1
|
Rocchi R, Castellani F, Salini R, Salucci S, Tieri EE, Scortichini G, Tora S, Coccaro A, Cocco A, Colombo M, Menozzi A, López MP, D'Alterio N, Amorena M, Merola C, Petrini A. One Health approach and tiered strategy to assess anticoagulant rodenticides exposure in red foxes (Vulpes vulpes) from Central Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126403. [PMID: 40348272 DOI: 10.1016/j.envpol.2025.126403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Anticoagulant rodenticides (ARs) are widely used in urban and agricultural areas to control rodent populations, leading to potential exposure of non-target species like red foxes (Vulpes vulpes). However, data on AR exposure in red foxes in Italy remain limited. This study analyzed 92 red fox liver samples for residues of ten ARs, categorizing concentrations into five groups to assess potential toxicological risks. The data were also compared with the CORINE Land Cover dataset and correlated with infectious and parasitic diseases, including respiratory and intestinal infections. Residues of at least one AR were found in 46 of 92 samples (50 %), with 25 % containing one AR, 20 % containing two, and 5 % containing three. Second-generation anticoagulant rodenticides (SGARs) were more prevalent than first-generation anticoagulants (FGARs), detected in 47.9 % of the samples. Positive samples were primarily from agricultural areas but were also found in urban settings. The concentrations observed suggest potential biological and toxicological risks, with a significant correlation between ARs and respiratory parasitic infections. This study confirms the exposure of Italian red foxes to ARs and highlights the need for integrated risk mitigation strategies to protect humans, animals, and environmental health.
Collapse
Affiliation(s)
- Rachele Rocchi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Federica Castellani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Stefania Salucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Elga Ersilia Tieri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Giampiero Scortichini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Susanna Tora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Antonio Coccaro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Mariasole Colombo
- Department of Veterinary Medicine, University of Teramo, 64100, Teramo, Italy
| | - Alice Menozzi
- Department of Veterinary Medicine, University of Teramo, 64100, Teramo, Italy
| | - Marcos Pérez López
- Toxicology Area, Faculty of Veterinary Medicine, University of Extremadura, Avda de la Universidad s/n, Cáceres, 10003, Spain
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Michela Amorena
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Carmine Merola
- Department of Veterinary Medicine, University of Teramo, 64100, Teramo, Italy.
| | - Antonio Petrini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| |
Collapse
|
2
|
Gorbould AF, Burnham QF, Lohr MT, Koenders A. Detection of Vkorc1 single nucleotide polymorphisms indicates the presence of anticoagulant rodenticide resistance in Australia's introduced rats †. PEST MANAGEMENT SCIENCE 2025. [PMID: 40448375 DOI: 10.1002/ps.8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/24/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND Anticoagulant rodenticides (ARs) are used globally to manage pest rodent populations. However, resistance to ARs in target rodent populations challenges pest control efforts and can increase risks to nontarget species. Resistance is frequently associated with nonsynonymous single nucleotide polymorphisms (nsSNPs) in the Vkorc1 gene, and this study carried out the first Vkorc1 survey of introduced rats on the Australian mainland. RESULTS We identified three species of introduced rat using the cytochrome b gene across Brisbane, Melbourne, Perth and Sydney: Rattus rattus (Linnaeus 1758) (Lineage I); Rattus norvegicus (Berkenhout 1769); and Rattus tanezumi (Temminck 1844) (Lineage II). Three nsSNPs were detected in the Vkorc1 gene: Tyr25Phe, Trp59Arg and Phe55Ile. The mutation Tyr25Phe, which is associated with resistance to ARs, was identified in 58 of 108 R. rattus (53.7%) and one of 31 R. tanezumi (3.2%). It has been suggested that the mutation Trp59Arg (detected in two R. rattus) can increase susceptibility to haemorrhage, whereas the mutation Phe55Ile (identified in only one R. rattus) has not been reported previously. No nsSNPs were identified in R. norvegicus. CONCLUSION This is the first update to the resistance status of introduced rats on the Australian mainland since the 1970s and the first to employ genetic screening. The widespread occurrence of Tyr25Phe in urbanized areas of Australia suggests potential resistance to ARs is common in R. rattus. However, practical resistance conferred by Tyr25Phe needs further investigation as does the role of hybridization in the transfer of resistance from the R. rattus to the R. tanezumi nuclear genome. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alicia F Gorbould
- Conservation and Biodiversity Research Centre, School of Science, Edith Cowan University, Joondalup, Australia
| | - Quinton F Burnham
- Conservation and Biodiversity Research Centre, School of Science, Edith Cowan University, Joondalup, Australia
| | - Michael T Lohr
- Conservation and Biodiversity Research Centre, School of Science, Edith Cowan University, Joondalup, Australia
- BirdLife Australia, Melbourne, Australia
| | - Annette Koenders
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
3
|
Chansiripornchai P, Hunprasit V, Techangamsuwan S. First report on the occurrence of anticoagulant rodenticides toxicosis in nontarget animals in Thailand. BMC Vet Res 2025; 21:337. [PMID: 40350410 PMCID: PMC12066049 DOI: 10.1186/s12917-025-04789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Anticoagulant rodenticides (ARs) are widely used worldwide to control rodent populations, yet their toxicity to nontarget animal species, such as dogs and cats, raises significant concerns. Until now, there has been no information about the occurrence status of ARs toxicosis in Thailand. This study presents occurrence data on ARs poisoning in animal specimens analysed at the Department of Veterinary Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Thailand. Data from January 1, 2018, to December 31, 2023, was collected retrospectively, focusing on confirmed ARs intoxication cases identified through chemical analysis using thin-layer chromatography (TLC) and spectrophotometry methods. Detailed information on animal species, ages, sex, and types of animal specimens analysed was included. RESULTS During the study period, 35 cases (63.6%) out of 55 tested positive for ARs. Dogs accounted for 77.1% of the ARs-positive cases. Notably, specimens from wild animals and exotic pets, including a turkey, a wild boar, a goose, and three Patagonian mara, were also tested positive for ARs poisoning. Both liver and stomach content specimens showed high agreement in ARs detection, suggesting the potential utility of stomach content analysis alongside liver specimens, which has not been previously reported. CONCLUSIONS This retrospective study underscores the risk of ARs toxicosis in nontarget species. TLC and spectrophotometry methods serve as reliable screening tools for confirming ARs intoxication diagnosis. This study provided a reference for future research on the epidemiology on ARs toxicosis among nontarget species.
Collapse
Affiliation(s)
- Piyarat Chansiripornchai
- Department of Veterinary Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Henri - Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Vachira Hunprasit
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Henri - Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri - Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Henri - Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
4
|
Mehta S, Booth L, Hunter S, Jolly M, Gartrell BD. Suspected brodifacoum poisoning in tuatara ( Sphenodon punctatus). N Z Vet J 2025:1-7. [PMID: 40319479 DOI: 10.1080/00480169.2025.2491498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/03/2025] [Indexed: 05/07/2025]
Abstract
CASE HISTORY Between June 2017 and April 2019, three captive tuatara from a zoological facility in the South Island of New Zealand were found unwell and admitted to veterinary care. One other tuatara from the same facility was found dead from misadventure in May 2019. CLINICAL FINDINGS All three unwell tuatara showed clinical signs of lethargy, mucous membrane pallor, and dehydration, with haematoma formation/swelling in dependent parts of the body. Fine needle aspiration and cytology of the swellings showed common features of peripheral blood, with variable other cytological findings. Haematology confirmed marked anaemia in Case 1 (PCV 5%; reference range 22-53%) and Case 2 (PCV 1%) and suspected mild anaemia in Case 3 (PCV 27%). Case 1 died 6 weeks after initial presentation, whereas Cases 2 and 3 died soon after presentation. PATHOLOGICAL FINDINGS Post-mortem examination showed general pallor of soft tissues in the three tuatara with clinical signs of coagulopathy. There was haemorrhage in the bladder wall of Case 1, while Cases 2 and 3 had haematomas (subcutaneous in Case 2 and peri-oesophageal in Case 3). The pathological diagnosis in Case 4 was death by asphyxiation following burrow collapse. Retrospective analysis showed brodifacoum was present in liver tissue at a concentration of 0.26 mg/kg in Case 3, and in skeletal muscle tissue at concentrations of 0.019 mg/kg in Case 2 and 0.035 mg/kg in the non-clinical case (Case 4). DIAGNOSIS The clinical signs and post-mortem findings were consistent with anticoagulant poisoning in three tuatara, and tissue concentrations of brodifacoum demonstrated exposure in three animals, including one animal with no clinical signs of coagulopathy (Case 4). Definitive diagnosis was prevented, however, by inconsistent toxicology testing and a limited understanding of toxicity thresholds in reptiles in general, and tuatara specifically. CLINICAL RELEVANCE This case series suggests that tuatara are susceptible to anticoagulant poisoning and this has implications for both the captive management of tuatara, and also the use of rodenticides in tuatara habitat, such as offshore islands and mainland sanctuaries.
Collapse
Affiliation(s)
- S Mehta
- Wildbase, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - L Booth
- Toxicology Laboratory, Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - S Hunter
- Wildbase, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - M Jolly
- Wildbase, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - B D Gartrell
- Wildbase, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Crawford C, Rand J, Forge O, Rohlf V, Bennett P, Scotney R. Feline Farmhands: The Value of Working Cats to Australian Dairy Farmers-A Case for Tax Deductibility. Animals (Basel) 2025; 15:800. [PMID: 40150329 PMCID: PMC11939270 DOI: 10.3390/ani15060800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Rodents play a role in the spread of disease and cause immense damage to produce and infrastructure, leading to food safety risks and economic losses for farmers. Farmers typically control rodent populations using rodenticide baits, which are expensive, and, when used incorrectly, are inefficient, and pose a risk to children, pets and wildlife. Cats may offer a safer, more efficient and cheaper option for farmers, but concerns for cats' impact on wildlife and possible negative outcomes for their own welfare may lead to them being underutilized. Through semi-structured interviews with 15 people from 9 dairy farms in two regions, we explored the value cats have to dairy farmers and the perceived impact of the Australian Tax Office making working cat care tax deductible. The data gathered during interviews indicated that uncontrolled rodent populations have a detrimental impact on dairy farms and showed that farmers valued having cats due to their efficiency in pest control, monetary savings and companionship. They struggled to cover the cost of cat care, however, particularly costs like sterilization and vaccination, which are necessary to enhance cat welfare and protect native wildlife from diseases and cat overpopulation. Our findings demonstrate that dairy farmers value the working cats on their farms for rodent control. Allowing cat care to be tax deductible may enable farmers to provide care such as sterilization, vaccination and food, potentially improving farmers' wellbeing and cat welfare whilst reducing cats' impact on wildlife. It is strongly recommended that relevant industry bodies gather additional evidence from both dairy and other types of farming operations, and if results are consistent with the findings from our study, they lobby state and federal governments to consider that cats kept on farms for rodent control be considered tax deductible as they are in the US and UK and are also exempt from state cat registration and permit costs as working dogs are in Australia.
Collapse
Affiliation(s)
- Caitlin Crawford
- Australian Pet Welfare Foundation, Kenmore, QLD 4069, Australia;
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Jacquie Rand
- Australian Pet Welfare Foundation, Kenmore, QLD 4069, Australia;
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Olivia Forge
- The Far South Coast Branch, Animal Welfare League New South Wales, Bega, NSW 2550, Australia;
| | - Vanessa Rohlf
- School of Psychology and Public Health, La Trobe University, Bendigo, VIC 3552, Australia; (V.R.); (P.B.)
| | - Pauleen Bennett
- School of Psychology and Public Health, La Trobe University, Bendigo, VIC 3552, Australia; (V.R.); (P.B.)
| | - Rebekah Scotney
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| |
Collapse
|
6
|
Crawford C, Rand J, Forge O, Rohlf V, Bennett P, Scotney R. A Purr-Suasive Case for Sterilization: How Sterilizing Working Cats Supports Dairy Farmers' Wellbeing, Improves Animal Welfare, and Benefits the Environment. Animals (Basel) 2025; 15:766. [PMID: 40150295 PMCID: PMC11939496 DOI: 10.3390/ani15060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Rodents on farms are a substantial issue due to the damage they cause to produce and infrastructure, and the risk they pose to food safety. As a result, farmers need to control rodent populations around farms. In a previous study, farmers indicated a preference for working cats, stating that they are a more efficient, safer, and cheaper alternative to rodenticide baits, and they provide companionship. However, farmers' options for managing cat populations are often limited to lethal methods because of time and financial constraints. Through semi-structured interviews, this study explored the impacts of lethal cat management methods on farmers, their experience with a free cat sterilization program, and their views on a Barn Cat Program, whereby healthy stray cats would be vaccinated, sterilized, and made available to farmers. Our results indicated that farmers had a relationship with the cats on their farms and that using lethal methods to manage these cats had a negative impact on farmers' wellbeing. Farmers supported the free cat sterilization program, as it reduced the cat population and their impact on wildlife, improved cat behavior and welfare, and benefited farmers. Farmers also generally supported a Barn Cat Program and gave suggestions on how best to promote it to other farmers. Funding should be provided for cat sterilization programs, as they support farmers, who value cats for rodent control and companionship, improve cat behavior and welfare, and reduce working cat populations and their impact on wildlife.
