1
|
Parisi L, Mansour F, Rihs S, Schnyder I, La Scala GC, Katsaros C, Degen M. The Skin-to-Mucosa Ratio Defines the Osteogenic Potential of Lip Fibroblasts. J Dent Res 2025:220345251321806. [PMID: 40108556 DOI: 10.1177/00220345251321806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Fibroblasts isolated from discarded lip tissue obtained during cheiloplasty in patients with cleft lip/palate (CLP) show promising osteogenic potential and may be an appealing cell source for autologous bone regeneration. As the lip is a mucocutaneous junction, explant cultures from unseparated lip biopsies produce mesenchymal outgrowths composed of skin- and mucosa-derived fibroblasts. The proportions of the 2 fibroblast populations, however, differ among CLP patients and depend on the morphology of the excised sample, which is unique for each donor. Understanding the osteogenic activities of CLP fibroblast populations with varying skin-to-mucosa ratios is critical for their therapeutic application. We isolated CLP fibroblasts from 10 unseparated lip biopsies and comprehensively evaluated them for their bone differentiation capacities in vitro, demonstrating heterogeneous osteogenic potentials. Because there are no markers that can distinguish skin from mucosa fibroblasts, we used the respective and matching CLP keratinocytes to ascertain the skin-to-mucosa ratio of the 10 specimens. Thus, we found that CLP fibroblasts isolated from biopsies with high skin-to-mucosa ratios had a much higher osteogenic capacity than those derived from biopsies with low skin-to-mucosa ratios. To validate and solidify these findings, we carefully separated skin and mucosa tissues during corrective lip surgery to isolate pure skin and mucosa CLP lip fibroblasts. Indeed, skin had a higher osteogenic potential than their mucosal counterparts did. Furthermore, we discovered that the high osteogenic activity in skin was limited to specific subpopulations of yet unknown identities. Our findings indicate that skin fibroblasts perform better than their mucosal counterparts do, even though both types of fibroblasts can differentiate into bone-forming cells.
Collapse
Affiliation(s)
- L Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - F Mansour
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - S Rihs
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - I Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - G C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - C Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - M Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Chen P, Wu L, Zhang S, Jin Q, Sun K. Combining TNF-α silencing with Wnt3a overexpression: a promising gene therapy for particle-induced periprosthetic osteolysis. Front Cell Dev Biol 2025; 13:1511577. [PMID: 40114968 PMCID: PMC11922860 DOI: 10.3389/fcell.2025.1511577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Wear particle-induced periprosthetic osteolysis is a prevalent issue that frequently leads to the failure of joint replacements, necessitating the development of effective therapeutic strategies. In this study, we established a mouse model of prosthetic loosening and evaluated the therapeutic effects of targeting tumor necrosis factor-alpha (TNF-α) and wingless-type MMTV integration site family, member 3A (Wnt3a) on osteolysis. TNF-α knockdown reduced inflammation and osteoclast-related gene expression, while Wnt3a overexpression increased osteoblast-related gene expression. Notably, the combination of these interventions showed superior efficacy in inhibiting osteolysis compared to monotherapy. Biomechanical imaging and histological staining revealed that combined therapy enhanced bone density and minimized the gaps between the peri-prosthetic bone and the prosthesis, reducing fibrous connective tissue proliferation. Adeno-associated virus-mediated gene therapy was found to be safe, with no adverse effects observed in liver, brain, spleen, and kidney tissues. Our findings suggest that combining TNF-α silencing with Wnt3a overexpression may be a promising approach for treating particle-induced peri-implant osteolysis and warrants further clinical investigation.
Collapse
Affiliation(s)
- Ping Chen
- Medical Experiment Center, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Long Wu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuai Zhang
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kening Sun
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Hirpara A, Ackert-Bicknell CL, Patel VV. Impact of Low-density Lipoprotein Levels on Rates of Pseudarthrosis After Anterior Cervical Discectomy and Fusion. Spine (Phila Pa 1976) 2025; 50:294-303. [PMID: 39928296 DOI: 10.1097/brs.0000000000005217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/11/2024] [Indexed: 02/11/2025]
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVE To understand how preoperative LDL levels, statin intake, and fish oil intake affect rates of pseudarthrosis after single-level and multilevel ACDF. SUMMARY OF BACKGROUND DATA Anterior cervical discectomy and fusion (ACDF) is commonly performed to treat cervical degenerative diseases or injuries causing neck pain, myelopathy, and radiculopathy. Pseudarthrosis following ACDF can lead to persistent symptoms and may require revision surgery. No studies have explored the link between low-density lipoprotein (LDL) levels and statin or fish oil intake on pseudarthrosis in ACDF. MATERIALS AND METHODS Patients undergoing ACDF were identified using TriNetX, a health care database with over 100 million patients. Pseudarthrosis rates following single-level and multilevel ACDF were compared between patients with high versus low LDL within one year before surgery. Pseudarthrosis rates were also compared between patients taking or not taking a statin as well as patients taking or not taking fish oil within six months before surgery. For all analyses, patients underwent propensity score matching in a 1:1 ratio based on relevant demographic factors and comorbidities. RESULTS Patients with an LDL above 142 mg/dL, compared with below 66 mg/dL, had significantly higher rates of pseudarthrosis at six months, one year, and two years after single-level and multilevel ACDF. Patients not taking a statin or fish oil, compared with those taking a statin or fish oil, respectively, also had significantly higher rates of pseudarthrosis at all time points after multilevel ACDF, but not single-level ACDF. CONCLUSION Low LDL levels are associated with reduced rates of pseudarthrosis after single-level and multilevel ACDF. Statin and fish oil intake before surgery are also associated with reduced rates of pseudarthrosis after multilevel, but not single-level ACDF. These associations may be used for preoperative planning, patient optimization, and risk stratification.
