1
|
Frazzoli C, Bocca B, Battistini B, Ruggieri F, Rovira J, Amadi CN, Offor SJ, Orisakwe OE. Rare Earth and Platinum Group Elements In Sub-Saharan Africa and Global Health: The Dark Side of the Burgeoning of Technology. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271553. [PMID: 39282214 PMCID: PMC11393805 DOI: 10.1177/11786302241271553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024]
Abstract
Despite steady progress in the development and promotion of the circular economy as a model, an overwhelming proportion of technological devices discarded by the Global North still finds its way to the Global South, where technology-related environmental health problems start from the predation of resources and continue all the way to recycling and disposal. We reviewed literature on TCEs in sub-Saharan Africa (SSA), focussing on: the sources and levels of environmental pollution; the extent of human exposure to these substances; their role in the aetiology of human diseases; their effects on the environment. Our review shows that even minor and often neglected technology-critical elements (TCEs), like rare earth elements (REEs) and platinum group elements (PGEs), reveal the environmental damage and detrimental health effects caused by the massive mining of raw materials, exacerbated by improper disposal of e-waste (from dumping to improper recycling and open burning). We draw attention of local research on knowledge gaps such as workable safer methods for TCE recovery from end-of-life products, secondary materials and e-waste, environmental bioremediation and human detoxification. The technical and political shortcomings in the management of TCEs in SSA is all the more alarming against the background of unfavourable determinants of health and a resulting higher susceptibility to diseases, especially among children who work in mines and e-waste recycling sites or who reside in dumping sites.This paper demonstrates, for the first time, that the role of unjust North-South dynamics is evident even in the environmental levels of minor trace elements and that the premise underlying attempts to solve the problem of e-waste dumped in Africa through recycling and disposal technology is in fact misleading. The influx of foreign electrical and electronic equipments should be controlled and limited by clearly defining what is a 'useful' second-hand device and what is e-waste; risks arising from device components or processing by-products should be managed differently, and scientific uncertainty and One Health thinking should be incorporated in risk assessment.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Environmental Engineering Laboratory, Department d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Turkey
| |
Collapse
|
2
|
Pizzorno J. Continuing the Conversation About Arsenic. Integr Med (Encinitas) 2024; 23:6-10. [PMID: 39114283 PMCID: PMC11302974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Chronic low-level arsenic exposure is a significant contributor to ill health and disease. However, at this time, quantification of the effects of this exposure appears virtually impossible. In a continuation of my editorial on arsenic published earlier this year, this editorial looks at arsenic's mechanisms of damage, more disease correlations, sources of exposure, and early signs for detection of arsenic toxicity.
Collapse
|
3
|
Pizzorno J. Time to Recognize and Address the Serious Arsenic Problem. Integr Med (Encinitas) 2024; 23:6-9. [PMID: 38618164 PMCID: PMC11007617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chronic low-level exposure to arsenic has a dose-dependent relationship with many chronic diseases. However, the typical arsenic safety standards used by governmental entities and laboratories appear inconsistent with current research. This editorial reviews the research and suggests that the random first-morning-urine total arsenic threshold for increased disease risk should be 5.0 μg/g creatinine or lower.
Collapse
|
4
|
Roh T, Regan AK, Johnson NM, Hasan NT, Trisha NF, Aggarwal A, Han D. Association of arsenic exposure with measles antibody titers in US children: Influence of sex and serum folate levels. ENVIRONMENT INTERNATIONAL 2024; 183:108329. [PMID: 38071850 DOI: 10.1016/j.envint.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Exposure to arsenic during childhood is associated with various adverse health conditions. However, little is known about the effect of arsenic exposure on vaccine-related humoral immunity in children. We analyzed data from the National Health and Nutrition Examination Survey (2003-2004 and 2009-2010) to study the relationship between urinary arsenic and measles antibody levels in 476 US children aged 6-11. Multivariable linear regression was used to evaluate the association, adjusting for cycle, age, race, body mass index (BMI), serum cotinine, poverty index ratio, and vitamin B12 and selenium intakes. Stratified analyses were conducted by sex and serum folate levels using the median as cutoff (18.7 ng/mL). The measles antibody concentrations in the 3rd and 4th quartiles were found to have significantly decreased by 28.5 % (95 % Confidence Interval (CI) -47.6, -2.28) and 36.8 % (95 % CI -50.2, -19.5), compared to the lowest quartile among boys with serum folate levels lower than 18.7 ng/ml. The serum measles antibody titers significantly decreased by 16.7 % (95 %CI -25.0, -7.61) for each doubling of creatinine-corrected urinary total inorganic arsenic concentrations in the same group. No associations were found in boys with high serum folate levels or in girls. Further prospective studies are needed to validate these findings and develop interventions to protect children from infectious diseases.
