viral Replication Centers and Regulation of the Function of the Viral Polymerase Complex. J Virol 2023; 97:e0003023. [PMID: 37092993 PMCID: PMC10231248 DOI: 10.1128/jvi.00030-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Human metapneumovirus (HMPV) is a negative-strand RNA virus that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. A hallmark of HMPV infection is the formation of membraneless, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). The HMPV phosphoprotein (P) and nucleoprotein (N) are the minimal viral proteins necessary to form IB-like structures, and both proteins are required for the viral polymerase to synthesize RNA during infection. HMPV P is a homotetramer with regions of intrinsic disorder and has several known and predicted phosphorylation sites of unknown function. In this study, we found that the P C-terminal intrinsically disordered domain (CTD) must be present to facilitate IB formation with HMPV N, while either the N-terminal intrinsically disordered domain or the central oligomerization domain was dispensable. Alanine substitution at a single tyrosine residue within the CTD abrogated IB formation and reduced coimmunoprecipitation with HMPV N. Mutations to C-terminal phosphorylation sites revealed a potential role for phosphorylation in regulating RNA synthesis and P binding partners within IBs. Phosphorylation mutations which reduced RNA synthesis in a reporter assay produced comparable results in a recombinant viral rescue system, measured as an inability to produce infectious viral particles with genomes containing these single P mutations. This work highlights the critical role HMPV P plays in facilitating a key step of the viral life cycle and reveals the potential role for phosphorylation in regulating the function of this significant viral protein. IMPORTANCE Human metapneumovirus (HMPV) infects global populations, with severe respiratory tract infections occurring in infants, the elderly, and the immunocompromised. There are currently no FDA-approved therapeutics available to prevent or treat HMPV infection. Therefore, understanding how HMPV replicates is vital for the identification of novel targets for therapeutic development. During HMPV infection, viral RNA synthesis proteins localize to membraneless structures called inclusion bodies (IBs), which are sites of genome replication and transcription. The HMPV phosphoprotein (P) is necessary for IBs to form and for the virus to synthesize RNA, but it is not known how this protein contributes to IB formation or if it is capable of regulating viral replication. We show that the C-terminal domain of P is the location of a molecular interaction driving IB formation and contains potential phosphorylation sites where amino acid charge regulates the function of the viral polymerase complex.
Collapse
Affiliation(s)
- Rachel Erin Thompson
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kearstin Edmonds
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
40
|
Emergence and Potential Extinction of Genetic Lineages of Human Metapneumovirus between 2005 and 2021. mBio 2023; 14:e0228022. [PMID: 36507832 PMCID: PMC9973309 DOI: 10.1128/mbio.02280-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human metapneumovirus (HMPV) is one of the leading causes of respiratory illness (RI), primarily in infants. Worldwide, two genetic lineages (A and B) of HMPV are circulating that are antigenically distinct and can each be further divided into genetic sublineages. Surveillance combined with large-scale whole-genome sequencing studies of HMPV are scarce but would help to identify viral evolutionary dynamics. Here, we analyzed 130 whole HMPV genome sequences obtained from samples collected from individuals hospitalized with RI and partial fusion (n = 144) and attachment (n = 123) protein gene sequences obtained from samples collected from patients with RI visiting general practitioners between 2005 and 2021 in the Netherlands. Phylogenetic analyses demonstrated that HMPV continued to group in the four sublineages described in 2004 (A1, A2, B1, and B2). However, one sublineage (A1) was no longer detected in the Netherlands after 2006, while the others continued to evolve. No differences were observed in dominant (sub)lineages between samples obtained from patients with RI being hospitalized and those consulting general practitioners. In both populations, viruses of lineage A2 carrying a 180-nucleotide or 111-nucleotide duplication in the attachment protein gene became the most frequently detected genotypes. In the past, different names for the newly energing lineages have been proposed, demonstrating the need for a consistent naming convention. Here, criteria are proposed for the designation of new genetic lineages to aid in moving toward a systematic HMPV classification. IMPORTANCE Human metapneumovirus (HMPV) is one of the major causative agents of human respiratory tract infections. Monitoring of virus evolution could aid toward the development of new antiviral treatments or vaccine designs. Here, we studied HMPV evolution between 2005 and 2021, with viruses obtained from samples collected from hospitalized individuals and patients with respiratory infections consulting general practitioners. Phylogenetic analyses demonstrated that HMPV continued to group in the four previously described sublineages (A1, A2, B1, and B2). However, one sublineage (A1) was no longer detected after 2006, while the others continued to evolve. No differences were observed in dominant (sub)lineages between patients being hospitalized and those consulting general practitioners. In both populations, viruses of lineage A2 carrying a 180-nucleotide or 111-nucleotide duplication in the attachment protein gene became the most frequently detected genotypes. These data were used to propose criteria for the designation of new genetic lineages to aid toward a systematic HMPV classification.