Collapse
Affiliation(s)
- Ankit Hirpara
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | |
Collapse
|
4
|
Yang LC, Li TJ, Hu YF, Tsai YS, Wang CS, Lin SW, Chen YL, Chen CC. Heat-inactivated Lactobacillus casei strain GKC1 Mitigates osteoporosis development in vivo via enhanced osteogenesis. Biochem Biophys Res Commun 2025; 748:151317. [PMID: 39823892 DOI: 10.1016/j.bbrc.2025.151317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/01/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Osteoporosis, a significant bone disease predominantly affecting elderly and postmenopausal women, leads to increased bone fragility and fracture risk, presenting a major public health concern with substantial socioeconomic implications. This study investigated the therapeutic potential of Lactobacillus strains, known for their immunomodulatory properties, in an ovariectomy-induced osteoporosis mouse model. Among three tested strains Lactobacillus casei GKC1, Lactobacillus rhamnosus GKLC1, and Lactobacillus johnsonii GKJ2, GKC1 demonstrated superior efficacy in promoting osteogenesis-related gene expression, including alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). In ovariectomized mice (n = 8/group), both live and heat-inactivated GKC1 (57 mg/kg) and fermented GKC1 (1000 mg/kg) were administered orally for 28 days, with alendronate (2.5 mg/kg) serving as a positive control. The treatment significantly improved bone mineral density and femoral microstructure parameters compared to the ovariectomized control group. For the first time, heat-inactivated GKC1 exhibited superior anti-inflammatory effects through reduction of IL-17A and enhanced bone microstructural integrity, suggesting its potential as a safe and effective therapeutic agent for postmenopausal osteoporosis management. These findings provide compelling evidence for the development of postbiotic-based interventions in osteoporosis treatment, offering a promising alternative to conventional therapeutics.
Collapse
Affiliation(s)
- Li-Chan Yang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan.
| | - Yu-Fang Hu
- The PhD Program for Health Science and Industry, China Medical University, Taichung, Taiwan
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Ci-Sian Wang
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Shih-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Chin-Chu Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Food Sciences, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Ku JK, Lim JH, Lim JA, Um IW, Kim YM, Yun PY. Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery. Tissue Eng Regen Med 2025; 22:261-271. [PMID: 39825990 PMCID: PMC11794915 DOI: 10.1007/s13770-024-00689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading. METHODS Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography. RESULTS All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization. CONCLUSION DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
Collapse
Affiliation(s)
- Jeong-Kui Ku
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jung-Hoon Lim
- Ieum Oral and Maxillofacial Surgery Dental Clinic, 45 Geumo-daero, Yesan-eup, Yesan-gun, Chungcheongnam-do, 32428, Republic of Korea
| | - Jung-Ah Lim
- Ieum Oral and Maxillofacial Surgery Dental Clinic, 45 Geumo-daero, Yesan-eup, Yesan-gun, Chungcheongnam-do, 32428, Republic of Korea
| | - In-Woong Um
- R&D Institute, Korea Tooth Bank, 56, Pyeongchang-gil, Jongno-gu, Seoul, 03008, Republic of Korea
| | - Yu-Mi Kim
- R&D Institute, Korea Tooth Bank, 56, Pyeongchang-gil, Jongno-gu, Seoul, 03008, Republic of Korea
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
- Department of Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro (Yeongeon-dong), Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Abdullah Sani N, Kamaruddin NA, Soelaiman IN, Pang KL, Chin KY, Ramli ESM. Palm Tocotrienol Activates the Wnt3a/β-Catenin Signaling Pathway, Protecting MC3T3-E1 Osteoblasts from Cellular Damage Caused by Dexamethasone and Promoting Bone Formation. Biomedicines 2025; 13:243. [PMID: 39857826 PMCID: PMC11762645 DOI: 10.3390/biomedicines13010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Background and aim: Prolonged glucocorticoid (GC) treatment increases oxidative stress, triggers apoptosis of osteoblasts, and contributes to osteoporosis. Tocotrienol, as an antioxidant, could protect the osteoblasts and preserve bone quality under glucocorticoid treatment. From this study, we aimed to determine the effects of tocotrienol on MC3T3-E1 murine pre-osteoblastic cells treated with GC. Methods: MC3T3-E1 cells were exposed to dexamethasone (150 µM), with or without palm tocotrienol (PTT; 0.25, 0.5, and 1 µg/mL). Cell viability was measured by the MTS assay. Alizarin Red staining was performed to detect calcium deposits. Cellular alkaline phosphatase activity was measured to evaluate osteogenic activity. The expression of osteoblastic differentiation markers was measured by an enzyme-linked immunoassay. Results: Enhanced matrix mineralization was observed in the cells treated with 0.5 µg/mL PTT, especially on day 18 (p < 0.05). The expression of Wnt3a, β-catenin, collagen 1α1, alkaline phosphatase, osteocalcin, low-density lipoprotein receptor-related protein 6, and runt-related transcription factor-2 were significantly increased in the PTT-treated groups compared to the vehicle control group, especially at 0.5 µg/mL of PTT (p < 0.05) and on day 6 of treatment. Conclusions: PTT maintains the osteogenic activity of the dexamethasone-treated osteoblasts by promoting their differentiation.
Collapse
Affiliation(s)
- Norfarahin Abdullah Sani
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.S.); (N.A.K.)
| | - Nur Aqilah Kamaruddin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.S.); (N.A.K.)
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.S.); (K.-L.P.); (K.-Y.C.)
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.S.); (K.-L.P.); (K.-Y.C.)
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 46150, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.S.); (K.-L.P.); (K.-Y.C.)