Collapse
Affiliation(s)
- Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA 94117, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nishat Tasnim Hasan
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nusrat Fahmida Trisha
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Anisha Aggarwal
- Department of Health Behavior, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
6
|
Sly PD, Trottier BA, Bulka CM, Cormier SA, Fobil J, Fry RC, Kim KW, Kleeberger S, Kumar P, Landrigan PJ, Lodrop Carlsen KC, Pascale A, Polack F, Ruchirawat M, Zar HJ, Suk WA. The interplay between environmental exposures and COVID-19 risks in the health of children. Environ Health 2021; 20:34. [PMID: 33771185 PMCID: PMC7996114 DOI: 10.1186/s12940-021-00716-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/07/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND An unusual feature of SARS-Cov-2 infection and the COVID-19 pandemic is that children are less severely affected than adults. This is especially paradoxical given the epidemiological links between poor air quality and increased COVID-19 severity in adults and that children are generally more vulnerable than adults to the adverse consequences of air pollution. OBJECTIVES To identify gaps in knowledge about the factors that protect children from severe SARS-Cov-2 infection even in the face of air pollution, and to develop a transdisciplinary research strategy to address these gaps. METHODS An international group of researchers interested in children's environmental health was invited to identify knowledge gaps and to develop research questions to close these gaps. DISCUSSION Key research questions identified include: what are the effects of SAR-Cov-2 infection during pregnancy on the developing fetus and child; what is the impact of age at infection and genetic susceptibility on disease severity; why do some children with COVID-19 infection develop toxic shock and Kawasaki-like symptoms; what are the impacts of toxic environmental exposures including poor air quality, chemical and metal exposures on innate immunity, especially in the respiratory epithelium; what is the possible role of a "dirty" environment in conveying protection - an example of the "hygiene hypothesis"; and what are the long term health effects of SARS-Cov-2 infection in early life. CONCLUSION A concerted research effort by a multidisciplinary team of scientists is needed to understand the links between environmental exposures, especially air pollution and COVID-19. We call for specific research funding to encourage basic and clinical research to understand if/why exposure to environmental factors is associated with more severe disease, why children appear to be protected, and how innate immune responses may be involved. Lessons learned about SARS-Cov-2 infection in our children will help us to understand and reduce disease severity in adults, the opposite of the usual scenario.
Collapse
Affiliation(s)
- Peter D Sly
- Children's Health and Environment Program, The University of Queensland, Brisbane, Australia
| | - Brittany A Trottier
- Superfund Research Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Durham, NC, 27709, USA
| | - Catherine M Bulka
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Stephania A Cormier
- LSU Superfund Research Program, Louisiana State University, Baton Rouge, USA
| | - Julius Fobil
- Department of Biological, Environmental and Occupational Health Science, University of Ghana, Accra, Ghana
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Kyoung-Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Steven Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, USA
| | | | - Philip J Landrigan
- Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, USA
| | - Karin C Lodrop Carlsen
- Division of Paediatric and Adolescent Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Antonio Pascale
- Department of Toxicology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | | | | | - Heather J Zar
- Dept of Paediatrics & Child Health and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - William A Suk
- Superfund Research Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Durham, NC, 27709, USA.
| |
Collapse
|
7
|
Quinete N, Hauser-Davis RA. Drinking water pollutants may affect the immune system: concerns regarding COVID-19 health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1235-1246. [PMID: 33156499 PMCID: PMC7644792 DOI: 10.1007/s11356-020-11487-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 05/12/2023]
Abstract
The current coronavirus pandemic is leading to significant impacts on the planet, changing our way of life. Although the COVID-19 virus mechanisms of action and pathogenesis are still under extensive research, immune system effects are evident, leading, in many cases, to respiratory distress. Although apparent pollution reduction has been noticed by the population, environmental and human health impacts due to the increased use of plastic waste and disinfectants is concerning. One of the main routes of human exposure to pollutants is through drinking water. Thus, this point of view discusses some major contaminants in drinking water known to be immunotoxic, exploring sources and drinking water routes and emphasizing the known mechanisms of action that could likely compromise the effective immune response of humans, particularly raising concerns regarding people exposed to the COVID-19 virus. Based on a literature review, metals, plastic components, plasticizers, and per- and polyfluoroalkyl substances may display the potential to exacerbate COVID-19 respiratory symptoms, although epidemiological studies are still required to confirm the synergistic effects between these pollutants and the virus.
Collapse
Affiliation(s)
- Natalia Quinete
- Institute of Environment & Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL, 33199, USA.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Av. Brazil, 4.365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
8
|
Freyer CW, Peterson CE, Man Y, Przespolewski A, Baron J, Luger SM. Herpes zoster during arsenic trioxide therapy for acute promyelocytic leukemia. Leuk Lymphoma 2020; 62:696-702. [PMID: 33106056 DOI: 10.1080/10428194.2020.1838507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Historically, arsenic exposure has been associated with herpes zoster (HZ) infection, however the risk is not well characterized in arsenic trioxide (ATO) treated patients with acute promyelocytic leukemia (APL). We aimed to characterize the risk of HZ in 112 ATO treated patients with APL with and without antiviral prophylaxis (AVP). HZ occurred in 13/112 (11.6%) within 6 months of completing ATO, including one case of HZ encephalitis. AVP reduced the incidence of HZ (17.5% vs. 4.1%, RR 0.24 [95% CI 0.05-1.0, p = .025]) with a number needed to treat of 7.7. HZ despite AVP occurred later than HZ in patients without AVP (7.8 vs. 2.3 months from starting ATO, p = .11). Older age and prior HZ increased the risk of HZ in patients not receiving AVP. Routine AVP should be considered in patients with APL receiving ATO, particularly in older patients and those with a history of HZ.