Collapse
Affiliation(s)
- Caitlin Crawford
- Australian Pet Welfare Foundation, Kenmore, QLD 4069, Australia;
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Jacquie Rand
- Australian Pet Welfare Foundation, Kenmore, QLD 4069, Australia;
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Olivia Forge
- The Far South Coast Branch, Animal Welfare League New South Wales, Bega, NSW 2550, Australia;
| | - Vanessa Rohlf
- School of Psychology and Public Health, La Trobe University, Bendigo, VIC 3552, Australia; (V.R.); (P.B.)
| | - Pauleen Bennett
- School of Psychology and Public Health, La Trobe University, Bendigo, VIC 3552, Australia; (V.R.); (P.B.)
| | - Rebekah Scotney
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| |
Collapse
|
7
|
Colston K, Rooney NJ, Cherbanich N, Logunleko M, Grande JM, Bueno I. Pesticides and veterinary pharmaceuticals in neotropical avian carnivores: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178795. [PMID: 39946884 DOI: 10.1016/j.scitotenv.2025.178795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Organic contaminants have long been known to have negative consequences for wildlife health. For avian carnivores, particular concern surrounds the use of compounds such as pesticides and pharmaceutical drugs, derived from global agricultural and veterinary practices. Previous cases of avian poisoning in North America, Europe and Asia have received great attention, owing to significant declines in avian populations and wider consequences. By contrast, the Neotropics, comprised of Latin America and the Caribbean, has received relatively little attention, despite an extensive agricultural sector and uniquely high avian biodiversity. To evaluate the available evidence on this topic, a scoping review on the effects of agriculturally derived organic contaminants on Neotropical avian carnivores was conducted. Articles from seven databases were screened using exclusion criteria. Of these, 206 primary research articles published since 1965 were identified, investigating 144 compounds in 83 species. Findings indicate substantial knowledge gaps, particularly in observational studies conducted within the Neotropics. Whilst cross-sectional studies were fairly well-represented, with transitions towards less-invasive sampling methods, there were few longitudinal studies, raising concerns of undetected chronic exposure in Neotropical populations. Multiple avian taxonomic families were underrepresented, including globally recognized sentinel species - the osprey and barn owl, as were pharmaceutical drugs in comparison to pesticides. There was a large geographical bias in observational study location, with no research outputs identified from most Neotropical countries. Further research in the Neotropics is required to better understand the pervasiveness of contaminants in native populations, along with improving our understanding of their precise consequences on avian carnivore health.
Collapse
Affiliation(s)
- Kane Colston
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom.
| | - Nicola J Rooney
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom.
| | - Nick Cherbanich
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom.
| | - Mariam Logunleko
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom; Department of Animal Physiology, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Juan M Grande
- Colaboratorio de Biodiversidad, Ecología y Conservación, (INCITAP-CONICET-UNLPam/FCEyN-UNLPam), Uruguay 151 (6300), Santa Rosa, LP, Argentina
| | - Irene Bueno
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom.
| |
Collapse
|
8
|
Fritsch C, Berny P, Crouzet O, Le Perchec S, Coeurdassier M. Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2893-2955. [PMID: 38639904 DOI: 10.1007/s11356-024-33026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.
Collapse
Affiliation(s)
- Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France
| | - Philippe Berny
- UR-ICE, Vetagro Sup, Campus Vétérinaire, 69280, Marcy L'étoile, France
| | - Olivier Crouzet
- Direction de La Recherche Et de L'Appui Scientifique, Office Français de La Biodiversité, Site de St-Benoist, 78610, Auffargis, France
| | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France.
| |
Collapse
|
9
|
Ares AM, Bernal J, Toribio L. Simultaneous separation of the enantiomers of six anticoagulant rodenticides using chiral supercritical fluid chromatography-mass spectrometry. J Chromatogr A 2025; 1741:465600. [PMID: 39708527 DOI: 10.1016/j.chroma.2024.465600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The simultaneous separation of the enantiomers of six anticoagulant rodenticides, derived from 4-hydroxycoumarin, has been studied in this work. Ten different stationary phases (zwitterionic, Pirkle-type, polysaccharides and macrocyclic antibiotics derivatives) were evaluated by using supercritical fluid chromatography coupled to two different detectors (circular dichroism and mass spectrometry-single quadrupole). The effect of the type of organic modifier and temperature on the chiral separation was investigated, and the best results were obtained with the column Regis S,S-Whelk-O1 at 25 °C when using a gradient elution program with methanol as organic modifier. Considering detection, the highest sensitivity was obtained with the single quadrupole mass spectrometry detector. Under these conditions, eighteen stereoisomers were baseline resolved within 18 min. It should be also mentioned that the columns Chiralpak AS-H, Lux Cellulose-2, Chiralpak AD and Chiralpak Zwix (+) provided also good results for the enantiomeric separation of some individual compounds.
Collapse
Affiliation(s)
- Ana M Ares
- I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Dept. Analytical Chemistry, Faculty of Sciences, University of Valladolid 47011, Valladolid, Spain
| | - José Bernal
- I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Dept. Analytical Chemistry, Faculty of Sciences, University of Valladolid 47011, Valladolid, Spain
| | - Laura Toribio
- I. U. CINQUIMA, Analytical Chemistry Group (TESEA), Dept. Analytical Chemistry, Faculty of Sciences, University of Valladolid 47011, Valladolid, Spain.
| |
Collapse
|
10
|
Spadetto L, Gómez-Ramírez P, León-Ortega M, Zamora-López A, Díaz-García S, Zamora-Marín JM, Tecles-Vicente F, Pardo-Marín L, Fenoll J, Calvo JF, García-Fernández AJ. Exploring anticoagulant rodenticide exposure and effects in eagle owl (Bubo bubo) nestlings from a Mediterranean semiarid region. ENVIRONMENTAL RESEARCH 2025; 264:120382. [PMID: 39551374 DOI: 10.1016/j.envres.2024.120382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Anticoagulant rodenticides (ARs) are widely used for pest control, resulting in their pervasive presence in the environment and posing significant toxicological risks to a range of predatory and scavenging species. Our study mainly aimed to evaluate AR exposure and effects in nestlings of eagle owl (Bubo bubo) from the Region of Murcia (southeastern Spain). We analysed ARs in blood samples (n = 106) using high-performance liquid chromatography-triple quadrupole (HPLC-TQ), assessed the influence of potential anthropogenic (presence of livestock farms, landfills and human population density) and environmental (land uses and proximity to watercourses) variables, and measured prothrombin time (PT) and plasma biochemical parameters as biomarkers of effects. Our results showed the presence of AR residues in 91.5% of the nestlings, with 70.8% exhibiting multiple ARs (up to six compounds in a single individual). Second-generation ARs (SGARs) were the most prevalent compounds. The analysis of biochemical parameters indicated that the sampled individuals were in good physiological condition. Although PT was positively correlated with total AR concentration (ΣARs), the relationship was not significant (Rho = 0.04; p = 0.49). Regarding environmental factors, higher ΣARs were associated with the most urbanised study site and the presence of landfills, likely due to the increased availability of rodent prey. The prevalence of two SGARs (brodifacoum and difenacoum) was linked to closer proximity to riverbeds, suggesting a contamination pathway associated with inland aquatic ecosystems, where these AR compounds may concentrate due to water scarcity. This study underscores the widespread exposure of eagle owls to ARs and highlights the importance of effective monitoring and management of these pollutants to protect conservation-concern wildlife in Mediterranean semiarid regions.
Collapse
Affiliation(s)
- Livia Spadetto
- Area of Toxicology, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain
| | - Pilar Gómez-Ramírez
- Area of Toxicology, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | - Antonio Zamora-López
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Sarah Díaz-García
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain
| | - Fernando Tecles-Vicente
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Luis Pardo-Marín
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | |
Collapse
|
11
|
Picone M, Volpi Ghirardini A, Piazza R, Bonato T. First evidence of the suitability of hair for assessing wildlife exposure to anticoagulant rodenticides (ARs). ENVIRONMENTAL RESEARCH 2025; 264:120302. [PMID: 39510232 DOI: 10.1016/j.envres.2024.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Anticoagulant rodenticides (ARs) are potent pesticides acting as vitamin K epoxide reductase inhibitors causing haemorrhaging or external bleeding from orifices and/or skin lesions in intoxicated rodents. However, their non-selective mode of action makes them particularly harmful for non-target wildlife, which may be exposed to ARs via ingestion of AR-containing baits (primary exposure), feeding on AR-intoxicated rodents and carrions (secondary exposure), consuming AR-contaminated necrophagous species (tertiary exposure), and exposure to surface waters receiving baited sewer systems and ARs from outdoor-placed traps after heavy rain events. In the present study, we assessed the suitability of hairs as a non-invasive matrix for monitoring the possible exposure of mammals to ARs with a focus on the first-generation anticoagulant rodenticides (FGARs) warfarin, coumatetralyl, and chlorophacinone and the second-generation anticoagulant rodenticides (SGARs) brodifacoum, bromadiolone, difenacoum, flocoumafen, and difethialone. The Red fox (n = 24) was selected as the species representing the potentially exposed non-target wildlife in a littoral area of Northern Italy along the Adriatic coast (Cavallino-Treporti municipality). Half (n = 12) of the analysed hair samples were positive for at least one of the targeted ARs, with a higher prevalence of SGARs (n = 11; 46%) compared to FGARs (n = 1; 4%). The most frequently quantified ARs were brodifacoum (25%), difethialone (13%), and flocoumafen (13%), with concentrations ranging from 0.08 ng g-1 (difethialone) to 0.96 ng g-1 (brodifacoum). These data documented that a relevant part of the Red foxes living in the study area were exposed to ARs and, most importantly, provided the first evidence that hair residues can be used as a non-invasive matrix for assessing the possible exposure of mammals to ARs.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy.
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy; Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042 EsteItaly
| |
Collapse
|
12
|
Martín Cruz B, Rial Berriel C, Acosta Dacal A, Carromeu-Santos A, Simbaña-Rivera K, Gabriel SI, Pastor Tiburón N, González González F, Fernández Valeriano R, Henríquez-Hernández LA, Zumbado-Peña M, Luzardo OP. Differential exposure to second-generation anticoagulant rodenticides in raptors from continental and insular regions of the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125034. [PMID: 39341407 DOI: 10.1016/j.envpol.2024.125034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The global impact of anticoagulant rodenticides (ARs) on non-target species is well-recognized. Birds of prey, as apex predators, are highly vulnerable to AR exposure and are widely used as biomonitors for priority pollutants in Europe. This study investigates differential SGAR exposure in raptors from insular versus continental regions, hypothesizing greater exposure in insular areas due to ecological factors like reduced prey diversity, intensive rodenticide use, and resistant rodent populations. We analyzed the livers of 190 common kestrels (Falco tinnunculus) and 104 common buzzards (Buteo buteo) across the Iberian Peninsula and its archipelagos using LC-MS/MS to assess their role as AR sentinels and the differences between insular and continental areas. Results revealed a high prevalence (>80%) of second-generation anticoagulant rodenticides (SGARs), with brodifacoum and bromadiolone, being the most frequent. Multiple SGAR detections were also common (≈50%). A binomial logistic regression showed that species and region significantly influence the likelihood of SGAR exposure. Kestrels had a greater probability of exceeding 100 ng/g wet weight (ww) compared to buzzards. Raptors from insular territories were ten times more likely to have higher SGAR concentrations than those from continental areas. However, the legal restriction on SGAR bait concentrations that came into effect in 2018 did not significantly impact exposure levels. This study highlights the need for targeted conservation efforts to mitigate AR exposure risk in vulnerable island ecosystems.
Collapse
Affiliation(s)
- Beatriz Martín Cruz
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain.
| | - Cristian Rial Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain
| | - Andrea Acosta Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain
| | - Ana Carromeu-Santos
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Katherine Simbaña-Rivera
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Centro de Investigación para la Salud en América Latina (CISeAL), Facultad de Medicina, Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador
| | - Sofia I Gabriel
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Natalia Pastor Tiburón
- Group of Rehabilitation of the Autochtonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain
| | - Fernando González González
- Group of Rehabilitation of the Autochtonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain; Departmental Section of Pharmacology and Toxicology, Faculty of Veterinary Science, Universidad Complutense de Madrid, 28020, Madrid, Spain
| | - Rocío Fernández Valeriano
- Group of Rehabilitation of the Autochtonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain
| | - Manuel Zumbado-Peña
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria, 35016, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, 28029, Spain
| |
Collapse
|
13
|
Spadetto L, García-Fernández AJ, Zamora-López A, Zamora-Marín JM, León-Ortega M, Tórtola-García M, Tecles-Vicente F, Fenoll-Serrano J, Cava-Artero J, Calvo JF, Gómez-Ramírez P. Comparing anticoagulant rodenticide exposure in barn owl (Tyto alba) and common kestrel (Falco tinnunculus): A biomonitoring study in an agricultural region of southeastern Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124944. [PMID: 39265762 DOI: 10.1016/j.envpol.2024.124944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Second-generation anticoagulant rodenticides (SGARs) are commonly used for rodent control, affecting various non-target wildlife species. Here, blood samples from common kestrels (Falco tinnunculus, n = 70 chicks) and barn owls (Tyto alba, n = 54 chicks and 12 adults) from Southeastern Spain were analysed using HPLC-TQ. SGAR prevalence was 68.6% in kestrel chicks, 50% in barn owl chicks and 100% in adult barn owls, with multiple SGARs in both species. Prothrombin time analysis in barn owls revealed a positive correlation with blood ΣSGARs, suggesting a potential adverse effect on coagulation. Analysis of variables potentially influencing SGAR prevalence indicated that, for kestrels, it was only related to the extent of artificial surface, showing no differences across study sites. In owlets, the highest prevalence occurred in the most urbanized study site, with human population density being a key factor. This study highlights species-specific differences in SGAR exposure, likely influenced by ecological traits. Barn owls probably encounter contaminated prey near anthropized areas, with widespread SGAR use and higher presence of target rodents. Conversely, kestrels, hunting a variety of prey often near human settlements, face consistently elevated exposure from multiple sources. Understanding these variations is crucial for effective conservation and minimizing SGAR impact on non-target wildlife.