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.S.); (N.A.K.)
| |
Collapse
|
7
|
Liu Y, Li Y, Liu Y, Gao Z, Zhang J, Qiu Y, Wang C, Lu X, Yang J. Investigation of the Shared Biomarkers in Heterotopic Ossification Between Ossification of the Ligamentum Flavum and Ankylosing Spondylitis. Global Spine J 2025; 15:161-174. [PMID: 38757696 PMCID: PMC11571366 DOI: 10.1177/21925682241255894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
STUDY DESIGN Bioinformatics analysis of Gene Expression Omnibus (GEO). OBJECTIVE Ossification of the ligamentum flavum (OLF) and ankylosing spondylitis (AS) represent intricate conditions marked by the gradual progression of endochondral ossification. This investigation endeavors to unveil common biomarkers associated with heterotopic ossification and explore the potential molecular regulatory mechanisms. METHODS Microarray and RNA-sequencing datasets retrieved from the Gene Expression Omnibus (GEO) repository were harnessed to discern differentially expressed genes (DEGs) within the OLF and AS datasets. Subsequently, Weighted Gene Co-expression Network Analysis (WGCNA) was implemented to pinpoint co-expression modules linked to OLF and AS. Common genes were further subjected to an examination of functional pathway enrichment. Moreover, hub intersection genes were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) regression, followed by an evaluation of diagnostic performance in external OLF and AS cohorts. Lastly, an analysis of immune cell infiltration was conducted to scrutinize the correlation of immune cell presence with shared biomarkers in OLF and AS. RESULTS A total of 1353 and 91 Differentially Expressed Genes (DEGs) were identified in OLF and AS, respectively. Using the Weighted Gene Co-expression Network Analysis (WGCNA), 2 modules were found to be notably significant for OLF and AS. The integrative bioinformatic analysis revealed 3 hub genes (MAB21L2, MEGF10, ISLR) as shared risk biomarkers, with MAB21L2 being the central focus. Receiver Operating Characteristic (ROC) analysis exhibited a strong diagnostic potential for these hub genes. Gene Ontology (GO) analysis indicated their involvement in the positive regulation of myoblast proliferation. Notably, MAB21L2 was singled out as the optimal common biomarker for OLF and AS. Furthermore, an analysis of immune infiltration demonstrated a correlation between MAB21L2 expression and changes in immune cells. Activated CD8 T cells were identified as shared differential immune infiltrating cells significantly linked to MAB21L2 in both OLF and AS. CONCLUSION This study represents the first instance of identifying MAB21L2 as a prospective diagnostic marker for patients contending with OLF associated with AS. The research results indicate that the ECM-receptor interaction and the cell-cell adhesion may play a role in both disease processes. This newfound knowledge not only enhances our understanding of the pathogenesis behind spinal ligament ossification but also uncovers potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yishan Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Spinal Surgery, Subei People’s Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
| | - Yang Li
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yixuan Liu
- Department of Spinal Surgery, Subei People’s Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
- Dalian Medical University, Dalian, China
| | - Zhongya Gao
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianjun Zhang
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- North Sichuan Medical College, Nanchong, China
| | - Youcai Qiu
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Can Wang
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- North Sichuan Medical College, Nanchong, China
| | - Xuhua Lu
- Department of Orthopaedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiandong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Spinal Surgery, Subei People’s Hospital, Clinical Medical School, Yangzhou University Affiliated Hospital, Yangzhou, China
| |
Collapse
|
8
|
Jeong JS, Noh Y, Cho SW, Hsieh CY, Cho Y, Shin JY, Kim H. Association of higher potency statin use with risk of osteoporosis and fractures in patients with stroke in a Korean nationwide cohort study. Sci Rep 2024; 14:30825. [PMID: 39730536 PMCID: PMC11680841 DOI: 10.1038/s41598-024-81628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
This population-based cohort study aimed to evaluate the risk of osteoporosis and fractures associated with higher-potency statin use compared to lower-potency statin use in patients with stroke, using data from the Health Insurance and Review Assessment database of South Korea (2010-2019). Patients who received statin within 30 days after hospitalization for a new-onset stroke (n = 276,911) were divided into higher-potency (n = 212,215, 76.6%) or lower-potency (n = 64,696, 23.4%) statin initiation groups. The primary outcome was a composite of osteoporosis and osteoporotic fractures. Secondary outcomes were individual components of the primary outcome, including osteoporosis, vertebral fracture, hip fracture, and non-hip non-vertebral fracture. Cox proportional hazard models weighted by standardized morbidity ratios were used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). The risk of the composite outcome (HR 0.95, 95% CI 0.93-0.97), osteoporosis (0.93, 0.90-0.96), vertebral fracture (0.95, 0.91-0.99), and hip fracture (0.89, 0.84-0.95) were significantly lower in higher-potency statin users, while the risk for non-hip non-vertebral fracture was not significant (0.98, 0.95-1.02). The use of higher-potency statins compared to lower-potency statins was associated with a lower risk of osteoporosis, vertebral fracture, and hip fracture in patients with stroke.
Collapse
Affiliation(s)
- Jin Sook Jeong
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Yunha Noh
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Cheng-Yang Hsieh
- Department of Neurology, Tainan Sin Lau Hospital, Tainan, Taiwan
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yongtai Cho
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea.
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| | - Hoon Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea.
