1
|
Santarriaga S, Vater M, Dujmic P, Gerlovin K, Lee CW, Karmacharya R. Effects of Complex I Inhibition on the Architecture of Neural Rosettes Differentiated from Human-Induced Pluripotent Stem Cells. Stem Cells Dev 2025; 34:164-176. [PMID: 40079171 PMCID: PMC12021791 DOI: 10.1089/scd.2024.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Orchestrated changes in cell arrangements and cell-to-cell contacts are susceptible to cellular stressors during central nervous system development. Effects of mitochondrial complex I inhibition on cell-to-cell contacts have been studied in vascular and intestinal structures; however, its effects on developing neuronal cells are largely unknown. We investigated the effects of the classical mitochondrial stressor and complex I inhibitor, rotenone, on the architecture of neural rosettes-radially organized neuronal progenitor cells (NPCs)-differentiated from human-induced pluripotent stem cells. We then analyzed the effects of rotenone on the distribution of cell-contact proteins within neural rosettes. Exposure to rotenone for 24 hours led to a dose-dependent irreversible disruption of the neural rosette architecture and relocalization of the cell-contact proteins ZO-1, β-catenin, and N-cadherin from the rosette center to the pericellular region. Though the levels of nestin and SOX2 remained unchanged, NPCs showed decreased levels of the NPC marker PAX6 and exhibited impaired neurogenesis following rotenone exposure. Our study suggests that complex I inhibition leads to a rearrangement of intercellular contacts with disruptive effects on neuronal development.
Collapse
Affiliation(s)
| | | | - Petra Dujmic
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| | - Chun Wing Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- McLean Hospital, Belmont, Massachusetts, USA
| | - Rakesh Karmacharya
- Address correspondence to: Dr. Rakesh Karmacharya, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN6, Boston, MA 02114, USA
| |
Collapse
|
2
|
Dhori X, Gioiosa S, Gonfloni S. An integrated analysis of multiple datasets reveals novel gene signatures in human granulosa cells. Sci Data 2024; 11:972. [PMID: 39242561 PMCID: PMC11379948 DOI: 10.1038/s41597-024-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024] Open
Abstract
Granulosa cells (GCs) play crucial roles in oocyte maturation. Through gap junctions and extracellular vesicles, they mediate the exchange of molecules such as microRNAs and messenger RNAs. Different ovarian cell types exhibit unique gene expression profiles, reflecting their specialized functions and stages. By combining RNA-seq data from various cell types forming the follicle, we aimed at capturing a wide range of expression patterns, offering insights into the functional diversity and complexity of the transcriptome regulation across GCs. Herein, we performed an integrated bioinformatics analysis of RNA sequencing datasets present in public databases, with a unique and standardized workflow., By combining the data from different studies, we successfully increased the robustness and reliability of our findings and discovered novel genes, miRNAs, and signaling pathways associated with GCs function and oocyte maturation. Moreover, our results provide a valuable resource for further wet-lab research on GCs biology and their impact on oocyte development and competence.
Collapse
Affiliation(s)
- Xhulio Dhori
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy
| | - Silvia Gioiosa
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy.
| | - Stefania Gonfloni
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy.
| |
Collapse
|
3
|
Brooks A, Zhang Y, Chen J, Zhao CX. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening. Adv Healthc Mater 2024; 13:e2302436. [PMID: 38224141 DOI: 10.1002/adhm.202302436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Microfluidic chips are valuable tools for studying intricate cellular and cell-microenvironment interactions. Traditional in vitro cancer models lack accuracy in mimicking the complexities of in vivo tumor microenvironment. However, cancer-metastasis-on-a-chip (CMoC) models combine the advantages of 3D cultures and microfluidic technology, serving as powerful platforms for exploring cancer mechanisms and facilitating drug screening. These chips are able to compartmentalize the metastatic cascade, deepening the understanding of its underlying mechanisms. This article provides an overview of current CMoC models, focusing on distinctive models that simulate invasion, intravasation, circulation, extravasation, and colonization, and their applications in drug screening. Furthermore, challenges faced by CMoC and microfluidic technologies are discussed, while exploring promising future directions in cancer research. The ongoing development and integration of these models into cancer studies are expected to drive transformative advancements in the field.
Collapse
Affiliation(s)
- Anastasia Brooks
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Jiezhong Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
4
|
Layman CE, Ward S, Davis BA, Nevonen KA, Okhovat M, Rincon M, Valent A, Carbone L, Thornburg KL. High-throughput methylome analysis reveals differential methylation for early and late onset preeclampsia for mothers and their children. Physiol Genomics 2024; 56:276-282. [PMID: 38189116 PMCID: PMC11283906 DOI: 10.1152/physiolgenomics.00058.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that affects ∼2%-5% of all pregnancies, contributes to 4 of the top 10 causes of pregnancy-related deaths, and remains a long-term risk factor for cardiometabolic diseases. Yet, little is still known about the molecular mechanisms that lead to this disease. There is evidence that some cases have a genetic cause. However, it is well appreciated that harmful factors in the environment, such as poor nutrition, stress, and toxins, may lead to epigenetics changes that can contribute to this disease. DNA methylation is one of the epigenetic modifications known to be fairly stable and impact gene expression. Using DNA from buccal swabs, we analyzed global DNA methylation among three groups of individuals: mothers who experienced 1) early-stage preeclampsia (<32 wk), 2) late-stage preeclampsia (>37 wk), or 3) no complications during their pregnancies, as well as the children from these three groups. We found significant differentially methylated regions (DMRs) between mothers who experienced preeclampsia compared with those with no complications adjacent or within genes that are important for placentation, embryonic development, cell adhesion, and inflammation (e.g., the cadherin pathway). A significant portion of DMR genes showed expression in tissues relevant to preeclampsia (i.e., the brain, heart, kidney, uterus, ovaries, and placenta). As this study was performed on DNA extracted from cheek swabs, this opens the way to future studies in different tissues, aimed at identifying possible biomarkers of risk and early detection, developing targeted interventions, and reducing the progression of this life-threatening disease.NEW & NOTEWORTHY Preeclampsia is a life-threatening hypertensive disorder, affecting 2%-5% of pregnancies, that remains poorly understood. This study analyzed DNA methylation from buccal swabs from mothers who experienced early and late-stage preeclampsia and those with uncomplicated pregnancies, along with their children. Differentially methylated regions were found near and within genes crucial for placental function, embryonic development, and inflammation. Many of these genes are expressed in preeclampsia-related tissues, offering hope for future biomarker development for this condition.
Collapse
Affiliation(s)
- Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Samantha Ward
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Brett A Davis
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Monica Rincon
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States
| | - Amy Valent
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon, United States
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Kent L Thornburg
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
5
|
He C, Karpavičiūtė N, Hariharan R, Lees L, Jacques C, Ferrand T, Chambost J, Wouters K, Malmsten J, Miller R, Zaninovic N, Vasconcelos F, Hickman C. Seeking arrangements: cell contact as a cleavage-stage biomarker. Reprod Biomed Online 2024; 48:103654. [PMID: 38246064 PMCID: PMC11139661 DOI: 10.1016/j.rbmo.2023.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 01/23/2024]
Abstract
RESEARCH QUESTION What can three-dimensional cell contact networks tell us about the developmental potential of cleavage-stage human embryos? DESIGN This pilot study was a retrospective analysis of two Embryoscope imaging datasets from two clinics. An artificial intelligence system was used to reconstruct the three-dimensional structure of embryos from 11-plane focal stacks. Networks of cell contacts were extracted from the resulting embryo three-dimensional models and each embryo's mean contacts per cell was computed. Unpaired t-tests and receiver operating characteristic curve analysis were used to statistically analyse mean cell contact outcomes. Cell contact networks from different embryos were compared with identical embryos with similar cell arrangements. RESULTS At t4, a higher mean number of contacts per cell was associated with greater rates of blastulation and blastocyst quality. No associations were found with biochemical pregnancy, live birth, miscarriage or ploidy. At t8, a higher mean number of contacts was associated with increased blastocyst quality, biochemical pregnancy and live birth. No associations were found with miscarriage or aneuploidy. Mean contacts at t4 weakly correlated with those at t8. Four-cell embryos fell into nine distinct cell arrangements; the five most common accounted for 97% of embryos. Eight-cell embryos, however, displayed a greater degree of variation with 59 distinct cell arrangements. CONCLUSIONS Evidence is provided for the clinical relevance of cleavage-stage cell arrangement in the human preimplantation embryo beyond the four-cell stage, which may improve selection techniques for day-3 transfers. This pilot study provides a strong case for further investigation into spatial biomarkers and three-dimensional morphokinetics.