Collapse
Affiliation(s)
- Livia Spadetto
- Toxicology Research Group, Faculty of Veterinary, IMIB-Pascual Parrilla, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Antonio Juan García-Fernández
- Toxicology Research Group, Faculty of Veterinary, IMIB-Pascual Parrilla, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain.
| | - Antonio Zamora-López
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100, Murcia, Spain
| | | | - Fernando Tecles-Vicente
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - José Fenoll-Serrano
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - Juana Cava-Artero
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Pilar Gómez-Ramírez
- Toxicology Research Group, Faculty of Veterinary, IMIB-Pascual Parrilla, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
14
|
Wang X, Ma X, Qin M, Sun T, Wang D, Li N, Liu X, Jing M, Wang D, Song Y. Vkorc1 polymorphisms of the Norway rats in China: Implications for rodent management and evolutionary origin of anticoagulant resistance mutations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176445. [PMID: 39317256 DOI: 10.1016/j.scitotenv.2024.176445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The extensive utilization of second-generation anticoagulant rodenticides (SGARs) has raised concerns regarding non-target animal safety and environmental contamination. It is essential to assess the anticoagulant resistance level in rodent populations and prioritize the use of relative low toxic first-generation anticoagulant rodenticides (FGARs) in susceptible rodent populations. Mutations in the vitamin K epoxide reductase complex subunit 1 (Vkorc1) gene confer anticoagulant resistance in Norway rats. However, the Vkorc1 polymorphisms remain unclear in most Norway rat populations in China although anticoagulant rodenticides have been widely used in China since the 1980s. Analysis of the Vkorc1 polymorphisms in 489 rats across China, combined with in silico binding affinity analysis, revealed three potential resistance mutations A26T, C96Y, and A140T at three distinct locations. In the remaining locations, Vkorc1 resistance mutations were absent, indicating that the FGARs could be effective in these areas. Additional evolutionary analysis of different Vkorc1 mutations suggested that the three missense mutations identified in China might have evolved independently as de novo mutations, and the resistance mutations in Europe are unlikely to be pre-existing variations in China. Further analysis of Vkorc1 haplotypes among European resistant rat populations is essential for understanding the origin of these resistance mutations. These findings emphasize the importance of customizing rodent control strategies in China based on regional resistance levels and gaining insights into the origins of Vkorc1 mutations for more effective rodent management strategies.
Collapse
Affiliation(s)
- Xiuhui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Xiaohui Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meng Qin
- National Agro-Tech Extension and Service Center, Beijing 100125, China
| | - Ting Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; West Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meidong Jing
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Deng Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Buckley JY, Murray MH, de la Sancha NU, Fidino M, Byers KA, Fyffe R, Magle S. Widespread exposure to anticoagulant rodenticides among common urban mesopredators in Chicago. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175883. [PMID: 39222805 DOI: 10.1016/j.scitotenv.2024.175883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Anticoagulant rodenticides (ARs) are currently the most common method to control rats in cities, but these compounds also cause morbidity and mortality in non-target wildlife. Little attention has been focused on AR exposure among mesopredators despite their ecological role as scavengers and prey for larger carnivores, thus serving as an important bridge in the biomagnification of rodenticides in food webs. In this study, we sampled liver tissue from raccoons (Procyon lotor; n = 37), skunks (Mephitis mephitis; n = 15), and Virginia opossums (Didelphis virginiana; n = 45) euthanized by pest professionals and brown rats (Rattus norvegicus; n = 101) trapped in alleys in Chicago, USA to evaluate how often these species are exposed to ARs. We tested whether mesopredators had a higher prevalence of ARs and to more AR compounds compared to rats and calculated biomagnification factors (mean concentration in mesopredators/rats) as indicators of biomagnification. Of 93 sampled mesopredators, 100 % were exposed to at least one AR compound, mainly brodifacoum (≥80 %), and 79 % were exposed to multiple AR compounds. We also documented teal stomach contents consistent with the consumption of rat bait and altricial young tested positive to the same AR as their mother, suggesting mammary transfer. Of the 101 rats, 74 % tested positive to at least one AR compound and 32 % were exposed to multiple AR compounds. All mesopredator species had biomagnification factors exceeding 1.00 for brodifacoum (6.57-29.07) and bromadiolone (1.08-4.31). Our results suggest widespread exposure to ARs among urban mesopredators and biomagnification of ARs in mesopredators compared to rats. Policies that limit AR availability to non-target species, such as restricting the sale and use of ARs to licensed professionals in indoor settings, education on alternatives, and more emphasis on waste management may reduce health risks for urban wildlife and people in cities around the world.
Collapse
Affiliation(s)
- Jacqueline Y Buckley
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA
| | - Maureen H Murray
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA.
| | - Noé U de la Sancha
- Department of Environmental Science and Studies, DePaul University, Chicago, IL, USA; Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, IL, USA
| | - Mason Fidino
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA
| | - Kaylee A Byers
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Pacific Institute on Pathogens, Pandemics, and Society, Simon Fraser University, Burnaby, British Columbia, Canada; Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
| | | | - Seth Magle
- Dept. of Conservation and Science, Urban Wildlife Institute, Lincoln Park Zoo, 2001 N Clark St, 60614 Chicago, IL, USA
| |
Collapse
|
16
|
Szapu JS, Cserkész T, Pirger Z, Kiss C, Lanszki J. Exposure to anticoagulant rodenticides in steppe polecat (Mustela eversmanii) and European polecat (Mustela putorius) in central Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174282. [PMID: 38960164 DOI: 10.1016/j.scitotenv.2024.174282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Poisoning caused by coumarin-type anticoagulant rodenticides (ARs) stands as the predominant method for controlling rodents globally. ARs, through secondary poisoning, pose a significant threat to predators due to their lethal and sublethal effects. We examined the concentration of accumulated ARs in liver samples of mostly road-killed steppe polecats (Mustela eversmanii) and European polecats (M. putorius) collected throughout Hungary between 2005 and 2021. The steppe polecat samples were found mainly from Eastern Hungary, while European polecats from Western Hungary. We measured the concentration of six residues by HPLC-FLD. Our analysis revealed the presence of one first-generation and four second-generation ARs in 53% of the steppe polecat (36) and 39% of the European polecat (26) samples. In 17 samples we detected the presence of at least two AR compounds. Although we did not find significant variance in AR accumulation between the two species, steppe polecats displayed greater prevalence and maximum concentration of ARs, whereas European polecat samples exhibited a more diverse accumulation of these compounds. Brodifacoum and bromadiolone were the most prevalent ARs; the highest concentrations were 0.57 mg/kg and 0.33 mg/kg, respectively. The accumulation of ARs was positively correlated with human population density and negatively correlated with the extent of the more natural habitats in both species. To the best of our knowledge, this is the first study to demonstrate anticoagulant rodenticide exposure in steppe polecats globally, and for European polecats in Central European region. Although the extent of AR accumulation in European polecat in Hungary appears comparatively lower than in many other European countries, the issue of secondary poisoning remains a serious problem as these ARs intrude into food webs. Reduced and more prudent usage of pesticides would provide several benefits for wildlife, included humans. However, we advocate a prioritization of ecosystem services through the complete prohibition of the toxicants.
Collapse
Affiliation(s)
- Julianna Szulamit Szapu
- Doctoral School of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary.
| | - Tamás Cserkész
- Hungarian Natural History Museum, Baross utca 13, 1088 Budapest, Hungary.
| | - Zsolt Pirger
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kunó utca 3, 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, Balaton Limnological Research Institute, Klebelsberg Kunó utca 3, 8237 Tihany, Hungary.
| | - Csaba Kiss
- Department of Zoology, Institute of Biology, Eszterházy Károly Catholic University, Eszterházy tér 1, 3300 Eger, Hungary.
| | - József Lanszki
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kunó utca 3, 8237 Tihany, Hungary; Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Guba Sándor út 40, 7400 Kaposvár, Hungary.
| |
Collapse
|
17
|
Le Souëf A, Lohr M, Vaughan-Higgins R, Wood K, Coiacetto F. Second-Generation Anticoagulant Rodenticide Toxicosis in a Wild Carnaby's Cockatoo ( Zanda latirostris). J Avian Med Surg 2024; 38:162-166. [PMID: 39405215 DOI: 10.1647/avianms-d-24-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
A wild male Carnaby's cockatoo (Zanda latirostris) was presented to a veterinary hospital after falling from a tree. The bird showed few clinical signs during the first days of hospitalization. On Day 4, the cockatoo showed excessive hemorrhage at a venipuncture site, epistaxis, and significant anemia (packed cell volume, 15%). The cockatoo was euthanized due to ongoing blood loss, weakness, and inappetence. Liver concentrations of brodifacoum (0.439 mg/kg wet weight) and difenacoum (0.033 mg/kg wet weight) had a total anticoagulant rodenticide concentration of 0.472 mg/kg wet weight and were above the threshold for toxicity for many avian species. To the authors' knowledge, this is the first time that anticoagulant rodenticide intoxication has been identified in a wild Australian psittacine species.
Collapse
Affiliation(s)
- Anna Le Souëf
- Perth Zoo, Veterinary Department, South Perth, Western Australia 6151, Australia,
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia 6151, Australia
| | - Michael Lohr
- SLR Consulting, Subiaco, Western Australia 6008, Australia
| | - Rebecca Vaughan-Higgins
- Perth Zoo, Veterinary Department, South Perth, Western Australia 6151, Australia
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia 6151, Australia
| | - Katrina Wood
- Perth Zoo, Veterinary Department, South Perth, Western Australia 6151, Australia
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia 6151, Australia
| | - Flaminia Coiacetto
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia 6151, Australia
| |
Collapse
|
18
|
Gu X, Wu D, Zhang Z, Peng G, Ni A, Wang B, Xiong X, Liu Y, Wang L. Public Attitudes towards and Management Strategies for Community Cats in Urban China. Animals (Basel) 2024; 14:2301. [PMID: 39199835 PMCID: PMC11350748 DOI: 10.3390/ani14162301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Managing community cats in urban China is a contentious and emerging issue, with debates centering on the most effective and humane approaches. This study aimed to investigate public attitudes towards community cats and various management strategies. A survey was conducted involving 5382 urban residents in China. Their attitudes towards the positive and negative roles of community cats in urban areas and their support for different management methods were examined, including trap-and-kill, taking no action, centralized management, and trap-neuter-return (TNR) and its variations. Results indicated that 63% of participants were willing to coexist with community cats, 71% opposed trap-and-kill, and 61% agreed or strongly agreed with the TNR method and its variations. Older residents or those with higher incomes were more likely to support coexistence with community cats. In contrast, younger or lower-income residents were more likely to support non-coexistence. Residents in first- or second-tier cities (e.g., Beijing, Hangzhou, and Jinan Cities in China) were more inclined to support trap-and-kill and less likely to support coexistence than their counterparts in fourth-tier cities (e.g., county-level cities in China). Moreover, those with lower education or incomes were more supportive of trap-and-kill and taking no action as the methods to manage community cats than those with relatively higher education or incomes. Those with higher incomes held more positive attitudes towards community cats and were more supportive of TNR and its variations than their counterparts with lower incomes. Males were more inclined to support trap-and-kill and taking no action and less inclined to support centralized management and TNR than females. The implications of the findings on TNR with adoption programs in urban China are discussed. These novel findings underscore the need for targeted educational campaigns to promote humane and effective management strategies, addressing public concerns and community cats' welfare. The study's insights are critical for informing policy and improving community cat management in urban China.
Collapse
Affiliation(s)
- Xuan Gu
- Department of Social Work, School of Philosophy and Social Development, Shandong University, Jinan 250100, China; (A.N.); (X.X.); (Y.L.); (L.W.)
- Center for Animal Protection Studies, Shandong University, Jinan 250100, China; (D.W.); (Z.Z.); (G.P.); (B.W.)
| | - Di Wu
- Center for Animal Protection Studies, Shandong University, Jinan 250100, China; (D.W.); (Z.Z.); (G.P.); (B.W.)
- Department of Sociology, Hohai University, Nanjing 210024, China
| | - Zilin Zhang
- Center for Animal Protection Studies, Shandong University, Jinan 250100, China; (D.W.); (Z.Z.); (G.P.); (B.W.)
| | - Guo Peng
- Center for Animal Protection Studies, Shandong University, Jinan 250100, China; (D.W.); (Z.Z.); (G.P.); (B.W.)
- Department of Philosophy, School of Philosophy and Social Development, Shandong University, Jinan 250100, China
| | - Anru Ni
- Department of Social Work, School of Philosophy and Social Development, Shandong University, Jinan 250100, China; (A.N.); (X.X.); (Y.L.); (L.W.)
- Center for Animal Protection Studies, Shandong University, Jinan 250100, China; (D.W.); (Z.Z.); (G.P.); (B.W.)
| | - Bo Wang
- Center for Animal Protection Studies, Shandong University, Jinan 250100, China; (D.W.); (Z.Z.); (G.P.); (B.W.)