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
9
|
Salaie RN, Besinis A, Tredwin C, Handy RD. Low toxicity of dissolved silver from silver-coated titanium dental implants to human primary osteoblast cells. Toxicol Rep 2024; 13:101776. [PMID: 39497762 PMCID: PMC11532920 DOI: 10.1016/j.toxrep.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
the controlled release of silver as a biocide from Ag-coated medical implants is desirable. However, the biocompatibility of Ag leachates is poorly understood. This study investigated the toxicity of silver released from the silver plated titanium implants to human primary osteoblast cells; and the effect of cell culture medium on the silver speciation and bioavailability. METHODS Ti6Al4V discs were coated with Ag nanoparticles (NPs), silver plus hydroxyapatite (HA) nanoparticles (Ag+nHA), or Ag NPs plus microparticles (Ag+mHA). Primary human osteoblast cells were exposed to the leachates from the various discs for up to 7 days. RESULTS the total Ag concentrations released as leachate from the silver-plated titanium discs were 0.7-1.6 mg L-1, regardless of treatment. Cumulative silver release over 7 days was approximately 3 mg L-1 in all treatments. The concentration of total Ag in the cell homogenates from all the Ag-containing treatments was modest, ∼ 0.1 µg mg protein-1 or less at day 7. Cells showed normal healthy morphology with no appreciable leak of LDH or ALP activity into the external media compared to the reference control. Similarly, there was no significant differences (Kruskal Wallis, p > 0.05) in the LDH or ALP activity in the cell homogenate between treatments. CONCLUSIONS overall, there was a controlled release of Ag into the external media, but this remained biocompatible with no deleterious effects on the osteoblast cells, which means that the released silver to the peri-implant environment is not toxic making the coating potential for clinical use.
Collapse
Affiliation(s)
- Ranj Nadhim Salaie
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tishk International University, Iraq
| | - Alexandros Besinis
- School of Engineering, Faculty of Science and Engineering, University of Plymouth, UK
| | - Christopher Tredwin
- School of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
| | - Richard D. Handy
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, UK
| |
Collapse
|
10
|
Vassiliou VS, Johnson N, Langlands K, Tsampasian V. Genetics of Calcific Aortic Stenosis: A Systematic Review. Genes (Basel) 2024; 15:1309. [PMID: 39457433 PMCID: PMC11508093 DOI: 10.3390/genes15101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Calcific aortic stenosis is the most prevalent valvular abnormality in the Western world. Factors commonly associated with calcific aortic stenosis include advanced age, male sex, hypertension, diabetes and impaired renal function. This review synthesises the existing literature on genetic associations with calcific aortic stenosis. Methods: A systematic search was conducted in the PubMed, Ovid and Cochrane libraries from inception to 21 July 2024 to identify human studies investigating the genetic factors involved in calcific aortic stenosis. From an initial pool of 1392 articles, 78 were selected for full-text review and 31 were included in the final qualitative synthesis. The risk of bias in these studies was assessed using the Newcastle Ottawa Scale. Results: Multiple genes have been associated with calcific aortic stenosis. These genes are involved in different biological pathways, including the lipid metabolism pathway (PLA, LDL, APO, PCSK9, Lp-PLA2, PONS1), the inflammatory pathway (IL-6, IL-10), the calcification pathway (PALMD, TEX41) and the endocrine pathway (PTH, VIT D, RUNX2, CACNA1C, ALPL). Additional genes such as NOTCH1, NAV1 and FADS1/2 influence different pathways. Mechanistically, these genes may promote a pro-inflammatory and pro-calcific environment in the aortic valve itself, leading to increased osteoblastic activity and subsequent calcific degeneration of the valve. Conclusions: Numerous genetic associations contribute to calcific aortic stenosis. Recognition of these associations can enhance risk stratification for individuals and their first-degree relatives, facilitate family screening, and importantly, pave the way for targeted therapeutic interventions focusing on the identified genetic factors. Understanding these genetic factors can also lead to gene therapy to prevent calcific aortic stenosis in the future.
Collapse
Affiliation(s)
- Vassilios S. Vassiliou
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
- Fitzwilliam College, University of Cambridge, Cambridge CB3 0DG, UK
| | - Nicholas Johnson
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
| | - Kenneth Langlands
- Institute of Continuing Education, University of Cambridge, Cambridge CB23 8AQ, UK;
| | - Vasiliki Tsampasian
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (N.J.); (V.T.)
| |
Collapse
|
11
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
12
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
13
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
14
|
Shang Y, Zhu Q, Ding J, Zhao L, Zhang F, Lu J, Feng Y, Wang J, Liu Z, Kuang M, Li C. Bioactive peptide relieves glucocorticoid-induced osteoporosis by giant macrocyclic encapsulation. J Control Release 2024; 369:75-87. [PMID: 38458570 DOI: 10.1016/j.jconrel.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Bioactive peptides play a crucial role in the field of regenerative medicine and tissue engineering. However, their application in vivo and clinic is hindered by their poor stability, short half-life, and low retention rate. Herein, we propose a novel strategy for encapsulating bioactive peptides using giant macrocycles. Platelet-derived growth factor (PDGF) bioactive mimicking peptide Nap-FFGVRKKP (P) was selected as the representative of a bioactive peptide. Quaterphen[4]arene (4) exhibited extensive host-guest complexation with P, and the binding constant was (1.16 ± 0.10) × 107 M-1. In vitro cell experiments confirmed that P + 4 could promote the proliferation of BMSCs by 2.27 times. Even with the addition of the inhibitor dexamethasone (Dex), P + 4 was still able to save 76.94% of the cells in the control group. Compared to the Dex group, the bone mass of the mice with osteoporosis in the P + 4 group was significantly increased. The mean trabecular thickness (Tb.Th) increased by 17.03%, and the trabecular bone volume fraction (BV/TV) values increased by 40.55%. This supramolecular bioactive peptide delivery strategy provides a general approach for delivering bioactive peptides and opens up new opportunities for the development of peptide-based drugs.