Collapse
Affiliation(s)
- Chloe He
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London 43-45 Foley St, London, W1W 7TY, UK.; Department of Computer Science, University College London, 66-72 Gower St, London WC1E 6EA, UK.; AI Team, Apricity, 14 Grays Inn Rd, London WC1 X 8HN, UK..
| | | | | | - Lilly Lees
- AI Team, Apricity, 14 Grays Inn Rd, London WC1 X 8HN, UK
| | | | | | | | - Koen Wouters
- Brussels IVF, University Hospital Brussels, Jette Bldg R, Laarbeeklaan 101 1090 Jette, Belgium, Brussels
| | - Jonas Malmsten
- Ronald O Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Ave 6th floor, New York, NY 10021, USA
| | - Ryan Miller
- Ronald O Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Ave 6th floor, New York, NY 10021, USA
| | - Nikica Zaninovic
- Ronald O Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Ave 6th floor, New York, NY 10021, USA
| | - Francisco Vasconcelos
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London 43-45 Foley St, London, W1W 7TY, UK.; Department of Computer Science, University College London, 66-72 Gower St, London WC1E 6EA, UK
| | - Cristina Hickman
- AI Team, Apricity, 14 Grays Inn Rd, London WC1 X 8HN, UK.; Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| |
Collapse
|
6
|
Thisayakorn P, Thipakorn Y, Tantavisut S, Sirivichayakul S, Vojdani A, Maes M. Increased IgA-mediated responses to the gut paracellular pathway and blood-brain barrier proteins predict delirium due to hip fracture in older adults. Front Neurol 2024; 15:1294689. [PMID: 38379706 PMCID: PMC10876854 DOI: 10.3389/fneur.2024.1294689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Delirium is accompanied by immune response system activation, which may, in theory, cause a breakdown of the gut barrier and blood-brain barrier (BBB). Some results suggest that the BBB is compromised in delirium, but there is no data regarding the gut barrier. This study investigates whether delirium is associated with impaired BBB and gut barriers in elderly adults undergoing hip fracture surgery. Methods We recruited 59 older adults and measured peak Delirium Rating Scale (DRS) scores 2-3 days after surgery, and assessed plasma IgG/IgA levels (using ELISA techniques) for zonulin, occludin, claudin-6, β-catenin, actin (indicating damage to the gut paracellular pathway), claudin-5 and S100B (reflecting BBB damage), bacterial cytolethal distending toxin (CDT), LPS-binding protein (LBP), lipopolysaccharides (LPS), Porphyromonas gingivalis, and Helicobacter pylori. Results Results from univariate analyses showed that delirium is linked to increased IgA responses to all the self-epitopes and antigens listed above, except for LPS. Part of the variance (between 45-48.3%) in the peak DRS score measured 2-3 days post-surgery was explained by independent effects of IgA directed to LPS and LBP (or bacterial CDT), baseline DRS scores, and previous mild stroke. Increased IgA reactivity to the paracellular pathway and BBB proteins and bacterial antigens is significantly associated with the activation of M1 macrophage, T helper-1, and 17 cytokine profiles. Conclusion Heightened bacterial translocation, disruption of the tight and adherens junctions of the gut and BBB barriers, elevated CDT and LPS load in the bloodstream, and aberrations in cell-cell interactions may be risk factors for delirium.
Collapse
Affiliation(s)
- Paul Thisayakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saran Tantavisut
- Department of Orthopedics, Hip Fracture Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aristo Vojdani
- Immunosciences Lab Inc., Los Angeles, CA, United States
- Cyrex Labs LLC, Phoenix, AZ, United States
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Seoul, Republic of Korea
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Ward AS, Hall CN, Tree MO, Kohtz DS. Spheroid architecture strongly enhances miR-221/222 expression and promotes oxidative phosphorylation in an ovarian cancer cell line through a mechanism that includes restriction of miR-9 expression. Mol Biol Rep 2024; 51:275. [PMID: 38310615 DOI: 10.1007/s11033-023-09168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Tumor cell spheroids are organized multicellular structures that form during the expansive growth of carcinoma cells. Spheroids formation is thought to contribute to metastasis by supporting growth and survival of mobile tumor cell populations. METHODS AND RESULTS We investigated how spheroid architecture affects OXPHOS activity, microRNA expression, and intraperitoneal survival of an ovarian carcinoma cell line using high resolution respirometry, quantitative RT-PCR, and a rodent intraperitoneal growth model. Rates of oxidative phosphorylation/respiration per cell of cells growing as spheroids were nearly double those of a variant of the same cell type growing in suspension as loosely aggregated cells. Further, inhibition of spheroid formation by treatment with CDH2 (N-cadherin) siRNA reduced the rate of OXPHOS to that of the non-spheroid forming variant. Cells growing as spheroids showed greatly enhanced expression of miR-221/222, an oncomiR that targets multiple tumor suppressor genes and promotes invasion, and reduced expression of miR-9, which targets mitochondrial tRNA-modification enzymes and inhibits OXPHOS. Consistent with greater efficiency of ATP generation, tumor cells growing as spheroids injected into the nutrient-poor murine peritoneum survived longer than cells growing in suspension as loosely associated aggregates. CONCLUSIONS The data indicate that growth in spheroid form enhances the OXPHOS activity of constituent tumor cells. In addition, spheroid architecture affects expression of microRNA genes involved in growth control and mitochondrial function. During the mobile phase of metastasis, when ovarian tumor cells disperse through nutrient-poor environments such as the peritoneum, enhanced OXPHOS activity afforded by spheroid architecture would enhance survival and metastatic potential.
Collapse
Affiliation(s)
- Avery S Ward
- Central Michigan University College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| | - Cody N Hall
- Central Michigan University College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55901, USA
| | - Maya O Tree
- Central Michigan University College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| | - D Stave Kohtz
- Central Michigan University College of Medicine, Central Michigan University, Mt. Pleasant, MI, 48859, USA.
| |
Collapse
|
8
|
Bao L, Kong H, Ja Y, Wang C, Qin L, Sun H, Dai S. The relationship between cancer and biomechanics. Front Oncol 2023; 13:1273154. [PMID: 37901315 PMCID: PMC10602664 DOI: 10.3389/fonc.2023.1273154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
The onset, development, diagnosis, and treatment of cancer involve intricate interactions among various factors, spanning the realms of mechanics, physics, chemistry, and biology. Within our bodies, cells are subject to a variety of forces such as gravity, magnetism, tension, compression, shear stress, and biological static force/hydrostatic pressure. These forces are perceived by mechanoreceptors as mechanical signals, which are then transmitted to cells through a process known as mechanical transduction. During tumor development, invasion and metastasis, there are significant biomechanical influences on various aspects such as tumor angiogenesis, interactions between tumor cells and the extracellular matrix (ECM), interactions between tumor cells and other cells, and interactions between tumor cells and the circulatory system and vasculature. The tumor microenvironment comprises a complex interplay of cells, ECM and vasculature, with the ECM, comprising collagen, fibronectins, integrins, laminins and matrix metalloproteinases, acting as a critical mediator of mechanical properties and a key component within the mechanical signaling pathway. The vasculature exerts appropriate shear forces on tumor cells, enabling their escape from immune surveillance, facilitating their dissemination in the bloodstream, dictating the trajectory of circulating tumor cells (CTCs) and playing a pivotal role in regulating adhesion to the vessel wall. Tumor biomechanics plays a critical role in tumor progression and metastasis, as alterations in biomechanical properties throughout the malignant transformation process trigger a cascade of changes in cellular behavior and the tumor microenvironment, ultimately culminating in the malignant biological behavior of the tumor.
