1
|
Peris-Pastor G, Lara-Molina EE, Benedé JL, Chisvert A. Boosting miniaturization in clinical analysis: determination of bisphenols in human serum and urine by miniaturized stir bar sorptive dispersive microextraction. Anal Bioanal Chem 2025; 417:155-165. [PMID: 39537970 DOI: 10.1007/s00216-024-05634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In this work, a miniaturized and sustainable method for the determination of endocrine-disrupting bisphenols in human serum and urine employing the miniaturized stir bar sorptive dispersive microextraction (mSBSDME) approach has been developed. As bisphenols are conjugated in the human body to their glucorinated and sulfated forms, an enzymolysis employing a commercial mixture of β-glucuronidase and arylsulfatase was carried out prior to the microextraction procedure to determine their total content. A magnetic covalent organic framework (COF) was employed as the sorbent to carry out the extraction of the analytes from the biological matrixes, showing good extraction performance due to its hydrophobic, π-π, and dipole-dipole interactions with the analytes. As instrumental detection, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to achieve good sensitivity and selectivity. The method was validated for both matrixes, showing good linearity at least up to 100 ng mL-1, limits of detection in the low ng mL-1 range, good precision values (relative standard deviations below 15%), and good accuracy (relative recoveries between 80 and 127%). In order to show the applicability of the developed method, five samples from female volunteers were analyzed with the final aim of offering a practical tool for monitoring the female population's exposure to these highly endocrine-disrupting compounds. This new procedure enhances the implementation of miniaturized sample preparation approaches in biological samples for clinical analysis, giving special relevance to the sustainability of the method.
Collapse
Affiliation(s)
- Guillem Peris-Pastor
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Evelin E Lara-Molina
- IVIRMA Barcelona, 08029, Barcelona, Spain
- IVI Foundation IVIRMA Global, Biomedical Research Institute La Fe, 46026, Valencia, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Peters AE, Ford EA, Roman SD, Bromfield EG, Nixon B, Pringle KG, Sutherland JM. Impact of Bisphenol A and its alternatives on oocyte health: a scoping review. Hum Reprod Update 2024; 30:653-691. [PMID: 39277428 PMCID: PMC11532624 DOI: 10.1093/humupd/dmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein. Such damage can diminish reproductive capacity, pregnancy success, and offspring health. Despite global government regulations in place to indicate 'safe' BPA exposure levels, these policies have not considered the effects of bisphenols on oocyte health. OBJECTIVE AND RATIONALE This scoping review was conducted to evaluate evidence on the effects of BPA and BPA alternatives on standardized parameters of oocyte health. In doing so, this review addresses a critical gap in the literature providing a comprehensive, up-to-date synthesis of the effects of bisphenols on oocyte health. SEARCH METHODS This scoping review was conducted in accordance with PRISMA guidelines. Four databases, Medline, Embase, Scopus, and Web of Science, were searched twice (23 February 2022 and 1 August 2023) to capture studies assessing mammalian oocyte health post-bisphenol exposure. Search terms regarding oocytes, ovarian follicles, and bisphenols were utilized to identify relevant studies. Manuscripts written in English and reporting the effect of any bisphenol on mammalian oocyte health from all years were included. Parameters for toxicological studies were evaluated, including the number of bisphenol concentrations/doses tested, dosing regimen, biological replicates and/or animal numbers, and statistical information (for human studies). Standardized parameters of oocyte health including follicle counts, oocyte yield, oocyte meiotic capacity, morphology of oocyte and cumulus cells, and oocyte meiotic spindle integrity were extracted across the studies. OUTCOMES After screening 3147 studies, 107 studies of either humans or mammalian animal models or humans were included. Of the in vitro exposure studies, 96.3% (26/27) and 94.1% (16/17) found at least one adverse effect on oocyte health using BPA or BPA alternatives (including BHPF, BPAF, BPB, BPF, and BPS), respectively. These included increased meiotic cell cycle arrest, altered morphology, and abnormal meiotic spindle/chromosomal alignment. In vivo, 85.7% (30/35) of studies on BPA and 92.3% (12/13) on BPA alternatives documented adverse effects on follicle development, morphology, or spindle/chromosome alignment. Importantly, these effects were recorded using levels below those deemed 'safe' for human exposure. Over half (11/21) of all human observational studies showed associations between higher urinary BPA levels and reduced antral follicle counts or oocyte yield in IVF patients. Recommendations are presented based on the identified shortcomings of the current evidence, incorporating elements of FDA requirements for future research in the field. WIDER IMPLICATIONS These data highlight the detrimental impacts of low-level BPA and BPA alternative exposure, contributing to poor oocyte quality and reduced fertility. These outcomes are valuable in promoting the revision of current policies and guidelines pertaining to BPA exposure internationally. This study serves as a valuable resource to scientists, providing key recommendations on study design, reporting elements, and endpoint measures to strengthen future studies. Ultimately, this review highlights oocyte health as a fundamentally important endpoint in reproductive toxicological studies, indicating an important direction for future research into endocrine disrupting chemicals to improve fertility outcomes.
Collapse
Affiliation(s)
- Alexandra E Peters
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emmalee A Ford
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- The Research Centre, Family Planning Australia, Newington, NSW, Australia
| | - Shaun D Roman
- Department of Research, NSW Health Pathology, Newcastle, NSW, Australia
| | - Elizabeth G Bromfield
- Faculty of Science, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
3
|
Stein TP. Does Bisphenol A (BPA) Exposure Cause Human Diseases? Biomedicines 2024; 12:2678. [PMID: 39767585 PMCID: PMC11727305 DOI: 10.3390/biomedicines12122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Autism spectrum disorders (ASDs), attention-deficit disorder (ADHD), Parkinson's disease (PD), polycystic ovary disease (PCOS), and Alzheimer's disease (AD) have all been linked to exposure to bisphenol A (BPA). METHODS This paper is a review and discussion of the published literature. RESULTS Animal studies have shown BPA to be a broad-spectrum endocrine disruptor. BPA is metabolized via the glucuronidation pathway, which involves the addition of glucose to the target molecule, and is catalyzed by uridine 5'-diphospho-glucuronosyltransferases (UGTs). Evidence of compromised glucuronidation has been found for ASD, DHD, PD, and PCOS. Genetic polymorphisms that alter the catalytic activity of the UGTs and efflux transporters involved are common. There are two ways to interpret the findings of associations between BPA glucuronidation efficiency and disease, a 'direct' pathway and an 'indirect' pathway. With the 'direct' pathway, free BPA is the actual causative agent. Compromised BPA detoxification leads to higher concentrations of free BPA in vulnerable tissues. Decreased BPA detoxification leads to increased exposure of vulnerable tissues to free BPA, where it can function as an endocrine disruptor. With the 'indirect' pathway, BPA is not the causative agent. BPA serves as a marker for the decreased glucuronidation efficiency of another unknown compound of endogenous origin detoxified by a similar combination of UGTs and efflux transporters as BPA. It is this compound(s), acting as an endocrine disruptor, that leads to a metabolic environment that favors disease development over an extended time period. CONCLUSION A review of the existing literature supports the indirect 'marker' hypothesis over the 'direct' hypothesis.
Collapse
Affiliation(s)
- T Peter Stein
- Rowan-Virtua School of Translational Biomedical Engineering and Sciences and School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
4
|
Hale A, Moldovan GL. Novel insights into the role of bisphenol A (BPA) in genomic instability. NAR Cancer 2024; 6:zcae038. [PMID: 39319028 PMCID: PMC11420844 DOI: 10.1093/narcan/zcae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Bisphenol A (BPA) is a phenolic chemical that has been used for over 50 years in the manufacturing of polycarbonate and polyvinyl chloride plastics, and it is one of the highest volume chemicals produced worldwide. Because BPA can bind to and activate estrogen receptors, studies have mainly focused on the effect of BPA in disrupting the human endocrine and reproductive systems. However, BPA also plays a role in promoting genomic instability and has been associated with initiating carcinogenesis. For example, it has been recently shown that exposure to BPA promotes the formation of single stranded DNA gaps, which may be associated with increased genomic instability. In this review, we outline the mechanisms by which BPA works to promote genomic instability including chromosomal instability, DNA adduct formation, ROS production, and estrogen receptor (ER) activation. Moreover, we define the ways in which BPA promotes both carcinogenesis and resistance to chemotherapy, and we provide critical insights into future directions and outstanding questions in the field.
Collapse
Affiliation(s)
- Anastasia Hale
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Luo N, Chen J, Chen X, Wang M, Niu X, Chen G, Deng C, Gao Y, Li G, An T. Toxicity evolution of triclosan during environmental transformation and human metabolism: Misgivings in the post-pandemic era. ENVIRONMENT INTERNATIONAL 2024; 190:108927. [PMID: 39121826 DOI: 10.1016/j.envint.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
In the context of pandemic viruses and pathogenic bacteria, triclosan (TCS), as a typical antibacterial agent, is widely used around the world. However, the health risks from TCS increase with exposure, and it is widespread in environmental and human samples. Notably, environmental transformation and human metabolism could induce potentially undesirable risks to humans, rather than simple decontamination or detoxification. This review summarizes the environmental and human exposure to TCS covering from 2004 to 2023. Particularly, health impacts from the environmental and metabolic transformation of TCS are emphasized. Environmental transformations aimed at decontamination are recognized to form carcinogenic products such as dioxins, and ultraviolet light and excessive active chlorine can promote the formation of these dioxin congeners, potentially threatening environmental and human health. Although TCS can be rapidly metabolized for detoxification, these processes can induce the formation of lipophilic ether metabolic analogs via cytochrome P450 catalysis, causing possible adverse cross-talk reactions in human metabolic disorders. Accordingly, TCS may be more harmful in environmental transformation and human metabolism. In particular, TCS can stimulate the transmission of antibiotic resistance even at trace levels, threatening public health. Considering these accruing epidemiological and toxicological studies indicating the multiple adverse health outcomes of TCS, we call on environmental toxicologists to pay more attention to the toxicity evolution of TCS during environmental transformation and human metabolism.
Collapse
Affiliation(s)
- Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyi Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanhui Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuyue Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Fu Z, Jin H, Mao W, Yin S, Xu L, Hu Z. Conjugated metabolites of bisphenol A and bisphenol S in indoor dust, outdoor dust, and human urine. CHEMOSPHERE 2024; 362:142617. [PMID: 38880259 DOI: 10.1016/j.chemosphere.2024.142617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) have been widely spread in the global environment. However, for conjugated BPA and BPS metabolites, limited studies have investigated their occurrence in environmental matrices. We collected paired indoor and outdoor dust (n = 97), as well as human urine (n = 153) samples, from residential houses in Quzhou, China, and measured these samples for 8 conjugated BPA and BPS metabolites. Three BPA metabolites were found in collected indoor and outdoor dust, with BPA sulfate (mean 0.75 and 1.3 ng/g, respectively) and BPA glucuronide (0.13 and 0.26 ng/g) being more abundant. BPA conjugates accounted for a mean of 42 and 56% of total BPA (sum of conjugated BPA and BPA metabolites) in indoor and outdoor dust, respectively. BPS sulfate (mean 0.29 and 0.82 ng/g, respectively) had consistently higher concentrations than BPS glucuronide (0.13 and 0.27 ng/g) in indoor and outdoor samples. BPS conjugates contributed a mean 32% and 45% of total BPS (sum of BPS and BPS metabolites) in indoor and outdoor dust, respectively. Moreover, conjugated BPA and BPS metabolites in indoor or outdoor dust were not significantly correlated with those in urine from residents. Overall, this study first demonstrates the wide presence of conjugated BPA and BPS metabolites, besides BPA and BPS, in indoor and outdoor dust. These data are important for elucidating the sources of conjugated BPA and BPS metabolites in the human body.
