1
|
Caleiro GS, Claro IM, Hua X, Basile GV, Nuevo KMB, da Costa CA, Tubaki RM, de Menezes RMT, Scandar SAS, Colebrusco LAR, Araújo ELL, de Souza WM, Sabino EC, Faria NR, Cunha MS. Molecular Epidemiology of St. Louis Encephalitis Virus, São Paulo State, Brazil, 2016-2018. Emerg Infect Dis 2025; 31:1052-1054. [PMID: 40305412 PMCID: PMC12044246 DOI: 10.3201/eid3105.250158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
We detected St. Louis encephalitis virus (SLEV) in 0.16% (3/3,375) of Aedes and Sabethes spp. mosquitoes captured during 2016-2018 in São Paulo State, Brazil. We also isolated and confirmed that the SLEV strains belong to genotype III. Continued surveillance is required to clarify the burden of SLEV in Brazil.
Collapse
|
2
|
Gauthier NPG, Chan W, Locher K, Smailus D, Coope R, Charles M, Jassem A, Kopetzky J, Chorlton SD, Manges AR. Validation of an Automated, End-to-End Metagenomic Sequencing Assay for Agnostic Detection of Respiratory Viruses. J Infect Dis 2024; 230:e1245-e1253. [PMID: 38696336 PMCID: PMC11646614 DOI: 10.1093/infdis/jiae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Current molecular diagnostics are limited in the number and type of detectable pathogens. Metagenomic next-generation sequencing (mNGS) is an emerging, and increasingly feasible, pathogen-agnostic diagnostic approach. Translational barriers prohibit the widespread adoption of this technology in clinical laboratories. We validate an end-to-end mNGS assay for detection of respiratory viruses. Our assay is optimized to reduce turnaround time, lower cost per sample, increase throughput, and deploy secure and actionable bioinformatic results. METHODS We validated our assay using residual nasopharyngeal swab specimens from Vancouver General Hospital (n = 359), which were reverse-transcription polymerase chain reaction positive, or negative for influenza, severe acute respiratory syndrome coronavirus 2, and respiratory syncytial virus. We quantified sample stability, assay precision, the effect of background nucleic acid levels, and analytical limits of detection. Diagnostic performance metrics were estimated. RESULTS We report that our mNGS assay is highly precise and semiquantitative, with analytical limits of detection ranging from 103 to 104 copies/mL. Our assay is highly specific (100%) and sensitive (61.9% overall: 86.8%; reverse-transcription polymerase chain reaction cycle threshold < 30). Multiplexing capabilities enable processing of up to 55 specimens simultaneously on an Oxford Nanopore GridION device, with results reported within 12 hours. CONCLUSIONS This study report outlines the diagnostic performance and feasibility of mNGS for respiratory viral diagnostics, infection control, and public health surveillance. We addressed translational barriers to widespread mNGS adoption.
Collapse
Affiliation(s)
- Nick P G Gauthier
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wilson Chan
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kerstin Locher
- Division of Medical Microbiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Duane Smailus
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Robin Coope
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Marthe Charles
- Division of Medical Microbiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Agatha Jassem
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Jennifer Kopetzky
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | | | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Bandeira AC, Pereira FM, Leal A, Santos SPO, Barbosa AC, Souza MSPL, de Souza DR, Guimaraes N, Fonseca V, Giovanetti M, Alcantara LCJ, Lessa AAA, Saavedra RC, Tomé LMR, Iani FCM, Barros RM, Purificação SMO, de Jesus JP, Fonseca RR, Araújo MLV. Fatal Oropouche Virus Infections in Nonendemic Region, Brazil, 2024. Emerg Infect Dis 2024; 30:2370-2374. [PMID: 39269651 PMCID: PMC11521185 DOI: 10.3201/eid3011.241132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
We report acute Oropouche virus infections in 2 previously healthy women from a nonendemic region of Brazil outside the Amazon Basin. Infections rapidly progressed to hemorrhagic manifestations and fatal outcomes in 4-5 days. These cases highlight the critical need for enhanced surveillance to clarify epidemiology of this neglected disease.