Collapse
Affiliation(s)
- Liqi Bao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Ja
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengchao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjie Dai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Burke-Kleinman J, Rubianto J, Hou G, Santerre JP, Bendeck MP. Matrix-Binding, N-Cadherin-Targeting Chimeric Peptide Inhibits Intimal Thickening but Not Endothelial Repair in Balloon-Injured Carotid Arteries. Arterioscler Thromb Vasc Biol 2023; 43:1639-1652. [PMID: 37409527 PMCID: PMC10443629 DOI: 10.1161/atvbaha.123.319400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Treatment of occluded vessels can involve angioplasty, stenting, and bypass grafting, which can be limited by restenosis and thrombosis. Drug-eluting stents attenuate restenosis, but the current drugs used are cytotoxic, causing smooth muscle cell (SMC) and endothelial cell (EC) death that may lead to late thrombosis. N-cadherin is a junctional protein expressed by SMCs, which promotes directional SMC migration contributing to restenosis. We propose that engaging N-cadherin with mimetic peptides can act as a cell type-selective therapeutic strategy to inhibit polarization and directional migration of SMCs without negatively impacting ECs. METHODS We designed a novel N-cadherin-targeting chimeric peptide with a histidine-alanine-valine cadherin-binding motif, combined with a fibronectin-binding motif from Staphylococcus aureus. This peptide was tested in SMC and EC culture assays of migration, viability, and apoptosis. Rat carotid arteries were balloon injured and treated with the N-cadherin peptide. RESULTS Treating scratch-wounded SMCs with the N-cadherin-targeting peptide inhibited migration and reduced polarization of wound-edge cells. The peptide colocalized with fibronectin. Importantly, EC junction, permeability, or migration was not impacted by peptide treatment in vitro. We also demonstrated that the chimeric peptide persisted for 24 hours after transient delivery in the balloon-injured rat carotid artery. Treatment with the N-cadherin-targeting chimeric peptide reduced intimal thickening in balloon-injured rat carotid arteries at 1 and 2 weeks after injury. Reendothelialization of injured vessels after 2 weeks was unimpaired by peptide treatment. CONCLUSIONS These studies show that an N-cadherin-binding and fibronectin-binding chimeric peptide is effective in inhibiting SMC migration in vitro and in vivo and limiting neointimal hyperplasia after balloon angioplasty without affecting EC repair. These results establish the potential of an advantageous SMC-selective strategy for antirestenosis therapy.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine (J.B.-K., G.H., M.P.B.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| | - Jonathan Rubianto
- Institute of Biomedical Engineering (J.R., J.P.S.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| | - Guangpei Hou
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine (J.B.-K., G.H., M.P.B.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| | - J. Paul Santerre
- Institute of Biomedical Engineering (J.R., J.P.S.), University of Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, Faculty of Engineering (J.P.S.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| | - Michelle P. Bendeck
- Department of Chemical Engineering and Applied Chemistry, Faculty of Engineering (J.P.S.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| |
Collapse
|
10
|
Hlophe YN, Joubert AM. Vascular endothelial growth
factor‐C
in activating vascular endothelial growth factor receptor‐3 and chemokine receptor‐4 in melanoma adhesion. J Cell Mol Med 2022; 26:5743-5754. [DOI: 10.1111/jcmm.17571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yvette N. Hlophe
- Department of Physiology University of Pretoria Pretoria South Africa
| | - Anna M. Joubert
- Department of Physiology University of Pretoria Pretoria South Africa
| |
Collapse
|
11
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
12
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
13
|
Wang X, Xu X, Zhang Y, An X, Zhang X, Chen G, Jiang Q, Yang J. Duo Cadherin-Functionalized Microparticles Synergistically Induce Chondrogenesis and Cartilage Repair of Stem Cell Aggregates. Adv Healthc Mater 2022; 11:e2200246. [PMID: 35485302 DOI: 10.1002/adhm.202200246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cell (MSC) aggregates incorporated with microparticles of functional materials have shown promising prospects in the field of cell therapy for cartilage repair. Given the importance of cadherins in modulating the stemness and chondrogenesis of MSCs, the use of transforming growth factor β1 (TGFβ1)-loaded poly (lactic-co-glycolic acid) (PLGA)-based composite microparticles inspired by duo cadherin (human E- and N-cadherin fusion proteins) to construct a bioartificial stem cell niche in engineered human MSC (hMSC) aggregates to promote chondrogenesis and cartilage regeneration is proposed. The hE/N-cadherin-functionalized PLGA/chitosan-heparin-TGFβ1 (Duo hE/N-cad@P/C-h-TGFβ1) microparticles spatiotemporally upregulates the endogenous E/N-cadherin expression of hMSC aggregates which further amplifies the chondrogenic differentiation and modulate paracrine and anti-inflammatory functions of hMSCs toward constructing a favorable microenvironment for chondrogenesis. The Duo hE/N-cad@P/C-h-TGFβ1 microparticles finely regulate the response of hMSCs to biochemical and mechanical signal stimuli in the microenvironment through the cadherin/catenin-Yes-associated protein signal transduction, which inhibits the hypertrophy of hMSC-derived chondrocytes. Furthermore, immunofluorescent and histological examinations show that the Duo hE/N-cad@P/C-h-TGFβ1 microparticles significantly improve regeneration of cartilage and subchondral bone in vivo. Together, the application of duo cadherin-functionalized microparticles is considered an innovative material-wise approach to exogenously activate hMSC aggregates for functional applications in regenerative medicine.
Collapse
Affiliation(s)
- Xueping Wang
- The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science Nankai University Tianjin 300071 P. R. China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology Division of Sports Medicine and Adult Reconstructive Surgery and Department of Orthopedic Surgery Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School 321 Zhongshan Road Nanjing Jiangsu 210008 P. R. China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology Division of Sports Medicine and Adult Reconstructive Surgery and Department of Orthopedic Surgery Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School 321 Zhongshan Road Nanjing Jiangsu 210008 P. R. China
| | - Xue Zhang
- The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science Nankai University Tianjin 300071 P. R. China
| | - Guoqiang Chen
- The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science Nankai University Tianjin 300071 P. R. China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology Division of Sports Medicine and Adult Reconstructive Surgery and Department of Orthopedic Surgery Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School 321 Zhongshan Road Nanjing Jiangsu 210008 P. R. China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
14
|
Passi M, Zahler S. Mechano-Signaling Aspects of Hepatocellular Carcinoma. J Cancer 2021; 12:6411-6421. [PMID: 34659531 PMCID: PMC8489129 DOI: 10.7150/jca.60102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
HCC is one of the leading causes of cancer related death worldwide and comprises about 90% of the cases of primary liver cancer. It is generally accompanied by chronic liver fibrosis characterised by deposition of collagen fibres, which, in turn, causes enhanced stiffness of the liver tissue. Changes of tissue stiffness give rise to alterations of signalling pathways that are associated to mechanical properties of the cells and the extracellular matrix, and that can be subsumed as "mechano-signaling pathways", like, e.g., the YAP/TAZ pathway, or the SRF pathway. Stiffness of the liver tissue modulates mechanical regulation of many genes involved in HCC progression. However, mechano-signaling is still rather underrepresented in our concepts of cancer in comparison to "classical" biochemical signalling pathways. This review aims to give an overview of various stiffness induced mechano-biological aspects of HCC.
Collapse
Affiliation(s)
- Mehak Passi
- Center for Drug Research, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Stefan Zahler
- Center for Drug Research, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
15
|
Ferroptosis Meets Cell-Cell Contacts. Cells 2021; 10:cells10092462. [PMID: 34572111 PMCID: PMC8471828 DOI: 10.3390/cells10092462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a regulated form of cell death characterized by iron dependency and increased lipid peroxidation. Initially assumed to be selectively induced in tumour cells, there is increasing evidence that ferroptosis plays an important role in pathophysiology and numerous cell types and tissues. Deregulated ferroptosis has been linked to human diseases, such as neurodegenerative diseases, cardiovascular disorders, and cancer. Along these lines, ferroptosis is a promising pathway to overcoming therapy resistance of cancer cells. It is therefore of utmost importance to understand the cellular signalling pathways and the molecular mechanisms underlying ferroptosis regulation, including context-specific effects mediated by the neighbouring cells through cell–cell contacts. Here, we give an overview on the molecular events and machinery linked to ferroptosis induction and commitment. We further summarize and discuss current knowledge about the role of cell–cell contacts, which differ in ferroptosis regulation between normal somatic cells and cancer cells. We present emerging concepts on the underlying mechanisms, address open questions, and discuss the possible impact of cell–cell contacts on exploiting ferroptosis in cancer therapy.
Collapse
|
16
|
Cao B, Guo X, Huang L, Wang B, Wang W, Han D, Zhang W, Zhong K. Methylation silencing CDH23 is a poor prognostic marker in diffuse large B-cell lymphoma. Aging (Albany NY) 2021; 13:17768-17788. [PMID: 34252883 PMCID: PMC8312441 DOI: 10.18632/aging.203268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Cadherin-23(CDH23) mediates homotypic and heterotypic cell-cell adhesions in cancer cells. However, the epigenetic regulation, the biological functions, the mechanisms and the prognostic value of CDH23 in diffuse large B-cell lymphoma (DLBCL) are still unclear. The Gene Expression Profiling Interactive Analysis (GEPIA) and the Gene Expression Omnibus (GEO) database were employed to analyze the CDH23 expression level in DLBCL. The correlation of CDH23 expression and methylation was analyzed by LinkedOmics database. The prognostic value was analyzed via GEPIA. Correlated genes, target kinase, target miRNA, target transcription factor and biological functions were identified by LinkedOmics and GeneMANIA database. The relationship between CDH23 and the immune cell infiltration was explored by the Tumor Immune Estimation Resource (TIMER). The expression of CDH23 was reduced by DNA methylation significantly in DLBCL tissue. Reduction of CDH23 represented poor outcome of DLBCL patients. Functional enrichment analysis showed that CDH23 mainly enriched in cancer cell growth, cell metastasis, cell adhesion, cell cycle, drug catabolic process, leukocyte mediated immunity and DNA repair by some cancer related kinases, miRNAs and transcription factors. These results indicated that methylated reduction of CDH23 represented poor outcome of DLBCL. CDH23 is associated with essential biological functions and key molecules in DLBCL. CDH23 may play crucial roles in DLBCL tumorigenesis. Our results lay a foundation for further investigation of the role of CDH23 in DLBCL tumorigenesis.