Collapse
Affiliation(s)
- Craig W Freyer
- Department of Pharmacy, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Chelsea E Peterson
- Department of Medicine, Leukemia Section. Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Yun Man
- Department of Pharmacy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Amanda Przespolewski
- Department of Medicine, Leukemia Section. Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jeffrey Baron
- Department of Pharmacy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Selina M Luger
- Department of Medicine, Hematology-Oncology Section, Perelman School of Medicine and the Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Welch BM, Branscum A, Geldhof GJ, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, Kile ML. Evaluating the effects between metal mixtures and serum vaccine antibody concentrations in children: a prospective birth cohort study. Environ Health 2020; 19:41. [PMID: 32276596 PMCID: PMC7146972 DOI: 10.1186/s12940-020-00592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/27/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Many populations are exposed to arsenic, lead, and manganese. These metals influence immune function. We evaluated the association between exposure to single and multiple metals, including arsenic, lead, and manganese, to humoral immunity as measured by antibody concentrations to diphtheria and tetanus toxoid among vaccinated Bangladeshi children. Additionally, we examined if this association was potentially mediated by nutritional status. METHODS Antibody concentrations to diphtheria and tetanus were measured in children's serum at age 5 (n = 502). Household drinking water was sampled to quantify arsenic (W-As) and manganese (W-Mn), whereas lead was measured in blood (B-Pb). Exposure samples were taken during pregnancy, toddlerhood, and early childhood. Multiple linear regression models (MLRs) with single or combined metal predictors were used to determine the association with antibody outcomes. MLR results were transformed to units of percent change in outcome per doubling of exposure to improve interpretability. Structural equation models (SEMs) were used to further assess exposure to metal mixtures. SEMs regressed a latent exposure variable (Metals), informed by all measured metal variables (W-As, W-Mn, and B-Pb), on a latent outcome variable (Antibody), informed by measured antibody variables (diphtheria and tetanus). Weight-for-age z-score (WFA) at age 5 was evaluated as a mediator. RESULTS Diphtheria antibody was negatively associated with W-As during pregnancy in MLR, but associations were attenuated after adjusting for W-Mn and B-Pb (- 2.9% change in diphtheria antibody per doubling in W-As, 95% confidence interval [CI]: - 7%, 1.5%). Conversely, pregnancy levels of B-Pb were positively associated with tetanus antibody, even after adjusting for W-As and W-Mn (13.3%, 95% CI: 1.7%, 26.3%). Overall, null associations were observed between W-Mn and antibody outcomes. Analysis by SEMs showed that the latent Metals mixture was significantly associated with the latent Antibody outcome (β = - 0.16, 95% CI: - 0.26, - 0.05), but the Metals variable was characterized by positive and negative loadings of W-As and B-Pb, respectively. Sex-stratified MLR and SEM analyses showed W-As and B-Pb associations were exclusive to females. Mediation by WFA was null, indicating Metals only had direct effects on Antibody. CONCLUSIONS We observed significant modulation of vaccine antibody concentrations among children with pregnancy and early life exposures to drinking water arsenic and blood lead. We found distinct differences by child sex, as only females were susceptible to metal-related modulations in antibody levels. Weight-for-age, a nutritional status proxy, did not mediate the association between the metal mixture and vaccine antibody.
Collapse
Affiliation(s)
- Barrett M. Welch
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
- Oregon Health and Sciences University, Portland, OR USA
| | - Adam Branscum
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - G. John Geldhof
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sharia M. Ahmed
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Ellen Smit
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Meghan Megowan
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | | | - Omar Sharif
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | | | | | - Molly L. Kile
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| |
Collapse
|
10
|
Parvez F, Akhtar E, Khan L, Haq MA, Islam T, Ahmed D, Eunus HEMM, Hasan AKMR, Ahsan H, Graziano JH, Raqib R. Exposure to low-dose arsenic in early life alters innate immune function in children. J Immunotoxicol 2019; 16:201-209. [PMID: 31703545 PMCID: PMC7041495 DOI: 10.1080/1547691x.2019.1657993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 01/06/2023] Open
Abstract
Early-life exposure to arsenic (As) increases risks of respiratory diseases/infections in children. However, data on the ability of the innate immune system to combat bacterial infections in the respiratory tracts of As-exposed children are scarce. To evaluate whether persistent low-dose As exposure alters innate immune function among children younger than 5 years-of-age, mothers and participating children (N = 51) that were members of the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in rural Bangladesh were recruited. Household water As, past and concurrent maternal urinary As (U-As) as well as child U-As were all measured at enrollment. In addition, U-As metabolites were evaluated. Innate immune function was examined via measures of cathelicidin LL-37 in plasma, ex vivo monocyte-derived-macrophage (MDM)-mediated killing of Streptococcus pneumoniae (Spn), and serum bactericidal antibody (SBA) responses against Haemophilus influenzae type b (Hib). Cyto-/chemokines produced by isolated peripheral blood mononuclear cells (PBMC) were assayed using a Multiplex system. Multivariable linear regression analyses revealed that maternal (p < 0.01) and child (p = 0.02) U-As were positively associated with plasma LL-37 levels. Decreased MDM-mediated Spn killing (p = 0.05) and SBA responses (p = 0.02) were seen to be each associated with fractions of mono-methylarsonic acid (MMA; a U-As metabolite) in the children. In addition, U-As levels were seen to be negatively associated with PBMC formation of fractalkine and IL-7, and positively associated with that for IL-13, IL-17 and MIP-1α. These findings suggested that early-life As exposure may disrupt the innate host defense pathway in these children. It is possible that such disruptions may have health consequences later in life.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Lamia Khan