Collapse
|
4
|
Luna N, Páez-Triana L, Ramírez AL, Muñoz M, Goméz M, Medina JE, Urbano P, Barragán K, Ariza C, Martínez D, Hernández C, Patiño LH, Ramirez JD. Microbial community dynamics in blood, faeces and oral secretions of neotropical bats in Casanare, Colombia. Sci Rep 2024; 14:25808. [PMID: 39468253 PMCID: PMC11519573 DOI: 10.1038/s41598-024-77090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Bats are known reservoirs for a wide range of pathogenic microorganisms, including viruses, bacteria, fungi, helminths, and protozoa, which can be transmitted and infect other zoonotic organisms. Various studies have utilised next-generation sequencing (NGS) to describe the pathogens associated with bats. Although most have characterised microbial communities in specific body fluids, few have analysed the composition and diversity of these microbial communities across different body fluids at the individual level. In this study, we employed two next-generation sequencing techniques: amplicon-based sequencing of the V4 hypervariable region of the 16S- and 18S-rRNA genes and viral metagenomics, to describe the prokaryotic, eukaryotic, and viral communities present in blood, faeces, and oral swab samples collected from two genera of bats (Carollia and Phyllostomus) in the department of Casanare, eastern Colombia. A total of 60 samples corresponding to the three bodily fluids were processed and analysed. The results indicated that the microbial communities across the body fluids were mainly composed of bacteria, fungi, protozoa, and various DNA and RNA viruses, showing a variability of microbial genera and species. The abundances, diversity metrics, and correlations of these microorganisms displayed patterns associated with bat genus and body fluids, suggesting that the ecological characteristics of these microbial communities may be influenced by the ecological and physiological traits of the bats. Additionally, we found similar community compositions of bacteria, some fungal genera, and viruses in the three body fluids, indicating a possible circulation of these microbes within the same bat. This could be due to microbial movement from the gut microbiota to other physiological systems or transmission via blood-feeding vectors. Furthermore, our results revealed the presence of various microbes of public health concern, including Bartonella spp., Mannheimia haemolytica, Rhodotorula spp., Piroplasmida spp., Toxoplasma gondii, Alphacoronavirus spp., and Bat circovirus. The abundance of these pathogenic microbial species across the three bodily fluids suggests potential transmission routes from bats to other organisms, which may contribute to the emergence of zoonotic disease outbreaks. These findings highlight the variability of microorganisms present within the same bat and the different pathogen-host interactions that may regulate the presence and transmission of these zoonotic microbes. Further research is required to elucidate the genomic features, ecological interactions, and biological activities of these microbial communities in bats.
Collapse
Affiliation(s)
- Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Angie L Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Marcela Goméz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Julián E Medina
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Karen Barragán
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Catalina Ariza
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Davinzon Martínez
- Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Moreno KMF, de Andrade VA, de Melo Iani FC, Fonseca V, Lima MT, de Castro Barbosa E, Tomé LMR, Guimarães NR, Fritsch HM, Adelino T, Oliveira Fereguetti T, Aspahan MC, Gamarano Barros T, Alcantara LCJ, Giovanetti M. Exploring Microorganisms Associated to Acute Febrile Illness and Severe Neurological Disorders of Unknown Origin: A Nanopore Metagenomics Approach. Genes (Basel) 2024; 15:922. [PMID: 39062701 PMCID: PMC11276239 DOI: 10.3390/genes15070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Acute febrile illness (AFI) and severe neurological disorders (SNDs) often present diagnostic challenges due to their potential origins from a wide range of infectious agents. Nanopore metagenomics is emerging as a powerful tool for identifying the microorganisms potentially responsible for these undiagnosed clinical cases. In this study, we aim to shed light on the etiological agents underlying AFI and SND cases that conventional diagnostic methods have not been able to fully elucidate. Our approach involved analyzing samples from fourteen hospitalized patients using a comprehensive nanopore metagenomic approach. This process included RNA extraction and enrichment using the SMART-9N protocol, followed by nanopore sequencing. Subsequent steps involved quality control, host DNA/cDNA removal, de novo genome assembly, and taxonomic classification. Our findings in AFI cases revealed a spectrum of disease-associated microbes, including Escherichia coli, Streptococcus sp., Human Immunodeficiency Virus 1 (Subtype B), and Human Pegivirus. Similarly, SND cases revealed the presence of pathogens such as Escherichia coli, Clostridium sp., and Dengue virus type 2 (Genotype-II lineage). This study employed a metagenomic analysis method, demonstrating its efficiency and adaptability in pathogen identification. Our investigation successfully identified pathogens likely associated with AFI and SNDs, underscoring the feasibility of retrieving near-complete genomes from RNA viruses. These findings offer promising prospects for advancing our understanding and control of infectious diseases, by facilitating detailed genomic analysis which is critical for developing targeted interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Keldenn Melo Farias Moreno
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (K.M.F.M.); (M.T.L.); (H.M.F.)