Collapse
Affiliation(s)
- Baoping Cao
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Xiaochuan Guo
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Lefu Huang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Bin Wang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Weixia Wang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Dong Han
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Weijing Zhang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Kaili Zhong
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| |
Collapse
|
17
|
Jauković A, Abadjieva D, Trivanović D, Stoyanova E, Kostadinova M, Pashova S, Kestendjieva S, Kukolj T, Jeseta M, Kistanova E, Mourdjeva M. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev Rep 2021; 16:853-875. [PMID: 32681232 DOI: 10.1007/s12015-020-10006-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells' dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia.,IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, D-97070, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Germany
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Kostadinova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Shina Pashova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Snejana Kestendjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilní trh 11, 602 00, Brno, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00, Suchdol, Praha 6, Czech Republic
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Mourdjeva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria.
| |
Collapse
|
18
|
Islam T, Madhubala D, Mukhopadhyay R, Mukherjee AK. Transcriptomic and functional proteomics analyses to unveil the common and unique pathway(s) of neuritogenesis induced by Russell's viper venom nerve growth factor in rat pheochromocytoma neuronal cells. Expert Rev Proteomics 2021; 18:463-481. [PMID: 34110968 DOI: 10.1080/14789450.2021.1941892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Background: The snake venom nerve growth factor (NGF)-induced signal transduction mechanism has never been explored.Research design and methods: Homology modeling and molecular dynamic studies of the interaction between Russell's viper venom NGF (RVV-NGFa) and mammalian tropomyosin-receptor kinase A (TrkA) was done by computational analysis. Transcriptomic and quantitative tandem mass spectrometry analyses determined the expression of intracellular genes and proteins, respectively, in RVV-NGFa-treated PC-12 neuronal cells. Small synthetic inhibitors of the signal transduction pathways were used to validate the major signaling cascades of neuritogenesis by RVV-NGFa.Results: A comparative computational analysis predicted the binding of RVV-NGFa, mouse 2.5S-NGF (conventional neurotrophin), and Nn-α-elapitoxin-1 (non-conventional neurotrophin) to different domains of the TrkA receptor in PC-12 cells. The transcriptomic and quantitative proteomic analyses in unison showed differential expressions of common and unique genes and intracellular proteins, respectively, in RVV-NGFa-treated cells compared to control (untreated) mouse 2.5S-NGF and Nn-α-elapitoxin-1-treated PC-12 cells. The RVV-NGFa primarily triggered the mitogen-activated protein kinase-1 (MAPK1) signaling pathway for inducing neuritogenesis; however, 36 pathways of neuritogenesis were uniquely expressed in RVV-NGFa-treated PC-12 cells compared to mouse 2.5S NGF or Nn-α-elapitoxin-1 treated cells.Conclusion: The common and unique intracellular signaling pathways of neuritogenesis by classical and non-classical neurotrophins were identified.
Collapse
Affiliation(s)
- Taufikul Islam
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
| | - Dev Madhubala
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
19
|
Nathanson SD, Detmar M, Padera TP, Yates LR, Welch DR, Beadnell TC, Scheid AD, Wrenn ED, Cheung K. Mechanisms of breast cancer metastasis. Clin Exp Metastasis 2021; 39:117-137. [PMID: 33950409 PMCID: PMC8568733 DOI: 10.1007/s10585-021-10090-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Invasive breast cancer tends to metastasize to lymph nodes and systemic sites. The management of metastasis has evolved by focusing on controlling the growth of the disease in the breast/chest wall, and at metastatic sites, initially by surgery alone, then by a combination of surgery with radiation, and later by adding systemic treatments in the form of chemotherapy, hormone manipulation, targeted therapy, immunotherapy and other treatments aimed at inhibiting the proliferation of cancer cells. It would be valuable for us to know how breast cancer metastasizes; such knowledge would likely encourage the development of therapies that focus on mechanisms of metastasis and might even allow us to avoid toxic therapies that are currently used for this disease. For example, if we had a drug that targeted a gene that is critical for metastasis, we might even be able to cure a vast majority of patients with breast cancer. By bringing together scientists with expertise in molecular aspects of breast cancer metastasis, and those with expertise in the mechanical aspects of metastasis, this paper probes interesting aspects of the metastasis cascade, further enlightening us in our efforts to improve the outcome from breast cancer treatments.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Cancer Institute, 2799 W Grand Boulevard, Detroit, MI, USA.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Timothy P Padera
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Thomas C Beadnell
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Adam D Scheid
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Emma D Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
20
|
Rotimi SO, Rotimi OA, Salhia B. Authorship Patterns in Cancer Genomics Publications Across Africa. JCO Glob Oncol 2021; 7:747-755. [PMID: 34033494 PMCID: PMC8457814 DOI: 10.1200/go.20.00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/26/2021] [Accepted: 03/31/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Authorship is a proxy indicator of research capacity. Understanding the research capacity is imperative for developing population-specific cancer control strategies. This is particularly apropos for African nations, where mortality from cancer is projected to surpass that from infectious disease and the populations are critically under-represented in cancer and genomics studies. Here, we present an analysis and discussion of the patterns of authorship in Africa as they pertain to cancer genomics research across African countries. METHODS PubMed metadata of relevant cancer genomics peer-reviewed publications on African populations, published between January 1, 1990, and December 31, 2019, were retrieved and analyzed for patterns of authorship affiliation using R packages, RISmed, and Pubmed.mineR. RESULTS The data showed that only 0.016% (n = 375) of cancer publications globally were on cancer genomics of African people. More than 50% of the first and last authors of these publications originated from the North African countries of Tunisia, Morocco, Egypt, and Algeria. South Africa (13.6% and 12.7%) and Nigeria (2.2% and 1.9%) were the Sub-Saharan African countries most represented by first and last authorship positions, respectively. The United States contributed 12.6% of first and last authored papers, and nearly 50% of all African countries had no contributing author for the publications we reviewed. CONCLUSION This study highlights and brings awareness to the paucity of cancer genomics research on African populations and by African authors and identifies a need for concerted efforts to encourage and enable more research in Africa, needed for achieving global equity in cancer outcomes.
Collapse
Affiliation(s)
- Solomon O. Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Oluwakemi A. Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Norris Comprehensive Cancer Centre, Los Angeles, CA
| |
Collapse
|
21
|
Theisen U, Ernst AU, Heyne RLS, Ring TP, Thorn-Seshold O, Köster RW. Microtubules and motor proteins support zebrafish neuronal migration by directing cargo. J Cell Biol 2021; 219:151951. [PMID: 32668451 PMCID: PMC7659711 DOI: 10.1083/jcb.201908040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/08/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Neuronal migration during development is necessary to form an ordered and functional brain. Postmitotic neurons require microtubules and dynein to move, but the mechanisms by which they contribute to migration are not fully characterized. Using tegmental hindbrain nuclei neurons in zebrafish embryos together with subcellular imaging, optogenetics, and photopharmacology, we show that, in vivo, the centrosome's position relative to the nucleus is not linked to greatest motility in this cell type. Nevertheless, microtubules, dynein, and kinesin-1 are essential for migration, and we find that interference with endosome formation or the Golgi apparatus impairs migration to a similar extent as disrupting microtubules. In addition, an imbalance in the traffic of the model cargo Cadherin-2 also reduces neuronal migration. These results lead us to propose that microtubules act as cargo carriers to control spatiotemporal protein distribution, which in turn controls motility. This adds crucial insights into the variety of ways that microtubules can support successful neuronal migration in vivo.