- School of Education, Shandong Women’s University, Jinan 250300, China
| | - Xiufan Xiong
- Department of Social Work, School of Philosophy and Social Development, Shandong University, Jinan 250100, China; (A.N.); (X.X.); (Y.L.); (L.W.)
| | - Yujie Liu
- Department of Social Work, School of Philosophy and Social Development, Shandong University, Jinan 250100, China; (A.N.); (X.X.); (Y.L.); (L.W.)
| | - Li Wang
- Department of Social Work, School of Philosophy and Social Development, Shandong University, Jinan 250100, China; (A.N.); (X.X.); (Y.L.); (L.W.)
| |
Collapse
|
19
|
Scammell K, Cooke R, Yokochi K, Carter N, Nguyen H, White JG. The missing toxic link: Exposure of non-target native marsupials to second-generation anticoagulant rodenticides (SGARs) suggest a potential route of transfer into apex predators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173191. [PMID: 38740216 DOI: 10.1016/j.scitotenv.2024.173191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Anticoagulant rodenticides (ARs) are used globally to control rodent pests. Second-generation anticoagulant rodenticides (SGARs) persist in the liver and pose a significant risk of bioaccumulation and secondary poisoning in predators, including species that do not generally consume rodents. As such, there is a clear need to understand the consumption of ARs, particularly SGARs, by non-target consumers to determine the movement of these anticoagulants through ecosystems. We collected and analysed the livers from deceased common brushtail possums (Trichosurus vulpecula) and common ringtail possums (Pseudocheirus peregrinus), native Australian marsupials that constitute the main diet of the powerful owl (Ninox strenua), an Australian apex predator significantly exposed to SGAR poisoning. ARs were detected in 91 % of brushtail possums and 40 % of ringtail possums. Most of the detections were attributed to SGARs, while first-generation anticoagulant rodenticides (FGARs) were rarely detected. SGAR concentrations were likely lethal or toxic in 42 % of brushtail possums and 4 % of ringtail possums with no effect of age, sex, or weight detected in either species. There was also no effect of the landscape type possums were from, suggesting SGAR exposure is ubiquitous across landscapes. The rate of exposure detected in these possums provides insight into the pathway through which ARs are transferred to one of their key predators, the powerful owl. With SGARs entering food-webs through non-target species, the potential for bioaccumulation and broader secondary poisoning of predators is significantly greater and highlights an urgent need for routine rodenticide testing in non-target consumers that present as ill or found deceased. To limit their impact on ecosystem stability the use of SGARs should be significantly regulated by governing agencies.
Collapse
Affiliation(s)
- Kieran Scammell
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Raylene Cooke
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia.
| | - Kaori Yokochi
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Nicholas Carter
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Hao Nguyen
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne 3207, Vic., Australia
| | - John G White
- Deakin University, Geelong School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| |
Collapse
|
20
|
Kobylarz D, Paprotny Ł, Wianowska D, Gnatowski M, Jurowski K. Silent Bird Poisoning in Poland: Reconfirmation of Bromadiolone and Warfarin as the Proximal Causes Using GC-MS/MS-Based Methodology for Forensic Investigations. Pharmaceuticals (Basel) 2024; 17:764. [PMID: 38931431 PMCID: PMC11206662 DOI: 10.3390/ph17060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The extensive use of rodenticides poses a severe threat to non-target species, particularly birds of prey and scavengers. In this study, a GC-MS/MS-based method was used to unlock the cause of bird deaths in Poland. Organs (liver, heart, kidney, and lungs) collected during autopsies of two rooks (Corvus frugilegus) and one carrion crow (Corvus corone corone), as well as fecal samples, were analyzed for the presence of anticoagulant coumarin derivatives, i.e., warfarin and bromadiolone. As for warfarin, the highest concentration was found in crow samples overall, with concentrations in the feces and lungs at 5.812 ± 0.368 µg/g and 4.840 ± 0.256 µg/g, respectively. The heart showed the lowest concentration of this compound (0.128 ± 0.01 µg/g). In the case of bromadiolone, the highest concentration was recorded in the liver of a rook (16.659 ± 1.499 µg/g) and this concentration significantly exceeded the levels in the other samples. By revealing the reality of the threat, these discoveries emphasize the need to regulate and monitor the trade in rodenticides.
Collapse
Affiliation(s)
- Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Łukasz Paprotny
- Center Shim-pol Company, ul. Lubomirskiego 5, 05-080 Izabelin, Poland
| | - Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland
| | - Maciej Gnatowski
- Research and Development Centre, ALAB Laboratories, ul. Ceramiczna 1, 20-150 Lublin, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
21
|
Fusi F, Saponara S, Brimble MA, Rennison D, Hopkins B, Bova S. The Enigma of Norbormide, a Rattus-Selective Toxicant. Cells 2024; 13:788. [PMID: 38727324 PMCID: PMC11083043 DOI: 10.3390/cells13090788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Norbormide (NRB) is a Rattus-selective toxicant, which was serendipitously discovered in 1964 and formerly marketed as an eco-friendly rodenticide that was deemed harmless to non-Rattus species. However, due to inconsistent efficacy and the emergence of second-generation anticoagulants, its usage declined, with registration lapsing in 2003. NRBs' lethal action in rats entails irreversible vasoconstriction of peripheral arteries, likely inducing cardiac damage: however, the precise chain of events leading to fatality and the target organs involved remain elusive. This unique contractile effect is exclusive to rat arteries and is induced solely by the endo isomers of NRB, hinting at a specific receptor involvement. Understanding NRB's mechanism of action is crucial for developing species-selective toxicants as alternatives to the broad-spectrum ones currently in use. Recent research efforts have focused on elucidating its cellular mechanisms and sites of action using novel NRB derivatives. The key findings are as follows: NRB selectively opens the rat mitochondrial permeability transition pore, which may be a factor that contributes to its lethal effect; it inhibits rat vascular KATP channels, which potentially controls its Rattus-selective vasoconstricting activity; and it possesses intracellular binding sites in both sensitive and insensitive cells, as revealed by fluorescent derivatives. These studies have led to the development of a prodrug with enhanced pharmacokinetic and toxicological profiles, which is currently undergoing registration as a novel efficacious eco-sustainable Rattus-selective toxicant. The NRB-fluorescent derivatives also show promise as non-toxic probes for intracellular organelle labelling. This review documents in more detail these developments and their implications.
Collapse
Affiliation(s)
- Fabio Fusi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy;
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Margaret A. Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (M.A.B.); (D.R.)
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (M.A.B.); (D.R.)
| | - Brian Hopkins
- Manaaki-Whenua–Landcare Research, Canterbury Agriculture and Science Centre, 76 Gerald Street, Lincoln 7608, New Zealand;
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via 8 Febbraio 2, 35122 Padova, Italy;
| |
Collapse
|
22
|
Paulin MV, Bray S, Laudhittirut T, Paulin J, Blakley B, Snead E. Anticoagulant rodenticide toxicity in dogs: A retrospective study of 349 confirmed cases in Saskatchewan. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2024; 65:496-503. [PMID: 38694735 PMCID: PMC11017940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Objective To evaluate the signalment and clinical, laboratory, treatment, and outcome features of dogs diagnosed with anticoagulant rodenticide (AR) intoxication in Saskatchewan. Animals We studied 349 dogs. Procedure Medical records from the Veterinary Medical Centre (Saskatoon, Saskatchewan) between 1999 and 2022 were reviewed. Cases were included if they met at least 1 of the following criteria: owner witnessed the dog ingesting an AR; AR was seen in the vomitus when emesis was induced; the dog had clinical signs of coagulopathy, with elevation of PT ± aPTT that normalized after vitamin K1 therapy, in the presence of appropriate clinical and paraclinical data and the absence of other causes of hypocoagulable state determined by the primary clinician. Results Fifty-three percent of cases were seen between July and October. Most dogs (61%) came from an urban setting. Ninety-two percent of dogs ingested a 2nd-generation AR and the most frequent toxin was bromadiolone. Clinical signs were reported in 30% of AR intoxications and included lethargy (86%), dyspnea (55%), and evidence of external hemorrhage (44%). The most common site of hemorrhage was the pleural space, accounting for 43% of hemorrhage sites. Consumptive thrombocytopenia was reported in 24% of dogs with evidence of AR-induced hemorrhage, with moderate (platelet count < 60 K/μL) and marked (< 30 K/μL) thrombocytopenia in 7/12 and 2/12 dogs, respectively. Blood products were administered to 84% of dogs with AR-induced hemorrhage; the most common product administered was fresh frozen plasma (56% of cases). Among dogs with AR-induced hemorrhage, those that received blood products were more likely to survive to discharge (81%) compared to those that did not (19%) (P = 0.017). Eighty-six percent of dogs with AR-induced hemorrhage survived to discharge. Conclusion and clinical relevance The pleural space was the most common site of hemorrhage. Moderate thrombocytopenia was a common finding. Eighty-six percent of dogs with AR-induced hemorrhage survived to discharge.
Collapse
Affiliation(s)
- Mathieu Victor Paulin
- Department of Small Animal Clinical Sciences (MV Paulin, Laudhittirut, Snead) and Department of Veterinary Biomedical Sciences (Blakley), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Alpine Animal Hospital, 10 H Keenleyside Street, Winnipeg, Manitoba R2L 2B9 (Bray); VCA Central Animal Hospital, 106 103 Street East Saskatoon, Saskatchewan S7N 1Y7 (J Paulin)
| | - Samantha Bray
- Department of Small Animal Clinical Sciences (MV Paulin, Laudhittirut, Snead) and Department of Veterinary Biomedical Sciences (Blakley), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Alpine Animal Hospital, 10 H Keenleyside Street, Winnipeg, Manitoba R2L 2B9 (Bray); VCA Central Animal Hospital, 106 103 Street East Saskatoon, Saskatchewan S7N 1Y7 (J Paulin)
| | - Tanarut Laudhittirut
- Department of Small Animal Clinical Sciences (MV Paulin, Laudhittirut, Snead) and Department of Veterinary Biomedical Sciences (Blakley), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Alpine Animal Hospital, 10 H Keenleyside Street, Winnipeg, Manitoba R2L 2B9 (Bray); VCA Central Animal Hospital, 106 103 Street East Saskatoon, Saskatchewan S7N 1Y7 (J Paulin)
| | - Jeneva Paulin
- Department of Small Animal Clinical Sciences (MV Paulin, Laudhittirut, Snead) and Department of Veterinary Biomedical Sciences (Blakley), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Alpine Animal Hospital, 10 H Keenleyside Street, Winnipeg, Manitoba R2L 2B9 (Bray); VCA Central Animal Hospital, 106 103 Street East Saskatoon, Saskatchewan S7N 1Y7 (J Paulin)
| | - Barry Blakley
- Department of Small Animal Clinical Sciences (MV Paulin, Laudhittirut, Snead) and Department of Veterinary Biomedical Sciences (Blakley), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Alpine Animal Hospital, 10 H Keenleyside Street, Winnipeg, Manitoba R2L 2B9 (Bray); VCA Central Animal Hospital, 106 103 Street East Saskatoon, Saskatchewan S7N 1Y7 (J Paulin)
| | - Elisabeth Snead
- Department of Small Animal Clinical Sciences (MV Paulin, Laudhittirut, Snead) and Department of Veterinary Biomedical Sciences (Blakley), Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4; Alpine Animal Hospital, 10 H Keenleyside Street, Winnipeg, Manitoba R2L 2B9 (Bray); VCA Central Animal Hospital, 106 103 Street East Saskatoon, Saskatchewan S7N 1Y7 (J Paulin)
| |
Collapse
|
23
|
Ozaki S, Movalli P, Cincinelli A, Alygizakis N, Badry A, Carter H, Chaplow JS, Claßen D, Dekker RWRJ, Dodd B, Duke G, Koschorreck J, Pereira MG, Potter E, Sleep D, Slobodnik J, Thomaidis NS, Treu G, Walker L. Significant Turning Point: Common Buzzard ( Buteo buteo) Exposure to Second-Generation Anticoagulant Rodenticides in the United Kingdom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6093-6104. [PMID: 38545700 PMCID: PMC11008253 DOI: 10.1021/acs.est.3c09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Second-generation anticoagulant rodenticides (SGARs) are widely used to control rodent populations, resulting in the serious secondary exposure of predators to these contaminants. In the United Kingdom (UK), professional use and purchase of SGARs were revised in the 2010s. Certain highly toxic SGARs have been authorized since then to be used outdoors around buildings as resistance-breaking chemicals under risk mitigation procedures. However, it is still uncertain whether and how these regulatory changes have influenced the secondary exposure of birds of prey to SGARs. Based on biomonitoring of the UK Common Buzzard (Buteo buteo) collected from 2001 to 2019, we assessed the temporal trend of exposure to SGARs and statistically determined potential turning points. The magnitude of difenacoum decreased over time with a seasonal fluctuation, while the magnitude and prevalence of more toxic brodifacoum, authorized to be used outdoors around buildings after the regulatory changes, increased. The summer of 2016 was statistically identified as a turning point for exposure to brodifacoum and summed SGARs that increased after this point. This time point coincided with the aforementioned regulatory changes. Our findings suggest a possible shift in SGAR use to brodifacoum from difenacoum over the decades, which may pose higher risks of impacts on wildlife.