| | | | - Felipe Campos de Melo Iani
- Central Public Health Laboratory of the State of Minas Gerais, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil; (F.C.d.M.I.); (T.A.)
| | - Vagner Fonseca
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador 41150-000, Brazil;
| | - Maurício Teixeira Lima
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (K.M.F.M.); (M.T.L.); (H.M.F.)
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (E.d.C.B.); (L.M.R.T.); (N.R.G.); (L.C.J.A.)
| | - Emerson de Castro Barbosa
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (E.d.C.B.); (L.M.R.T.); (N.R.G.); (L.C.J.A.)
| | - Luiz Marcelo Ribeiro Tomé
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (E.d.C.B.); (L.M.R.T.); (N.R.G.); (L.C.J.A.)
| | - Natália Rocha Guimarães
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (E.d.C.B.); (L.M.R.T.); (N.R.G.); (L.C.J.A.)
| | - Hegger Machado Fritsch
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (K.M.F.M.); (M.T.L.); (H.M.F.)
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, University of Tours, 37032 Tours, France
| | - Talita Adelino
- Central Public Health Laboratory of the State of Minas Gerais, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil; (F.C.d.M.I.); (T.A.)
| | | | - Maíra Cardoso Aspahan
- Eduardo de Menezes Hospital, Belo Horizonte 30622-020, Brazil; (V.A.d.A.); (T.O.F.); (M.C.A.); (T.G.B.)
| | - Tereza Gamarano Barros
- Eduardo de Menezes Hospital, Belo Horizonte 30622-020, Brazil; (V.A.d.A.); (T.O.F.); (M.C.A.); (T.G.B.)
| | - Luiz Carlos Junior Alcantara
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (E.d.C.B.); (L.M.R.T.); (N.R.G.); (L.C.J.A.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
- Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
6
|
Alcolea-Medina A, Alder C, Snell LB, Charalampous T, Aydin A, Nebbia G, Williams T, Goldenberg S, Douthwaite S, Batra R, Cliff PR, Mischo H, Neil S, Wilks M, Edgeworth JD. Unified metagenomic method for rapid detection of microorganisms in clinical samples. COMMUNICATIONS MEDICINE 2024; 4:135. [PMID: 38972920 PMCID: PMC11228040 DOI: 10.1038/s43856-024-00554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Clinical metagenomics involves the genomic sequencing of all microorganisms in clinical samples ideally after depletion of human DNA to increase sensitivity and reduce turnaround times. Current human DNA depletion methods preferentially preserve either DNA or RNA containing microbes, but not both simultaneously. Here we describe and present data using a practical and rapid mechanical host-depletion method allowing simultaneous detection of RNA and DNA microorganisms linked with nanopore sequencing. METHODS The human cells from respiratory samples are lysed mechanically using 1.4 mm zirconium-silicate spheres and the human DNA is depleted using a nonspecific endonuclease. The RNA is converted to dsDNA to allow the simultaneous sequencing of DNA and RNA. RESULTS The method decreases human DNA concentration by a median of eight Ct values while detecting a broad range of RNA & DNA viruses, bacteria, including atypical pathogens (Legionella, Chlamydia, Mycoplasma) and fungi (Candida, Pneumocystis, Aspergillus). The first automated reports are generated after 30 min sequencing from a 7 h end-to-end workflow. Sensitivity and specificity for bacterial detection are 90% and 100%, respectively, and viral detection are 92% and 100% after 2 h of sequencing. Prospective validation on 33 consecutive lower respiratory tract samples from ventilated patients with suspected pneumonia shows 60% concordance with routine testing, detection of additional pathogens in 21% of samples and pathogen genomic assembly achieve for 42% of viruses and 33% of bacteria. CONCLUSIONS Although further workflow refinement and validation on samples containing a broader range of pathogens is required, it holds promise as a clinically deployable workflow suitable for evaluation in routine microbiology laboratories.