Collapse
Affiliation(s)
- Ulrike Theisen
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | - Alexander U Ernst
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany.,University of Bern, Institute of Anatomy, Bern, Switzerland
| | - Ronja L S Heyne
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany.,Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
| | - Tobias P Ring
- Technical University of Braunschweig, Institute for Acoustics, Braunschweig, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Reinhard W Köster
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| |
Collapse
|
22
|
Gregg RK. Implications of microgravity-induced cell signaling alterations upon cancer cell growth, invasiveness, metastatic potential, and control by host immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:107-164. [PMID: 34074492 DOI: 10.1016/bs.ircmb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The human endeavor to venture beyond the orbit of Earth is challenged by both continuous space radiation and microgravity-induced immune dysfunction. If cancers were to develop in astronauts, it is unclear how these abnormal cells would grow and progress in the microgravity environment. It is unknown if the astronaut's immune response would be able to control or eradicate cancer. A better molecular understanding of how the mechanical force of gravity affects the cell as well as the aggressiveness of cancers and the functionality of host immunity is needed. This review will summarize findings related to microgravity-mediated alterations in the cell cytoskeleton, cell-cell, and cell-extracellular matrix interactions including cadherins, immunoglobulin superfamily of adhesion molecules, selectins, and integrins and related cell signaling. The effects of spaceflight and simulated microgravity on cell viability, cancer cell growth, invasiveness, angiogenesis, metastasis as well as immune cell functions and the subsequent signaling pathways involved will be discussed. Microgravity-induced alterations in function and signaling of the major anti-cancer immune populations will be examined including natural killer cells, dendritic cells, CD4+ T cells, and CD8+ T cells. Further studies regarding the molecular events impacted by microgravity in both cancer and immune cells will greatly increase the development of therapies to restrict tumor growth and enhance cancer-specific responses for both astronauts and patients on Earth.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, United States.
| |
Collapse
|
23
|
Fuster E, Candela H, Estévez J, Vilanova E, Sogorb MA. Titanium Dioxide, but Not Zinc Oxide, Nanoparticles Cause Severe Transcriptomic Alterations in T98G Human Glioblastoma Cells. Int J Mol Sci 2021; 22:ijms22042084. [PMID: 33669859 PMCID: PMC7923231 DOI: 10.3390/ijms22042084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Titanium dioxide and zinc oxide are two of the most widely used nanomaterials. We assessed the effects of noncytotoxic doses of both nanomaterials on T98G human glioblastoma cells by omic approaches. Surprisingly, no effects on the transcriptome of T98G cells was detected after exposure to 5 µg/mL of zinc oxide nanoparticles during 72 h. Conversely, the transcriptome of the cells exposed to 20 µg/mL of titanium dioxide nanoparticles during 72 h revealed alterations in lots of biological processes and molecular pathways. Alterations to the transcriptome suggests that exposure to titanium dioxide nanoparticles might, potentially, compromise the integrity of the blood brain barrier integrity and cause neuroinflammation. The latter issue was further confirmed phenotypically with a proteomic analysis and by recording the release of interleukin 8. Titanium dioxide also caused autophagy, which was demonstrated through the increase in the expression of the autophagy-related 3 and microtubule associated protein 1 light chain 3 alpha genes. The proteomic analysis revealed that titanium dioxide nanoparticles might have anticancerigen properties by downregulating genes involved in the detoxication of anthracyclines. A risk assessment resulting from titanium dioxide exposure, focusing on the central nervous system as a potential target of toxicity, is necessary.
Collapse
|
24
|
Affiliation(s)
- Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bellary Road, Bangalore 560065, India.
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
Piprek RP, Kloc M, Mizia P, Kubiak JZ. The Central Role of Cadherins in Gonad Development, Reproduction, and Fertility. Int J Mol Sci 2020; 21:E8264. [PMID: 33158211 PMCID: PMC7663743 DOI: 10.3390/ijms21218264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Cadherins are a group of membrane proteins responsible for cell adhesion. They are crucial for cell sorting and recognition during the morphogenesis, but they also play many other roles such as assuring tissue integrity and resistance to stretching, mechanotransduction, cell signaling, regulation of cell proliferation, apoptosis, survival, carcinogenesis, etc. Within the cadherin superfamily, E- and N-cadherin have been especially well studied. They are involved in many aspects of sexual development and reproduction, such as germline development and gametogenesis, gonad development and functioning, and fertilization. E-cadherin is expressed in the primordial germ cells (PGCs) and also participates in PGC migration to the developing gonads where they become enclosed by the N-cadherin-expressing somatic cells. The differential expression of cadherins is also responsible for the establishment of the testis or ovary structure. In the adult testes, N-cadherin is responsible for the integrity of the seminiferous epithelium, regulation of sperm production, and the establishment of the blood-testis barrier. Sex hormones regulate the expression and turnover of N-cadherin influencing the course of spermatogenesis. In the adult ovaries, E- and N-cadherin assure the integrity of ovarian follicles and the formation of corpora lutea. Cadherins are expressed in the mature gametes and facilitate the capacitation of sperm in the female reproductive tract and gamete contact during fertilization. The germ cells and accompanying somatic cells express a series of different cadherins; however, their role in gonads and reproduction is still unknown. In this review, we show what is known and unknown about the role of cadherins in the germline and gonad development, and we suggest topics for future research.
Collapse
Affiliation(s)
- Rafał P. Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX 77030, USA;
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Paulina Mizia
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Jacek Z. Kubiak
- Cycle Group, Institute of Genetics and Development of Rennes, Faculty of Medicine, UnivRennes, UMR 6290 CNRS/UR1, F-35000 Rennes, France
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), 01-163 Warsaw, Poland
| |
Collapse
|
26
|
Ichikawa T, Stuckenholz C, Davidson LA. Non-junctional role of Cadherin3 in cell migration and contact inhibition of locomotion via domain-dependent, opposing regulation of Rac1. Sci Rep 2020; 10:17326. [PMID: 33060598 PMCID: PMC7567069 DOI: 10.1038/s41598-020-73862-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/07/2020] [Indexed: 11/08/2022] Open
Abstract
Classical cadherins are well-known adhesion molecules responsible for physically connecting neighboring cells and signaling this cell-cell contact. Recent studies have suggested novel signaling roles for "non-junctional" cadherins (NJCads); however, the function of cadherin signaling independent of cell-cell contacts remains unknown. In this study, mesendodermal cells and tissues from gastrula stage Xenopus laevis embryos demonstrate that deletion of extracellular domains of Cadherin3 (Cdh3; formerly C-cadherin in Xenopus) disrupts contact inhibition of locomotion. In both bulk Rac1 activity assays and spatio-temporal FRET image analysis, the extracellular and cytoplasmic Cdh3 domains disrupt NJCad signaling and regulate Rac1 activity in opposing directions. Stabilization of the cytoskeleton counteracted this regulation in single cell migration assays. Our study provides novel insights into adhesion-independent signaling by Cadherin3 and its role in regulating single and collective cell migration.
Collapse
Affiliation(s)
- Takehiko Ichikawa
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, 15260, USA
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Carsten Stuckenholz
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, 15260, USA
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, 15260, USA.
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
27
|
Durán-Maldonado MX, Hernández-Padilla L, Gallardo-Pérez JC, Díaz-Pérez AL, Martínez-Alcantar L, Reyes De la Cruz H, Rodríguez-Zavala JS, Pacheco-Rodríguez G, Moss J, Campos-García J. Bacterial Cyclodipeptides Target Signal Pathways Involved in Malignant Melanoma. Front Oncol 2020; 10:1111. [PMID: 32793477 PMCID: PMC7393205 DOI: 10.3389/fonc.2020.01111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/03/2020] [Indexed: 01/19/2023] Open
Abstract
Melanoma is an aggressive cancer that utilizes multiple signaling pathways, including those that involve oncogenes, proto-oncogenes, and tumor suppressors. It has been suggested that melanoma formation requires cross-talk of the PI3K/Akt/mTOR and Ras-ERK pathways. This pathway cross-talk has been associated with aggressiveness, drug resistance, and metastasis; thus, simultaneous targeting of components of the different pathways involved in melanoma may aid in therapy. We have previously reported that bacterial cyclodipeptides (CDPs) are cytotoxic to HeLa cells and inhibit Akt phosphorylation. Here, we show that CDPs decreased melanoma size and tumor formation in a subcutaneous xenografted mouse melanoma model. In fact, CDPs accelerated death of B16-F0 murine melanoma cells. In mice, antitumor effect was improved by treatment with CDPs using cyclodextrins as drug vehicle. In tumors, CDPs caused nuclear fragmentation and changed the expression of the Bcl-2 and Ki67 apoptotic markers and promoted restoration of hyperactivation of the PI3K/Akt/mTOR pathway. Additionally, elements of several signaling pathways such as the Ras-ERK, PI3K/JNK/PKA, p27Kip1/CDK1/survivin, MAPK, HIF-1, epithelial–mesenchymal transition, and cancer stem cell pathways were also modified by treatment of xenografted melanoma mice with CDPs. The findings indicate that the multiple signaling pathways implicated in aggressiveness of the murine B16-F0 melanoma line are targeted by the bacterial CDPs. Molecular modeling of CDPs with protein kinases involved in neoplastic processes suggested that these compounds could indeed interact with the active site of the enzymes. The results suggest that CDPs may be considered as potential antineoplastic drugs, interfering with multiple pathways involved in tumor formation and progression.