Collapse
|
41
|
Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon 2022; 8:e12620. [PMID: 36619445 PMCID: PMC9816992 DOI: 10.1016/j.heliyon.2022.e12620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Lung diseases continue to draw considerable attention from biomedical and public health care agencies. The lung with the largest epithelial surface area is continuously exposed to the external environment during exchanging gas. Therefore, the chances of respiratory disorders and lung infections are overgrowing. This review has covered promising and opportunistic etiologic agents responsible for lung infections. These pathogens infect the lungs either directly or indirectly. However, it is difficult to intervene in lung diseases using available oral or parenteral antimicrobial formulations. Many pieces of research have been done in the last two decades to improve inhalable antimicrobial formulations. However, very few have been approved for human use. This review article discusses the approved inhalable antimicrobial agents (AMAs) and identifies why pulmonary delivery is explored. Additionally, the basic anatomy of the respiratory system linked with barriers to AMA delivery has been discussed here. This review opens several new scopes for researchers to work on pulmonary medicines for specific diseases and bring more respiratory medication to market.
Collapse
|
42
|
Cong S, Wang C, Wei T, Xie Z, Huang Y, Tan J, Chen A, Ma F, Zheng L. Human metapneumovirus in hospitalized children with acute respiratory tract infections in Beijing, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 106:105386. [PMID: 36372116 DOI: 10.1016/j.meegid.2022.105386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND This study aims to described the epidemiology and genotypic diversity of Human metapneumovirus (HMPV) and the impact of SARS-CoV-2 on the prevalence of HMPV in hospitalized children with Acute respiratory tract infections (ARTIs) in Beijing, China. METHODS From April 2018 to March 2019 and from September 2020 to August 2021, nasopharyngeal aspirates (NPAs) from hospitalized children with ARTIs in Beijing were collected and subjected to real-time polymerase chain reaction tests for HMPV. Then genotyping, detection of 15 common respiratory viruses and clinical characteristics were analyzed on HMPV positive samples. RESULTS 7.9% (124/1572) enrolled pediatric patients were identified as having HMPV infection, and the majority of children under the age of 5 (78.2%, 92/124), From April 2018 to March 2019. The detection rate of HMPV in spring and winter is significantly higher than that in summer and autumn. The co-infection rate were 37.1% (46/124), the most common co-infected virus were parainfluenza virus type 3 (HPIV-3). The main diagnosis of HMPV infection was pneumonia (92.7%,115/124), most patient have cough and fever. Of 78 HMPV-positive specimens, A2b (82.1%,64/78) were the main epidemic subtypes. Hospitalized children with HMPV genotype A infection had a higher viral load compared to genotype B. During the COVID-19 outbreak, Among 232 samples, only 4 cases were HMPV-positive. After statistical test, the detection rate of HMPV during the COVID-19 pandemic has decreased significantly compared with that before the epidemic (p = 0.001). CONCLUSIONS HMPV is an important cause of ARTIs in children under 5 years old. The epidemic peak is generally in winter and spring, and the A2b subtype is the most common. However, under the prevention and control of the COVID-19 pandemic, the HMPV infection of hospitalized children with ARTIs has decreased significantly.