Collapse
Affiliation(s)
- Zhenling Fu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Sihui Yin
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Luyao Xu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
7
|
Qu J, Guo R, Liu L, Ren F, Jin H. Occurrence of bisphenol analogues and their conjugated metabolites in foodstuff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174922. [PMID: 39038674 DOI: 10.1016/j.scitotenv.2024.174922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Bisphenol analogues (BPs) are prevalent in diverse foodstuff samples worldwide. However, the occurrence of conjugated bisphenol A (BPA) and bisphenol S (BPS) metabolites in foodstuff remains poorly understood. This study analyzed eight BPs, and four conjugated BPA and BPS metabolites, in three animal-derived foodstuff and five plant-derived foodstuff samples from China. Results showed that fish foodstuff (9.7 ng/g ww) contained the highest mean concentration of BPA, followed by rice (5.1 ng/g ww) and beans foodstuff (3.6 ng/g ww). BPA-sulfate had higher mean concentrations than BPA-glucuronide in different foodstuff categories, except that in eggs foodstuff (p < 0.05). Compared with other foodstuff items, fish (3.4 ng/g ww) and vegetable (1.6 ng/g ww) foodstuff samples exhibited comparatively higher mean concentrations of BPS. Mean concentrations of BPS-sulfate were consistently higher than BPS-glucuronide in vegetables, meats, and fish foodstuff (p < 0.05). BPA contributed the major total dietary intake (DI) of BPs, with the mean DI of 435 ng/kg bw/day for women and 374 ng/kg bw/day for men, respectively. To our knowledge, this study is the first to investigate the occurrence of conjugated BPA and BPS metabolites in foodstuff, which enhances our comprehension of the origins of these conjugated metabolites in the human body.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Lin Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
8
|
Jamka M, Kurek S, Makarewicz-Bukowska A, Miśkiewicz-Chotnicka A, Wasiewicz-Gajdzis M, Walkowiak J. No Differences in Urine Bisphenol A Concentrations between Subjects Categorized with Normal Cognitive Function and Mild Cognitive Impairment Based on Montreal Cognitive Assessment Scores. Metabolites 2024; 14:271. [PMID: 38786748 PMCID: PMC11123393 DOI: 10.3390/metabo14050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
A link between bisphenol A (BPA) exposure and cognitive disorders has been suggested. However, the differences in BPA concentrations between subjects with and without cognitive impairment have not been analysed. Therefore, this observational study aimed to compare urine BPA levels in subjects with normal cognitive function (NCF) and mild cognitive impairment (MCI). A total of 89 MCI subjects and 89 well-matched NCF individuals were included in this study. Cognitive functions were assessed using the Montreal Cognitive Assessment (MOCA) scale. Urine BPA concentrations were evaluated by gas chromatography-mass spectrometry and adjusted for creatinine levels. Moreover, anthropometric parameters, body composition, sociodemographic factors, and physical activity were also assessed. Creatinine-adjusted urine BPA levels did not differ between the NCF and MCI groups (1.8 (1.4-2.7) vs. 2.2 (1.4-3.6) µg/g creatinine, p = 0.1528). However, there were significant differences in MOCA results between groups when the study population was divided into tertiles according to BPA concentrations (p = 0.0325). Nevertheless, multivariate logistic regression demonstrated that only education levels were independently associated with MCI. In conclusion, urine BPA levels are not significantly different between subjects with MCI and NCF, but these findings need to be confirmed in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (M.J.); (S.K.); (A.M.-B.); (A.M.-C.); (M.W.-G.)
| |
Collapse
|
9
|
Wang Y, Wu J, Wang D, Wan M, Li X, Zhang L, Yang D, Liu F, Liu J, Li K, Zhang S, Lu H. BPA induces hepatotoxicity in zebrafish through oxidative stress and apoptosis pathways. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:403-412. [PMID: 38085449 DOI: 10.1007/s10695-023-01284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/04/2023] [Indexed: 04/17/2024]
Abstract
BPA is so ubiquitous that 27 million tons of BPA-containing plastic, including mineral water bottles and baby bottles, is produced worldwide each year. The potential toxicity of BPA to humans and aquatic organisms has been the subject of intense research. In this study, a zebrafish model system was used to assess BPA-mediated hepatotoxicity. Zebrafish larvae at 72-144 hpf were exposed to BPA at different concentrations (0,1, 3 and 5mg/L). For example, BPA-treated zebrafish larvae showed increased mortality, delayed uptake of nutrients in yolk sac, shortened body length, smaller liver area, abnormal expression of genes related to liver development, and pathological changes in the liver tissue. Mechanistically, BPA exposure induced excessive oxidative stress in the liver of zebrafish and increased the level of hepatocyte apoptosis in zebrafish larvae, and the antioxidant astaxanthin could rescue the BPA-mediated liver toxicity.
Collapse
Affiliation(s)
- Ying Wang
- College of Pharmacy, Nanchang University, Nangchang, 330027, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jie Wu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Dagang Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Mengqi Wan
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Li Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Dou Yang
- College of Pharmacy, Nanchang University, Nangchang, 330027, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jiejun Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Kehao Li
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Shouhua Zhang
- College of Pharmacy, Nanchang University, Nangchang, 330027, Jiangxi, China.
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China.
- Affiliated Hospital of Jinggangshan University, Jian, 343000, Jiangxi Province, China.
| |
Collapse
|
10
|
Nehring I, Staniszewska M. Comparison of prenatal and postnatal exposure to endocrine active phenol derivatives in mammals - Humans and Baltic grey seals. MARINE POLLUTION BULLETIN 2023; 196:115567. [PMID: 37741109 DOI: 10.1016/j.marpolbul.2023.115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Bisphenol A (BPA), 4-tert-octylphenol (4-t-OP), and 4-nonylphenol (4-NP) are characterised by their endocrine active properties. Their negative effects on the development of the body are doubly important in the reproduction process. The goal was to compare the maternal transfer of phenol derivatives in humans and seals and identify factors that may affect the load of phenol derivatives entering the mother's body, which translates into a risk to the offspring. Phenol derivatives were determined using HPLC-FLD. It was shown that higher concentrations of phenol derivatives in blood or milk were detected in humans (mothers and newborns) compared to concentrations in Baltic seals. This was influenced by external exposure factors, i.e., leaching of phenol derivatives from food packaging or dermal contact. The authors conclude that milk is the main component in the maternal transfer of BPA to the next generation in humans, while blood is a carrier of alkylphenols, particularly 4-tert-octylphenol.
Collapse
Affiliation(s)
- Iga Nehring
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Marta Staniszewska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
11
|
Fabrello J, Ciscato M, Munari M, Vecchiatti A, Roverso M, Bogialli S, Matozzo V. Ecotoxicological effects and bioaccumulation of BPA analogues and their mixture in the clam Ruditapes philippinarum. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106228. [PMID: 37866198 DOI: 10.1016/j.marenvres.2023.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Bisphenol A is recognized as an endocrine disruptor that can affect several biological processes in marine species. Consequently, its use has been restricted and it has been replaced with other similar compounds named bisphenol A analogues (BPA analogues). BPA analogues are speculatively considered safer compounds than BPA and their usage is increasing with a consequent higher environmental release. In this study, specimens of the clam Ruditapes philippinarum were exposed to three main BPA analogues, namely BPAF, BPF, BPS and their mixture at an environmentally relevant concentration of 300 ng/L for 7 and 14 days. Effects on biomarkers indicative of cytotoxicity, oxidative stress and damage and neurotoxicity were evaluated. In addition, bioaccumulation of the compound tested was analysed in clam soft tissues. Results showed that BPA analogues at an environment concentration affected cellular parameters and antioxidant system causing also oxidative damage, suggesting that BPA analogues can be harmful compounds for clams.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy.
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Marco Munari
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Andrea Vecchiatti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| |
Collapse
|
12
|
Li A, Zhuang T, Song M, Cao H, Gao Y, Zheng S, Liang Y, Jiang G. Occurrence, placental transfer, and health risks of emerging endocrine-disrupting chemicals in pregnant women. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132157. [PMID: 37506642 DOI: 10.1016/j.jhazmat.2023.132157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/18/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Previous studies demonstrated that many environmental chemicals can cross the human placental barrier. However, the risk regarding gestational exposure of emerging endocrine-disrupting chemicals (EDCs) is unclear. In this study, the occurrence of 24 EDCs, such as bisphenol A analogs, parabens, triclocarban, and triclosan, was investigated in serum and urine samples from Chinese pregnant women. Some metabolites were determined in matched serum-urine pairs (n = 75) to perform a comprehensive assessment of exposure. The placental transfer efficiency (PTE) of the detected chemicals was determined in matched maternal-cord serum pairs (n = 110). The mean PTEs of the chemicals showed a large variation from 43.1% to 171.0%. The potential effects of physicochemical properties, molecular structures, and biological factors on PTE were investigated using multiple linear regression models and molecular docking. We found that the PTE of methyl paraben, ethyl paraben, and propyl paraben was associated with their increasing alkyl chain lengths. Furthermore, a comprehensive exposure assessment of EDCs showed that 62.7% of pregnant women had a health index > 1, which indicted potential health risks during pregnancy. However, toxicity and the underlying mechanisms of these EDCs remain to be further studied.