Collapse
Affiliation(s)
- Mayra Xóchitl Durán-Maldonado
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Laura Hernández-Padilla
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | | | - Alma Laura Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Lorena Martínez-Alcantar
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Homero Reyes De la Cruz
- Laboratorio de Control Traduccional, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | | | - Gustavo Pacheco-Rodríguez
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
28
|
Self-Organized Liver Microtissue on a Bio-Functional Surface: The Role of Human Adipose-Derived Stromal Cells in Hepatic Function. Int J Mol Sci 2020; 21:ijms21134605. [PMID: 32610471 PMCID: PMC7369942 DOI: 10.3390/ijms21134605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/02/2023] Open
Abstract
The maintenance of hepatocyte function is a critical research topic in liver tissue engineering. Although an increasing number of strategies have been developed, liver tissue engineering using hepatocytes as a therapeutic alternative remains challenging owing to its poor efficacy. In this study, we developed a multicellular hepatic microtissue to enhance the function of induced hepatic precursor cells. Mouse induced hepatic precursor cells (miHeps) were self-organized in 3D with human adipose-derived stem cells (hASCs) on a bio-functional matrix. We found that hepatic phenotypes, such as levels of albumin, asialoglycoprotein receptor-1, and cytochrome P450, were enhanced in miHeps-hASC microtissue comprising miHeps and hASCs relative to two-dimensional-cultured miHeps-hASCs. Additionally, the secretome of 3D-cultured hASCs increased the hepatic function of mature miHeps. Furthermore, hepatic gene expression was reduced in mature miHeps treated with conditioned media of hypoxia-inducible factor 1α (HIF1α)-depleted hASCs relative to that with conditioned media of control hASCs. Our results suggested that the hepatic function of 3D-co-cultured miHeps could be enhanced by HIF1α-dependent factors secreted from stromal cells. This study provides an insight into the factors regulating hepatic function and shows that self-organized hepatic microtissue could act as liver spheroids for liver regenerative medicine and liver toxicity tests.
Collapse
|
29
|
Dhanasiri A, Chen X, Dahle D, Siriyappagouder P, Fæste CK, Fernandes JMO. Dietary inclusion of plant ingredients induces epigenetic changes in the intestine of zebrafish. Epigenetics 2020; 15:1035-1051. [PMID: 32223500 DOI: 10.1080/15592294.2020.1747777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modifications, such as DNA methylation, can be regulated by nutrition and dietary factors. There has been a large increase in the use of sustainable plant-based protein sources in fish feed due to limitations of fishmeal resources, which are needed to sustain a rapidly growing aquaculture industry. With this major transition from marine ingredients to plant-based diets, fish are abruptly introduced to changes in dietary composition and exposed to a variety of phytochemicals, some of which known to cause epigenetic changes in mammals. However, the effect of plant ingredients on the epigenome of fish is barely understood. In the present study, the nutriepigenomic effects of the addition of pea, soy, and wheat gluten protein concentrate to aquafeeds were investigated using zebrafish as a model. A genome-wide analysis of DNA methylation patterns was performed by reduced representation bisulphite sequencing to examine global epigenetic alterations in the mid intestine after a 42-day feeding trial. We found that inclusion of 30% of wheat gluten, pea and soy protein concentrate in the diet induced epigenetic changes in the mid intestine of zebrafish. A large number of genes and intergenic regions were differentially methylated with plant-based diets. The genes concerned were related to immunity, NF-κB system, ubiquitin-proteasome pathway, MAPK pathway, and the antioxidant defence system. Epigenetic regulation of several biological processes, including neurogenesis, cell adhesion, response to stress and immunity was also observed. Ultimately, the observed epigenetic changes may enable zebrafish to rapidly regulate inflammation and maintain intestinal homoeostasis when fed plant protein-based diets.
Collapse
Affiliation(s)
- Anusha Dhanasiri
- Faculty of Biosciences and Aquaculture, Nord University , Bodø, Norway.,Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU) , Oslo, Norway
| | - Xianquan Chen
- Faculty of Biosciences and Aquaculture, Nord University , Bodø, Norway.,School of Life Sciences, Sun Yat-Sen University , Guangzhou, PR China
| | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, Nord University , Bodø, Norway
| | | | - Christiane K Fæste
- Toxinology Research Group, Norwegian Veterinary Institute , Oslo, Norway
| | | |
Collapse
|
30
|
Abstract
Chronic liver diseases, such as fibrosis and cancer, lead to a rigid or stiff liver because of perpetual activation of hepatic stellate cells or portal fibroblasts into matrix-producing myofibroblasts. Mechanical forces, as determined by the mechanical properties of extracellular matrix or pressure of circulating blood flow/shear stress, are sensed by mechanoreceptors at the plasma membrane and transmitted into a cell to impact cell function. This process is termed as mechanotransduction. This review includes basic knowledge regarding how external forces are sensed, amplified, and transmitted into the interior of a cell as far as the nucleus to regulate gene transcription and generate biological responses. It also reviews literatures to highlight the mechanisms by which mechanical forces in a normal or diseased liver influence the phenotype of hepatocytes, hepatic stellate cells, portal fibroblasts, and sinusoidal endothelial cells, and these cells in turn participate in the initiation and progression of liver diseases.
Collapse
Affiliation(s)
- Ningling Kang
- Section of Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
31
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
32
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 823] [Impact Index Per Article: 137.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
33
|
Zhu Y, Mordaunt CE, Yasui DH, Marathe R, Coulson RL, Dunaway KW, Jianu JM, Walker CK, Ozonoff S, Hertz-Picciotto I, Schmidt RJ, LaSalle JM. Placental DNA methylation levels at CYP2E1 and IRS2 are associated with child outcome in a prospective autism study. Hum Mol Genet 2019; 28:2659-2674. [PMID: 31009952 PMCID: PMC6687952 DOI: 10.1093/hmg/ddz084] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/25/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
DNA methylation acts at the interface of genetic and environmental factors relevant for autism spectrum disorder (ASD). Placenta, normally discarded at birth, is a potentially rich source of DNA methylation patterns predictive of ASD in the child. Here, we performed whole methylome analyses of placentas from a prospective study MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) of high-risk pregnancies. A total of 400 differentially methylated regions (DMRs) discriminated placentas stored from children later diagnosed with ASD compared to typically developing controls. These ASD DMRs were significantly enriched at promoters, mapped to 596 genes functionally enriched in neuronal development, and overlapped genetic ASD risk. ASD DMRs at CYP2E1 and IRS2 reached genome-wide significance, replicated by pyrosequencing and correlated with expression differences in brain. Methylation at CYP2E1 associated with both ASD diagnosis and genotype within the DMR. In contrast, methylation at IRS2 was unaffected by within DMR genotype but modified by preconceptional maternal prenatal vitamin use. This study therefore identified two potentially useful early epigenetic markers for ASD in placenta.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Ria Marathe
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Rochelle L Coulson
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Keith W Dunaway
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Cheryl K Walker
- Department of Obstetrics & Gynecology, School of Medicine, MIND Institute, University of California, Davis, 95616, USA
| | - Sally Ozonoff
- MIND Institute, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Irva Hertz-Picciotto
- MIND Institute, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- MIND Institute, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
34
|
A Novel Cadherin-like Protein Mediates Adherence to and Killing of Host Cells by the Parasite Trichomonas vaginalis. mBio 2019; 10:mBio.00720-19. [PMID: 31088924 PMCID: PMC6520450 DOI: 10.1128/mbio.00720-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Trichomonas vaginalis, a prevalent sexually transmitted parasite, adheres to and induces cytolysis of human mucosal epithelial cells. We have characterized a hypothetical protein, TVAG_393390, with predicted tertiary structure similar to that of mammalian cadherin proteins involved in cell-cell adherence. TVAG_393390, renamed cadherin-like protein (CLP), contains a calcium-binding site at a position conserved in cadherins. CLP is surface localized, and its mRNA and protein levels are significantly upregulated upon parasite adherence to host cells. To test the roles of CLP and its calcium-binding dependency during host cell adherence, we first demonstrated that wild-type CLP (CLP) binds calcium with a high affinity, whereas the calcium-binding site mutant protein (CLP-mut) does not. CLP and CLP-mut constructs were then used to overexpress these proteins in T. vaginalis Parasites overexpressing CLP have ∼3.5-fold greater adherence to host cells than wild-type parasites, and this increased adherence is ablated by mutating the calcium-binding site. Additionally, competition with recombinant CLP decreased parasite binding to host cells. We also found that overexpression of CLP induced parasite aggregation which was further enhanced in the presence of calcium, whereas CLP-mut overexpression did not affect aggregation. Lastly, parasites overexpressing wild-type CLP induced killing of host cells ∼2.35-fold, whereas parasites overexpressing CLP-mut did not have this effect. These analyses describe the first parasitic CLP and demonstrate a role for this protein in mediating parasite-parasite and host-parasite interactions. T. vaginalis CLP may represent convergent evolution of a parasite protein that is functionally similar to the mammalian cell adhesion protein cadherin, which contributes to parasite pathogenesis.IMPORTANCE The adherence of pathogens to host cells is critical for colonization of the host and establishing infection. Here we identify a protein with no known function that is more abundant on the surface of parasites that are better at binding host cells. To interrogate a predicted function of this protein, we utilized bioinformatic protein prediction programs which allowed us to uncover the first cadherin-like protein (CLP) found in a parasite. Cadherin proteins are conserved metazoan proteins with central roles in cell-cell adhesion, development, and tissue structure maintenance. Functional characterization of this CLP from the unicellular parasite Trichomonas vaginalis demonstrated that the protein mediates both parasite-parasite and parasite-host adherence, which leads to an enhanced killing of host cells by T. vaginalis Our findings demonstrate the presence of CLPs in unicellular pathogens and identify a new host cell binding protein family in a human-infective parasite.