Collapse
Affiliation(s)
- Yuna Shang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingrun Zhu
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiaming Ding
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Liang Zhao
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Fan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiayi Lu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yinyin Feng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiayu Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhixue Liu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Mingjie Kuang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
15
|
Yan-Rui W, Xue-Er Y, Mao-Yu D, Ya-Ting L, Bo-Heng L, Miao-Jie Z, Li Z. Research on the signaling pathway and the related mechanism of traditional Chinese medicine intervention in chronic gastritis of the "inflammation-cancer transformation". Front Pharmacol 2024; 15:1338471. [PMID: 38698812 PMCID: PMC11063381 DOI: 10.3389/fphar.2024.1338471] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Objective: The aim of this study is to uncover the traditional Chinese medicine (TCM) treatments for chronic gastritis and their potential targets and pathways involved in the "inflammation-cancer" conversion in four stages. These findings can provide further support for future research into TCM and its active components. Materials and methods: The literature search encompassed PubMed, Web of Science, Google Scholar, CNKI, WanFang, and VIP, employing keywords such as "chronic gastritis", "gastric cancer", "traditional Chinese medicine", "medicinal herb", "Chinese herb", and "natural plant". Results: Herbal remedies may regulate the signaling pathways linked to the advancement of chronic gastritis. Under the multi-target and multi-pathway independent or combined reaction, the inflammatory microenvironment may be enhanced, leading to repair of damaged gastric mucosal cells, buffering the progress of mucosal atrophic degeneration via the decrease of inflammatory factor expression, inhibition of oxidative stress-induced damage, facilitation of microvascular neovascularization in the gastric mucosa and regulation of the processes of gastric mucosal cell differentiation and proliferation. Simultaneously, the decreased expression of inflammatory factors may impact the expression of associated oncogenes and regulate the malignant proliferation of cells, thereby achieving the treatment and prevention objectives of gastric cancer through the reduction of cell metastasis and apoptosis. Conclusion: Chinese medicine formulations and individual drugs can be utilised at various stages of the "inflammation-cancer" progression of chronic gastritis to prevent and treat gastric cancer in a multi-level, multi-targeted, and multi-directional fashion. This can provide guidance for the accurate application of medicines during different stages of "inflammation-cancer" transformation. New insights into the mechanism of inflammation-cancer transformation and the development of novel drugs for chronic gastritis can be gained through an extensive investigation of TCM treatment in this condition.
Collapse
Affiliation(s)
- Wang Yan-Rui
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yan Xue-Er
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Ding Mao-Yu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lu Ya-Ting
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lu Bo-Heng
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhai Miao-Jie
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Li
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Yun HM, Kim E, Kwon YJ, Park KR. Vanillin Promotes Osteoblast Differentiation, Mineral Apposition, and Antioxidant Effects in Pre-Osteoblasts. Pharmaceutics 2024; 16:485. [PMID: 38675146 PMCID: PMC11054936 DOI: 10.3390/pharmaceutics16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Antioxidant vanillin (4-hydroxy-3-methoxybenzaldehyde) is used as a flavoring in foods, beverages, and pharmaceuticals. Vanillin possesses various biological effects, such as antioxidant, anti-inflammatory, antibacterial, and anticancer properties. This study aimed to investigate the biological activities of vanillin purified from Adenophora triphylla var. japonica Hara on bone-forming processes. Vanillin treatment induced mineralization as a marker for mature osteoblasts, after stimulating alkaline phosphatase (ALP) staining and activity. The bone-forming processes of vanillin are mainly mediated by the upregulation of the bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, and runt-related transcription factor 2 (RUNX2) pathway during the differentiation of osteogenic cells. Moreover, vanillin promoted osteoblast-mediated bone-forming phenotypes by inducing migration and F-actin polymerization. Furthermore, we validated that vanillin-mediated bone-forming processes were attenuated by noggin and DKK1. Finally, we demonstrated that vanillin-mediated antioxidant effects prevent the death of osteoblasts during bone-forming processes. Overall, vanillin has bone-forming properties through the BMP2-mediated biological mechanism, indicating it as a bone-protective compound for bone health and bone diseases such as periodontitis and osteoporosis.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eonmi Kim
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Yoon-Ju Kwon
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
17
|
Ryu KY, Pokhrel NK, Jung HJ, Kim HJ, Seok J, Kim TY, Kim HJ, Lee JH, Kim JY, Kim YG, Lee Y. Mer tyrosine kinase regulates bone metabolism, and its deficiency partially ameliorates periodontitis- and ovariectomy-induced bone loss in mice. JBMR Plus 2024; 8:ziad014. [PMID: 38505527 PMCID: PMC10945713 DOI: 10.1093/jbmrpl/ziad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 03/21/2024] Open
Abstract
Bone homeostasis is maintained by tightly coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. In the present report, the role of Mer tyrosine kinase (MerTK) in bone metabolism was investigated. The expression of MerTK decreased upon BMP2 stimulation of osteoblast precursors. The femurs of Mertk-deficient mice showed significantly increased bone volume with concomitant increase of bone formation and reduction in bone resorption. These bone phenotypes were attributed to the increased osteoblast differentiation and mineralization accounted by the enhanced β-catenin and Smad signaling in the absence of MerTK in osteoblast precursors. Although the Mertk-deficient bone marrow macrophages were predisposed to enhanced osteoclast differentiation via augmented Ca2+-NFATc1 signaling, the dramatic increase of Tnfsf11b/Tnfsf11 (Opg/Rankl) ratio in Mertk knockout bones and osteoblast precursors corroborated the reduction of osteoclastogenesis in Mertk deficiency. In ligature-induced periodontitis and ovariectomy models, the bone resorption was significantly attenuated in Mertk-deficient mice compared with wild-type control. Taken together, these data indicate novel role of MerTK in bone metabolism and suggest a potential strategy targeting MerTK in treating bone-lytic diseases including periodontitis and osteoporosis.