Collapse
Affiliation(s)
- Aijing Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Taifeng Zhuang
- Department of Pediatrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, PR China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yue Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shufa Zheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Wang H, Gao R, Liang W, Wei S, Zhou Y, Wang Z, Lan L, Chen J, Zeng F. Large-scale biomonitoring of bisphenol analogues and their metabolites in human urine from Guangzhou, China: Implications for health risk assessment. CHEMOSPHERE 2023; 338:139601. [PMID: 37480947 DOI: 10.1016/j.chemosphere.2023.139601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Bisphenol analogues (BPs) are ubiquitous in the environment and have gained significant attention regarding their associated health risks. However, there is a lack of comprehensive biomonitoring data on BPs and their metabolites in human urine. To address this, we conducted a study evaluate the exposure to BPs in the general population of Guangzhou, China. A total of 1440 urine samples were collected from volunteers and analyzed for the presence of BPs and their metabolites after being pooled into 36 groups based on age and gender. The findings revealed the common detection of ten free-form BPs, as well as the urinary metabolites of BPA and BPS, in the pooled urine samples. BPA was the predominant free-form compound, constituting 50% of the total BPs. The primary urinary metabolites of BPA and BPS are BPA-G and BPS-G, respectively, indicating glucuronidation as their primary metabolic pathway. The composition of urinary metabolites of BPA and BPS varied by age and sex, while the concentration of total BPs in urine was not significantly associated with age and sex. Enzymatic hydrolysis yielded a mean amplification of individual BPs concentrations in urine samples ranging from 1.8 times (BPA) to 4.6 times (BPS). Based on the outcomes, it was estimated that conjugated forms accounted for 96.9%, 96.2%, 94.7%, 94.1%, 92.6%, 89.1%, 87.3%, 87.2%, 87.1% and 85.8% of BPP, BPAF, BPZ, BPE, BPAP, BPF, BPA, BPC, BPS and BPF, respectively, in the pooled urine samples. Preliminary risk assessments indicated that the estimated daily intake of BPA was much higher than the latest proposed tolerable daily intake. Due to the unavailability of health-based guideline values for alternative BPs, some of them exhibit daily intakes comparable to BPA, implying that greater attention should be paid to health risks associated with exposure to BPs.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zhuo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jinfeng Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
14
|
Park YK, Chin YW. Degradation of Bisphenol A by Bacillus subtilis P74 Isolated from Traditional Fermented Soybean Foods. Microorganisms 2023; 11:2132. [PMID: 37763976 PMCID: PMC10536603 DOI: 10.3390/microorganisms11092132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bisphenol A (BPA), one of the most widely used plasticizers, is an endocrine-disrupting chemical that is released from plastic products. The aim of this study was to screen and characterize bacteria with excellent BPA-degrading abilities for application in foods. BPA degradation ability was confirmed in 127 of 129 bacterial strains that were isolated from fermented soybean foods. Among the strains, B. subtilis P74, which showed the highest BPA degradation performance, degraded 97.2% of 10 mg/L of BPA within 9 h. This strain not only showed a fairly stable degradation performance (min > 88.2%) over a wide range of temperatures (30-45 °C) and pH (5.0-9.0) but also exhibited a degradation of 63% against high concentrations of BPA (80 mg/L). The metabolites generated during the degradation were analyzed using high-performance liquid chromatography-mass spectrometry, and predicted degradation pathways are tentatively proposed. Finally, the application of this strain to soybean fermentation was conducted to confirm its applicability in food.
Collapse
Affiliation(s)
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| |
Collapse
|
15
|
Plattard N, Gnanasegaran R, Krekesheva A, Carato P, Dupuis A, Migeot V, Albouy M, Haddad S, Venisse N. Quantification of the Conjugated Forms of Dichlorobisphenol A (3,3'-Cl 2 BPA) in Rat and Human Plasma Using HPLC-MS/MS. Ther Drug Monit 2023; 45:554-561. [PMID: 36649713 DOI: 10.1097/ftd.0000000000001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/28/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous contaminant that has endocrine-disrupting effects. Chlorinated derivatives of BPA are formed during chlorination of drinking water and have higher endocrine-disrupting activity. Dichlorobisphenol A (Cl 2 BPA) is the most abundant chlorinated BPA derivative found in several human biological matrices. Recent in vitro experiments have shown that Cl 2 BPA is metabolized in sulpho- and glucuro-conjugated compounds. To date, no assay has been developed to quantify the sulfo- and glucuro-conjugates of 3,3'-Cl 2 BPA (3,3'-Cl 2 BPA-S and 3,3'-Cl 2 BPA-G, respectively). METHODS A high-performance liquid chromatography-tandem mass spectrometry assay for the determination of 3,3'-Cl 2 BPA conjugated forms in plasma samples was developed and validated according to the European Medicines Agency guidelines. Quantification was performed in the multiple reaction monitoring mode for all target analytes using a SCIEX 6500 + tandem mass spectrometer with an electrospray source operating in the negative ionization mode. Chromatographic separation was achieved using a C18 column maintained at 40°C and a binary mobile phase delivered in the gradient mode at a flow rate of 0.35 mL/min. Sample was prepared via simple precipitation using acetonitrile. The assay was validated and applied to rat and human plasma samples. RESULTS Linearity was demonstrated over the range of 0.006-25 ng/mL for 3,3'-Cl 2 BPA-G and 0.391-100 ng/mL for 3,3'-Cl 2 BPA-S. Intraday and interday bias values were in the 95%-109% range, and the imprecision <9%. Internal standard corrected matrix effects were also investigated. This method enabled quantification of the conjugated forms of 3,3'-Cl 2 BPA in plasma samples. CONCLUSIONS This is the first report on the development and validation of an analytical method for the quantification of 3,3'-Cl 2 BPA-G and 3,3'-Cl 2 BPA-S in the plasma matrix. This study is also the first report on the in vivo occurrence of these metabolites.
Collapse
Affiliation(s)
- Noemie Plattard
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Riciga Gnanasegaran
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Aida Krekesheva
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Pascal Carato
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
| | - Antoine Dupuis
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| | - Virginie Migeot
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| | - Marion Albouy
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| | - Sami Haddad
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Venisse
- CHU Poitiers, INSERM CIC1402, Université de Poitiers, CNRS 7267 EBI, Poitiers, France; and
- Biology-Pharmacy-Public Health Department, CHU de Poitiers, Poitiers Cedex, France
| |
Collapse
|
16
|
Vitku J, Horackova L, Kolatorova L, Duskova M, Skodova T, Simkova M. Derivatized versus non-derivatized LC-MS/MS techniques for the analysis of estrogens and estrogen-like endocrine disruptors in human plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115083. [PMID: 37269613 DOI: 10.1016/j.ecoenv.2023.115083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Bisphenols, parabens, alkylphenols and triclosan are anthropogenic substances with a phenolic group that have been introduced to the environment in recent decades. As they possess hormone-like effects, they have been termed endocrine disruptors (EDs), and can interfere with steroid pathways in organisms. To evaluate the potential impact of EDs on steroid biosynthesis and metabolism, sensitive and robust methods enabling the concurrent measurement of EDs and steroids in plasma are needed. Of crucial importance is the analysis of unconjugated EDs, which possess biological activity. The aim of the study was to develop and validate LC-MS/MS methods with and without a derivatization step for the analysis of unconjugated steroids (estrone-E1, estradiol-E2, estriol-E3, aldosterone-ALDO) and different groups of EDs (bisphenols, parabens, nonylphenol-NP and triclosan-TCS), and compare these methods on a set of 24 human plasma samples using Passing-Bablok regression analysis. Both methods were validated according to FDA and EMA guidelines. The method with dansyl chloride derivatization allowed 17 compounds to be measured: estrogens (E1, E2, E3), bisphenols (bisphenol A-BPA, BPS, BPF, BPAF, BPAP, BPZ, BPP), parabens (methylparaben-MP, ethylparaben-EP, propylparaben-PP, butylparaben-BP, benzylparaben-BenzylP), TCS and NP, with lower limits of quantification (LLOQs) between 4 and 125 pg/mL. The method without derivatization enabled 15 compounds to be analyzed: estrogens (E1, E2, E3), ALDO, bisphenols (BPA, BPS, BPF, BPAF, BPAP, BPZ), parabens (MP, EP, PP, BP, BenzylP) with LLOQs between 2 and 63 pg/mL, and NP and BPP in semiquantitative mode. Adding 6 mM ammonium fluoride post column into mobile phases in the method without derivatization achieved similar or even better LLOQs than the method with the derivatization step. The uniqueness of the methods lies in the simultaneous determination of different classes of unconjugated (bioactive) fraction of EDs together with selected steroids (estrogens + ALDO in the method without derivatization), which provides a useful tool for evaluating the relationships between EDs and steroid metabolism.
Collapse
Affiliation(s)
- J Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic.
| | - L Horackova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| | - L Kolatorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Duskova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - T Skodova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Simkova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| |
Collapse
|
17
|
Mao W, Mao L, Zhou F, Shen J, Zhao N, Jin H, Hu J, Hu Z. Influence of Gut Microbiota on Metabolism of Bisphenol A, a Major Component of Polycarbonate Plastics. TOXICS 2023; 11:340. [PMID: 37112567 PMCID: PMC10144690 DOI: 10.3390/toxics11040340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Bisphenol A (BPA) is a major component of polycarbonate plastics and epoxy resins. While many studies have investigated the effect BPA exposure has upon changes in gut microbial communities, the influence of gut microbiota on an organism's ability to metabolize BPA remains comparatively unexplored. To remedy this, in this study, Sprague Dawley rats were intermittently (i.e., at a 7-day interval) or continuously dosed with 500 μg BPA/kg bw/day for 28 days, via oral gavage. In the rats which underwent the 7-day interval BPA exposure, neither their metabolism of BPA nor their gut microbiota structure changed greatly with dosing time. In contrast, following continuous BPA exposure, the relative level of Firmicutes and Proteobacteria in the rats' guts significantly increased, and the alpha diversity of the rats' gut bacteria was greatly reduced. Meanwhile, the mean proportion of BPA sulfate to total BPA in rat blood was gradually decreased from 30 (on day 1) to 7.4% (by day 28). After 28 days of continuous exposure, the mean proportion of BPA glucuronide to total BPA in the rats' urine elevated from 70 to 81%, and in the rats' feces the mean proportion of BPA gradually decreased from 83 to 65%. Under continuous BPA exposure, the abundances of 27, 25, and 24 gut microbial genera were significantly correlated with the proportion of BPA or its metabolites in the rats' blood, urine, and feces, respectively. Overall, this study principally aimed to demonstrate that continuous BPA exposure disrupted the rats' gut microbiota communities, which in turn altered the rats' metabolism of BPA. These findings contribute to the better understanding of the metabolism of BPA in humans.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 310032, China
| | - Lingling Mao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Feifei Zhou
- CAS Testing Technical Services Jiaxing Co., Jiaxing 314000, China
| | - Jiafeng Shen
- CAS Testing Technical Services Jiaxing Co., Jiaxing 314000, China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Jun Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China (J.H.)
| | - Zefu Hu
- Department of Pharmacy, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 310032, China
| |
Collapse
|
18
|
Milić N, Milanović M, Drljača J, Sudji J, Milošević N. Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. SEPARATIONS 2023; 10:226. [DOI: 10.3390/separations10040226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are xenobiotics presented in a variety of everyday products that may disrupt the normal activity of hormones. Exposure to bisphenol A as EDC at trace and ultra-trace levels is associated with adverse health effects, and children are recognized as the most vulnerable group to EDCs exposure. In this review, a summary is presented of up-to-date sample preparation methods and instrumental techniques applied for the detection and quantification of bisphenol A and its structural analogues in various biological matrices. Biological matrices such as blood, cell-free blood products, urine, saliva, breast milk, cordial blood, amniotic and semen fluids, as well as sweat and hair, are very complex; therefore, the detection and later quantification of bisphenols at low levels present a real analytical challenge. The most popular analytical approaches include gas and liquid chromatography coupled with mass spectrometry, and their enhanced reliability and sensitivity finally allow the separation and detection of bisphenols in biological samples, even as ultra-traces. Liquid/liquid extraction (LLE) and solid-phase extraction (SPE) are still the most common methods for their extraction from biological matrices. However, many modern and environmentally safe microextraction techniques are currently under development. The complexity of biological matrices and low concentrations of analytes are the main issues for the limited identification, as well as understanding the adverse health effects caused by chronical and ubiquitous exposure to bisphenols and its analogues.