Collapse
Affiliation(s)
- Shanshan Cong
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Chao Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Tianli Wei
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiping Xie
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yiman Huang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jingjing Tan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Aijun Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Fenlian Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
| | - Lishu Zheng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Respiratory illness virus infections with special emphasis on COVID-19. Eur J Med Res 2022; 27:236. [PMID: 36348452 PMCID: PMC9641310 DOI: 10.1186/s40001-022-00874-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses that emerge pose challenges for treatment options as their uniqueness would not know completely. Hence, many viruses are causing high morbidity and mortality for a long time. Despite large diversity, viruses share common characteristics for infection. At least 12 different respiratory-borne viruses are reported belonging to various virus taxonomic families. Many of these viruses multiply and cause damage to the upper and lower respiratory tracts. The description of these viruses in comparison with each other concerning their epidemiology, molecular characteristics, disease manifestations, diagnosis and treatment is lacking. Such information helps diagnose, differentiate, and formulate the control measures faster. The leading cause of acute illness worldwide is acute respiratory infections (ARIs) and are responsible for nearly 4 million deaths every year, mostly in young children and infants. Lower respiratory tract infections are the fourth most common cause of death globally, after non-infectious chronic conditions. This review aims to present the characteristics of different viruses causing respiratory infections, highlighting the uniqueness of SARS-CoV-2. We expect this review to help understand the similarities and differences among the closely related viruses causing respiratory infections and formulate specific preventive or control measures.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
44
|
Funes SC, Ríos M, Fernández-Fierro A, Rivera-Pérez D, Soto JA, Valbuena JR, Altamirano-Lagos MJ, Gómez-Santander F, Jara EL, Zoroquiain P, Roa JC, Kalergis AM, Riedel CA. Female offspring gestated in hypothyroxinemia and infected with human Metapneumovirus (hMPV) suffer a more severe infection and have a higher number of activated CD8+ T lymphocytes. Front Immunol 2022; 13:966917. [PMID: 36159799 PMCID: PMC9494552 DOI: 10.3389/fimmu.2022.966917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Maternal thyroid hormones (THs) are essential for the appropriate development of the fetus and especially for the brain. Recently, some studies have shown that THs deficiency can also alter the immune system development of the progeny and their ability to mount an appropriate response against infectious agents. In this study, we evaluated whether adult mice gestated under hypothyroxinemia (Hpx) showed an altered immune response against infection with human metapneumovirus (hMPV). We observed that female mice gestated under Hpx showed higher clinical scores after seven days of hMPV infection. Besides, males gestated under Hpx have higher lung viral loads at day seven post-infection. Furthermore, the female offspring gestated in Hpx have already reduced the viral load at day seven and accordingly showed an increased proportion of activated (CD71+ and FasL+) CD8+ T cells in the lungs, which correlated with a trend for a higher histopathological clinical score. These results support that T4 deficiency during gestation might condition the offspring differently in males and females, enhancing their ability to respond to hMPV.
Collapse
Affiliation(s)
- Samanta C. Funes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Mariana Ríos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José R. Valbuena
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María J. Altamirano-Lagos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Felipe Gómez-Santander
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
| | - Evelyn L. Jara
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
- Departmento de Farmacología, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Pablo Zoroquiain
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C. Roa
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Catóica, de Chile, Santiago, Chile
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- *Correspondence: Claudia A. Riedel,
| |
Collapse
|
45
|
Potently neutralizing and protective anti-human metapneumovirus antibodies target diverse sites on the fusion glycoprotein. Immunity 2022; 55:1710-1724.e8. [DOI: 10.1016/j.immuni.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
|
46
|