Collapse
Affiliation(s)
- Ka-Young Ryu
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Nitin Kumar Pokhrel
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Hye-Jin Jung
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Hyo Jeong Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jiwon Seok
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
18
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
19
|
Bian X, Jin L, Wang Y, Yuan M, Yao Z, Ning B, Gao W, Guo C. Riboflavin deficiency reduces bone mineral density in rats by compromising osteoblast function. J Nutr Biochem 2023; 122:109453. [PMID: 37788723 DOI: 10.1016/j.jnutbio.2023.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Insufficient riboflavin intake has been associated with poor bone health. This study aimed to investigate the effect of riboflavin deficiency on bone health in vivo and in vitro. Riboflavin deficiency was successfully developed in rats and osteoblasts. The results indicated that bone mineral density, serum bone alkaline phosphatase, bone phosphorus, and bone calcium were significantly decreased while serum ionized calcium and osteocalcin were significantly increased in the riboflavin-deficient rats. Riboflavin deficiency also induced the reduction of Runx2, Osterix, and BMP-2/Smad1/5/9 cascade in the femur. These results were further verified in cellular experiments. Our findings demonstrated that alkaline phosphatase activities and calcified nodules were significantly decreased while intracellular osteocalcin and pro-collagen I c-terminal propeptide were significantly increased in the riboflavin-deficient osteoblasts. Additionally, the protein expression of Osterix, Runx2, and BMP-2/Smad1/5/9 cascade were significantly decreased while the protein expression of p-p38 MAPK were significantly increased in the riboflavin-deficient cells compared to the control cells. Blockage of p38 MAPK signaling pathway with SB203580 reversed these effects in riboflavin-deficient osteoblastic cells. Our data suggest that riboflavin deficiency causes osteoblast malfunction and retards bone matrix mineralization via p38 MAPK/BMP-2/Smad1/5/9 signaling pathway.
Collapse
Affiliation(s)
- Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Lu Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Yanxian Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Man Yuan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Zhanxin Yao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| |
Collapse
|
20
|
Sugyo A, Tsuji AB, Sudo H, Sugiura Y, Koizumi M, Higashi T. Wnt1 induces osteoblastic changes in a well-established osteolytic skeletal metastatic model derived from breast cancer. Cancer Rep (Hoboken) 2023; 6:e1909. [PMID: 37840014 PMCID: PMC10728502 DOI: 10.1002/cnr2.1909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Osteoblastic skeletal metastasis is frequently observed in prostate cancer. An effective therapy has not been developed due to the unclear molecular mechanism. The Wnt family is involved in various biological phenomena including bone metabolism. There is no direct evidence that the family causes osteoblastic skeletal metastasis. AIMS The present study aims to evaluate whether overexpressed Wnt induces osteoblastic bone metastasis in a well-established osteolytic bone metastatic model. METHODS AND RESULTS The breast cancer-derived 5a-D-Luc-ZsGreen cells were transfected with Wnt1, Wnt3A, and Wnt5A expression vectors, producing stably highly expressing cells. These cells were intracardially transplanted in nude mice. Bone metastasis development was confirmed by fluorescence imaging. Hind-limb bones including metastasis were dissected and visualized through micro-CT imaging. After imaging, sections were stained with hematoxylin and eosin (H&E), and immunohistochemically stained with an anti-SATB2 antibody. Luminescent imaging confirmed mice with bone metastases in the hind limbs. Micro-CT imaging found an osteoblastic change only in bone metastasis of mice transplanted with Wnt1-expressing cells. This was confirmed on H&E-stained sections. SATB2 immunostaining showed differentiated osteoblasts were at the site of bone metastases in the diaphysis. SATB2 in the Wnt/β-catenin pathway activated by overexpressed Wnt1 could induce osteoblastic change. CONCLUSION Our findings provided direct evidence Wnt1 is involved in osteoblastic bone metastasis development. Our model would be a powerful tool for further elucidating molecular mechanisms underlying the disease and developing effective therapies.
Collapse
Affiliation(s)
- Aya Sugyo
- Experimental Nuclear Medicine Group, Department of Molecular Imaging and TheranosticsInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Atsushi B. Tsuji
- Experimental Nuclear Medicine Group, Department of Molecular Imaging and TheranosticsInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Hitomi Sudo
- Experimental Nuclear Medicine Group, Department of Molecular Imaging and TheranosticsInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Yoshiya Sugiura
- Department of PathologyToho University Sakura Medical CenterSakuraJapan
| | - Mitsuru Koizumi
- Department of Nuclear MedicineCancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Tatsuya Higashi
- Experimental Nuclear Medicine Group, Department of Molecular Imaging and TheranosticsInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
21
|
Shulman D, Dubnov S, Zorbaz T, Madrer N, Paldor I, Bennett DA, Seshadri S, Mufson EJ, Greenberg DS, Loewenstein Y, Soreq H. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimer's disease. Alzheimers Dement 2023; 19:5159-5172. [PMID: 37158312 PMCID: PMC10632545 DOI: 10.1002/alz.13095] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in transfer RNS (tRNA) fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). METHODS We analyzed small RNA-sequencing (RNA-Seq) data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. RESULTS NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single-cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. DISCUSSION Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.