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Md. Ahsanul Haq
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Tariqul Islam
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Dilruba Ahmed
- Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - HEM Mahbubul Eunus
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - AKM Rabiul Hasan
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, 5841 South Maryland Avenue, Chicago, IL
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| |
Collapse
|
11
|
Bozack AK, Cardenas A, Quamruzzaman Q, Rahman M, Mostofa G, Christiani DC, Kile ML. DNA methylation in cord blood as mediator of the association between prenatal arsenic exposure and gestational age. Epigenetics 2018; 13:923-940. [PMID: 30175652 PMCID: PMC6284783 DOI: 10.1080/15592294.2018.1516453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/06/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Prenatal arsenic exposure is associated with adverse birth outcomes and disease risk later in life, which could be mediated through epigenetic dysregulation. We evaluated the association between arsenic and gestational age (GA) that was mediated through DNA methylation (DNAm) using data from a Bangladeshi birth cohort. Arsenic exposure was measured in maternal drinking water at ≤16 weeks GA and maternal toenails collected ≤1 month postpartum. Cord blood DNAm was measured using Infinium HumanMethylation450 arrays (n = 44, discovery phase). Top loci identified in the discovery phase were then pyrosequenced in a second group (n = 569, validation phase). Structural equation models (SEM) evaluated the direct and indirect effects of arsenic and DNAm on GA. In the discovery phase, arsenic was associated with differential DNAm of 139 loci that were associated with GA (P < 1.10X10-6; |β regression|>0.10). Each doubling in water arsenic concentration decreased GA by 2 days, which was fully mediated through the main principal component of the top-ten CpGs (P < 0.001). In the validation phase, there were direct and indirect effects of miR214-3 and MCC DNAm on GA. In an adjusted SEM model, mediation of the association between arsenic and GA by miR124-3 was borderline significant (P = 0.061). This study therefore identified DNAm at specific loci in cord blood that mediated the effect of arsenic exposure on GA. Specifically, prenatal arsenic exposure was associated with lower methylation of miR124-3 that mediated the exposure-response of arsenic on GA. Future research should evaluate if these epigenetic changes are persistent and associated with disease risk.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Andres Cardenas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | | | | | | | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molly L. Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
12
|
Cardenas A, Smit E, Welch BM, Bethel J, Kile ML. Cross sectional association of arsenic and seroprevalence of hepatitis B infection in the United States (NHANES 2003-2014). ENVIRONMENTAL RESEARCH 2018; 166:570-576. [PMID: 29966877 PMCID: PMC9612408 DOI: 10.1016/j.envres.2018.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/08/2018] [Accepted: 06/11/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Arsenic alters immunological parameters including antibody formation and antigen-driven T-cell proliferation. OBJECTIVE We evaluated the cross-sectional relationship between urinary arsenic and the seroprevalence of hepatitis B (HBV) infection in the United States using data from six pooled cycles of the National Health and Nutrition Examination Survey (2003-2014, N = 12,447). METHODS Using serological data, participants were classified as susceptible, immune due to vaccination, or immune due to past natural infection. We used multinomial logistic regression to evaluate the association between urinary DMA and HBV classification. A sensitivity analysis using total urinary arsenic (TUA) was also conducted. Both DMA and TUA were adjusted for arsenobetaine using a residual regression method RESULTS: A 1-unit increase in the natural logarithm (ln) of DMA was associated with 40% greater adjusted odds of having immunity due to natural infection compared to being susceptible (Odds Ratio [aOR]: 1.40, 95% Confidence Intervals [CI] 1.15, 1.69), 65% greater odds of having immunity due to a natural infection (aOR: 1.65, 95% CI: 1.34, 2.04) and 18% greater odds of being susceptible (aOR: 1.18, 95% CI: 1.05, 1.33) compared to being immune due to vaccination after adjusting for creatinine, age, sex, race, income, country of birth, BMI, survey cycle, serum cotinine, recent seafood intake, and self-reported HBV immunization status. CONCLUSION In the U.S. general public, higher urinary arsenic levels were associated with a greater odds of having a serological classification consistent with a past natural hepatitis B infection after adjusting for other risk factors. Additionally, higher urinary arsenic levels were linked to a greater odds of not receiving hepatitis B vaccinations. Given the cross-sectional nature of this analysis, more research is needed to test the hypothesis that environmentally relevant exposure to arsenic modulates host susceptibility to hepatitis B virus.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, United States
| | - Ellen Smit
- Oregon State University, College of Public Health and Human Sciences, 101 Milam Hall, Corvallis, OR 97331, United States
| | - Barrett M Welch
- Oregon State University, College of Public Health and Human Sciences, 101 Milam Hall, Corvallis, OR 97331, United States
| | - Jeff Bethel
- Oregon State University, College of Public Health and Human Sciences, 101 Milam Hall, Corvallis, OR 97331, United States
| | - Molly L Kile
- Oregon State University, College of Public Health and Human Sciences, 101 Milam Hall, Corvallis, OR 97331, United States.