Collapse
|
35
|
Sannigrahi MK, Srinivas CS, Deokate N, Rakshit S. The strong propensity of Cadherin-23 for aggregation inhibits cell migration. Mol Oncol 2019; 13:1092-1109. [PMID: 30747484 PMCID: PMC6487693 DOI: 10.1002/1878-0261.12469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/01/2019] [Accepted: 01/18/2019] [Indexed: 01/06/2023] Open
Abstract
Cadherin‐23 (Cdh23), a long‐chain non‐classical cadherin, exhibits strong homophilic and heterophilic binding. The physiological relevance of strong heterophilic binding with protocadherin‐15 at neuroepithelial tip links is well‐studied. However, the role of Cdh23 homodimers in physiology is less understood, despite its widespread expression at the cell boundaries of various human and mouse tissues, including kidney, muscle, testes, and heart. Here, we performed immunofluorescence studies that revealed that Cdh23 is present as distinct puncta at the cell–cell boundaries of cancer cells. Analysis of patient data and quantitative estimation of Cdh23 in human tissues (normal and tumor) also indicated that Cdh23 is down‐regulated via promoter methylation in lung adenocarcinoma (AD) and esophageal squamous cell carcinoma (SCC) cells; we also observed a clear inverse correlation between Cdh23 expression and cancer metastasis. Using HEK293T cells and four types of cancer cells differentially expressing Cdh23, we observed that cell migration was faster in cells with reduced levels of Cdh23 expression. The cell migration rate in cancer cells is further accelerated by the presence of excretory isoforms of Cdh23, which loosen its cell‐adhesion ability by competitive binding. Overall, our data indicate the role of Cdh23 as a suppressor of cell migration.
Collapse
Affiliation(s)
- Malay K Sannigrahi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Chandigarh, India
| | - Cheerneni S Srinivas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Chandigarh, India
| | - Nilesh Deokate
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Chandigarh, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Chandigarh, India.,Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Chandigarh, India
| |
Collapse
|
36
|
Madarampalli B, Watts GFM, Panipinto PM, Nguygen HN, Brenner MB, Noss EH. Interactions between cadherin-11 and platelet-derived growth factor receptor-alpha signaling link cell adhesion and proliferation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1516-1524. [PMID: 30876808 DOI: 10.1016/j.bbadis.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 12/26/2022]
Abstract
Cadherins are homophilic cell-to-cell adhesion molecules that help cells respond to environmental changes. Newly formed cadherin junctions are associated with increased cell phosphorylation, but the pathways driving this signaling response are largely unknown. Since cadherins have no intrinsic signaling activity, this phosphorylation must occur through interactions with other signaling molecules. We previously reported that cadherin-11 engagement activates joint synovial fibroblasts, promoting inflammatory and degradative pathways important in rheumatoid arthritis (RA) pathogenesis. Our objective in this study was to discover interacting partners that mediate cadherin-11 signaling. Protein array screening showed that cadherin-11 extracellular binding domains linked to an Fc domain (cad11Fc) induced platelet-derived growth factor (PDGFR)-α phosphorylation in synovial fibroblasts and glioblastoma cells. PDGFRs are growth factor receptor tyrosine kinases that promote cell proliferation, survival, and migration in mesodermally derived cells. Increased PDGFR activity is implicated in RA pathology and associates with poor prognosis in several cancers, including sarcoma and glioblastoma. PDGFRα activation by cadherin-11 signaling promoted fibroblast proliferation, a signaling pathway independent from cadherin-11-stimulated IL-6 or matrix metalloproteinase (MMP)-3 release. PDGFRα phosphorylation mediated most of the cad11Fc-induced phosphatidyl-3-kinase (PI3K)/Akt activation, but only part of the mitogen-activated protein kinase (MAPK) response. PDGFRα-dependent signaling did not require cell cadherin-11 expression. Rather, cad11Fc immunoprecipitated PDGFRα, indicating a direct interaction between cadherin-11 and PDGFRα extracellular domains. This study is the first to report an interaction between cadherin-11 and PDGFRα and adds to our growing understanding that cadherin-growth factor receptor interactions help balance the interplay between tissue growth and adhesion.
Collapse
Affiliation(s)
- Bhanupriya Madarampalli
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98019, USA.
| | - Gerald F M Watts
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Paul M Panipinto
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98019, USA.
| | - Hung N Nguygen
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Michael B Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Erika H Noss
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican St, Seattle, WA 98019, USA; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Low-dose calcipotriol can elicit wound closure, anti-microbial, and anti-neoplastic effects in epidermolysis bullosa keratinocytes. Sci Rep 2018; 8:13430. [PMID: 30194425 PMCID: PMC6128832 DOI: 10.1038/s41598-018-31823-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) patients suffer from chronic and repeatedly infected wounds predisposing them to the development of aggressive and life-threatening skin cancer in these areas. Vitamin D3 is an often neglected but critical factor for wound healing. Intact skin possesses the entire enzymatic machinery required to produce active 1-alpha,25-dihydroxyvitamin D3 (calcitriol), underscoring its significance to proper skin function. Injury enhances calcitriol production, inducing the expression of calcitriol target genes including the antimicrobial peptide cathelicidin (hCAP18), an essential component of the innate immune system and an important wound healing factor. We found significantly reduced hCAP18 expression in a subset of RDEB keratinocytes which could be restored by calcipotriol treatment. Reduced scratch closure in RDEB cell monolayers was enhanced up to 2-fold by calcipotriol treatment, and the secretome of calcipotriol-treated cells additionally showed increased antimicrobial activity. Calcipotriol exhibited anti-neoplastic effects, suppressing the clonogenicity and proliferation of RDEB tumor cells. The combined wound healing, anti-microbial, and anti-neoplastic effects indicate that calcipotriol may represent a vital therapeutic option for RDEB patients which we could demonstrate in a single-patient observation study.
Collapse
|
38
|
Camley BA. Collective gradient sensing and chemotaxis: modeling and recent developments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:223001. [PMID: 29644981 PMCID: PMC6252055 DOI: 10.1088/1361-648x/aabd9f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cells measure a vast variety of signals, from their environment's stiffness to chemical concentrations and gradients; physical principles strongly limit how accurately they can do this. However, when many cells work together, they can cooperate to exceed the accuracy of any single cell. In this topical review, I will discuss the experimental evidence showing that cells collectively sense gradients of many signal types, and the models and physical principles involved. I also propose new routes by which experiments and theory can expand our understanding of these problems.
Collapse
Affiliation(s)
- Brian A Camley
- Departments of Physics & Astronomy and Biophysics, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
39
|
Huang D, Chen J, Yang C, Wang M. TPX2 silencing mediated by joint action of microvesicles and ultrasonic radiation inhibits the migration and invasion of SKOV3 cells. Mol Med Rep 2018; 17:7627-7635. [PMID: 29620263 PMCID: PMC5983958 DOI: 10.3892/mmr.2018.8810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer, with its high morbidity, has one of the highest mortality rates among gynecological malignant tumors. Overexpression of targeting protein for Xklp2 (TPX2) has been identified in numerous malignant tumors. The present study sought to determine whether TPX2 silencing inhibited the growth and metastasis of ovarian cancer cells, and whether microvesicles‑ and ultrasonic radiation‑mediated small interfering (si)RNA‑TPX2 transfection may improve the therapeutic effect. The SKOV3 cell line, derived from papillary serous cytadenocarcinoma of the human ovary, was selected as a cell model. Cells were divided into five groups: Control, siRNA‑TPX2, siRNA‑TPX2 + microvesicle (M), siRNA‑TPX2 + ultrasonic irradiation (UI), and siRNA‑TPX2 + M + UI. Cell viability was evaluated under the aforementioned conditions via the Cell Counting kit 8 (CCK8) assay. Cell migration and invasion were detected using Transwell assays. The expression levels of associated genes, including epithelial cadherin (E‑cadherin), metalloproteinase inhibitor 2 (TIMP‑2), metastasis associated 1 (MTA1) and matrix metallopeptidase 2 (MMP2), were analyzed using reverse transcription‑quantitative polymerase chain reaction analysis and western blotting. MMP2 activity was determined using a gelatin zymography assay. The results suggested that TPX2 serves an important role in the development of SKOV3 cells; it is additionally able to inhibit cell migration and invasion by upregulating E‑cadherin and TIMP2, downregulating MMP2 and MTA1, and inhibiting the phosphorylation of p38 and c‑Jun N‑terminal kinase. The inhibitory effect of siRNA‑TPX2 on SKOV3 cellular metastasis in the presence of microvesicles and ultrasonic radiation was observed to be improved compared with the control. It is proposed that the combination of microvesicles and ultrasonic radiation with TPX2 silencing has the potential to be an effective gene therapy against ovarian cancer.