Yuan H, Yeung A, Yang W. Interactions among common non-SARS-CoV-2 respiratory viruses and influence of the COVID-19 pandemic on their circulation in New York City. Influenza Other Respir Viruses 2022; 16:653-661. [PMID: 35278037 PMCID: PMC9111828 DOI: 10.1111/irv.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Non-pharmaceutical interventions (NPIs) and voluntary behavioral changes during the COVID-19 pandemic have influenced the circulation of non-SARS-CoV-2 respiratory infections. We aimed to examine interactions among common non-SARS-CoV-2 respiratory virus and further estimate the impact of the COVID-19 pandemic on these viruses. METHODS We analyzed incidence data for seven groups of respiratory viruses in New York City (NYC) during October 2015 to May 2021 (i.e., before and during the COVID-19 pandemic). We first used elastic net regression to identify potential virus interactions and further examined the robustness of the found interactions by comparing the performance of Seasonal Auto Regressive Integrated Moving Average (SARIMA) models with and without the interactions. We then used the models to compute counterfactual estimates of cumulative incidence and estimate the reduction during the COVID-19 pandemic period from March 2020 to May 2021, for each virus. RESULTS We identified potential interactions for three endemic human coronaviruses (CoV-NL63, CoV-HKU, and CoV-OC43), parainfluenza (PIV)-1, rhinovirus, and respiratory syncytial virus (RSV). We found significant reductions (by ~70-90%) in cumulative incidence of CoV-OC43, CoV-229E, human metapneumovirus, PIV-2, PIV-4, RSV, and influenza virus during the COVID-19 pandemic. In contrast, the circulation of adenovirus and rhinovirus was less affected. CONCLUSIONS Circulation of several respiratory viruses has been low during the COVID-19 pandemic, which may lead to increased population susceptibility. It is thus important to enhance monitoring of these viruses and promptly enact measures to mitigate their health impacts (e.g., influenza vaccination campaign and hospital infection prevention) as societies resume normal activities.
Collapse
Affiliation(s)
- Haokun Yuan
- Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Alice Yeung
- Bureau of Communicable DiseaseNew York City Department of Health and Mental HygieneNew YorkNew YorkUSA
| | - Wan Yang
- Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
47
|
Banerjee A, Huang J, Rush SA, Murray J, Gingerich AD, Royer F, Hsieh CL, Tripp RA, McLellan JS, Mousa JJ. Structural basis for ultrapotent antibody-mediated neutralization of human metapneumovirus. Proc Natl Acad Sci U S A 2022; 119:e2203326119. [PMID: 35696580 PMCID: PMC9231621 DOI: 10.1073/pnas.2203326119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/23/2022] [Indexed: 12/15/2022] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of morbidity and hospitalization among children worldwide, however, no vaccines or therapeutics are currently available for hMPV disease prevention and treatment. The hMPV fusion (F) protein is the sole target of neutralizing antibodies. To map the immunodominant epitopes on the hMPV F protein, we isolated a panel of human monoclonal antibodies (mAbs), and the mAbs were assessed for binding avidity, neutralization potency, and epitope specificity. We found the majority of the mAbs target diverse epitopes on the hMPV F protein, and we discovered multiple mAb binding approaches for antigenic site III. The most potent mAb, MPV467, which had picomolar potency, was examined in prophylactic and therapeutic mouse challenge studies, and MPV467 limited virus replication in mouse lungs when administered 24 h before or 72 h after viral infection. We determined the structure of MPV467 in complex with the hMPV F protein using cryo-electron microscopy to a resolution of 3.3 Å, which revealed a complex novel prefusion-specific epitope overlapping antigenic sites II and V on a single protomer. Overall, our data reveal insights into the immunodominant antigenic epitopes on the hMPV F protein, identify a mAb therapy for hMPV F disease prevention and treatment, and provide the discovery of a prefusion-specific epitope on the hMPV F protein.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/isolation & purification
- Antibodies, Viral/therapeutic use
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Cryoelectron Microscopy
- Epitopes/immunology
- Humans
- Metapneumovirus/immunology
- Mice
- Paramyxoviridae Infections/prevention & control
- Primary Prevention
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/immunology
Collapse
Affiliation(s)
- Avik Banerjee
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Jiachen Huang
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Fredejah Royer
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602
| |
Collapse
|
48
|
Global Extension and Predominance of Human Metapneumovirus A2 Genotype with Partial G Gene Duplication. Viruses 2022; 14:v14051058. [PMID: 35632799 PMCID: PMC9146545 DOI: 10.3390/v14051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important respiratory pathogen and is divided in two main groups (A and B). HMPV strains with partial duplications (111-nt and 180-nt duplication) of the G gene have been reported in recent years. Since the initial reports, viruses with these characteristics have been reported in several countries. We analyzed all complete HMPV G gene ectodomain sequences available at GenBank to determine if viruses with 111-nt or 180-nt duplication have become the leading HMPV strains worldwide, and to describe their temporal and geographic distribution. We identified 1462 sequences that fulfilled study criteria (764 HMPV A and 698 HMPV B) reported from 37 countries. The most frequent HMPV A genotype was A2b2 (n = 366), and the most frequent B genotype was B2 (n = 374). A total of 84 sequences contained the 111-nt duplication, and 90 sequences contained the 180-nt duplication. Since 2016, viruses with a partial duplication comprise the most frequent HMPV A sequences globally and have displaced other HMPV A viruses in Asia, Europe, and South America; no sequences of viruses with partial duplication have been reported in North America or Africa so far. Continued surveillance of HMPV is required to identify the emergence and spread of epidemiologically relevant variants.