| |
Collapse
|
13
|
Elevated Arsenic Exposure Is Associated with an Increased Risk of Chronic Hepatitis B Virus Infection: NHANES (2003-2014) in U.S. Adults. Curr Med Sci 2018; 38:610-617. [PMID: 30128869 DOI: 10.1007/s11596-018-1921-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/09/2018] [Indexed: 12/28/2022]
Abstract
Studies concerning the association between arsenic exposure and hepatitis B virus (HB V) infection have been lacking. The present study aimed to examine the association between total urinary arsenic (TUA) and infection of HBV. A total of 5186 participants from National Health and Nutrition Examination Survey (NHANES) 2003-2014 were included in the analysis. We used logistic regression to evaluate the association. We defined two measures of TUA. TUAI was the sum of arsenous acid, arsenicacid, monomethylarsonic acid and dimethylarsenic acid. TUA2 was defined as TUA minus arsenobetaine and arsenocholine. The results showed that the weighted overall prevalence of HBV infection was 6.08%. For NHANES 2003-2014, the medians (interquartile range) of TUAI and TUA2 were 5.60 μg/L (3.97-8.09 μg/L) and 4.91 μg/L (2.36-9.11 μg/L), respectively. Comparing the highest quartile to the lowest quartile after multivariable adjustment showed that the odds ratios (ORs) and 95% confidence intervals (CIs) for TUAI and TUA2 were 2.44 (1.40-4.27) and 2.84 (1.60-5.05), respectively. In conclusion, elevated urinary arsenic was associated with the risk of HBV infection. Further studies, especially prospective studies, are needed to confirm the causal relationship between arsenic exposure and HBV infection.
Collapse
|
14
|
|
15
|
Affiliation(s)
- Greta Lindenmayer
- From the Department of Medicine, Royal Darwin Hospital (G.L., J.B., D.H., H.F.), and the Menzies School of Health Research (H.F.), Darwin, NT, the Department of Emergency Medicine, Royal Perth Hospital, Perth, WA (K.H.), and the Western Australian Poison Information Centre, Nedlands, and the New South Wales Poisons Information Centre, Westmead (K.H.) - all in Australia; and the Departments of Endocrinology, Metabolism and Diabetes, and Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (H.F.)
| | - Kerry Hoggett
- From the Department of Medicine, Royal Darwin Hospital (G.L., J.B., D.H., H.F.), and the Menzies School of Health Research (H.F.), Darwin, NT, the Department of Emergency Medicine, Royal Perth Hospital, Perth, WA (K.H.), and the Western Australian Poison Information Centre, Nedlands, and the New South Wales Poisons Information Centre, Westmead (K.H.) - all in Australia; and the Departments of Endocrinology, Metabolism and Diabetes, and Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (H.F.)
| | - Jim Burrow
- From the Department of Medicine, Royal Darwin Hospital (G.L., J.B., D.H., H.F.), and the Menzies School of Health Research (H.F.), Darwin, NT, the Department of Emergency Medicine, Royal Perth Hospital, Perth, WA (K.H.), and the Western Australian Poison Information Centre, Nedlands, and the New South Wales Poisons Information Centre, Westmead (K.H.) - all in Australia; and the Departments of Endocrinology, Metabolism and Diabetes, and Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (H.F.)
| | - Diane Howard
- From the Department of Medicine, Royal Darwin Hospital (G.L., J.B., D.H., H.F.), and the Menzies School of Health Research (H.F.), Darwin, NT, the Department of Emergency Medicine, Royal Perth Hospital, Perth, WA (K.H.), and the Western Australian Poison Information Centre, Nedlands, and the New South Wales Poisons Information Centre, Westmead (K.H.) - all in Australia; and the Departments of Endocrinology, Metabolism and Diabetes, and Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (H.F.)
| | - Henrik Falhammar
- From the Department of Medicine, Royal Darwin Hospital (G.L., J.B., D.H., H.F.), and the Menzies School of Health Research (H.F.), Darwin, NT, the Department of Emergency Medicine, Royal Perth Hospital, Perth, WA (K.H.), and the Western Australian Poison Information Centre, Nedlands, and the New South Wales Poisons Information Centre, Westmead (K.H.) - all in Australia; and the Departments of Endocrinology, Metabolism and Diabetes, and Molecular Medicine and Surgery, Karolinska Institutet, Stockholm (H.F.)