Collapse
Affiliation(s)
- Shinji Ozaki
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Paola Movalli
- Naturalis
Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Alessandra Cincinelli
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Florence, Italy
| | - Nikiforos Alygizakis
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
- Department
of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Alexander Badry
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - Heather Carter
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Jacqueline S. Chaplow
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Daniela Claßen
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | | | - Beverley Dodd
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Guy Duke
- UK
Centre for Ecology and Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford OX10 8BB, United Kingdom
| | - Jan Koschorreck
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - M. Glória Pereira
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Elaine Potter
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | - Darren Sleep
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| | | | - Nikolaos S. Thomaidis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Gabriele Treu
- German Environment
Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Roßlau, Germany
| | - Lee Walker
- UK
Centre for Ecology and Hydrology, Lancaster
Environment Centre, Library
Avenue, Bailrigg, Lancaster LA1 4AP, United
Kingdom
| |
Collapse
|
24
|
Spadetto L, Gómez-Ramírez P, Zamora-Marín JM, León-Ortega M, Díaz-García S, Tecles F, Fenoll J, Cava J, Calvo JF, García-Fernández AJ. Active monitoring of long-eared owl (Asio otus) nestlings reveals widespread exposure to anticoagulant rodenticides across different agricultural landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170492. [PMID: 38307270 DOI: 10.1016/j.scitotenv.2024.170492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The widespread use of anticoagulant rodenticides (ARs) poses a worldwide threat to farmland wildlife. These compounds accumulate in tissues of both target and non-target species, potentially endangering both direct consumers and their predators. However, investigations on ARs in blood of free-ranging predatory birds are rare. Here, the long-eared owl (Asio otus) has been used as a model predator to assess AR exposure in different agricultural landscapes from a Mediterranean semiarid region. A total of 69 owlets from 38 nests were blood-sampled over 2021 and 2022, aiming to detect AR residues and explore factors that determine their exposure, such as land uses. In addition, prothrombin time (PT) test was conducted to assess potential effects of AR contamination. Overall, nearly all the samples (98.6 %) tested positive for at least one compound and multiple ARs were found in most of the individuals (82.6 %). Among the ARs detected, flocoumafen was the most common compound (88.4 % of the samples). AR total concentration (ΣARs) in blood ranged from 0.06 to 34.18 ng mL-1, detecting the highest levels in the most intensively cultivated area. The analysis of owl pellets from 19 breeding territories showed relevant among-site differences in the contribution of rodents and birds into the diet of long-eared owls, supporting its high dietary plasticity and indicating AR presence at multiple trophic levels. Moreover, a positive and significant correlation was found between ΣARs and PT (Rho = 0.547, p < 0.001), which demonstrates the direct effect of ARs on free-living nestlings. Our results provide a preliminary overview of AR exposure in a little-studied owl species inhabiting agricultural and rural landscapes. Despite the low detected levels, these findings indicate widespread exposure -often to multiple compounds- from early life stages, which raises concern and draws attention to an ongoing and unresolved contamination issue.
Collapse
Affiliation(s)
- Livia Spadetto
- Toxicology Research Group, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Pilar Gómez-Ramírez
- Toxicology Research Group, Faculty of Veterinary, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain.
| | - José Manuel Zamora-Marín
- ULULA Association for Owl Study and Conservation, 30100 Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain; Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Mario León-Ortega
- ULULA Association for Owl Study and Conservation, 30100 Murcia, Spain
| | - Sarah Díaz-García
- ULULA Association for Owl Study and Conservation, 30100 Murcia, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain
| | - José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150 Murcia, Spain
| | - Juana Cava
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150 Murcia, Spain
| | - José Francisco Calvo
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
25
|
Musto C, Cerri J, Capizzi D, Fontana MC, Rubini S, Merialdi G, Berzi D, Ciuti F, Santi A, Rossi A, Barsi F, Gelmini L, Fiorentini L, Pupillo G, Torreggiani C, Bianchi A, Gazzola A, Prati P, Sala G, Apollonio M, Delogu M, Biancardi A, Uboldi L, Moretti A, Garbarino C. First evidence of widespread positivity to anticoagulant rodenticides in grey wolves (Canis lupus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169990. [PMID: 38232835 DOI: 10.1016/j.scitotenv.2024.169990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Second-generation Anticoagulant Rodenticides (ARs) can be critical for carnivores, due to their widespread use and impacts. However, although many studies explored the impacts of ARs on small and mesocarnivores, none assessed the extent to which they could contaminate large carnivores in anthropized landscapes. We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in central and northern Italy, by subjecting a large sample of dead wolves (n = 186) to the LC-MS/MS method. Most wolves (n = 115/186, 61.8 %) tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more compounds, n = 16). Bromadiolone, brodifacoum and difenacoum, were the most common compounds, with brodifacoum and bromadiolone being the ARs that co-occurred the most (n = 61). Both the probability of testing positive for multiple ARs and the concentration of brodifacoum, and bromadiolone in the liver, systematically increased in wolves that were found at more anthropized sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after 2020. Our results underline that rodent control, based on ARs, increases the risks of unintentional poisoning of non-target wildlife. However, this risk does not only involve small and mesocarnivores, but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is adding one further conservation threat to endangered large carnivores in anthropized landscapes of Europe, whose severity could increase over time and be far higher than previously thought. Large-scale monitoring schemes for ARs in European large carnivores should be devised as soon as possible.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy.
| | - Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
| | - Dario Capizzi
- Directorate for Environment, Latium Region, 00173 Rome, Italy
| | - Maria Cristina Fontana
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Silva Rubini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Duccio Berzi
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Francesca Ciuti
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Annalisa Santi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Filippo Barsi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Pupillo
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Camilla Torreggiani
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandra Gazzola
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Paola Prati
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Sala
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Alberto Biancardi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Uboldi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Moretti
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| |
Collapse
|
26
|
Chansiripornchai P, Kesdangsakonwut S, Techangamsuwan S. Anticoagulant rodenticide poisoning in farmed Patagonian mara (Dolichotis patagonum). BMC Vet Res 2024; 20:83. [PMID: 38454460 PMCID: PMC10921809 DOI: 10.1186/s12917-024-03943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Anticoagulant rodenticide (AR) poisoning was diagnosed in 3 Patagonian maras (Dolichotis patagonum) raised in the mara farm in Thailand. To date, there have been no reports of maras with diagnosed AR poisoning. CASE PRESENTATION The first clinical sign of the sickening maras was anorexia. Fifteen from 50 maras were dead over a 3-5 day period after the clinical signs had occurred. Positive results to AR were detected in all of the maras' liver specimens by screening test using thin layer chromatography and spectrophotometry methods. Supportive therapy was selected for the treatment of the 35 surviving maras. During the follow - up observation period of 12 months, all of the surviving maras were healthy and no reproductive loss. CONCLUSIONS This is the first report on suspected AR poisoning in maras in Thailand based on history taking, clinical signs, gross pathology lesions and chemical analysis. AR poisoning in the present report is possibly from contaminated animal food. Therefore, quality control of food should be fastidious when feeding maras.
Collapse
Affiliation(s)
- Piyarat Chansiripornchai
- Department of Veterinary Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Henri - Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Sawang Kesdangsakonwut
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri - Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Henri - Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Wildlife, Exotic and Aquatic Animal Pathology Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri - Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Henri - Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
27
|
Popov Aleksandrov A, Tucovic D, Kulas J, Popovic D, Kataranovski D, Kataranovski M, Mirkov I. Toxicology of chemical biocides: Anticoagulant rodenticides - Beyond hemostasis disturbance. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109841. [PMID: 38237840 DOI: 10.1016/j.cbpc.2024.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
The use of anticoagulant rodenticides (ARs) is one of the most commonly employed management methods for pest rodents. ARs compete with vitamin K (VK) required for the synthesis of blood clotting factors in the liver, resulting in inhibition of blood coagulation and often animal death due to hemorrhage. Besides rodents (target species), ARs may affect non-target animal species and humans. Out of hemostasis disturbance, the effects of ARs may be related to the inhibition of proteins that require VK for their synthesis but are not involved in the coagulation process, to their direct cytotoxicity, and their pro-oxidant/proinflammatory activity. A survey of the cellular and molecular mechanisms of these sublethal/asymptomatic AR effects is given in this review. Data from field, clinical, and experimental studies are presented. Knowledge of these mechanisms might improve hazard characterization and identification of potential ecotoxicological risks associated with ARs, contributing to a safer use of these chemicals.
Collapse
Affiliation(s)
- Aleksandra Popov Aleksandrov
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Dina Tucovic
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Jelena Kulas
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Dusanka Popovic
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Dragan Kataranovski
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Milena Kataranovski
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia
| | - Ivana Mirkov
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade 11000, Serbia.
| |
Collapse
|
28
|
von Törne WJ, Klyk-Seitz UA, Piechotta C. Developing a GC-EI-MS/MS method for quantifying warfarin and five hydroxylated metabolites generated by the Fenton reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16986-16994. [PMID: 38329665 PMCID: PMC10894117 DOI: 10.1007/s11356-024-32133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Since the 1950s, Warfarin has been used globally as both a prescription drug and a rodenticide. Research has shown that warfarin and other rodenticides are present in the environment and food chain. However, emerging contaminants are subject to degradation by biotic and abiotic processes and advanced oxidation processes. In some cases, detecting the parent compound may not be possible due to the formation of structurally changed species. This approach aims to identify hydroxylated transformation products of warfarin in a laboratory setting, even after the parent compound has undergone degradation. Therefore, the Fenton reaction is utilized to insert hydroxylation into the parent compound, warfarin, by hydroxyl and hydroperoxyl radicals generated by Fe2+/Fe3+ redox reaction with hydrogen peroxide. Using multiple reaction monitoring, a GC-MS/MS method, incorporating isotopically labeled reference compounds, is used to quantify the expected derivatized species. The analytes are derivatized using trimethyl-3-trifluoromethyl phenyl ammonium hydroxide, and the derivatization yield of warfarin is determined by using isotopically labeled reference compounds. The method has a linear working range of 30 to 1800 ng/mL, with detection limits ranging from 18.7 to 67.0 ng/mL. The analytes are enriched using a C18-SPE step, and the recovery for each compound is calculated. The Fenton reaction generates all preselected hydroxylated transformation products of warfarin. The method successfully identifies that 4'-Me-O-WAR forms preferentially under the specified experimental conditions. By further optimizing the SPE clean-up procedures, this GC-MS-based method will be suitable for detecting transformation products in more complex matrices, such as environmental water samples. Overall, this study provides a better understanding of warfarin's degradation and offers a robust analytical tool for investigating its transformation products.
Collapse
Affiliation(s)
- Wipert Jannik von Törne
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
- Technischen Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Urszula-Anna Klyk-Seitz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Christian Piechotta
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.
- Technischen Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
29
|
Elliott JE, Silverthorn V, English SG, Mineau P, Hindmarch S, Thomas PJ, Lee S, Bowes V, Redford T, Maisonneuve F, Okoniewski J. Anticoagulant Rodenticide Toxicity in Terrestrial Raptors: Tools to Estimate the Impact on Populations in North America and Globally. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38415966 DOI: 10.1002/etc.5829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Anticoagulant rodenticides (ARs) have caused widespread contamination and poisoning of predators and scavengers. The diagnosis of toxicity proceeds from evidence of hemorrhage, and subsequent detection of residues in liver. Many factors confound the assessment of AR poisoning, particularly exposure dose, timing and frequency of exposure, and individual and taxon-specific variables. There is a need, therefore, for better AR toxicity criteria. To respond, we compiled a database of second-generation anticoagulant rodenticide (SGAR) residues in liver and postmortem evaluations of 951 terrestrial raptor carcasses from Canada and the United States, 1989 to 2021. We developed mixed-effects logistic regression models to produce specific probability curves of the toxicity of ∑SGARs at the taxonomic level of the family, and separately for three SGARs registered in North America, brodifacoum, bromadiolone, and difethialone. The ∑SGAR threshold concentrations for diagnosis of coagulopathy at 0.20 probability of risk were highest for strigid owls (15 ng g-1 ) lower and relatively similar for accipitrid hawks and eagles (8.2 ng g-1 ) and falcons (7.9 ng g-1 ), and much lower for tytonid barn owls (0.32 ng g-1 ). These values are lower than those we found previously, due to compilation and use of a larger database with a mix of species and source locations, and also to refinements in the statistical methods. Our presentation of results on the family taxonomic level should aid in the global applicability of the numbers. We also collated a subset of 440 single-compound exposure events and determined the probability of SGAR-poisoning symptoms as a function of SGAR concentration, which we then used to estimate relative SGAR toxicity and toxic equivalence factors: difethialone, 1, brodifacoum, 0.8, and bromadiolone, 0.5. Environ Toxicol Chem 2024;00:1-11. © 2024 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Collapse
Affiliation(s)
- John E Elliott
- Ecotoxicology and Wildlife Health Directorate, Environment and Climate Change Canada, Delta, British Columbia, Canada
- Applied Animal Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Veronica Silverthorn
- Ecotoxicology and Wildlife Health Directorate, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Simon G English
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pierre Mineau
- Pierre Mineau Consulting, Salt Spring Island, Canada
- Biology Department, Carleton University, Ottawa, Ontario, Canada
| | - Sofi Hindmarch
- Ecotoxicology and Wildlife Health Directorate, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Philippe J Thomas
- Ecotoxicology and Wildlife Health Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Sandi Lee
- Ecotoxicology and Wildlife Health Directorate, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Victoria Bowes
- Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Tony Redford
- Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - France Maisonneuve
- Ecotoxicology and Wildlife Health Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Joseph Okoniewski
- Wildlife Health Unit, New York State Department of Environmental Conservation, Delmar, New York, USA
| |
Collapse
|
30
|
Martín-Cruz B, Cecchetti M, Simbaña-Rivera K, Rial-Berriel C, Acosta-Dacal A, Zumbado-Peña M, Henríquez-Hernández LA, Gallo-Barneto R, Cabrera-Pérez MÁ, Melián-Melián A, Suárez-Pérez A, Luzardo OP. Potential exposure of native wildlife to anticoagulant rodenticides in Gran Canaria (Canary Islands, Spain): Evidence from residue analysis of the invasive California Kingsnake (Lampropeltis californiae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168761. [PMID: 37996022 DOI: 10.1016/j.scitotenv.2023.168761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
Anticoagulant rodenticides (ARs), particularly second-generation compounds (SGARs), are extensively used in pest management, impacting non-target wildlife. The California kingsnake (Lampropeltis californiae), an invasive species in Gran Canaria, is under a control plan involving capture and euthanasia. This research aimed to detect 10 different ARs in these snakes, explore geographical and biometrical factors influencing AR exposure, and assess their potential as sentinel species for raptors, sharing similar foraging habits. Liver samples from 360 snakes, euthanized between 2021 and 2022, were analysed for ARs using LC-MS/MS. Results showed all detected rodenticides were SGARs, except for one instance of diphacinone. Remarkably, 90 % of the snakes tested positive for ARs, with over half exposed to multiple compounds. Brodifacoum was predominant, found in over 90 % of AR-positive snakes, while bromadiolone and difenacoum were also frequently detected but at lower levels. The study revealed that larger snakes and those in certain geographic areas had higher AR concentrations. Snakes in less central or more peripheral areas showed lower levels of these compounds. This suggests a correlation between the snakes' size and distribution with the concentration of ARs in their bodies. The findings indicate that the types and prevalence of ARs in California kingsnakes on Gran Canaria mirror those in the island's raptors. This similarity suggests that the kingsnake could serve as a potential sentinel species for monitoring ARs in the ecosystem. However, further research is necessary to confirm their effectiveness in this role.