Collapse
Affiliation(s)
- Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Jovana Drljača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Jan Sudji
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
19
|
Low Dose of BPA Induces Liver Injury through Oxidative Stress, Inflammation and Apoptosis in Long-Evans Lactating Rats and Its Perinatal Effect on Female PND6 Offspring. Int J Mol Sci 2023; 24:ijms24054585. [PMID: 36902016 PMCID: PMC10002922 DOI: 10.3390/ijms24054585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Bisphenol A (BPA) is a phenolic compound used in plastics elaboration for food protection or packaging. BPA-monomers can be released into the food chain, resulting in continuous and ubiquitous low-dose human exposure. This exposure during prenatal development is especially critical and could lead to alterations in ontogeny of tissues increasing the risk of developing diseases in adulthood. The aim was to evaluate whether BPA administration (0.036 mg/kg b.w./day and 3.42 mg/kg b.w./day) to pregnant rats could induce liver injury by generating oxidative stress, inflammation and apoptosis, and whether these effects may be observed in female postnatal day-6 (PND6) offspring. Antioxidant enzymes (CAT, SOD, GR, GPx and GST), glutathione system (GSH/GSSG) and lipid-DNA damage markers (MDA, LPO, NO, 8-OHdG) were measured using colorimetric methods. Inducers of oxidative stress (HO-1d, iNOS, eNOS), inflammation (IL-1β) and apoptosis (AIF, BAX, Bcl-2 and BCL-XL) were measured by qRT-PCR and Western blotting in liver of lactating dams and offspring. Hepatic serum markers and histology were performed. Low dose of BPA caused liver injury in lactating dams and had a perinatal effect in female PND6 offspring by increasing oxidative stress levels, triggering an inflammatory response and apoptosis pathways in the organ responsible for detoxification of this endocrine disruptor.
Collapse
|
20
|
Modulation of Unfolded Protein Response Restores Survival and Function of β-Cells Exposed to the Endocrine Disruptor Bisphenol A. Int J Mol Sci 2023; 24:ijms24032023. [PMID: 36768343 PMCID: PMC9916570 DOI: 10.3390/ijms24032023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Diabetes is a metabolic disease that currently affects nearly half a billion people worldwide. β-cells dysfunction is one of the main causes of diabetes. Exposure to endocrine-disrupting chemicals is correlated with increased diabetes incidence. We hypothesized that treatment with bisphenol A (BPA) induces endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR), leading to impaired function of the β-cells, which over time, can cause diabetes. In this study, we aimed to evaluate UPR pathways activation under BPA treatment in β-cells and possible recovery of ER homeostasis. MIN6 cells (mouse insulinoma cell line) and isolated pancreatic islets from NOR (non-obese diabetes resistant) mice were treated with BPA. We analyzed the impact of BPA on β-cell viability, the architecture of the early secretory pathway, the synthesis and processing of insulin and the activation of UPR sensors and effectors. We found that the addition of the chemical chaperone TUDCA rescues the deleterious effects of BPA, resulting in improved viability, morphology and function of the β-cells. In conclusion, we propose that modulators of UPR can be used as therapeutic interventions targeted towards regaining β-cells homeostasis.
Collapse
|
21
|
Hermano Sampaio Dias A, Yadav R, Mokkawes T, Kumar A, Skaf MS, Sastri CV, Kumar D, de Visser SP. Biotransformation of Bisphenol by Human Cytochrome P450 2C9 Enzymes: A Density Functional Theory Study. Inorg Chem 2023; 62:2244-2256. [PMID: 36651185 PMCID: PMC9923688 DOI: 10.1021/acs.inorgchem.2c03984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bisphenol A (BPA, 2,2-bis-(4-hydroxyphenyl)propane) is used as a precursor in the synthesis of polycarbonate and epoxy plastics; however, its availability in the environment is causing toxicity as an endocrine-disrupting chemical. Metabolism of BPA and their analogues (substitutes) is generally performed by liver cytochrome P450 enzymes and often leads to a mixture of products, and some of those are toxic. To understand the product distributions of P450 activation of BPA, we have performed a computational study into the mechanisms and reactivities using large model structures of a human P450 isozyme (P450 2C9) with BPA bound. Density functional theory (DFT) calculations on mechanisms of BPA activation by a P450 compound I model were investigated, leading to a number of possible products. The substrate-binding pocket is tight, and as a consequence, aliphatic hydroxylation is not feasible as the methyl substituents of BPA cannot reach compound I well due to constraints of the substrate-binding pocket. Instead, we find low-energy pathways that are initiated with phenol hydrogen atom abstraction followed by OH rebound to the phenolic ortho- or para-position. The barriers of para-rebound are well lower in energy than those for ortho-rebound, and consequently, our P450 2C9 model predicts dominant hydroxycumyl alcohol products. The reactions proceed through two-state reactivity on competing doublet and quartet spin state surfaces. The calculations show fast and efficient substrate activation on a doublet spin state surface with a rate-determining electrophilic addition step, while the quartet spin state surface has multiple high-energy barriers that can also lead to various side products including C4-aromatic hydroxylation. This work shows that product formation is more feasible on the low spin state, while the physicochemical properties of the substrate govern barrier heights of the rate-determining step of the reaction. Finally, the importance of the second-coordination sphere is highlighted that determines the product distributions and guides the bifurcation pathways.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom,Center
for Computing in Engineering & Sciences, University of Campinas, Rua Josué de Castro, s/n, Campinas13083-861, Brazil
| | - Rolly Yadav
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati, Assam781039, India
| | - Thirakorn Mokkawes
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom
| | - Asheesh Kumar
- Department
of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh (U.P.)226025, India
| | - Munir S. Skaf
- Center
for Computing in Engineering & Sciences, University of Campinas, Rua Josué de Castro, s/n, Campinas13083-861, Brazil
| | - Chivukula V. Sastri
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati, Assam781039, India,
| | - Devesh Kumar
- Department
of Physics, Siddharth University, Kapilvastu, Siddharthnagar272202, India,
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom,
| |
Collapse
|
22
|
Chi ZH, Goodyer CG, Hales BF, Bayen S. Characterization of different contaminants and current knowledge for defining chemical mixtures in human milk: A review. ENVIRONMENT INTERNATIONAL 2023; 171:107717. [PMID: 36630790 DOI: 10.1016/j.envint.2022.107717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Hundreds of xenobiotics, with very diverse origins, have been detected in human milk, including contaminants of emerging concern, personal care products and other current-use substances reflecting lifestyle. The routes of exposure to these chemicals include dermal absorption, ingestion and inhalation. Specific families of chemicals are dominant among human milk monitoring studies (e.g., organochlorine pesticides, bisphenol A, dioxins), even though other understudied families may be equally toxicologically relevant (e.g., food-processing chemicals, current-use plasticizers and flame retardants, mycotoxins). Importantly, the lack of reliable human milk monitoring data for some individual chemicals and, especially, for complex mixtures, is a major factor hindering risk assessment. Non-targeted screening can be used as an effective tool to identify unknown contaminants of concern in human milk. This approach, in combination with novel methods to conduct risk assessments on the chemical mixtures detected in human milk, will assist in elucidating exposures that may have adverse effects on the development of breastfeeding infants.
Collapse
Affiliation(s)
- Zhi Hao Chi
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Cindy Gates Goodyer
- Department of Pediatrics, Division of Experimental Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
23
|
Manzoor MF, Tariq T, Fatima B, Sahar A, Tariq F, Munir S, Khan S, Nawaz Ranjha MMA, Sameen A, Zeng XA, Ibrahim SA. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front Nutr 2022; 9:1047827. [PMID: 36407508 PMCID: PMC9671506 DOI: 10.3389/fnut.2022.1047827] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Birjees Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Farwa Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
24
|
Sanidad KZ, Wang G, Panigrahy A, Zhang G. Triclosan and triclocarban as potential risk factors of colitis and colon cancer: Roles of gut microbiota involved. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156776. [PMID: 35724794 DOI: 10.1016/j.scitotenv.2022.156776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In recent decades there has been a dramatic increase in the incidence and prevalence of inflammatory bowel disease (IBD), a chronic inflammatory disease of the intestinal tissues and a major risk factor of developing colon cancer. While accumulating evidence supports that the rapid increase of IBD is mainly caused by exposure to environmental risk factors, the identities of the risk factors, as well as the mechanisms connecting environmental exposure with IBD, remain largely unknown. Triclosan (TCS) and triclocarban (TCC) are high-volume chemicals that are used as antimicrobial ingredients in consumer and industrial products. They are ubiquitous contaminants in the environment and are frequently detected in human populations. Recent studies showed that exposure to TCS/TCC, at human exposure-relevant doses, increases the severity of colitis and exacerbates colon tumorigenesis in mice, suggesting that they could be risk factors of IBD and associated diseases. The gut toxicities of these compounds require the presence of gut microbiota, since they fail to induce colonic inflammation in mice lacking the microbiota. Regarding the functional roles of the microbiota involved, gut commensal microbes and specific microbial β-glucuronidase (GUS) enzymes mediate colonic metabolism of TCS, leading to metabolic reactivation of TCS in the colon and contributing to its subsequent gut toxicity. Overall, these results support that these commonly used compounds could be environmental risk factors of IBD and associated diseases through gut microbiota-dependent mechanisms.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Guangqiang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Anand Panigrahy
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA; Department of Food Science and Technology, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
26
|
Adverse Effects of Bisphenol A on the Liver and Its Underlying Mechanisms: Evidence from In Vivo and In Vitro Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8227314. [PMID: 36017387 PMCID: PMC9398799 DOI: 10.1155/2022/8227314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
BPA is a known endocrine-disrupting agent that is capable of binding to the estrogen receptor and has exhibited adverse effects in many laboratory animal and in vitro studies. Moreover, it also been shown to have estrogenic, antiandrogenic, inflammatory, and oxidative properties. The widespread presence of BPA in the environment presents a considerable threat to humans. BPA has been shown to be leached into the human ecosystem, where it is commonly found in food products consumed by humans. Although the concentration is relatively low, its prolonged consumption may cause a variety of deleterious health effects. The liver is an important organ for metabolizing and detoxifying toxic metabolites to protect organisms from potentially toxic chemical insults. BPA that is ingested will be eliminated by the liver. However, it has also induced hepatoxicity and injury via various mechanisms. To find research demonstrating the effects of BPA on kidney, a number of databases, including Google Scholar, MEDLINE, PubMed, and the Directory of Open Access Journals, were searched. Thus, this review summarizes the research on the relationship between BPA and its effects on the liver-derived from animals and cellular studies. The underlying mechanism of liver injury caused by BPA is also elucidated.
Collapse
|
27
|
Guo Y, Yu RQ, Zhang L, Liang Y, Liu Z, Sun X, Wu Y. Cross-Generational Impacts of Diet Shift on Bisphenol Analogue Loads in Indo-Pacific Humpback Dolphins ( Sousa chinensis). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10764-10774. [PMID: 35861411 DOI: 10.1021/acs.est.2c02222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bisphenol analogues (BPs) are ubiquitous pollutants to marine organisms as endocrine disruptive chemicals. However, the residue contamination and the trophic transfer of BPs in the apex predator nearshore dolphins are poorly studied. Here, we measured the concentrations of six BPs, including bisphenol A (BPA), bisphenol AF (BPAF), bisphenol B (BPB), bisphenol F (BPF), bisphenol P (BPP), and bisphenol S (BPS) in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) (n = 75) collected from the Pearl River Estuary during a period with significant dietary changes (2004-2020). BPA and BPAF were the dominant components of the residue ∑BPs in the liver, with a proportion of 80%. Sex, maturity, and stranding location had no significant effects on BP levels. The generalized additive models indicated that BPA levels in juveniles and adults decreased from 2004 to 2013 while increasing from 2013 to 2020. The temporal trend of BPA levels was likely driven by the shift of the dominant diet from Harpadon nehereus to Thryssa spp. The concurrent increase of BPA loads in calves and juveniles and adults over the recent decades suggested that the diet-mediated variations of maternal BPA levels could be redistributed to their offspring.