| |
Collapse
|
16
|
Welch B, Smit E, Cardenas A, Hystad P, Kile ML. Trends in urinary arsenic among the U.S. population by drinking water source: Results from the National Health and Nutritional Examinations Survey 2003-2014. ENVIRONMENTAL RESEARCH 2018; 162:8-17. [PMID: 29272814 PMCID: PMC5811395 DOI: 10.1016/j.envres.2017.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND In 2001, the United States revised the arsenic maximum contaminant level for public drinking water systems from 50µg/L to 10µg/L. This study aimed to examine temporal trends in urinary arsenic concentrations in the U.S. population from 2003 to 2014 by drinking water source among individuals aged 12 years and older who had no detectable arsenobetaine - a biomarker of arsenic exposure from seafood intake. METHODS We examined data from 6 consecutive cycles of the National Health and Nutrition Examination Survey (2003-2014; N=5848). Total urinary arsenic (TUA) was calculated by subtracting arsenobetaine's limit of detection and detectable arsenocholine from total arsenic. Additional sensitivity analyses were conducted using a second total urinary arsenic index (TUA2, calculated by adding arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid). We classified drinking water source using 24-h dietary questionnaire data as community supply (n=3427), well or rain cistern (n=506), and did not drink tap water (n=1060). RESULTS Geometric means (GM) of survey cycles were calculated from multivariate regression models adjusting for age, gender, race/ethnicity, BMI, income, creatinine, water source, type of water consumed, recent smoking, and consumption of seafood, rice, poultry, and juice. Compared to 2003-2004, adjusted TUA was 35.5% lower in 2013-2014 among the general U.S. POPULATION Stratified analysis by smoking status indicated that the trend in lower TUA was only consistent among non-smokers. Compared to 2003-2004, lower adjusted TUA was observed in 2013-2014 among non-smoking participants who used community water supplies (1.98 vs 1.16µg/L, p<0.001), well or rain cistern users (1.54 vs 1.28µg/L, p<0.001) and who did not drink tap water (2.24 vs 1.53µg/L, p<0.001). Sensitivity analyses showed consistent results for participants who used a community water supplier and to a lesser extent those who did not drink tap water. However, the sensitivity analysis showed overall exposure stayed the same or was higher among well or rain cistern users. Finally, the greatest decrease in TUA was among participants within the highest exposure percentiles (e.g. 95th percentile had 34% lower TUA in 2013/2014 vs 2003/2004, p<0.001). CONCLUSIONS Overall, urinary arsenic levels in the U.S. population declined over a 12-year period that encompassed the adoption of the revised Arsenic Rule. The most consistent trends in declining exposure were observed among non-smoking individuals using public community water systems. These results suggest regulation and prevention strategies to reduce arsenic exposures in the U.S. may be succeeding.
Collapse
Affiliation(s)
- Barrett Welch
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA.
| | - Ellen Smit
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Andres Cardenas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
17
|
Frediani JK, Naioti EA, Vos MB, Figueroa J, Marsit CJ, Welsh JA. Arsenic exposure and risk of nonalcoholic fatty liver disease (NAFLD) among U.S. adolescents and adults: an association modified by race/ethnicity, NHANES 2005-2014. Environ Health 2018; 17:6. [PMID: 29334960 PMCID: PMC5769436 DOI: 10.1186/s12940-017-0350-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/28/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND While associated with obesity, the cause of the rapid rise in prevalence of nonalcoholic fatty liver disease (NAFLD) in children, which is highest among Hispanics, is not well understood. Animal experiments have demonstrated that arsenic exposure contributes to liver injury. Our objective was to examine the association between arsenic exposure and NAFLD in humans and to determine if race/ethnicity modifies the association. METHODS Urinary inorganic arsenic concentrations among those ≥12 years in the National Health and Nutrition Examination Survey, 2005-2014 were used to assess the cross-sectional association with serum alanine aminotransferase (ALT) levels, a marker of liver dysfunction. We excluded high alcohol consumers (>4-5 drinks/day; n = 939), positive hepatitis B or C (n = 2330), those missing body mass index (n = 100) and pregnant women (n = 629) for a final sample of 8518. Arsenic was measured using liquid chromatography coupled with mass spectrometry and ALT was measured using standard methods. Sampling weights were used to obtain national estimates. Due to lack of normality, estimates were log transformed and are presented as geometric means. Logistic regression models controlling for age, sex, income, and weight category estimate adjusted odd ratios (aOR) of elevated ALT by quartile of arsenic and tested for effect modification by race/ethnicity and weight. Elevated ALT was defined as >25 IU/L and >22 IU/L for boys and girls ≤17 years, respectively and >30 IU/L and >19 IU/L for men and women, respectively. RESULTS Among all, aOR of elevated ALT were higher among those in the highest vs. lowest arsenic quartile (referent), 1.4 (95% confidence interval [CI]: 1.1, 1.7) with a borderline significant interaction (p = 0.07) by race/ethnicity but not weight (p = 0.4). In analysis stratified by race/ethnicity, aOR of elevated ALT among those in the 4th quartile were higher among Mexican Americans, 2.0 (CI: 1.3, 3.1) and non-Hispanic whites only, aOR 1.4 (CI: 1.1, 1.8) despite the fact that obesity prevalence was highest among non-Hispanic blacks. CONCLUSIONS Our findings demonstrate a positive association between urinary arsenic exposure and risk of NAFLD among U.S. adolescents and adults that is highest among Mexican Americans and among those obese, regardless of race/ethnicity.
Collapse
Affiliation(s)
| | - Eric A. Naioti
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Miriam B. Vos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA USA
| | - Janet Figueroa
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Jean A. Welsh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA USA
- Wellness Department, Children’s Healthcare of Atlanta, Atlanta, GA USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity-including the specific mechanisms in humans-is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. RECENT FINDINGS The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines.