Collapse
Affiliation(s)
- Beatriz Martín-Cruz
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain.
| | - Martina Cecchetti
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Environment and Sustainability Institute, University of Exeter. Penryn Campus, Penryn TR10 9FE, United Kingdom
| | - Katherine Simbaña-Rivera
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Centro de Investigación para la Salud en América Latina (CISeAL), Facultad de Medicina, Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador
| | - Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado-Peña
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Ramón Gallo-Barneto
- Gestión y Planeamiento Territorial y Medioambiental, S.A. (GESPLAN). Canary Islands Government, C/León y Castillo 54, bajo, 35003 Las Palmas de Gran Canaria, Spain
| | - Miguel Ángel Cabrera-Pérez
- General Directorate to Combat Climate Change and the Environment, Biodiversity Service, Canary Islands Government, Plaza de los Derechos Humanos, 22, 35071 Las Palmas de Gran Canaria, Spain
| | - Ayose Melián-Melián
- Gestión y Planeamiento Territorial y Medioambiental, S.A. (GESPLAN). Canary Islands Government, C/León y Castillo 54, bajo, 35003 Las Palmas de Gran Canaria, Spain
| | - Alejandro Suárez-Pérez
- Gestión y Planeamiento Territorial y Medioambiental, S.A. (GESPLAN). Canary Islands Government, C/León y Castillo 54, bajo, 35003 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| |
Collapse
|
31
|
Carrillo-Hidalgo J, Martín-Cruz B, Henríquez-Hernández LA, Rial-Berriel C, Acosta-Dacal A, Zumbado-Peña M, Luzardo OP. Intraspecific and geographical variation in rodenticide exposure among common kestrels in Tenerife (Canary Islands). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168551. [PMID: 37979878 DOI: 10.1016/j.scitotenv.2023.168551] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
This study assesses the impact of second-generation anticoagulant rodenticides (SGARs) on the common kestrel (Falco tinnunculus canariensis) in Tenerife, Canary Islands. The analysis of 390 liver samples over 19 years using HPLC-MS/MS showed that 93.1 % of kestrels were exposed to SGARs in this island. A notable shift in SGAR profiles was observed, with bromadiolone and flocoumafen decreasing, while brodifacoum levels increased sharply from 2018 onwards. Comparatively, Tenerife kestrels had a higher detection frequency of SGARs (93.1 %) than those in the rest of the islands of the archipelago (68.2 %), with median concentrations nearly double (∑AR = 180.9 vs 102.4 ng/g liver, P < 0.0001). Furthermore, on average, kestrels from Tenerife were found to have a higher number of different rodenticide compounds per individual. A Generalized Linear Model (GLM) analysis revealed that several factors contribute to the likelihood of SGAR exposure: being an adult kestrel, the enactment of legal restrictions on SGAR bait concentrations in 2018, higher livestock density, and greater human population density. These findings suggest that both bioaccumulation over the birds' lifespans and environmental factors related to human and agricultural activity are influencing the levels of SGARs detected. Alarmingly, 44.7 % of kestrels had SGAR levels above the toxicity threshold established for other raptor species (200 ng/g liver), signaling a high poisoning risk. This is despite EU regulations to protect wildlife, with our findings indicating an increase in both exposure rates and SGAR concentrations since these laws were enacted. The data highlight a critical environmental threat to endemic species on islands like Tenerife. The common kestrel, not considered globally endangered, is nonetheless facing regional threats from SGAR contamination. These results emphasize the urgent need for effective regulations to address the persistent and growing impact of SGARs on island biodiversity.
Collapse
Affiliation(s)
- José Carrillo-Hidalgo
- Island Ecology and Biogeography Research Group, University Institute of Tropical Diseases and Public Health of the Canary Islands (IUETSPC), University of La Laguna, 38206 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Beatriz Martín-Cruz
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid 28029, Spain
| | - Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain
| | - Manuel Zumbado-Peña
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid 28029, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, Las Palmas de Gran Canaria 35016, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid 28029, Spain.
| |
Collapse
|
32
|
Rahelinirina S, Rahajandraibe S, Rakotosamimanana S, Rajerison M. Assessing the effectiveness of intervention to prevent plague through community and animal-based survey. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002211. [PMID: 38109297 PMCID: PMC10727364 DOI: 10.1371/journal.pgph.0002211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/18/2023] [Indexed: 12/20/2023]
Abstract
Bubonic plague, transmitted by infected flea bites, is the most common form of plague and, left untreated, can progress to the pneumonic form, which is highly contagious. Surveillance focusing on reservoir and vector is considered to be the main approach to prevent plague. Common rodent control methods include the use of rodenticide and snap traps but, in a plague context, the dispersal of fleas from killed animals may pose a serious health threat. Therefore, there is a need for strategies which address reservoir and vector control. The aim of this study was to assess the effects of combination of reservoir and vector control through community-based surveillance. Activities were implemented by local previously trained community agents in two active plague foci in Madagascar. Kartman bait stations containing rodenticide and insecticide were placed indoors while live traps were set outdoors. Small mammals were identified and killed with their fleas. Effectiveness of control measures was evaluated by comparison of plague incidence two years before and after intervention using data on reported human cases of plague from the Central Laboratory of Plague. A total of 4,302 small mammals were captured, with the predominance of the black rat Rattus rattus. Our results found a reduction in plague incidence in the treated site for at least two years after treatment. Community-based interventions played an important role in reducing contact between humans-rodents-fleas. Our study confirms the importance of animal surveillance during the low plague transmission season. The combination of reservoir and vector control with community involvement may be effective at reducing the risks of plague spillover to humans. The strategy of using Kartman bait stations indoors with live traps outdoors can be used to refine proactive plague prevention, however, due to the potential development of resistance to pesticides in flea and rat populations, overuse should be considered.
Collapse
|
33
|
Cooke R, Whiteley P, Death C, Weston MA, Carter N, Scammell K, Yokochi K, Nguyen H, White JG. Silent killers? The widespread exposure of predatory nocturnal birds to anticoagulant rodenticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166293. [PMID: 37586529 DOI: 10.1016/j.scitotenv.2023.166293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Anticoagulant rodenticides (ARs) influence predator populations and threaten the stability of ecosystems. Understanding the prevalence and impact of rodenticides in predators is crucial to inform conservation planning and policy. We collected dead birds of four nocturnal predatory species across differing landscapes: forests, agricultural, urban. Liver samples were analysed for eight ARs: three First Generation ARs (FGARs) and five SGARs (Second Generation ARs). We investigated interspecific differences in liver concentrations and whether landscape composition influenced this. FGARs were rarely detected, except pindone at low concentrations in powerful owls Ninox strenua. SGARs, however, were detected in every species and 92 % of birds analysed. Concentrations of SGARs were at levels where potential toxicological or lethal impacts would have occurred in 33 % of powerful owls, 68 % of tawny frogmouths Podargus strigoides, 42 % of southern boobooks N. bookbook and 80 % of barn owls Tyto javanica. When multiple SGARs were detected, the likelihood of potentially lethal concentrations of rodenticides increased. There was no association between landscape composition and SGAR exposure, or the presence of multiple SGARs, suggesting rodenticide poisoning is ubiquitous across all landscapes sampled. This widespread human-driven contamination in wildlife is a major threat to wildlife health. Given the high prevalence and concentrations of SGARs in these birds across all landscape types, we support the formal consideration of SGARs as a threatening process. Furthermore, given species that do not primarily eat rodents (tawny frogmouths, powerful owls) have comparable liver rodenticide concentrations to rodent predators (southern boobook, eastern barn owl), it appears there is broader contamination of the food-web than anticipated. We provide evidence that SGARs have the potential to pose a threat to the survival of avian predator populations. Given the functional importance of predators in ecosystems, combined with the animal welfare impacts of these chemicals, we propose governments should regulate the use of SGARs.
Collapse
Affiliation(s)
- Raylene Cooke
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia.
| | - Pam Whiteley
- Wildlife Health Victoria: Surveillance, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee 3030, Vic., Australia
| | - Clare Death
- Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee, Vic., Australia
| | - Michael A Weston
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Nicholas Carter
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Kieran Scammell
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Kaori Yokochi
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| | - Hao Nguyen
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne 3207, Vic., Australia
| | - John G White
- Deakin University, Geelong, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, 221 Burwood Highway, Burwood 3125, Vic., Australia
| |
Collapse
|
34
|
Carromeu-Santos A, Mathias ML, Gabriel SI. Widespread distribution of rodenticide resistance-conferring mutations in the Vkorc1 gene among house mouse populations in Portuguese Macaronesian islands and Iberian Atlantic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166290. [PMID: 37586516 DOI: 10.1016/j.scitotenv.2023.166290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Growing evidence of widespread resistance to anticoagulant rodenticides (ARs) in house mice pose significant challenges to pest control efforts. First-generation ARs were introduced in the early 1950s but resistance to these emerged later that decade. Second-generation rodenticides were then developed, with resistance being reported in the late 1970s. Research has linked resistance to ARs with mutations in the Vkorc1 gene, leading to the use of more toxic and environmentally harmful compounds. In this study, 243 tail tips of house mice from mainland Portugal and Southern Spain, the Azores and Madeira archipelagos were analysed for all 3 exons of the Vkorc1 gene. Mutations L128S, Y139C, along with the so-called spretus genotype Vkorc1spr are considered responsible for reduced susceptibility of house mice to ARs. All these sequence variants were broadly detected throughout the sampling regions. Vkorc1spr was the most often recorded among mainland populations, whereas Y139C was nearly ubiquitous among the insular populations. In contrast, L128S was only detected in mainland Portugal and four islands of the Azores archipelago. All first generation ARs such as warfarin and coumatetralyl are deemed ineffective against all Vkorc1 variants identified in this study. Second-generation bromadiolone and difenacoum should also be discarded to control populations carrying Vkorc1spr, Y139C or L128S mutations. Inadequate use of ARs in regions where resistant animals have been found in large proportions will result in the spreading of rodenticide resistance among rodent populations through the positive selection of non-susceptible individuals. Consequently, ineffectiveness of rodent control will increase and potentiate environmental contamination, hazarding non-target wildlife through secondary poisoning. We highlight the need for Vkorc1 screening as a crucial tool in rodent management, aiding in the selection of the most appropriate control/eradication method in order to prevent misuse of these toxic biocides and the spread of rodenticide resistance among house mouse populations.
Collapse
Affiliation(s)
- A Carromeu-Santos
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M L Mathias
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - S I Gabriel
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
35
|
Chen Y, Lopez S, Reddy RM, Wan J, Tkachenko A, Nemser SM, Smith L, Reimschuessel R. Validation and interlaboratory comparison of anticoagulant rodenticide analysis in animal livers using ultra-performance liquid chromatography-mass spectrometry. J Vet Diagn Invest 2023; 35:470-483. [PMID: 37313802 PMCID: PMC10467459 DOI: 10.1177/10406387231178558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Anticoagulant rodenticides (ARs) are used to control rodent populations. Poisoning of non-target species can occur by accidental consumption of commercial formulations used for rodent control. A robust method for determining ARs in animal tissues is important for animal postmortem diagnostic and forensic purposes. We evaluated an ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) method to quantify 8 ARs (brodifacoum, bromadiolone, chlorophacinone, coumachlor, dicoumarol, difethialone, diphacinone, warfarin) in a wide range of animal (bovine, canine, chicken, equine, porcine) liver samples, including incurred samples. We further evaluated UPLC-MS in 2 interlaboratory comparison (ILC) studies; one an ILC exercise (ICE), the other a proficiency test (PT). The limits of detection of UPLC-MS were 0.3-3.1 ng/g, and the limits of quantification were 0.8-9.4 ng/g. The recoveries obtained using UPLC-MS were 90-115%, and relative SDs were 1.2-13% for each of the 8 ARs for the 50, 500, and 2,000 ng/g spiked liver samples. The overall accuracy from the laboratories participating in the 2 ILC studies (4 and 11 laboratories for ICE and PT studies, respectively) were 86-118%, with relative repeatability SDs of 3.7-11%, relative reproducibility SDs of 7.8-31.2%, and Horwitz ratio values of 0.5-1.5. Via the ILC studies, we verified the accuracy of UPLC-MS for AR analysis in liver matrices and demonstrated that ILC can be utilized to evaluate performance characteristics of analytical methods.