Collapse
|
49
|
Chandy S, Manoharan A, Hameed A, Jones LK, S Nachiyar G, Ramya M, Sudhakar A, A S, Balasubramanian S. A study on pediatric respiratory tract infections in hospitalised children from Chennai. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022. [DOI: 10.1016/j.cegh.2022.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Refay ASE, Shehata MA, Sherif LS, Nady HGE, Kholoussi N, Kholoussi S, Baroudy NRE, Gomma MR, Mahmoud SH, Shama NMA, Bagato O, Taweel AE, kandeil A, Ali MA. Prevalence of viral pathogens in a sample of hospitalized Egyptian children with acute lower respiratory tract infections: a two-year prospective study. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:103. [PMID: 35431533 PMCID: PMC9006499 DOI: 10.1186/s42269-022-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Viral pneumonias are a major cause of childhood mortality. Proper management needs early and accurate diagnosis. This study objective is to investigate the viral etiologies of pneumonia in children. RESULTS This prospective study enrolled 158 and 101 patients in the first and second year, respectively, and their mean age was 4.72 ± 2.89. Nasopharyngeal swabs were collected and subjected to virus diagnosis by reverse transcription polymerase chain reaction (RT-PCR). Viral etiologies of pneumonia were evidenced in 59.5% of the samples in the first year, all of them were affirmative for influenza A, 2 samples were affirmative for Human coronavirus NL63, and one for Human coronavirus HKU1. In the second year, 87% of patients had a viral illness. The most prevalent agents are human metapneumovirus which was detected in 44 patients (43.6%) followed by human rhinovirus in 35 patients (34.7%) and then parainfluenza-3 viruses in 33 patients (32.7%), while 14 patients had a confirmed diagnosis for both Pan coronavirus and Flu-B virus. CONCLUSIONS Viral infection is prevalent in the childhood period; however, the real magnitude of viral pneumonia in children is underestimated. The reverse transcriptase polymerase chain reaction has to be a vital tool for epidemiological research and is able to clear the gaps in-between clinical pictures and final diagnoses.
Collapse
Affiliation(s)
- Amira S. El Refay
- Child Health Department, National Research Centre, 33 El-Bohouth Street (Former El Tahrir St.), PO Box 12622, Dokki, Giza, Egypt
| | - Manal A. Shehata
- Child Health Department, National Research Centre, 33 El-Bohouth Street (Former El Tahrir St.), PO Box 12622, Dokki, Giza, Egypt
| | - Lobna S. Sherif
- Child Health Department, National Research Centre, 33 El-Bohouth Street (Former El Tahrir St.), PO Box 12622, Dokki, Giza, Egypt
| | - Hala G. El Nady
- Child Health Department, National Research Centre, 33 El-Bohouth Street (Former El Tahrir St.), PO Box 12622, Dokki, Giza, Egypt
| | - Naglaa Kholoussi
- Immunogenetics Department, National Research Centre, Dokki, Egypt
| | - Shams Kholoussi
- Immunogenetics Department, National Research Centre, Dokki, Egypt
| | | | - Mokhtar R. Gomma
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, Egypt
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, Egypt
| | - Ola Bagato
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|