Collapse
Affiliation(s)
- Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, Texas 75799, United States
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuqin Liang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
28
|
Yang R, Duan J, Li H, Sun Y, Shao B, Niu Y. Bisphenol-diglycidyl ethers in paired urine and serum samples from children and adolescents: Partitioning, clearance and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119351. [PMID: 35489536 DOI: 10.1016/j.envpol.2022.119351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), and their derivatives are frequently used in food packaging materials. Some toxicological studies have shown that the endocrine-disrupting activities of these compounds are similar to or higher than those of bisphenol A (BPA), which may also adversely affect the growth and development of children and adolescents. Here, we investigated nine bisphenol-diglycidyl ethers (BDGEs) in 181 paired urine and serum samples from children and adolescents from Beijing to determine their partitioning, clearance and exposure levels. The results showed that nine BDGEs were detected in 181 urine and serum samples from children and adolescents from Beijing. Bisphenol A bis(2,3-dihydroxypropyl) glycidyl ether (BADGE·2H2O) was the primary pollutant. The daily intake of ∑BDGEs was 15.217 ng/kg bw/day among children and adolescents in Beijing. The ranking of BDGEs in terms of renal clearance rate (CLrenal) in this study population was BADGE > BADGE·2H2O > BFDGE > bisphenol F bis(3-chloro-2-hydroxypropyl) glycidyl ether (BFDGE·2HCl) > bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) glycidyl ether (BADGE·HCl·H2O). In addition, the serum and urine ratios (S/U ratios) of BFDGE·2HCl, BADGE·2H2O, BFDGE, BADGE, and BADGE·HCl·H2O were higher than 1, indicating that these contaminants have a higher enrichment capacity in human blood. To our knowledge, this is the first study on the partitioning and renal clearance rate of BDGEs in paired urine and serum samples from children and adolescents.
Collapse
Affiliation(s)
- Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiali Duan
- Office of Health Promotion, Beijing Center for Disease Control & Prevention, Beijing, 100013, China
| | - Hong Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control & Prevention, Beijing, 100013, China
| | - Ying Sun
- Office of Health Promotion, Beijing Center for Disease Control & Prevention, Beijing, 100013, China
| | - Bing Shao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control & Prevention, Beijing, 100013, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control & Prevention, Beijing, 100013, China.
| |
Collapse
|
29
|
Chelcea I, Örn S, Hamers T, Koekkoek J, Legradi J, Vogs C, Andersson PL. Physiologically Based Toxicokinetic Modeling of Bisphenols in Zebrafish ( Danio rerio) Accounting for Variations in Metabolic Rates, Brain Distribution, and Liver Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10216-10228. [PMID: 35797464 PMCID: PMC9301920 DOI: 10.1021/acs.est.2c01292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is an industrial chemical, which has raised human health and environmental concerns due to its endocrine-disrupting properties. BPA analogues are less well-studied despite their wide use in consumer products. These analogues have been detected in water and aquatic organisms around the world, with some analogues showing toxic effects in various species including fish. Here, we present novel organ-specific time-course distribution data of bisphenol Z (BPZ) in female zebrafish (Danio rerio), including concentrations in the ovaries, liver, and brain, a rarely sampled organ with high toxicological relevance. Furthermore, fish-specific in vitro biotransformation rates were determined for 11 selected bisphenols. A physiologically based toxicokinetic (PBTK) model was adapted for four of these bisphenols, which was able to predict levels in the gonads, liver, and brain as well as the whole body within a 2-5-fold error with respect to experimental data, covering several important target organs of toxicity. In particular, predicted liver concentrations improved compared to currently available PBTK models. Predicted data indicate that studied bisphenols mainly distribute to the carcass and gonads and less to the brain. Our model provides a tool to increase our understanding on the distribution and kinetics of a group of emerging pollutants.
Collapse
Affiliation(s)
- Ioana Chelcea
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Stefan Örn
- Department
of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-75007 Uppsala, Sweden
| | - Timo Hamers
- Department
of Environment & Health, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jacco Koekkoek
- Department
of Environment & Health, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jessica Legradi
- Department
of Environment & Health, Vrije Universiteit
Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Carolina Vogs
- Department
of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-75007 Uppsala, Sweden
- Institute
of Environmental Medicine, Karolinska Institutet, SE-171 65 Solna, Sweden
| | | |
Collapse
|
30
|
Vaccher V, Lopez ME, Castaño A, Mol H, Haji-Abbas-Zarrabi K, Bury D, Koch HM, Dvorakova D, Hajslova J, Nübler S, Kaur Sakhi A, Thomsen C, Vorkamp K, Göen T, Antignac JP. European interlaboratory comparison investigations (ICI) and external quality assurance schemes (EQUAS) for the analysis of bisphenol A, S and F in human urine: Results from the HBM4EU project. ENVIRONMENTAL RESEARCH 2022; 210:112933. [PMID: 35182598 DOI: 10.1016/j.envres.2022.112933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The Human Biomonitoring for Europe initiative (HBM4EU) aims to study the exposure of citizens to chemicals and potentially associated health effects. One objective of this project has been to build a network of laboratories able to answer to the requirements of European human biomonitoring studies. Within the HBM4EU quality assurance and quality control scheme (QA/QC), a number of interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs) were organized to ensure data consistency, comparability and reliability. Bisphenols are among the prioritized substance groups in HBM4EU, including bisphenol A (BPA), bisphenol S (BPS) and bisphenol F (BPF) in human urine. In four rounds of ICI/EQUAS, two target concentration levels were considered, related to around P25 and P95 of the typical exposure distribution observed in the European general population. Special attention was paid to the conjugated phase II metabolites known to be most dominant in samples of environmentally exposed individuals, through the analysis of both native samples and samples fortified with glucuronide forms. For the low level, the average percentage of satisfactory results across the four rounds was 83% for BPA, 71% for BPS and 62% for BPF. For the high level, the percentages of satisfactory results increased to 93% for BPA, 89% for BPS and 86% for BPF. 24 out of 32 participating laboratories (75%) were approved for the analyses of BPA in the HBM4EU project according to the defined criterion of Z-scores for both low and high concentration levels in at least two ICI/EQUAS rounds. For BPS and BPF, the number of qualified laboratories was 18 out of 27 (67%) and 13 out of 28 (46%), respectively. These results demonstrate a strong analytical capability for BPA and BPS in Europe, while improvements may be needed for BPF.
Collapse
Affiliation(s)
- Vincent Vaccher
- Oniris, INRAE, UMR 1329, Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307, Nantes, France
| | - Marta Esteban Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III, Ctra. Majadahonda a Pozuelo km 2,2, 28220, Madrid, Spain
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III, Ctra. Majadahonda a Pozuelo km 2,2, 28220, Madrid, Spain
| | - Hans Mol
- Wageningen Food Safety Research - part of, Wageningen University and Research, Akkermaalsbos 2, WB, 6708, Wageningen, the Netherlands
| | - Karin Haji-Abbas-Zarrabi
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Darina Dvorakova
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technicka 5, 16000, Prague, Czech Republic
| | - Jana Hajslova
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technicka 5, 16000, Prague, Czech Republic
| | - Stefanie Nübler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Amrit Kaur Sakhi
- Section for Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Section for Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Jean-Philippe Antignac
- Oniris, INRAE, UMR 1329, Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307, Nantes, France.
| |
Collapse
|
31
|
Li A, Wang F, Tao L, Ma C, Bi L, Song M, Jiang G. Rapid and simultaneous determination of multiple endocrine-disrupting chemicals and their metabolites in human serum and urine samples. Talanta 2022; 248:123639. [PMID: 35661003 DOI: 10.1016/j.talanta.2022.123639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Bisphenols, parabens, and their metabolites are a group of chemical compounds with a wide range of polarities but similar chemical structures, which presents a challenge for the simultaneous determination of these compounds in complex biological samples. In this study, a rapid and sensitive method for simultaneous quantification of free bisphenol A (BPA), conjugated BPA, bisphenols, and parabens analogs was developed using solid-phase extraction (SPE) tandem liquid-liquid extraction (LLE). We compared the effects of different types of SPE cartridges, diluents, and LLE solvents on the analyte recovery. Utilizing the direct and indirect determination methods (enzyme hydrolysis), we confirmed the accuracy of the direct method for measuring BPA glucuronide and BPA disulfate. The method enabled the analysis of 24 endocrine-disrupting chemicals (EDCs) in one injection through UHPLC-MSMS measurements, with satisfactory recovery (mean: 91.8-98.6% for urine, 80.2%-96.8% for serum) and precision (RSD <15%). The LOD and LOQ values were 0.003 and 0.01 ng/mL for serum, and 0.002 and 0.006 ng/mL for urine samples, respectively. For real sample analysis, the median concentration of analytes in serum and urine samples ranged from 0.04 ng/mL (BPS) to 56.4 ng/mL (4-HB) and 0.11 ng/mL (BPA) to 136 ng/mL (4-HB), respectively. This method provides a new strategy to simultaneously identify compounds with a wide range of polarities from complicated biological matrices.
Collapse
Affiliation(s)
- Aijing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Le Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Dias P, Tvdrý V, Jirkovský E, Dolenc MS, Peterlin Mašič L, Mladěnka P. The effects of bisphenols on the cardiovascular system. Crit Rev Toxicol 2022; 52:66-87. [PMID: 35394415 DOI: 10.1080/10408444.2022.2046690] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bisphenols, endocrine disrupting chemicals, have frequently been used for producing food packaging materials. The best-known member, bisphenol A (BPA), has been linked to impaired foetal development in animals. Possible negative effects of BPA on human health have resulted in the production of novel, so-called next-generation (NextGen) bisphenols whose effects on humans are much less explored or even missing. This review aimed to summarise and critically assess the main findings and shortages in current bisphenol research in relation to their potential impact on the cardiovascular system in real biological exposure. Because of the common presence of bisphenols in daily use products, humans are clearly exposed to these compounds. Most data are available on BPA, where total serum levels (i.e. included conjugated metabolite) can reach up to ∼430 nM, while free bisphenol levels have been reported up to ∼80 nM. Limited data are available for other bisphenols, but maximal serum levels of bisphenol S have been reported (680 nM). Such levels seem to be negligible, although in vitro studies have showed effects on ion channels, and thyroid, oestrogenic and androgenic receptors in low micromolar concentrations. Ex vivo studies suggest vasodilatory effects of bisphenols. This stays in clear contrast to the elevation of arterial blood pressure documented in vivo and in observatory cross-sectional human studies. Bisphenols are also claimed to have a negative effect on lipidic spectrum and coronary artery disease. Regardless, the reported data are generally inconsistent and unsatisfactory. Hence novel well-designed studies, testing in particular NextGen bisphenols, are needed.