Collapse
|
19
|
Bulka CM, Mabila SL, Lash JP, Turyk ME, Argos M. Arsenic and Obesity: A Comparison of Urine Dilution Adjustment Methods. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087020. [PMID: 28858828 PMCID: PMC5783631 DOI: 10.1289/ehp1202] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 05/18/2023]
Abstract
INTRODUCTION A commonly used approach to adjust for urine dilution in analyses of biomarkers is to adjust for urinary creatinine. However, creatinine is a product of muscle mass and is therefore associated with body mass. In studies of urinary analytes and obesity or obesity-related outcomes, controlling for creatinine could induce collider stratification bias. We illustrate this phenomenon with an analysis of urinary arsenic. OBJECTIVE We aimed to evaluate various approaches of adjustment for urinary dilution on the associations between urinary arsenic concentration and measures of obesity. METHODS Using data from the National Health and Nutrition Examination Survey, we regressed body mass index (BMI) and waist-to-height ratios on urinary arsenic concentrations. We compared eight approaches to account for urine dilution, including standardization by urinary creatinine, osmolality, and flow rates, and inclusion of these metrics as independent covariates. We also used a recently proposed method known as covariate-adjusted standardization. RESULTS Inverse associations between urinary arsenic concentration with BMI and waist-to-height ratio were observed when either creatinine or osmolality were used to standardize or as covariates. Not adjusting for dilution, standardizing or adjusting for urinary flow rate, and using covariate-adjusted standardization resulted in null associations observed between arsenic concentration in relation to BMI and waist-to-height ratio. CONCLUSIONS Our findings suggest that arsenic exposure is not associated with obesity, and that urinary creatinine and osmolality may be colliders on the causal pathway from arsenic exposure to obesity, as common descendants of hydration and body composition. In studies of urinary biomarkers and obesity or obesity-related outcomes, alternative metrics such as urinary flow rate or analytic strategies such as covariate-adjusted standardization should be considered. https://doi.org/10.1289/EHP1202.
Collapse
Affiliation(s)
- Catherine M Bulka
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago , Chicago, Illinois, USA
- Institute for Minority Health Research, Section of General Internal Medicine, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois, USA
| | - Sithembile L Mabila
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago , Chicago, Illinois, USA
| | - James P Lash
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois, USA
| | - Mary E Turyk
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago , Chicago, Illinois, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago , Chicago, Illinois, USA
| |
Collapse
|
20
|
Crinnion W. Arsenic: The Underrecognized Common Disease-inducing Toxin. Integr Med (Encinitas) 2017; 16:8-13. [PMID: 30881231 PMCID: PMC6413640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Arsenic toxicity is far more of a clinical problem than commonly recognized. At least 10% of the public water supplies contain levels of arsenic known to increase risk of many chronic diseases, such as cardiovascular disease, many cancers, peripheral neuropathy, and diabetes. Some parts of the country have very high arsenic levels, but because fewer than half of all private and public water supplies have been tested for this common toxin, those drinking or consuming food grown with such water will likely not be aware of their exposure. Several key single nucleotide polymorphisms (SNPs) and methylation deficits can significantly increase a patient's susceptibility to arsenic toxicity. Reduction of arsenic toxicity starts, of course, with avoidance. This means evaluation of water contamination, avoidance of rice and chicken unless tested, cleaning up any old pressure treated wood in the environment, and other precautions. Excretion, neutralization, and protection from damage are facilitated through optimizing methylation processes and the use of natural health products such as turmeric and green tea, and liberally consuming cabbage family foods.
Collapse
|
21
|
Cardenas A, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, Wright RO, Christiani DC, Kile ML. In utero arsenic exposure and epigenome-wide associations in placenta, umbilical artery, and human umbilical vein endothelial cells. Epigenetics 2016; 10:1054-63. [PMID: 26646901 DOI: 10.1080/15592294.2015.1105424] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to arsenic early in life has been associated with increased risk of several chronic diseases and is believed to alter epigenetic programming in utero. In the present study, we evaluate the epigenome-wide association of arsenic exposure in utero and DNA methylation in placenta (n = 37), umbilical artery (n = 45) and human umbilical vein endothelial cells (HUVEC) (n = 52) in a birth cohort using the Infinium HumanMethylation450 BeadChip array. Unadjusted and cell mixture adjusted associations for each tissue were examined along with enrichment analyses relative to CpG island location and omnibus permutation tests of association among biological pathways. One CpG in artery (cg26587014) and 4 CpGs in placenta (cg12825509; cg20554753; cg23439277; cg21055948) reached a Bonferroni adjusted level of significance. Several CpGs were differentially methylated in artery and placenta when controlling the false discovery rate (q-value<0.05), but none in HUVEC. Enrichment of hypomethylated CpG islands was observed for artery while hypermethylation of open sea regions were present in placenta relative to prenatal arsenic exposure. The melanogenesis pathway was differentially methylated in artery (Max F P < 0.001), placenta (Max F P < 0.001), and HUVEC (Max F P = 0.02). Similarly, the insulin-signaling pathway was differentially methylated in artery (Max F P = 0.02), placenta (Max F P = 0.02), and HUVEC (Max F P = 0.02). Our results show that prenatal arsenic exposure can alter DNA methylation in artery and placenta but not in HUVEC. Further studies are needed to determine if these alterations in DNA methylation mediate the effect of prenatal arsenic exposure and health outcomes later in life.