Collapse
Affiliation(s)
- Yang Chen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | - Salvador Lopez
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | - Ravinder M. Reddy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | - Jason Wan
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Andriy Tkachenko
- Center for Veterinary Medicine, U.S. Food & Drug Administration, Laurel, MD, USA
| | - Sarah M. Nemser
- Center for Veterinary Medicine, U.S. Food & Drug Administration, Laurel, MD, USA
| | | | | |
Collapse
|
36
|
Kaddah MM, Fahmi AA, Kamel MM, Rizk SA, Ramadan SK. Rodenticidal Activity of Some Quinoline-Based Heterocycles Derived from Hydrazide–Hydrazone Derivative. Polycycl Aromat Compd 2023; 43:4231-4241. [DOI: 10.1080/10406638.2022.2088576] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Mohamed M. Kaddah
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Mustafa M. Kamel
- Industrial Area, El-Nasr Company for Intermediate Chemicals, Giza, Egypt
| | - Sameh A. Rizk
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sayed K. Ramadan
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
37
|
Herring G, Eagles-Smith CA, Buck JA. Anticoagulant rodenticides are associated with increased stress and reduced body condition of avian scavengers in the Pacific Northwest. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121899. [PMID: 37244534 DOI: 10.1016/j.envpol.2023.121899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Anticoagulant rodenticides (AR) have been used globally to manage commensal rodents for decades. However their application has also resulted in primary, secondary, and tertiary poisoning in wildlife. Widespread exposure to ARs (primarily second generation ARs; SGARs) in raptors and avian scavengers has triggered considerable conservation concern over their potential effects on populations. To identify risk to extant raptor and avian scavenger populations in Oregon and potential future risk to the California condor (Gymnogyps californianus) flock recently established in northern California, we assessed AR exposure and physiological responses in two avian scavenger species (common ravens [Corvus corax] and turkey vultures [Cathartes aura]) throughout Oregon between 2013 and 2019. AR exposure was widespread with 51% (35/68) of common ravens and 86% (63/73) of turkey vultures containing AR residues. The more acutely toxic SGAR brodifacoum was present in 83% and 90% of AR exposed common ravens and turkey vultures. The odds of AR exposure in common ravens were 4.7-fold higher along the coastal region compared to interior Oregon. For common ravens and turkey vultures that were exposed to ARs, respectively, 54% and 56% had concentrations that exceeded the 5% probability of toxicosis (>20 ng/g ww; Thomas et al., 2011), and 20% and 5% exceeded the 20% probability of toxicosis (>80 ng/g ww; Thomas et al., 2011). Common ravens exhibited a physiological response to AR exposure with fecal corticosterone metabolites increasing with sum ARs (ΣAR) concentrations. Both female common raven and turkey vultures' body condition was negatively correlated with increasing ΣAR concentrations. Our results suggest avian scavengers in Oregon are experiencing extensive AR exposure and the newly established population of California condors in northern California will likely experience similar AR exposure if they feed in southern Oregon. Understanding the sources of ARs across the landscape is an important first step in reducing or eliminating AR exposure in avian scavengers.
Collapse
Affiliation(s)
- Garth Herring
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA.
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA
| | - Jeremy A Buck
- U.S. Fish and Wildlife Service, Oregon Fish and Wildlife Office, Portland, OR, 97266, USA
| |
Collapse
|
38
|
Distribution of Four Vole Species through the Barn Owl Tyto alba Diet Spectrum: Pattern Responses to Environmental Gradients in Intensive Agroecosystems of Central Greece. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010105. [PMID: 36676056 PMCID: PMC9865515 DOI: 10.3390/life13010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Voles are the most common vertebrate pests in European agriculture. Identifying their distribution and abundance patterns provides valuable information for future management. Barn Owl diet analysis is one of the optimum methods used to record small mammal distribution patterns on large spatial scales. From 2003 to 2005, a total of 10,065 Barn Owl pellets were collected and analyzed from 31 breeding sites in the largest agroecosystem in Greece, the Thessaly plains. A total of 29,061 prey items were identified, offering deep insight into small mammal distribution, specifically voles. Four discrete vole species (Harting's vole Microtus hartingi, East European vole Microtus levis, Thomas's pine vole Microtus thomasi, and Grey dwarf hamster Cricetulus migratorius) comprised 40.5% (11,770 vole prey items) of the total Barn Owl prey intake. The presence and abundance of the voles varied according to underlying environmental gradients, with soil texture and type playing a major role. M. levis showed no significant attachments to gradients, other than a mild increase in Mollisol soils. It was syntopic in all sites with M. hartingi, which was the dominant and most abundant small mammal species, preferring non-arable cultivated land, natural grasslands, set-aside fields, and fallow land. M. thomasi was strictly present in western Thessaly and strongly associated with a sandy-clay soil texture and Alfisol soils. C. migratorius was the least represented vole (162 items), exclusively present in eastern Thessaly and demonstrating a stronger association with cereals, Mollisol soils, and an argillaceous-clay soil texture. This is the first study in Greece at such a large spatial scale, offering insights for pest rodents' distribution in intensive agroecosystems and their response to environmental gradients including soil parameters.
Collapse
|
39
|
Soleng A, Edgar KS, von Krogh A, Seljetun KO. Suspected rodenticide exposures in humans and domestic animals: Data from inquiries to the Norwegian Poison Information Centre, 2005-2020. PLoS One 2022; 17:e0278642. [PMID: 36480523 PMCID: PMC9731470 DOI: 10.1371/journal.pone.0278642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022] Open
Abstract
Rodent control is necessary to prevent damage and spread of disease, and the most common pesticides used for urban and rural rodent control are anticoagulant rodenticides. The aim of this present study was to present data on suspected exposure to rodenticides in humans and domestic animals in Norway based on inquiries to the Norwegian Poison Information Centre in the 16-year period from 2005 through 2020. A total of 4235 inquiries regarding suspected exposures to rodenticides were registered in the study period. Of these, 1486 inquiries involved humans and 2749 animals. Second generation anticoagulants were involved in 68% of human exposures and 79% of animal exposures. Dogs were the most frequent species involved in the animal exposures with 93% of the inquiries, while cats were second most frequent involved. Around 50% of the human inquiries concerned children at the age of 0-4 years. Only 2% of the cases were in the age group 10-19 years, while adults comprised 35% of the inquiries. Acute poisonings accounted for almost 100% of the inquiries among both humans and animals. The exposure was accidental in 99% of the animal exposures and in 85% of the human exposures. In humans, only 14 inquiries were regarding occupational related accidents. Misdeed or self-inflicted injury accounted for 15% of the human inquiries and were the cause of 79% of the severe poisonings. Severe poisoning was only assessed in 1% of the cases involving children under 5 years. In contrast, 17% of the inquiries concerning adults (≥20 years) were assessed as severe. Subsequently, to prevent human and animal rodenticide exposure, we urge the use of non-chemical methods such as sanitation, rodent proofing (a form of construction which will impede or prevent rodents access to or from a given space or building) and mechanical traps. Restricting the use of rodenticides to professional pest controllers (or other persons with authorisation), reinforcing high quality education of these persons, and securing compliance of the best codes of practice could be advocated to reduce accidental exposure to rodenticides in humans and animals.
Collapse
Affiliation(s)
- Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
- * E-mail:
| | | | - Anita von Krogh
- Norwegian Poison Information Centre, Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
40
|
Ruiz-López MJ, Barahona L, Martínez-de la Puente J, Pepió M, Valsecchi A, Peracho V, Figuerola J, Montalvo T. Widespread resistance to anticoagulant rodenticides in Mus musculus domesticus in the city of Barcelona. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157192. [PMID: 35810904 DOI: 10.1016/j.scitotenv.2022.157192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Control of rodent populations is a big challenge because of the rapid evolution of resistance to commonly used rodenticides and the collateral negative impacts that these products may have on biodiversity. Second-generation anticoagulants are very efficient but different single nucleotide polymorphisms (SNPs) in the Vkorc1 gene may confer resistance in rodents. We sequenced exons 1, 2 and 3 of the Vkorc1 gene from 111 mice (Mus musculus domesticus) captured across the city of Barcelona and found SNPs associated with resistance to first- and second-generation anticoagulants in all of them. Although most of the SNPs were associated with resistance to bromadiolone, we also found SNPs associated with resistance to brodifacoum. Out of all the individuals analyzed, 94.59 % carried mutations associated to introgression events with Mus spretus, a sympatric rodent species. Currently most of the chemical products for rodent control commercialized in the area are based on bromadiolone, although recent public control campaigns have already shifted to other products. Thus, the widespread occurrence of resistant mice to bromadiolone represents a challenge for rodent control in Barcelona and may increase the risk of secondary poisoning of animals preying on this species. Public health managers, pest control companies and citizens should be aware that the use of bromadiolone based products is ineffective and represents a risk for the environment, including human and animal health.
Collapse
Affiliation(s)
- María José Ruiz-López
- Estación Biológica de Doñana - CSIC, Calle Américo Vespucio 26, E-41092 Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Laura Barahona
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain
| | - Josué Martínez-de la Puente
- Departamento de Parasitología, Universidad de Granada, Granada, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marta Pepió
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain
| | - Andrea Valsecchi
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain
| | - Victor Peracho
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana - CSIC, Calle Américo Vespucio 26, E-41092 Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Tomas Montalvo
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
41
|
Toxicology Case Presentations. Vet Clin North Am Small Anim Pract 2022; 53:175-190. [DOI: 10.1016/j.cvsm.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Saggese MD, Plaza P, Casalins L, Ortiz G, Ojeda V. Test Patagonia's raptors for rodenticides. Science 2022; 377:1054. [PMID: 36048952 DOI: 10.1126/science.ade2357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Miguel D Saggese
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Pablo Plaza
- Grupo de Investigaciones en Biología de la Conservación, Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente, Universidad Nacional del Comahue-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bariloche, Argentina
| | - Laura Casalins
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, Universidad Nacional del Comahue-CONICET, Bariloche, Argentina
| | - Gala Ortiz
- College of Veterinary Sciences, La Plata University, La Plata, Argentina
| | - Valeria Ojeda
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente, Universidad Nacional del Comahue-CONICET, Bariloche, Argentina
| |
Collapse
|
43
|
Ravindran S, Noor HM, Salim H. Anticoagulant rodenticide use in oil palm plantations in Southeast Asia and hazard assessment to non-target animals. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:976-997. [PMID: 35699849 DOI: 10.1007/s10646-022-02559-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Anticoagulant rodenticides (ARs) are used worldwide for the control of rodent pests and are the main method of control of rat pest populations in agricultural areas. The main aim of this review is to discuss the risk of ARs to non-target wildlife in oil palm areas in Southeast Asia, mainly Indonesia and Malaysia. We discussed AR use in oil palm areas and toxicities of ARs on target and non-target animals. We also reviewed published literature on wildlife species reported in oil palm areas in Southeast Asia and utilizing this information, we assessed the hazard risk of ARs to non-target wildlife in oil palm plantations. ARs are a secondary exposure hazard to rodent-consuming mammalian carnivores, such as leopard cats and civets, and rodent-consuming raptors, such as barn owls. Consumption of dead poisoned prey puts scavengers, such as water monitors, at high risk for AR exposure. Domestic livestock and granivorous birds are at high risk for AR exposure via primary exposure to toxic bait, while omnivores such as macaques and wild pigs are at moderate risk for both primary and secondary exposure to ARs. The effects of ARs on barn owls have been well studied in the field and in laboratory secondary toxicity studies. Thus, the nest-box occupancy and reproductive parameters of local barn owl populations can be monitored as an indicator of the AR exposure level in the area. CLINICAL TRIALS REGISTRATION: No clinical trials were involved in this study.