Collapse
Affiliation(s)
- Adela Alcolea-Medina
- Infection Sciences, Synnovis, London, UK.
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK.
- Department of Infectious Diseases, King's College London, London, UK.
| | - Christopher Alder
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK
| | - Luke B Snell
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK
- Department of Infectious Diseases, King's College London, London, UK
| | | | - Alp Aydin
- Quadram Institute Bioscience, Norwich, UK
| | - Gaia Nebbia
- Department of Infectious Diseases, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Tom Williams
- Department of Infectious Diseases, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Simon Goldenberg
- Department of Infectious Diseases, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Sam Douthwaite
- Department of Infectious Diseases, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Rahul Batra
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Hannah Mischo
- Department of Infectious Diseases, King's College London, London, UK
| | - Stuart Neil
- Department of Infectious Diseases, King's College London, London, UK
| | - Mark Wilks
- Queen Mary, University of London, London, UK
| | - Jonathan D Edgeworth
- Center for Clinical Infection and Diagnostics Research, Guys' and St. Thomas' NHS Foundation Trust, London, UK
- Department of Infectious Diseases, King's College London, London, UK
| |
Collapse
|
7
|
Forato J, Meira CA, Claro IM, Amorim MR, de Souza GF, Muraro SP, Toledo-Teixeira DA, Dias MF, Meneses CAR, Angerami RN, Lalwani P, Weaver SC, Sabino EC, Faria NR, de Souza WM, Granja F, Proenca-Modena JL. Molecular Epidemiology of Mayaro Virus among Febrile Patients, Roraima State, Brazil, 2018-2021. Emerg Infect Dis 2024; 30:1013-1016. [PMID: 38666638 PMCID: PMC11060474 DOI: 10.3201/eid3005.231406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
We detected Mayaro virus (MAYV) in 3.4% (28/822) of febrile patients tested during 2018-2021 from Roraima State, Brazil. We also isolated MAYV strains and confirmed that these cases were caused by genotype D. Improved surveillance is needed to better determine the burden of MAYV in the Amazon Region.
Collapse
|
8
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Mirza JD, de Oliveira Guimarães L, Wilkinson S, Rocha EC, Bertanhe M, Helfstein VC, de-Deus JT, Claro IM, Cumley N, Quick J, Faria NR, Sabino EC, Kirchgatter K, Loman NJ. Tracking arboviruses, their transmission vectors and potential hosts by nanopore sequencing of mosquitoes. Microb Genom 2024; 10:001184. [PMID: 38240642 PMCID: PMC10868619 DOI: 10.1099/mgen.0.001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The risk to human health from mosquito-borne viruses such as dengue, chikungunya and yellow fever is increasing due to increased human expansion, deforestation and climate change. To anticipate and predict the spread and transmission of mosquito-borne viruses, a better understanding of the transmission cycle in mosquito populations is needed. We present a pathogen-agnostic combined sequencing protocol for identifying vectors, viral pathogens and their hosts or reservoirs using portable Oxford Nanopore sequencing. Using mosquitoes collected in São Paulo, Brazil, we extracted RNA for virus identification and DNA for blood meal and mosquito identification. Mosquitoes and blood meals were identified by comparing cytochrome c oxidase I (COI) sequences against a curated Barcode of Life Data System (BOLD). Viruses were identified using the SMART-9N protocol, which allows amplified DNA to be prepared with native barcoding for nanopore sequencing. Kraken 2 was employed to detect viral pathogens and Minimap2 and BOLD identified the contents of the blood meal. Due to the high similarity of some species, mosquito identification was conducted using blast after generation of consensus COI sequences using RACON polishing. This protocol can simultaneously uncover viral diversity, mosquito species and mosquito feeding habits. It also has the potential to increase understanding of mosquito genetic diversity and transmission dynamics of zoonotic mosquito-borne viruses.