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Václav Tvdrý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
33
|
Maternal and developmental toxicity of Bisphenol-A in SWR/J mice. Saudi J Biol Sci 2022; 29:1543-1549. [PMID: 35280563 PMCID: PMC8913423 DOI: 10.1016/j.sjbs.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Bisphenol-A (BPA), an organic compound with two phenol functional groups, is a widely used industrial plasticizer with known estrogenic properties. It is used in the manufacture of epoxy resins and polycarbonate plastics. This study was designed to evaluate and assess the possible toxicity arising from the oral administration of BPA to pregnant mice. Pregnant SWR/J mice (15 mice/group) were administrated oral doses of BPA (125, 250 and 500 mg/kg/day) over the course of five-day intervals during gestation (D1-5, D6-10 and D11-15), while control groups received only corn oil. The results indicated that BPA was associated with a reduction in the body weight of the pregnant mice from around 2–3 days after administration until the end of gestation. The greatest effects were evident when the BPA was given during the later stages of pregnancy, and with higher doses. They also showed marked reduction in food intake and, to a lesser extent, in water intake. Furthermore, doses of BPA induced a reduction in implantation sites, lower foetal body weight and increased mortality rates. Abortion and foetal resorption rates were not affected by BPA administration, however. The above findings were concluded by discussing the possible mechanisms involved in producing these effects.
Collapse
|
34
|
Li Z, Mao W, Yao L, Zhao N, Zhang Y, Zhao M, Jin H. First report on occurrence of bisphenol A isomers in human serum and whole blood. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127549. [PMID: 34736192 DOI: 10.1016/j.jhazmat.2021.127549] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Studies have demonstrated the worldwide presence of bisphenol A (BPA) and its toxic effects on human health. BPA may exist as several structural isomers, which are byproducts in industrial BPA production. However, nearly nothing is known about the occurrence of BPA isomers in human blood and the partitioning of BPA metabolites between human serum and whole blood. In this study, BPA, BPA-sulfate (BPA-S), and BPA-glucuronide (BPA-G) were quantified in 144 pairs of serum and whole blood samples from Chinese participants. BPA was detected in 115 serum and 121 whole blood samples, with mean concentrations of 0.53 and 0.88 ng/mL, respectively. A structural isomer of BPA, tentatively termed B1-BPA, was identified for the first time, and measurable in 53% and 57% of serum (<LOD-1.9 ng/mL) and whole blood (<LOD-1.4 ng/mL) samples, respectively. BPA-S was the predominant BPA metabolite (mean 2.3 and 1.4 ng/mL, respectively), significantly higher (p < 0.01) than BPA-G (1.3 and 0.64 ng/mL) in both serum and whole blood. The calculated partitioning coefficients between serum and whole blood were the highest for B1-BPA (mean ± SD, 1.8 ± 0.25), followed by BPA-S (1.6 ± 0.36), BPA-G (1.4 ± 0.37), and BPA (1.3 ± 0.39), indicating their preferential enrichment in the serum fraction. Overall, this study first identifies a BPA isomer, which has not been previously reported in any environmental or human samples. Measuring BPA isomers in human serum and whole blood is critical for accurate human BPA exposure risk assessment.
Collapse
Affiliation(s)
- Zhenming Li
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Weili Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, PR China
| | - Lei Yao
- CAS Testing Technical Services Jiaxing Co., Jiaxing 314000, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
35
|
Segovia-Mendoza M, Palacios-Arreola MI, Pavón L, Becerril LE, Nava-Castro KE, Amador-Muñoz O, Morales-Montor J. Environmental Pollution to Blame for Depressive Disorder? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1737. [PMID: 35162759 PMCID: PMC8835056 DOI: 10.3390/ijerph19031737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Public concern has emerged about the effects of endocrine-disrupting compounds (EDCs) on neuropsychiatric disorders. Preclinical evidence suggests that exposure to EDCs is associated with the development of major depressive disorder (MDD) and could result in neural degeneration. The interaction of EDCs with hormonal receptors is the best-described mechanism of their biological activity. However, the dysregulation of the hypothalamic-pituitary-gonadal adrenal axis has been reported and linked to neurological disorders. At a worldwide level and in Mexico, the incidence of MDD has recently been increasing. Of note, in Mexico, there are no clinical associations on blood levels of EDCs and the incidence of the MDD. Methodology: Thus, we quantified for the first time the serum levels of parent compounds of two bisphenols and four phthalates in patients with MDD. The levels of di-ethyl-hexyl-phthalate (DEHP), butyl-benzyl-phthalate (BBP), di-n-butyl phthalate (DBP), and di-ethyl-phthalate (DEP), bisphenol A (BPA), and bisphenol S (BPS) in men and women with or without MDD were determined with a gas chromatograph-mass spectrometer. Results/conclusion: We found significant differences between concentrations of BBP between controls and patients with MDD. Interestingly, the serum levels of this compound have a dysmorphic behavior, being much higher in women (~500 ng/mL) than in men (≤10 ng/mL). We did not observe significant changes in the serum concentrations of the other phthalates or bisphenols tested, neither when comparing healthy and sick subjects nor when they were compared by gender. The results point out that BBP has a critical impact on the etiology of MDD disorder in Mexican patients, specifically in women.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Margarita Isabel Palacios-Arreola
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | - Lenin Pavón
- Laboratory of Psychoimmunology, National Institute of Psychiatry Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (L.P.); (L.E.B.)
| | - Luis Enrique Becerril
- Laboratory of Psychoimmunology, National Institute of Psychiatry Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (L.P.); (L.E.B.)
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosférica, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Omar Amador-Muñoz
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
36
|
Ayar G, Yalçın SS, Yırün A, Emeksiz S, Balcı A, Erkekoğlu P. Associations between pediatric intensive care procedures and urinary free-BPA levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13555-13563. [PMID: 34595711 DOI: 10.1007/s11356-021-16677-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is found in many medical materials used in the paediatric intensive care unit (PICU). Our aim was to evaluate how the urinary free-BPA(fBPA) and total-BPA(tBPA) levels were associated with the use of medical devices in the PICU in a prospective study. METHODS The procedures applied to the patient were recorded during the follow-up period. Three urine samples were taken on the first day of hospitalization; the seventh day, and after 30 days or when the patients were discharged. Urinary tBPA and fBPA levels were determined using high-pressure liquid chromatography. Generalized estimating equations with repetitive measures were used to determine the associations between PICU procedures and BPA levels. RESULTS A total of 115 urine samples of 40 children were studied. Mean urinary levels were 189.2 μg/g-creatinine for tBPA and 27.8 μg/g-creatinine for fBPA, and the fBPA/tBPA ratio was 27.9%. Endotracheal intubation, catheter, and haemodialysis procedures caused higher urinary fBPA levels. External drains, inhaler treatment, and the use of four or more medical devices were associated with considerably higher values of fBPA%. The increase in tBPA was positively correlated with fBPA. CONCLUSIONS fBPA levels and the fBPA/tBPA ratio varied according to the procedure and level of BPA exposure in children.
Collapse
Affiliation(s)
- Ganime Ayar
- Ministry of Health, Ankara City Hospital, Children's Hospital, Bilkent, Ankara, Turkey
| | - Sıddıka Songül Yalçın
- Faculty of Medicine, Department of Pediatrics, Hacettepe University, Sıhhiye, Ankara, Turkey.
| | - Anıl Yırün
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Serhat Emeksiz
- Ministry of Health, Ankara City Hospital, Children's Hospital, Bilkent, Ankara, Turkey
| | - Aylin Balcı
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Pınar Erkekoğlu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Sihhiye, Ankara, Turkey
| |
Collapse
|
37
|
Cross-Sectional Association of Urinary Bisphenol A and Vaccine-Induced Immunity against Hepatitis B Virus: Data from the 2003–2014 National Health and Nutrition Examination Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031103. [PMID: 35162124 PMCID: PMC8834708 DOI: 10.3390/ijerph19031103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Hepatitis B virus (HBV) infection poses a serious health burden; bisphenol A (BPA), a commonly used plasticizer for consumer products, is a potential immune disruptor. However, epidemiologic studies revealing the association between BPA exposure and immunity are limited. This study investigates the association between environmental BPA exposure and immune response following HBV vaccination in a nationally representative sample population. Using National Health and Nutrition Examination Survey data from six cycles, we analyzed the data of 6134 participants, classified as susceptible to HBV infection (n = 3086) or as having vaccine-induced immunity (n = 3048). Associations between BPA level and HBV susceptibility were assessed using multivariable logistic regression and expressed as odds ratios (ORs) of the pooled data and data for each cycle. There was a significant association in the pooled data after adjusting for potential confounders (adjusted OR (aOR): 1.14, 95% confidence interval (CI): 1.05–1.23). However, the associations between BPA concentration and HBV susceptibility were inconsistent across the survey cycles and tended to decrease in more recent cycles. Although this study preliminarily suggests that BPA attenuates the immune response to hepatitis B vaccination, further prospective studies are warranted to elucidate the discrepancies observed.
Collapse
|
38
|
Adu-Gyamfi EA, Rosenfeld CS, Tuteja G. The impact of bisphenol a (BPA) on the placenta. Biol Reprod 2022; 106:826-834. [PMID: 35020819 DOI: 10.1093/biolre/ioac001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that is used in a wide-variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impact of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts; and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.
Collapse
Affiliation(s)
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
39
|
Wang G, Zhang H, Zhang J, Sanidad KZ, Yeliseyev V, Parsonnet J, Haggerty TD, Yang H, Ai L, Xie M, Cai Z, Zhang G. Metabolic fate of environmental chemical triclocarban in colon tissues: roles of gut microbiota involved. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147677. [PMID: 34004538 PMCID: PMC8192447 DOI: 10.1016/j.scitotenv.2021.147677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 05/06/2023]
Abstract
Metabolic transformations play critical roles in the bioavailability and toxicities of environmental pollutants and toxicants. However, most previous research has focused on the metabolic reactions in host tissues, the gut microbiota-mediated biotransformation of environmental compounds is understudied. Using triclocarban (TCC) as a model environmental compound, here we study the metabolic fate of TCC in gut tissues and determine the roles of gut microbiota involved. We find that compared with other tissues, the colon tissue has a unique metabolic profile of TCC, with high abundance of the parent compound TCC and its free-form metabolites. Using a variety of approaches including antibiotic-mediated suppression of gut bacteria in vivo, germ-free mice, and in vitro culture of fecal bacteria, we found that the unique metabolic profile of TCC in the colon is mediated by the actions of gut microbiota. Overall, our findings support that gut microbiota plays important roles in colonic metabolism of TCC, highlighting the importance to consider the contributions of gut microbiota in toxicology evaluation of environmental compounds.