Collapse
Affiliation(s)
- Dana Shulman
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Serafima Dubnov
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tamara Zorbaz
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nimrod Madrer
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Iddo Paldor
- The Neurosurgery Department, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 South Paulina, Suite 1028, Chicago, IL 60612, USA
| | - Sudha Seshadri
- UT Health Medical Arts & Research Center, San Antonio , TX 78229, USA
| | - Elliott J. Mufson
- Barrow Neurological Institute, St. Joseph's Medical Center, Phoenix, AZ, 85013, USA
| | - David S. Greenberg
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yonatan Loewenstein
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Federmann Center for the Study of Rationality, Jerusalem 9190401, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
22
|
Tourkova IL, Larrouture QC, Onwuka KM, Liu S, Luo J, Schlesinger PH, Blair HC. Age-related decline in bone mineral transport and bone matrix proteins in osteoblasts from stromal stem cells. Am J Physiol Cell Physiol 2023; 325:C613-C622. [PMID: 37519232 PMCID: PMC10635645 DOI: 10.1152/ajpcell.00227.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
We studied osteoblast bone mineral transport and matrix proteins as a function of age. In isolated bone marrow cells from long bones of young (3 or 4 mo) and old (18 or 19 mo) mice, age correlated with reduced mRNA of mineral transport proteins: alkaline phosphatase (ALP), ankylosis (ANK), the Cl-/H+ exchanger ClC3, and matrix proteins collagen 1 (Col1) and osteocalcin (BGLAP). Some proteins, including the neutral phosphate transporter2 (NPT2), were not reduced. These are predominately osteoblast proteins, but in mixed cell populations. Remarkably, in osteoblasts differentiated from preparations of stromal stem cells (SSCs) made from bone marrow cells in young and old mice, differentiated in vitro on perforated polyethylene terephthalate membranes, mRNA confirmed decreased expression with age for most transport-related and bone matrix proteins. Additional mRNAs in osteoblasts in vitro included ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), unchanged, and ENPP2, reduced with age. Decrease with age in ALP activity and protein by Western blot was also significant. Transport protein findings correlated with micro-computed tomography of lumbar vertebra, showing that trabecular bone of old mice is osteopenic relative to young mice, consistent with other studies. Pathway analysis of osteoblasts differentiated in vitro showed that cells from old animals had reduced Erk1/2 phosphorylation and decreased suppressor of mothers against decapentaplegic 2 (Smad2) mRNA, consistent with TGFβ pathway, and reduced β-catenin mRNA, consistent with WNT pathway regulation. Our results show that decline in bone density with age reflects selective changes, resulting effectively in a phenotype modification. Reduction of matrix and mineral transport protein expression with age is regulated by multiple signaling pathways.NEW & NOTEWORTHY This work for the first time showed that specific enzymes in bone mineral transport, and matrix synthesis proteins, in the epithelial-like bone-forming cell layer are downregulated with aging. Results were compared using cells extracted from long bones of young and old mice, or in essentially uniform osteoblasts differentiated from stromal stem cells in vitro. The age effect showed memory in the stromal stem cells, a remarkable finding.
Collapse
Affiliation(s)
- Irina L Tourkova
- Research Service, VA Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Quitterie C Larrouture
- Research Service, VA Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kelechi M Onwuka
- Research Service, VA Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Paul H Schlesinger
- Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Harry C Blair
- Research Service, VA Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
23
|
Xie Y, Yang Q, Liu X, Xie B, Zhang X, Wang Y. Evaluation of toxicity and biocompatibility of a novel Mg-Nd-Gd-Sr alloy in the osteoblastic cell. Mol Biol Rep 2023; 50:7161-7171. [PMID: 37405521 DOI: 10.1007/s11033-023-08637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND We investigated the toxicity and biocompatibility of a novel Mg-3Nd-1Gd-0.3Sr-0.2Zn-0.4Zr (abbreviated to Mg-Nd-Gd-Sr) alloy in the osteoblastic cell line MC3T3-E1 as osteoblasts play an important role in bone repair and remodeling. METHODS We used cytotoxicity tests and apoptosis to investigate the effects of the Mg-Nd-Gd-Sr alloy on osteoblastic cells. Cell bioactivity, cell adhesion, cell proliferation, mineralization, ALP activity, and expression of BMP-2 and OPG by osteoblastic cells were also used to investigate the biocompatibility of Mg-Nd-Gd-Sr alloy. RESULTS The results showed that the Mg-Nd-Gd-Sr alloy had no obvious cytotoxicity, and did not induce apoptosis to MC3T3-E1 cells. Compared with the control group, the number of adherent cells within 12 h was increased significantly in each experimental group (P < 0.05); the OD value of MC3T3-E1 cells was increased significantly in each experimental group on days 1 and 3 of culture (P < 0.05); the number of mineralized nodules formed in each experimental group was significantly increased (P < 0.05), and ALP activity was significantly increased in each experimental group (P < 0.05). RT-PCR results showed that the mRNA expression of BMP-2 and OPG was significantly higher in each experimental group compared with the control group (P < 0.05). Western blotting showed that the Mg-Nd-Gd-Sr alloy extract significantly increased the protein expression of BMP-2 and OPG compared with the control group (P < 0.05). CONCLUSIONS Our data indicated that the novel Mg-Nd-Gd-Sr-Zn-Zr alloy had no obvious cytotoxic effects, and did not cause apoptosis to MC3T3-E1 cells; meanwhile it promoted cell adhesion, cell proliferation, mineralization, and ALP activity of osteoblasts. During this process, there was an increase in the expressions of BMP-2 and OPG mRNAs and proteins.