Collapse
Affiliation(s)
- Jeremy D. Mirza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Department of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Sam Wilkinson
- Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Esmenia C. Rocha
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mayara Bertanhe
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Ingra M. Claro
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, UK
| | - Nicola Cumley
- Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Joshua Quick
- Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Nuno R. Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, UK
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Karin Kirchgatter
- Instituto Pasteur, São Paulo, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Medina JE, Castañeda S, Páez-Triana L, Camargo M, Garcia-Corredor DJ, Gómez M, Luna N, Ramírez AL, Pulido-Medellín M, Muñoz M, Ramírez JD. High prevalence of Enterovirus E, Bovine Kobuvirus, and Astrovirus revealed by viral metagenomics in fecal samples from cattle in Central Colombia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 117:105543. [PMID: 38135265 DOI: 10.1016/j.meegid.2023.105543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Livestock plays a crucial role in ensuring food security and driving the global economy. However, viral infections can have far-reaching consequences beyond economic productivity, affecting the health of cattle, as well as posing risks to human health and other animals. Identifying viruses present in fecal samples, a primary route of pathogen transmission, is essential for developing effective prevention, control, and surveillance strategies. Viral metagenomic approaches offer a broader perspective and hold great potential for detecting previously unknown viruses or uncovering previously undescribed agents. Ubaté Province is Colombia's dairy capital and a key center for livestock production in the country. Therefore, the purpose of this study was to characterize viral communities in fecal samples from cattle in this region. A total of 42 samples were collected from three municipalities in Ubaté Province, located in central Colombia, using a convenient non-probabilistic sampling method. We utilized metagenomic sequencing with Oxford Nanopore Technologies (ONT), combined with diversity and phylogenetic analysis. The findings revealed a consistent and stable viral composition across the municipalities, primarily comprising members of the Picornaviridae family. At the species level, the most frequent viruses were Enterovirus E (EVE) and Bovine Astrovirus (BoAstV). Significantly, this study reported, for the first time in Colombia, the presence of viruses with veterinary importance occurring at notable frequencies: EVE (59%), Bovine Kobuvirus (BKV) (52%), and BoAstV (19%). Additionally, the study confirmed the existence of Circular replicase-encoding single-stranded (CRESS) Virus in animal feces. These sequences were phylogenetically grouped with samples obtained from Asia and Latin America, underscoring the importance of having adequate representation across the continent. The virome of bovine feces in Ubaté Province is characterized by the predominance of potentially pathogenic viruses such as BoAstV and EVE that have been reported with substantial frequency and quantities. Several of these viruses were identified in Colombia for the first time. This study showcases the utility of using metagenomic sequencing techniques in epidemiological surveillance. It also paves the way for further research on the influence of these agents on bovine health and their frecuency across the country.