Collapse
Affiliation(s)
- Dong Huang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jianmin Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Cuiyu Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Minzhen Wang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
40
|
Abstract
E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.
Collapse
|
41
|
Machesky L, Braga VMM. So far, yet so close: α-Catenin dimers help migrating cells get together. J Cell Biol 2017; 216:3437-3439. [PMID: 29051263 PMCID: PMC5674902 DOI: 10.1083/jcb.201709056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial cells in tissues use their actin cytoskeletons to stick together, whereas unattached cells make active plasma membrane protrusions to migrate. In this issue, Wood et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201612006) show that the junction component α-catenin is critical in freely moving cells to promote adhesion and migration.
Collapse
Affiliation(s)
- Laura Machesky
- Cancer Research UK Beatson Institute, University of Glasgow, Glasgow, Scotland, UK
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, England, UK
| |
Collapse
|
42
|
Fontenete S, Peña-Jimenez D, Perez-Moreno M. Heterocellular cadherin connections: coordinating adhesive cues in homeostasis and cancer. F1000Res 2017; 6:1010. [PMID: 28721207 PMCID: PMC5497824 DOI: 10.12688/f1000research.11357.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 01/06/2023] Open
Abstract
This short insight covers some of the recent topics relevant to the field of cadherin-catenin adhesion in mediating connections between different cell types, so-called heterotypic or heterocellular connections, in both homeostasis and cancer. These scientific discoveries are increasing our understanding of how multiple cells residing in complex tissues can be instructed by cadherin adhesion receptors to regulate tissue architecture and function and how these cadherin-mediated heterocellular connections spur tumor growth and the acquisition of malignant characteristics in tumor cells. Overall, the findings that have emerged over the past few years are elucidating the complexity of the functional roles of the cadherin-catenin complexes. Future exciting research lies ahead in order to understand the physical basis of these heterotypic interactions and their influence on the behavior of heterogeneous cellular populations as well as their roles in mediating phenotypic and genetic changes as cells evolve through complex environments during morphogenesis and cancer.
Collapse
Affiliation(s)
- Silvia Fontenete
- Epithelial Cell Biology Group, Cancer Cell Biology Programme, Spanish Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Peña-Jimenez
- Epithelial Cell Biology Group, Cancer Cell Biology Programme, Spanish Cancer Research Centre (CNIO), Madrid, Spain
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group, Cancer Cell Biology Programme, Spanish Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
43
|
Kwan J, Sczaniecka A, Heidary Arash E, Nguyen L, Chen CC, Ratkovic S, Klezovitch O, Attisano L, McNeill H, Emili A, Vasioukhin V. DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes Dev 2017; 30:2696-2709. [PMID: 28087714 PMCID: PMC5238729 DOI: 10.1101/gad.284539.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Here, Kwan et al. investigated the mechanisms connecting cell polarity proteins with intracellular signaling pathways. They found that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, demonstrating a direct connection between cell polarity proteins and Hippo that is needed for proper development of multicellular organisms. Disruption of apical–basal polarity is implicated in developmental disorders and cancer; however, the mechanisms connecting cell polarity proteins with intracellular signaling pathways are largely unknown. We determined previously that membrane-associated guanylate kinase (MAGUK) protein discs large homolog 5 (DLG5) functions in cell polarity and regulates cellular proliferation and differentiation via undefined mechanisms. We report here that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, which controls organ size through the modulation of cell proliferation and differentiation. Affinity purification/mass spectrometry revealed a critical role of DLG5 in the formation of protein assemblies containing core Hippo kinases mammalian ste20 homologs 1/2 (MST1/2) and Par-1 polarity proteins microtubule affinity-regulating kinases 1/2/3 (MARK1/2/3). Consistent with this finding, Hippo signaling is markedly hyperactive in mammalian Dlg5−/− tissues and cells in vivo and ex vivo and in Drosophila upon dlg5 knockdown. Conditional deletion of Mst1/2 fully rescued the phenotypes of brain-specific Dlg5 knockout mice. Dlg5 also interacts genetically with Hippo effectors Yap1/Taz. Mechanistically, we show that DLG5 inhibits the association between MST1/2 and large tumor suppressor homologs 1/2 (LATS1/2), uses its scaffolding function to link MST1/2 with MARK3, and inhibits MST1/2 kinase activity. These data reveal a direct connection between cell polarity proteins and Hippo, which is essential for proper development of multicellular organisms.
Collapse
Affiliation(s)
- Julian Kwan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anna Sczaniecka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emad Heidary Arash
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Liem Nguyen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Chia-Chun Chen
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Srdjana Ratkovic
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Liliana Attisano
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
44
|
Nighot P, Ma T. Role of autophagy in the regulation of epithelial cell junctions. Tissue Barriers 2016; 4:e1171284. [PMID: 27583189 DOI: 10.1080/21688370.2016.1171284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, NM, USA
| | - Thomas Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA; Veterans Affairs Medical Center, Albuquerque, NM, USA
| |
Collapse
|
45
|
Li P, Silvis MR, Honaker Y, Lien WH, Arron ST, Vasioukhin V. αE-catenin inhibits a Src-YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev 2016; 30:798-811. [PMID: 27013234 PMCID: PMC4826396 DOI: 10.1101/gad.274951.115] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Cell-cell adhesion protein αE-catenin inhibits skin squamous cell carcinoma (SCC) development; however, the mechanisms responsible for this function are not completely understood. We report here that αE-catenin inhibits β4 integrin-mediated activation of SRC tyrosine kinase.SRCis the first discovered oncogene, but the protein substrate critical for SRC-mediated transformation has not been identified. We found that YAP1, the pivotal effector of the Hippo signaling pathway, is a direct SRC phosphorylation target, and YAP1 phosphorylation at three sites in its transcription activation domain is necessary for SRC-YAP1-mediated transformation. We uncovered a marked increase in this YAP1 phosphorylation in human and mouse SCC tumors with low/negative expression of αE-catenin. We demonstrate that the tumor suppressor function of αE-catenin involves negative regulation of the β4 integrin-SRC signaling pathway and that SRC-mediated phosphorylation and activation of YAP1 are an alternative to the canonical Hippo signaling pathway that directly connect oncogenic tyrosine kinase signaling with YAP1.
Collapse
Affiliation(s)
- Peng Li
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Mark R Silvis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Yuchi Honaker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Wen-Hui Lien
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sarah T Arron
- Department of Dermatology, University of California at San Fricisco, San Francisco, California, 94143, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
46
|
Chen D, Wu Z, Luo LJ, Huang X, Qian WQ, Wang H, Li SH, Liu J. E-cadherin maintains the activity of neural stem cells and inhibits the migration. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14247-14251. [PMID: 26823740 PMCID: PMC4713526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Cadherins are important adhesion molecules that mediate adhesions and communications between cells. These molecules participate in the formation and maintenance of multicellular organisms including the stem cells. E-cadherin is one of the classic cadherins which is reported to be essential for the survival and self-renewal of embryonic stem cells. Moreover, it could induce cell proliferation inhibitory signaling to regulate cell proliferation. In our study, we over-expressed and silenced E-cadherin in NSCs by lentiviral ways. Transgenic cells were confirmed by both quantitative RT-PCR and western blot. Results of MTT assay showed that over-expression of E-cadherin could enhance the cell activity. Furthermore, we performed Transwell chamber assay to analyze its role in regulation of cell migration. The results showed that the migration percent of over-expression cells was lower than control. Our results indicated that E-caherin would maintain the stemness of NSCs and reduce cells migration.
Collapse
Affiliation(s)
- Dong Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai, China
| | - Zhong Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai, China
| | - Lin-Jie Luo
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai, China
| | - Xiang Huang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai, China
| | - Wei-Qiang Qian
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai, China
| | - Hua Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai, China
| | - Shao-Hua Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai, China
| | - Jie Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai, China
| |
Collapse
|