Collapse
Affiliation(s)
- Shakinah Ravindran
- Barn Owl and Rodent Research Group (BORG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Hafidzi Mohd Noor
- Plant Protection Department, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hasber Salim
- Barn Owl and Rodent Research Group (BORG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Vector Control and Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
44
|
Elliott JE, Silverthorn V, Hindmarch S, Lee S, Bowes V, Redford T, Maisonneuve F. Anticoagulant Rodenticide Contamination of Terrestrial Birds of Prey from Western Canada: Patterns and Trends, 1988-2018. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1903-1917. [PMID: 35678209 PMCID: PMC9540899 DOI: 10.1002/etc.5361] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
As the dominant means for control of pest rodent populations globally, anticoagulant rodenticides (ARs), particularly the second-generation compounds (SGARs), have widely contaminated nontarget organisms. We present data on hepatic residues of ARs in 741 raptorial birds found dead or brought into rehabilitation centers in British Columbia, Canada, over a 30-year period from 1988 to 2018. Exposure varied by species, by proximity to residential areas, and over time, with at least one SGAR residue detected in 74% of individuals and multiple residues in 50% of individuals. By comparison, we detected first-generation compounds in <5% of the raptors. Highest rates of exposure were in barred owls (Strix varia), 96%, and great horned owls (Bubo virginianus), 81%, species with diverse diets, including rats (Rattus norvegicus and Rattus rattus), and inhabiting suburban and intensive agricultural habitats. Barn owls (Tyto alba), mainly a vole (Microtus) eater, had a lower incidence of exposure of 65%. Putatively, bird-eating raptors also had a relatively high incidence of exposure, with 75% of Cooper's hawks (Accipiter cooperii) and 60% of sharp-shinned hawks (Accipiter striatus) exposed. Concentrations of SGARs varied greatly, for example, in barred owls, the geometric mean ∑SGAR = 0.13, ranging from <0.005 to 1.81 μg/g wet weight (n = 208). Barred owls had significantly higher ∑SGAR concentrations than all other species, driven by significantly higher bromadiolone concentrations, which was predicted by the proportion of residential land within their home ranges. Preliminary indications that risk mitigation measures implemented in 2013 are having an influence on exposure include a decrease in mean concentrations of brodifacoum and difethialone in barred and great horned owls and an increase in bromodialone around that inflection point. Environ Toxicol Chem 2022;41:1903-1917. © 2022 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Collapse
Affiliation(s)
- John E. Elliott
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Veronica Silverthorn
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Sofi Hindmarch
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Sandi Lee
- Ecotoxicology and Wildlife Health DirectorateEnvironment and Climate Change CanadaDeltaBritish ColumbiaCanada
| | - Victoria Bowes
- Animal Health CentreBC Ministry of AgricultureAbbotsfordBritish ColumbiaCanada
| | - Tony Redford
- Animal Health CentreBC Ministry of AgricultureAbbotsfordBritish ColumbiaCanada
| | - France Maisonneuve
- Science & Technology BranchEnvironment and Climate Change CanadaOttawaOntarioCanada
| |
Collapse
|
45
|
Mahjoub T, Krafft E, Garnier L, Mignard A, Hugnet C, Lefebvre S, Fourel I, Benoit E, Lattard V. Asymptomatic Anticoagulant Rodenticide Exposure in Dogs and Cats—A French and Belgian Rural and Urban Areas Study. FRONTIERS IN TOXICOLOGY 2022; 4:907892. [PMID: 35647575 PMCID: PMC9131000 DOI: 10.3389/ftox.2022.907892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Anticoagulant rodenticides (ARs) are important tools for controlling rodent pests, but they also pose a health threat to non-target species. ARs are one of the most common causes of pet poisoning. However, exposure of domestic animals to subclinical doses of ARs is poorly documented. To study the random exposure of dogs and cats to ARs, feces from animals showing no clinical signs of rodenticide poisoning were collected from a network of French and Belgian veterinarians. We analyzed fresh feces from 304 dogs and 289 cats by liquid chromatography-tandem mass spectrometry. This study showed a limited prevalence of AR exposure in dogs and cats of 2.6 and 4.5% respectively. In both species, access to the outdoors is a risk factor for ARs exposure. In contrast, the sex of the animals did not affect the ARs exposure status. The observation of the ratio of cis and trans isomers suggested primary exposure in dogs, but also in some cats. While primary exposure in dogs appears to be related to the use of ARs as plant protection products, primary exposure in cats may be malicious, as warfarin, an anticoagulant formerly used as a rodenticide and now used only in humans, was found in 4 of 13 exposed cats. Secondary exposure may also occur in cats.Our study showed reduced exposure in dogs and cats, compared to wildlife, which often has high exposure, especially in areas where rodent control is important.
Collapse
Affiliation(s)
- Tarek Mahjoub
- USC1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, Lyon, France
- Biochemistry, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, Ariana, Tunisia
| | - Emilie Krafft
- USC1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, Lyon, France
| | - Léa Garnier
- USC1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, Lyon, France
| | - Amélie Mignard
- USC1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, Lyon, France
| | | | | | - Isabelle Fourel
- USC1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, Lyon, France
| | - Etienne Benoit
- USC1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, Lyon, France
| | - Virginie Lattard
- USC1233 RS2GP, INRAe, VetAgro Sup, University of Lyon, Lyon, France
- *Correspondence: Virginie Lattard,
| |
Collapse
|
46
|
Thornton GL, Stevens B, French SK, Shirose LJ, Reggeti F, Schrier N, Parmley EJ, Reid A, Jardine CM. Anticoagulant rodenticide exposure in raptors from Ontario, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34137-34146. [PMID: 35034316 DOI: 10.1007/s11356-022-18529-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Anticoagulant rodenticides (ARs) are used globally to control rodent pest infestations in both urban and agricultural settings. It is well documented that non-target wildlife, including predatory birds, are at risk for secondary anticoagulant exposure and toxicosis through the prey they consume. However, there have been no large-scale studies of AR exposure in raptors in Ontario, Canada since new Health Canada legislation was implemented in 2013 in an attempt to limit exposure in non-target wildlife. Our objective was to measure levels of ARs in wild raptors in southern Ontario to assess their exposure. We collected liver samples from 133 raptors representing 17 species submitted to the Canadian Wildlife Health Cooperative (CWHC) in Ontario, Canada, between 2017 and 2019. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantitatively assess the level of exposure to 14 first- and second-generation ARs. Detectable levels of one or more ARs were found in 82 of 133 (62%) tested raptors, representing 12 species. The most commonly detected ARs were bromadiolone (54/133), difethialone (40/133), and brodifacoum (33/133). Of AR-positive birds, 34/82 (42%) contained residues of multiple (> 1) anticoagulant compounds. Our results indicate that AR exposure is common in raptors living in southern Ontario, Canada. Our finding that brodifacoum, difethialone, and bromadiolone were observed alone or in combination with one another in the majority of our sampled raptors indicates that legislative changes in Canada may not be protecting non-target wildlife as intended.
Collapse
Affiliation(s)
- Grace L Thornton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Brian Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shannon K French
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leonard J Shirose
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Felipe Reggeti
- Animal Health Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nick Schrier
- Animal Health Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - E Jane Parmley
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Department of Population Medicine, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexandra Reid
- Ontario Ministry of Agriculture, Food, and Rural Affairs, 1 Stone Rd W, Guelph, ON, N1G 4Y2, Canada
| | - Claire M Jardine
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Department of Pathobiology, Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
47
|
Sato R, Watanabe K, Kamata R, Takeda K. Development of a sandwich enzyme-linked immunosorbent assay (ELISA) to quantify γ-glutamyl-carboxylated clotting factor IX and assess redox susceptibility of anticoagulant chemicals. J Vet Med Sci 2022; 84:804-808. [PMID: 35444089 PMCID: PMC9246686 DOI: 10.1292/jvms.22-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anticoagulant chemicals (ACCs) such as warfarin are widely used in medical applications
as well as for their rodenticide properties. Their efficacy is greatly influenced by
polymorphisms in the gene encoding vitamin K epoxide reductase (VKOR). Evaluation of the
activity of ACCs toward VKOR variants is essential to determine their proper use.
Presently, this is achieved by co-expressing VKOR of Rattus Norvegicus
and human clotting factor IX in cultured cells and measuring inhibition of vitamin
K-dependent gamma-glutamyl carboxylation of factor IX (glaFIX) activity. However, glaFIX
has only been quantified using indirect methods like blood coagulation assays. We have
developed a sandwich enzyme-linked immunosorbent assay using a glaFIX-specific antibody to
quantify glaFIX and used this to analyze inhibition of VKOR activity by warfarin.
Collapse
Affiliation(s)
- Ryo Sato
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University
| | - Kanami Watanabe
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University
| | - Ryo Kamata
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University
| | - Kazuki Takeda
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University.,Department of Computer Science, Tokyo Institute of Technology
| |
Collapse
|
48
|
ANTICOAGULANT EXPOSURE IN GOLDEN EAGLE (AQUILA CHRYSAETOS) POWER LINE ELECTROCUTION AND WIND TURBINE MORTALITIES. J Wildl Dis 2022; 58:348-355. [PMID: 35100409 DOI: 10.7589/jwd-d-21-00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
Golden Eagles (Aquila chrysaetos) are susceptible to anthropogenic mortality factors, including toxic compounds in the environment such as anticoagulant rodenticides (AR) and sources of man-made energy. The physical and behavioral effects of some toxins may predispose eagles to certain causes of death (COD). To investigate the influence of ARs on mortality of Golden Eagles at wind turbine farms, we randomly tested liver samples from 31 eagles found dead on wind farms and submitted to the National Fish and Wildlife Forensic Laboratory from 2013-20. The comparison group was composed of 31 Golden Eagles sampled during the same time frame with a COD of power line electrocution as a proxy for a relatively lower effort and altitude activity. Associations between COD, AR exposure, sex, and life stage were assessed. In each group, 12 birds (35%) were found to have been exposed to brodifacoum or bromadiolone prior to death. Logistic regression showed no significant association between COD and sex (P=0.194) or life stage (P=0.895). Across both mortality types, life stage was not a significant predictor of AR exposure (P=0.725), but males were more likely to have been exposed to ARs (P=0.032). These findings suggest that there is no difference in the influence of anticoagulant exposure on higher and lower altitude activity in Golden Eagles.
Collapse
|
49
|
Moriceau MA, Lefebvre S, Fourel I, Benoit E, Buronfosse-Roque F, Orabi P, Rattner BA, Lattard V. Exposure of predatory and scavenging birds to anticoagulant rodenticides in France: Exploration of data from French surveillance programs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151291. [PMID: 34748846 DOI: 10.1016/j.scitotenv.2021.151291] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Wild raptors are widely used to assess exposure to different environmental contaminants, including anticoagulant rodenticides (ARs). ARs are used on a global scale for rodent control, and act by disruption of the vitamin K cycle that results in haemorrhage usually accompanied by death within days. Some ARs are highly persistent and bioaccumulative, which can cause significant exposure of non-target species. We characterized AR exposure in a heterogeneous sample of dead raptors collected over 12 years (2008-2019) in south-eastern France. Residue analysis of 156 liver samples through LC-MS/MS revealed that 50% (78/156) were positive for ARs, with 13.5% (21/156) having summed second-generation AR (SGAR) concentrations >100 ng/g ww. While SGARs were commonly detected (97.4% of positive samples), first-generation ARs were rarely found (7.7% of positive samples). ARs were more frequently detected and at greater concentration in predators (prevalence: 82.5%) than in scavengers (38.8%). Exposure to multiple ARs was common (64.1% of positive samples). While chlorophacinone exposure decreased over time, an increasing exposure trend was observed for the SGAR brodifacoum, suggesting that public policies may not be efficient at mitigating risk of exposure for non-target species. Haemorrhage was observed in 88 birds, but AR toxicosis was suspected in only 2 of these individuals, and no difference in frequency of haemorrhage was apparent in birds displaying summed SGAR levels above or below 100 ng/g ww. As for other contaminants, 17.2% of liver samples (11/64) exhibited Pb levels compatible with sub-clinical poisoning (>6 μg/g dw), with 6.3% (4/64) above the threshold for severe/lethal poisoning (>30 μg/g dw). Nine individuals with Pb levels >6 μg/g dw also had AR residues, demonstrating exposure to multiple contaminants. Broad toxicological screening for other contaminants was positive for 18 of 126 individuals, with carbofuran and mevinphos exposure being the suspected cause of death of 17 birds. Our findings demonstrate lower but still substantial AR exposure of scavenging birds compared to predatory birds, and also illustrate the complexity of diagnosing AR toxicosis through forensic investigations.
Collapse
Affiliation(s)
- Meg-Anne Moriceau
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France; CNITV, VetAgro Sup, 1 avenue Bourgelat, 69 280 Marcy-l'Étoile, France
| | - Sébastien Lefebvre
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France
| | - Isabelle Fourel
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France
| | - Etienne Benoit
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France
| | | | - Pascal Orabi
- French Bird Protection League (LPO France), France
| | - Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center, Beltsville, MD 20705, USA
| | - Virginie Lattard
- USC1233 RS2GP, INRAe, VetAgro Sup, Univ Lyon, F69 280 Marcy-l'Étoile, France.
| |
Collapse
|
50
|
White-Tailed Eagles’ (Haliaeetus albicilla) Exposure to Anticoagulant Rodenticides and Causes of Poisoning in Poland (2018–2020). TOXICS 2022; 10:toxics10020063. [PMID: 35202249 PMCID: PMC8878881 DOI: 10.3390/toxics10020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022]
Abstract
The white-tailed eagle (Haliaeetus albicilla) is strictly protected in Poland due to its threat of extinction. This study’s main goal was to assess their exposure to indirect poisoning by anticoagulant rodenticides (AR). This study presents the investigation results of 40 white-tailed eagles’ suspected poisoning cases in the years 2018–2020 in Poland. In all tested liver samples, using a liquid chromatography–mass spectrometry method, at least one of the AR (bromadiolone, brodifacoum, difenacoum, flocoumafen) was detected and confirmed. The other tested AR compounds (chlorophacinone, coumachlor, coumatetralyl, difethialone, diphacinone, warfarin) were not detected. The mean concentration of the sum of rodenticides was 174.4 µg/kg (from 2.5 to 1225.0 µg/kg). In 20 cases, the sum concentration was above 100 µg/kg and in 10 cases it was above 200 µg/kg. Interpretation of cases of AR poisonings should take into account their concentration in the liver, anatomopathological lesions, circumstances of death/finding of the animal, and elimination of other possible causes of poisoning. Based on this study, AR was the direct cause of death in 10% of incidents. Extensive use of rodenticides generates a high risk of poisonings of white-tailed eagles in Poland.
Collapse
|