Collapse
Affiliation(s)
- Andres Cardenas
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR USA
| | - E Andres Houseman
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR USA
| | | | | | | | | | - Robert O Wright
- d Preventative Medicine and Pediatrics; Mt Sinai School of Medicine ; New York , NY USA
| | | | - Molly L Kile
- a School of Biological and Population Health Sciences; College of Public Health and Human Sciences; Oregon State University ; Corvallis , OR USA
| |
Collapse
|
22
|
Srivastava RK, Li C, Wang Y, Weng Z, Elmets CA, Harrod KS, Deshane JS, Athar M. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions. Toxicol Appl Pharmacol 2016; 308:46-58. [PMID: 27461142 PMCID: PMC5978774 DOI: 10.1016/j.taap.2016.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/06/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4(+/+) wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4(+/-) heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca(++) homeostasis. ATO induces Ca(++)-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca(++) homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic.
Collapse
Affiliation(s)
- Ritesh K Srivastava
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changzhao Li
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiping Weng
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig A Elmets
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
CARDENAS A, SMIT E, BETHEL JW, HOUSEMAN EA, KILE ML. Arsenic exposure and the seroprevalence of total hepatitis A antibodies in the US population: NHANES, 2003-2012. Epidemiol Infect 2016; 144:1641-51. [PMID: 26739255 PMCID: PMC4855991 DOI: 10.1017/s0950268815003088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022] Open
Abstract
We evaluated the association between urinary arsenic and the seroprevalence of total hepatitis A antibodies (total anti-HAV: IgG and IgM) in 11 092 participants aged ⩾6 years using information collected in the US National Health and Nutrition Examination Survey (2003-2012). Multivariate logistic regression models evaluated associations between total anti-HAV and total urinary arsenic defined as the sum of arsenite, arsenate, monomethylarsonate and dimethylarsinate (TUA1). Effect modification by self-reported HAV immunization status was evaluated. Total anti-HAV seroprevalence was 35·1% [95% confidence interval (CI) 33·3-36·9]. Seropositive status was associated with higher arsenic levels and this association was modified by immunization status (P = 0·03). For participants that received ⩾2 vaccine doses or did not know if they had received any doses, a positive dose-response association was observed between increasing TUA1 and odds of total anti-HAV [odds ratio (OR) 1·42, 95% CI 1·11-1·81; and OR 1·75, 95% CI 1·22-2·52], respectively. A positive but not statistically significant association was observed in those who received <2 doses (OR 1·46, 95% CI 0·83-2·59) or no dose (OR 1·12, 95% CI 0·98-1·30). Our analysis indicates that prevalent arsenic exposure was associated with positive total anti-HAV seroprevalence. Further studies are needed to determine if arsenic increases the risk for incident hepatitis A infection or HAV seroconversion.
Collapse
Affiliation(s)
- A. CARDENAS
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - E. SMIT
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - J. W. BETHEL
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - E. A. HOUSEMAN
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - M. L. KILE
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
24
|
Krueger WS, Wade TJ. Elevated blood lead and cadmium levels associated with chronic infections among non-smokers in a cross-sectional analysis of NHANES data. Environ Health 2016; 15:16. [PMID: 26864738 PMCID: PMC4750187 DOI: 10.1186/s12940-016-0113-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/04/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Experimental animal studies, in vitro experiments, and clinical assessments have shown that metal toxicity can impair immune responses. We analyzed data from a United States representative National Health and Nutrition Examination Survey (NHANES) to explore associations between chronic infections and elevated blood concentrations of lead and cadmium among non-smoking NHANES participants. METHODS NHANES data from 1999 to 2012 were examined and weighted to represent the United States population. Multivariable logistic regression was used to estimate adjusted odds ratios (AOR) and 95 % confidence intervals (CI) for heavy metal associations with seropositivity for Helicobacter pylori, Toxoplasma gondii, and Hepatitis B virus (HBV) infections. RESULTS Available 2-year survey cycles for infection seroprevalence varied by pathogen, from 1 to 7 cycles. Available sample size, disease seroprevalence, and participant age range also varied by pathogen of interest. After controlling for demographic characteristics and general health condition, an elevated blood lead level above the survey population median was significantly associated with seropositivity for all three pathogens (AORs = 1.2-1.5). In addition, an elevated blood cadmium level above the median was significantly associated with HBV (AOR = 1.5; 95 % CI = 1.2-2.0) and H. pylori (AOR = 1.5; 95 % CI = 1.2-1.7) seropositivity. Age-specific analyses for H. pylori and T. gondii indicated stronger associations among children under 13 years of age, particularly for lead exposure and H. pylori seropositivity, and weaker associations among those over 35 years of age. CONCLUSIONS The results of this cross-sectional human health survey suggest that the immunological effects of lead and cadmium toxicity may be associated with an increased susceptibility to chronic infections.
Collapse
Affiliation(s)
- Whitney S Krueger
- RTI Health Solutions, 3040 Cornwallis Road, Post Office Box 12194, Research Triangle Park, NC, 27709-2194, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, USA
| | - Timothy J Wade
- United States Environmental Protection Agency, Office of Research and Development, National Health & Environmental Effects Research Laboratory, Environmental Public Health Division, Chapel Hill, NC, 27514, USA.
| |
Collapse
|