Collapse
Affiliation(s)
- Guangqiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julie Parsonnet
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Thomas D Haggerty
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Minhao Xie
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
40
|
Ougier E, Zeman F, Antignac JP, Rousselle C, Lange R, Kolossa-Gehring M, Apel P. Human biomonitoring initiative (HBM4EU): Human biomonitoring guidance values (HBM-GVs) derived for bisphenol A. ENVIRONMENT INTERNATIONAL 2021; 154:106563. [PMID: 33894553 DOI: 10.1016/j.envint.2021.106563] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The "European Human Biomonitoring Initiative" (HBM4EU) derives human biomonitoring guidance values (HBM-GVs) for the general population (HBM-GVGenPop) and/or for occupationally exposed adults (HBM-GVWorker) for several priority substances and substance groups as identified by policy makers, scientists and stakeholders at EU and national level, including bisphenol A (BPA). Human exposure to BPA is widespread and of particular concern because of its known endocrine-disrupting properties. Unlike the conjugated forms of BPA circulating in the body, free BPA is known to interact with the nuclear estrogen receptors. Because free BPA is considered to be more toxicologically active than the conjugated forms (e.g. BPA-glucuronide (BPA-G) and BPA-sulfate (BPA-S)), its measurement in blood provides the superior surrogate of the biologically effective dose. However, considering the difficulty of implementing blood sampling in large HBM cohorts, as well as the current analytical capacities complying with the quality assurance (QA)/quality control (QC) schemes, total BPA in urine (i.e. the sum of free and conjugated forms of BPA measured after an hydrolysis of phase II metabolites) was retained as the relevant exposure biomarker for BPA. HBM-GVGenPop for total BPA in urine of 230 µg/L and 135 µg/L for adults and children, respectively, were developed on the basis of toxicological data. To derive these values, the concentrations of urinary total BPA consistent with a steady-state exposure to the temporary Tolerable Daily Intake (t-TDI) of 4 µg/kg bw/day set in 2015 by the European Food Safety Authority (EFSA) were estimated. The BPA human physiologically-based pharmacokinetic (PBPK) model developed by Karrer et al. (2018) was used, assuming an oral exposure to BPA at the t-TDI level averaged over 24 h. Dermal uptake of BPA is suspected to contribute substantially to the total BPA body burden, which in comparison with the oral route, is generating a higher ratio of free BPA to total BPA in blood. Therefore, an alternative approach for calculating the HBM-GVGenPop according to the estimated relative contributions of both the oral and dermal routes to the global BPA exposure is also discussed. Regarding BPA exposure at the workplace, the steady-state concentration of urinary total BPA was estimated after a dermal uptake of BPA that would generate the same concentration of free BPA in plasma (considered as the bioactive form) as would a 24 h-averaged intake to the European Chemicals Agency (ECHA)'s oral DNEL of 8 µg BPA/kg bw/day set for workers. The predicted concentration of urinary total BPA at steady-state is equivalent to, or exceeds the 95th percentile of total BPA in urine measured in different European HBM studies conducted in the general population. Thus, no HBM-GVWorker was proposed, as the high background level of BPA coming from environmental exposure - mostly through food intake - is making the discrimination with the occupational exposure to BPA difficult.
Collapse
Affiliation(s)
- Eva Ougier
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France.
| | - Florence Zeman
- French National Institute for Industrial Environment and Risks (INERIS), Parc ALATA BP2, 60550 Verneuil en Halatte, France
| | | | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | | | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| |
Collapse
|
41
|
Plattard N, Dupuis A, Migeot V, Haddad S, Venisse N. An overview of the literature on emerging pollutants: Chlorinated derivatives of Bisphenol A (Cl xBPA). ENVIRONMENT INTERNATIONAL 2021; 153:106547. [PMID: 33831741 DOI: 10.1016/j.envint.2021.106547] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Bisphenol A (BPA) is a ubiquitous contaminant with endocrine-disrupting effects in mammals. During chlorination treatment of drinking water, aqueous BPA can react with chlorine to form chlorinated derivatives of BPA (mono, di, tri and tetra-chlorinated derivatives) or ClxBPA. OBJECTIVE The aim of this study is to summarize and present the state of knowledge on human toxicological risk assessment of ClxBPA. MATERIALS AND METHODS A search on ClxBPA in the PubMed database was performed based on studies published between 2002 and 2021. Forty-nine studies on chlorinated derivatives of BPA were found. Available information on their sources and levels of exposure, their effects, their possible mechanisms of action and their toxicokinetics data was extracted and presented. RESULTS ClxBPA have been essentially detected in environmental aqueous media. There is evidence in toxicological and epidemiological studies that ClxBPA also have endocrine-disrupting capabilities. These emerging pollutants have been found in human urine, serum, breast milk, adipose and placental tissue and can constitute a risk to human health. However, in vitro and in vivo toxicokinetic data on ClxBPA are scarce and do not allow characterization of the disposition kinetics of these compounds. CONCLUSION More research to assess their health risks, specifically in vulnerable populations, is needed. Some water chlorination processes are particularly hazardous, and it is important to evaluate their chlorination by-products from a public health perspective.
Collapse
Affiliation(s)
- N Plattard
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada; INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - A Dupuis
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France
| | - V Migeot
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France
| | - S Haddad
- Department of Environmental and Occupational Health, School of Public Health, CresP, Université de Montréal, Montreal, Quebec, Canada
| | - N Venisse
- INSERM CIC1402, CHU Poitiers, Université de Poitiers, HEDEX Research Group, 86021 Poitiers Cedex, France; Biology-Pharmacy-Public Health Department, CHU de Poitiers, 2 rue de la Milétrie, 86201 Poitiers Cedex, France.
| |
Collapse
|
42
|
Cai SS, Zhou Y, Ye BC. Reducing the reproductive toxicity activity of Lactiplantibacillus plantarum: a review of mechanisms and prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36927-36941. [PMID: 34036511 DOI: 10.1007/s11356-021-14403-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Food pollution can cause a variety of negative effects on human health, especially reproductive toxicity. Common food contaminants include biological contaminants, chemical contaminants, and physical contaminants, among which endocrine disruptors, pesticides, and heavy metals have the greatest reproductive toxicity in chemical contaminants. Humans mainly solve food pollution through three aspects: decreasing the pollution of food raw materials, lowering the pollution in food processing, and reducing the harm to the human body after food pollutants enter the human body. With more and more research on probiotics, not only beneficial effects, but also the ability to reduce the toxicity of food contaminants is found. Thus, microbial treatment has been proved to be a more effective way to deal with food pollution. Recent research shows that several strains of Lactiplantibacillus plantarum can adsorb or degrade some chemical pollutants and relieve inflammation and oxidative stress caused by them. This review summarized the research to explore the possible role of Lactiplantibacillus plantarum in protecting human reproductive ability and maintaining food safety.
Collapse
Affiliation(s)
- Shu-Shan Cai
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China.
| |
Collapse
|
43
|
Zhang FL, Kong L, Zhao AH, Ge W, Yan ZH, Li L, De Felici M, Shen W. Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary. ENVIRONMENTAL RESEARCH 2021; 198:111225. [PMID: 33971129 DOI: 10.1016/j.envres.2021.111225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Natural and synthetic environmental estrogens (EEs), interfering with the physiological functions of the body's estrogens, are widespread and are rising much concern for their possible deleterious effects on human and animal health, in particular on reproduction. In fact, increasing evidence indicate that EEs can be responsible for a variety of disfunctions of the reproductive system especially in females such as premature ovarian insufficiency (POI). Because of their great structural diversity, the modes of action of EEs are controversial. One important way through which EEs exert their effects on reproduction is the induction of apoptosis in the ovary. In general, EEs can exert pro-and anti-apoptotic effects by agonizing or antagonizing numerous estrogen-dependent signaling pathways. In the present work, results concerning apoptotic pathways and diseases induced by representative EEs (such as zearalenone, bisphenol A and di-2-ethylhexyl phthalate), in ovaries throughout development are presented into an integrated network. By reviewing and elaborating these studies, we propose inflammatory factors, centered on the production of tumor necrosis factor (TNF), as a major cause of the induction of apoptosis by EEs in the mammalian ovary. As a consequence, potential strategies to prevent such EE effect are suggested.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy.
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
44
|
Ramírez V, Gálvez-Ontiveros Y, Porras-Quesada P, Martinez-Gonzalez LJ, Rivas A, Álvarez-Cubero MJ. Metabolic pathways, alterations in miRNAs expression and effects of genetic polymorphisms of bisphenol a analogues: A systematic review. ENVIRONMENTAL RESEARCH 2021; 197:111062. [PMID: 33798517 DOI: 10.1016/j.envres.2021.111062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is one of the most common endocrine disruptors found in the environment and its harmful health effects in humans and wildlife have been extensively reported One of the main aims of this review was to examine the metabolic pathways of BPA and BPA substitutes and the endocrine disrupting properties of their metabolites. According to the available literature, phase I and phase II metabolic reactions play an important role in the detoxification process of bisphenols (BPs), but their metabolism can also lead to the formation of highly reactive metabolites. The second part of this work addresses the associations between exposure to BPA and its analogues with the alterations in miRNAs expression and the effects of single nucleotide polymorphisms (SNPs). Available scientific evidence shows that BPs can dysregulate the expression of several miRNAs, and in turn, these miRNAs could be considered as epigenetic biomarkers to prevent the development of a variety of BP-mediated diseases. Interestingly, genetic polymorphisms are able to modify the relationship of BPA exposure with the risk of adverse health effects, suggesting that interindividual genetic differences modulate the susceptibility to the effects of environmental contaminants.
Collapse
Affiliation(s)
- Viviana Ramírez
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- University of Granada, Department of Nutrition and Food Science, Faculty of Pharmacy, Cartuja Campus, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Patricia Porras-Quesada
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - Luis Javier Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Ana Rivas
- University of Granada, Department of Nutrition and Food Science, Faculty of Pharmacy, Cartuja Campus, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - María Jesús Álvarez-Cubero
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| |
Collapse
|
45
|
Martínez MÁ, González N, Martí A, Marquès M, Rovira J, Kumar V, Nadal M. Human biomonitoring of bisphenol A along pregnancy: An exposure reconstruction of the EXHES-Spain cohort. ENVIRONMENTAL RESEARCH 2021; 196:110941. [PMID: 33647302 DOI: 10.1016/j.envres.2021.110941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed at reconstructing the exposure to bisphenol (BPA) of 60 pregnant women from the EXHES-Spain cohort. A biomonitoring study was conducted by determining BPA levels in urine samples over the three trimesters of pregnancy. Moreover, the correlations between BPA levels and the role of different potential exposure sources, with special emphasis on the dietary intake, were also studied. Urine samples were subjected to dispersive liquid-liquid microextraction and the subsequent analysis via gas chromatography-mass spectrometry. BPA was detected in 76% of the urine samples. A significant decrease of urinary BPA levels was observed along pregnancy, as mean concentrations of creatinine-adjusted BPA were 4.64, 4.84 and 2.51 μg/g in the first, second and third trimester, respectively. This decrease was essentially associated with changes in the dietary habits of the pregnant women, including a lower intake of canned food and drinks. However, the potential role of other pregnancy-related biochemical or physiological factors should not be disregarded. Very interestingly, significant differences in urine BPA levels were found according to the fruit consumption pattern, as women who ate more citrus fruits showed lower BPA concentrations in urine. The reconstructed exposure to BPA was estimated in 0.072, 0.069 and 0.038 μg BPA/kg of body weight/day in the first, second and third trimesters, respectively. These values are far below the temporary tolerable daily intake (t-TDI) established by the EFSA.