Collapse
Affiliation(s)
- Julián Esteban Medina
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Funza, Cundinamarca, Colombia
| | - Diego J Garcia-Corredor
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Investigación en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Angie L Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Martín Pulido-Medellín
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
11
|
Carrera JP, Araúz D, Rojas A, Cardozo F, Stittleburg V, Morales Claro I, Galue J, Lezcano-Coba C, Romero Rebello Moreira F, -Rivera LF, Chen-Germán M, Moreno B, Capitan-Barrios Z, López-Vergès S, Pascale JM, Sabino EC, Valderrama A, Hanley KA, Donnelly CA, Vasilakis N, Faria NR, Waggoner JJ. Real-time RT-PCR for Venezuelan equine encephalitis complex, Madariaga, and Eastern equine encephalitis viruses: application in human and mosquito public health surveillance in Panama. J Clin Microbiol 2023; 61:e0015223. [PMID: 37982611 PMCID: PMC10729654 DOI: 10.1128/jcm.00152-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/08/2023] [Indexed: 11/21/2023] Open
Abstract
Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.
Collapse
Affiliation(s)
- Jean-Paul Carrera
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Dimelza Araúz
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Alejandra Rojas
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Victoria Stittleburg
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ingra Morales Claro
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Josefrancisco Galue
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Carlos Lezcano-Coba
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Filipe Romero Rebello Moreira
- MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Felipe -Rivera
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Maria Chen-Germán
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Brechla Moreno
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Zeuz Capitan-Barrios
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Departamento de Microbiología y Parasitología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panama
| | - Sandra López-Vergès
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Juan Miguel Pascale
- Clinical of Tropical Diseases and Research Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anayansi Valderrama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - Christl A. Donnelly
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Nikos Vasilakis
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Preventive Medicine and Population Health, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Nuno R. Faria
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis (MRC-GIDA), Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Jesse J. Waggoner
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Gómez M, Martínez D, Páez-Triana L, Luna N, De Las Salas JL, Hernández C, Flórez AZ, Muñoz M, Ramírez JD. Characterizing viral species in mosquitoes (Culicidae) in the Colombian Orinoco: insights from a preliminary metagenomic study. Sci Rep 2023; 13:22081. [PMID: 38086841 PMCID: PMC10716246 DOI: 10.1038/s41598-023-49232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Mosquitoes (Diptera: Culicidae) are primary vectors of arthropod-borne viruses (arboviruses) that pose significant public health threats. Recent advances in sequencing technology emphasize the importance of understanding the arboviruses and insect-specific viruses (ISVs) hosted by mosquitoes, collectively called the "virome". Colombia, a tropical country with favorable conditions for the development and adaptation of multiple species of Culicidae, offers a favorable scenario for the transmission of epidemiologically important arboviruses. However, entomovirological surveillance studies are scarce in rural areas of the country, where humans, mosquitoes, and animals (both domestic and wild) coexist, leading to a higher risk of transmission of zoonotic diseases to humans. Thus, our study aimed to perform a preliminary metagenomic analysis of the mosquitoes of special relevance to public health belonging to the genera Ochlerotatus, Culex, Limatus, Mansonia, Psorophora, and Sabethes, within a rural savanna ecosystem in the Colombian Orinoco. We employed third-generation sequencing technology (Oxford Nanopore Technologies; ONT) to describe the virome of mosquitoes samples. Our results revealed that the virome was primarily shaped by insect-specific viruses (ISVs), with the Iflaviridae family being the most prevalent across all mosquito samples. Furthermore, we identified a group of ISVs that were common in all mosquito species tested, displaying the highest relative abundance concerning other groups of viruses. Notably, Hanko iflavirus-1 was especially prevalent in Culex eknomios (88.4%) and Ochlerotatus serratus (88.0%). Additionally, other ISVs, such as Guadalupe mosquito virus (GMV), Hubei mosquito virus1 (HMV1), Uxmal virus, Tanay virus, Cordoba virus, and Castlerea virus (all belonging to the Negevirus genus), were found as common viral species among the mosquitoes, although in lower proportions. These initial findings contribute to our understanding of ISVs within mosquito vectors of the Culicidae family in the Eastern Plains of Colombia. We recommend that future research explore deeper into ISV species shared among diverse vector species, and their potential interactions with arboviruses. In addition, we also showed the need for a thorough exploration of the influence of local rural habitat conditions on the shape of the virome in mosquito vectors.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|