Collapse
Affiliation(s)
- María Ángeles Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana. Hospital Sant Joan de Reus, Reus, Spain. Institut d'Investigació Pere Virgili (IISPV). Reus, Spain
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Anna Martí
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
46
|
Zhang H, Sanidad KZ, Zhu L, Parsonnet J, Haggerty TD, Zhang G, Cai Z. Frequent occurrence of triclosan hydroxylation in mammals: A combined theoretical and experimental investigation. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124803. [PMID: 33338815 DOI: 10.1016/j.jhazmat.2020.124803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/07/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) is a widespread antimicrobial agent with many adverse health risks. Its hepatoxicity invariably points to the activation of constitutive androstane receptor (CAR), which regulates cytochrome P450 (CYP) genes that are critical for oxidative metabolism. Here, we provide the theoretical and experimental evidences showing that metabolic activation of TCS frequently occurs through aromatic hydroxylation in mammals. CYP-mediated oxidation was predicted to take place at each aromatic C‒H bond. Molecular docking and in vitro approaches reveal oxidative reaction could be efficiently catalyzed by CAR-regulated CYP2B6 enzyme. Parallel reaction monitoring (PRM) high-resolution mass spectrometry was utilized to identify and profile TCS oxidative metabolites in paired mouse liver, bile, feces, plasma and urine. We found multiple hydroxylated isomers including the products generated via the NIH shift of chlorine, as well as their subsequent conjugates. These metabolites showed isomer-specific retention in mice. Glucuronide conjugates are more readily excreted than the sulfates. Moreover, for the first time, isomeric hydroxylated metabolites were detected in the urine and stool of human subjects used TCS-contained household and personal care products. Collectively, these findings suggest that hydroxylation is an important, yet often underestimated element that worth considering to fully evaluate the biological fates and health risks of TCS.
Collapse
Affiliation(s)
- Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077 Hong Kong, China
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077 Hong Kong, China
| | - Julie Parsonnet
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA 94305, USA
| | - Thomas D Haggerty
- Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA 94305, USA
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077 Hong Kong, China.
| |
Collapse
|
47
|
England-Mason G, Liu J, Martin JW, Giesbrecht GF, Letourneau N, Dewey D. Postnatal BPA is associated with increasing executive function difficulties in preschool children. Pediatr Res 2021; 89:686-693. [PMID: 32408341 PMCID: PMC7666018 DOI: 10.1038/s41390-020-0922-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Early bisphenol exposure may have consequences for executive function development, but less is known about potential sex effects. We hypothesized that early bisphenol A (BPA) and bisphenol S (BPS) exposures would be associated with sex-dependent changes in preschool executive function. METHODS A subsample of the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort (n = 312) provided maternal second trimester (prenatal) and 3-month postpartum (postnatal) urine samples, from which BPA and BPS concentrations were quantified. When children were age 2 and 4, mothers completed the Behavior Rating Inventory of Executive Function-Preschool Version (BRIEF-P). Changes in standardized T scores on the BRIEF-P indexes of inhibitory self-control, flexibility, and emergent metacognition were investigated. RESULTS Adjusted multivariate regression analyses showed that child sex modified the associations between maternal postnatal BPA and changes in executive function. Higher maternal postnatal BPA concentrations predicted increasing difficulties from age 2 to 4 in the domains of inhibitory self-control and emergent metacognition in female, but not male children. The other bisphenol concentrations were not associated with changes in executive function. CONCLUSION Due to the ubiquity of BPA exposure among breastfeeding women, these findings justify further investigation on the effects of postnatal bisphenol exposure on child cognitive development. IMPACT Higher concentrations of maternal BPA at 3-month postpartum were associated with increasing difficulties in inhibitory self-control and emergent metacognition from age 2 to 4 in girls, but not boys. Prenatal BPA and prenatal/postnatal BPS were not significant predictors of changes in executive function in boys and girls. The current study extends previous research to show that maternal postnatal BPA could also impact child executive function. Due to the ubiquity of BPA exposure among breastfeeding women, the current findings suggest that additional precautions may be needed to protect infants' neurodevelopment from indirect exposure to BPA.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada,Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Jonathan W. Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada,Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Gerald F. Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada,Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada,Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada,Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada,Faculty of Nursing, University of Calgary, Calgary, Canada,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|
48
|
Vorkamp K, Castaño A, Antignac JP, Boada LD, Cequier E, Covaci A, Esteban López M, Haug LS, Kasper-Sonnenberg M, Koch HM, Pérez Luzardo O, Osīte A, Rambaud L, Pinorini MT, Sabbioni G, Thomsen C. Biomarkers, matrices and analytical methods targeting human exposure to chemicals selected for a European human biomonitoring initiative. ENVIRONMENT INTERNATIONAL 2021; 146:106082. [PMID: 33227583 DOI: 10.1016/j.envint.2020.106082] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/11/2020] [Accepted: 08/19/2020] [Indexed: 05/27/2023]
Abstract
The major purpose of human biomonitoring is the mapping and assessment of human exposure to chemicals. The European initiative HBM4EU has prioritized seven substance groups and two metals relevant for human exposure: Phthalates and substitutes (1,2-cyclohexane dicarboxylic acid diisononyl ester, DINCH), bisphenols, per- and polyfluoroalkyl substances (PFASs), halogenated and organophosphorous flame retardants (HFRs and OPFRs), polycyclic aromatic hydrocarbons (PAHs), arylamines, cadmium and chromium. As a first step towards comparable European-wide data, the most suitable biomarkers, human matrices and analytical methods for each substance group or metal were selected from the scientific literature, based on a set of selection criteria. The biomarkers included parent compounds of PFASs and HFRs in serum, of bisphenols and arylamines in urine, metabolites of phthalates, DINCH, OPFRs and PAHs in urine as well as metals in blood and urine, with a preference to measure Cr in erythrocytes representing Cr (VI) exposure. High performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was the method of choice for bisphenols, PFASs, the HFR hexabromocyclododecane (HBCDD), phenolic HFRs as well as the metabolites of phthalates, DINCH, OPFRs and PAHs in urine. Gas chromatographic (GC) methods were selected for the remaining compounds, e.g. GC-low resolution MS with electron capture negative ionization (ECNI) for HFRs. Both GC-MS and LC-MS/MS were suitable for arylamines. New developments towards increased applications of GC-MS/MS may offer alternatives to GC-MS or LC-MS/MS approaches, e.g. for bisphenols. The metals were best determined by inductively coupled plasma (ICP)-MS, with the particular challenge of avoiding interferences in the Cd determination in urine. The evaluation process revealed research needs towards higher sensitivity and non-invasive sampling as well as a need for more stringent quality assurance/quality control applications and assessments.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Denmark.
| | - Argelia Castaño
- Instituto de Salud Carlos III, National Centre for Environmental Health, Spain.
| | | | - Luis D Boada
- University of Las Palmas de Gran Canaria, Institute for Biomedical and Health Research, Spain.
| | | | - Adrian Covaci
- University of Antwerp, Toxicological Centre, Belgium.
| | - Marta Esteban López
- Instituto de Salud Carlos III, National Centre for Environmental Health, Spain.
| | - Line S Haug
- Norwegian Institute of Public Health, Norway.
| | - Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University, Germany.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University, Germany.
| | - Octavio Pérez Luzardo
- University of Las Palmas de Gran Canaria, Institute for Biomedical and Health Research, Spain.
| | - Agnese Osīte
- University of Latvia, Department of Analytical Chemistry, Latvia.
| | - Loïc Rambaud
- Santé Publique France, Department of Environmental and Occupational Health, France.
| | | | | | | |
Collapse
|
49
|
Rolland M, Lyon-Caen S, Sakhi AK, Pin I, Sabaredzovic A, Thomsen C, Slama R, Philippat C. Exposure to phenols during pregnancy and the first year of life in a new type of couple-child cohort relying on repeated urine biospecimens. ENVIRONMENT INTERNATIONAL 2020; 139:105678. [PMID: 32248023 DOI: 10.1016/j.envint.2020.105678] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/11/2020] [Accepted: 03/18/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Parabens, bisphenol A and triclosan have been forbidden or restricted in specific types of consumer goods in Europe and France. Limited biomonitoring data are available in France since the implementation of these regulations, and exposure data on infants is scarce worldwide. Understanding the predictors of phenol urinary concentrations will help identify potential targets for prevention. AIM We described levels, variability and predictors of exposure to 12 phenols in pregnant women and infants recruited between 2014 and 2017 in a French couple-child cohort. METHODS Among 479 pregnant women and 150 of their infants, we studied phenol urinary concentrations in within-subject, within-period pools of repeated urine samples collected during the second and third trimesters of pregnancy (up to 42 samples per woman), at 2 months and 12 months (up to 14 samples per infant). Time trends and associations with demographic, protocol, occupational and behavioral factors were studied using interval censored models to accommodate for undetected and unquantified urine concentrations. RESULTS Detection rates were above 90% for bisphenol A, ethylparaben, methylparaben, benzophenone-3 and triclosan and below 5% for bisphenol AF, B, F and triclocarban. Median levels of bisphenol A, bisphenol S, methylparaben, ethylparaben and propylparaben at 12 months were similar or higher than during pregnancy. For pregnant women all phenols but benzophenone-3 and bisphenol S showed a linear decrease between 2014 and 2017 (p-values < 0.02). Women with the shortest education (primary and secondary school) had higher urinary concentrations of triclosan (β = 0.58 (95% confidence interval (CI), -0.04; 1.20)), ethyl (β = 0.43 (95%CI, 0.03; 0.84)) and propyl paraben (β = 1.39 (95%CI, 0.55; 2.24)) than those with the longest education. Cashiers had higher conccentrations of bisphenol S (β = 0.99 (95%CI, -0.11; 2.09)) but not of bisphenol A (β = -0.04 (95%CI, -0.26; 0.19)) than unemployed women. CONCLUSIONS Despite recent regulations, bisphenol A, triclosan and paraben detection rates were high in women and young infants. High bisphenol and paraben median levels at 12 months require further investigation as early infancy is a sensitive period for exposure to environmental contaminants.
Collapse
Affiliation(s)
- Matthieu Rolland
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | | | - Isabelle Pin
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France; Pediatric Department, Grenoble University Hospital, 38700 La Tronche, France
| | | | | | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France.
| |
Collapse
|
50
|
Wang Q, Chen M, Qiang L, Wu W, Yang J, Zhu L. Toxicokinetics and bioaccumulation characteristics of bisphenol analogues in common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110183. [PMID: 31954220 DOI: 10.1016/j.ecoenv.2020.110183] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Toxicokinetics and bioconcentration of eight common bisphenol analogues, including bisphenol A (BPA), -B, -C, -E, -S, -Z, -AF, and -AP in common carp (Cyprinus carpio) were investigated. Both free (BPfree) and total forms (BPtotal) of the bisphenols were measured in various fish tissues. The conjugated forms of bisphenols were calculated based on BPfree and BPtotal. The calculated bioconcentration factors (BCFs) based on the total bisphenols (BPtotal) in the carp whole body were in the range of 0.3-320, agreeing with previous field results from Taihu Lake, China. The elimination rate constant (ke) positively correlated with the fraction of conjugated form (fconjugated), which displayed negative correlation with their log Kow (r = -0.861, p < 0.05), indicating that conjugation facilitated their elimination and those with higher hydrophobicity were more difficult to be eliminated. Except BPA, the concentrations of all bisphenols in the carp tissues were in the order of kidney > liver ≫ muscle. The uptake rate constants (ku) in kidney (r = 0.836, p < 0.05) and in liver (r = 0.863, p < 0.05) displayed significantly positive correlations with BCFs, and ku in kidney was greater than in liver except BPA. These results indicated that kidney and liver played important roles in accumulating bisphenols in carp, and kidney made more contribution than liver for most bisphenols. Biliary excretion predominated for elimination of most bisphenols while BPA and BPS were mainly through urinary excretion.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
| | - Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Liwen Qiang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
| | - Wei Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jing Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi, 712100, China.
| |
Collapse
|