Collapse
Affiliation(s)
- Yadong Xie
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Qinglin Yang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaorong Liu
- Department of Laboratory, The Second People's Hospital of Gansu Province, Lanzhou, 730000, China
| | - Ben Xie
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaobo Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China.
| | - Yongping Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
24
|
Riege D, Herschel S, Heintze L, Fenkl T, Wesseler F, Sievers S, Peifer C, Schade D. Identification of Maleimide-Fused Carbazoles as Novel Noncanonical Bone Morphogenetic Protein Synergizers. ACS Pharmacol Transl Sci 2023; 6:1207-1220. [PMID: 37588754 PMCID: PMC10426274 DOI: 10.1021/acsptsci.3c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 08/18/2023]
Abstract
Morphogenic signaling pathways govern embryonic development and tissue homeostasis on the cellular level. Precise control of such signaling events paves the way for innovative therapeutic approaches in the field of regenerative medicine. In line with these notions, bone morphogenic protein (BMP) is a major osteogenic driver and pharmacological stimulation of BMP signaling holds supreme potential for diseases and defects of the skeleton. Efforts to identify small-molecule modalities that activate or potentiate the BMP pathway have primarily been focused on the canonical signaling cascade. Here, we describe the phenotypic identification and development of specific carbazolomaleimides 2 as novel noncanonical BMP synergizers with submicromolar osteogenic cellular potency. The devised chemical tools are characterized to specifically regulate Id gene expression in a SMAD-independent, yet highly BMP-dependent fashion. Mechanistic studies revealed that GSK3 inhibition and increased β-catenin levels are partly responsible for this activity. The utility of the new BMP synergizer profile was further exemplified by showing how the synergistic action of canonical and noncanonical BMP enhancers additively amplifies BMP-dependent osteogenic outputs. Carbazolomaleimide 2b serves as a new and unique pharmacological tool for the modulation and study of the BMP pathway.
Collapse
Affiliation(s)
- Daniel Riege
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Sven Herschel
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Linda Heintze
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Teresa Fenkl
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Fabian Wesseler
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Sonja Sievers
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Christian Peifer
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Dennis Schade
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Partner Site Kiel, DZHK,
German Center for Cardiovascular Research, 24105
Kiel, Germany
| |
Collapse
|
25
|
Sangadala S, Kim CH, Fernandes LM, Makkar P, Beck GR, Boden SD, Drissi H, Presciutti SM. Sclerostin small-molecule inhibitors promote osteogenesis by activating canonical Wnt and BMP pathways. eLife 2023; 12:e63402. [PMID: 37560905 PMCID: PMC10431921 DOI: 10.7554/elife.63402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
Background The clinical healing environment after a posterior spinal arthrodesis surgery is one of the most clinically challenging bone-healing environments across all orthopedic interventions due to the absence of a contained space and the need to form de novo bone. Our group has previously reported that sclerostin in expressed locally at high levels throughout a developing spinal fusion. However, the role of sclerostin in controlling bone fusion remains to be established. Methods We computationally identified two FDA-approved drugs, as well as a single novel small-molecule drug, for their ability to disrupt the interaction between sclerostin and its receptor, LRP5/6. The drugs were tested in several in vitro biochemical assays using murine MC3T3 and MSCs, assessing their ability to (1) enhance canonical Wnt signaling, (2) promote the accumulation of the active (non-phosphorylated) form of β-catenin, and (3) enhance the intensity and signaling duration of BMP signaling. These drugs were then tested subcutaneously in rats as standalone osteoinductive agents on plain collagen sponges. Finally, the top drug candidates (called VA1 and C07) were tested in a rabbit posterolateral spine fusion model for their ability to achieve a successful fusion at 6 wk. Results We show that by controlling GSK3b phosphorylation our three small-molecule inhibitors (SMIs) simultaneously enhance canonical Wnt signaling and potentiate canonical BMP signaling intensity and duration. We also demonstrate that the SMIs produce dose-dependent ectopic mineralization in vivo in rats as well as significantly increase posterolateral spine fusion rates in rabbits in vivo, both as standalone osteogenic drugs and in combination with autologous iliac crest bone graft. Conclusions Few if any osteogenic small molecules possess the osteoinductive potency of BMP itself - that is, the ability to form de novo ectopic bone as a standalone agent. Herein, we describe two such SMIs that have this unique ability and were shown to induce de novo bone in a stringent in vivo environment. These SMIs may have the potential to be used in novel, cost-effective bone graft substitutes for either achieving spinal fusion or in the healing of critical-sized fracture defects. Funding This work was supported by a Veteran Affairs Career Development Award (IK2-BX003845).
Collapse
Affiliation(s)
- Sreedhara Sangadala
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Chi Heon Kim
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Lorenzo M Fernandes
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Pooja Makkar
- Department of Biotechnology, Panjab UniversityChandigarhIndia
| | - George R Beck
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Emory University, Division of EndocrinologyAtlantaUnited States
| | - Scott D Boden
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Hicham Drissi
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Steven M Presciutti
- Atlanta Veterans Affairs Medical CenterDecaturUnited States
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
26
|
Sallam M, Wilson PW, Andersson B, Schmutz M, Benavides C, Dominguez-Gasca N, Sanchez-Rodriguez E, Rodriguez-Navarro AB, Dunn IC, De Koning DJ, Johnsson M. Genetic markers associated with bone composition in Rhode Island Red laying hens. Genet Sel Evol 2023; 55:44. [PMID: 37386416 DOI: 10.1186/s12711-023-00818-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Bone damage has welfare and economic impacts on modern commercial poultry and is known as one of the major challenges in the poultry industry. Bone damage is particularly common in laying hens and is probably due to the physiological link between bone and the egg laying process. Previous studies identified and validated quantitative trait loci (QTL) for bone strength in White Leghorn laying hens based on several measurements, including bone composition measurements on the cortex and medulla of the tibia bone. In a previous pedigree-based analysis, bone composition measurements showed heritabilities ranging from 0.18 to 0.41 and moderate to strong genetic correlations with tibia strength and density. Bone composition was measured using infrared spectroscopy and thermogravimetry. The aim of this study was to combine these bone composition measurements with genotyping data via a genome-wide association study (GWAS) to investigate genetic markers that contribute to genetic variance in bone composition in Rhode Island Red laying hens. In addition, we investigated the genetic correlations between bone composition and bone strength. RESULTS We found novel genetic markers that are significantly associated with cortical lipid, cortical mineral scattering, medullary organic matter, and medullary mineralization. Composition of the bone organic matter showed more significant associations than bone mineral composition. We also found interesting overlaps between the GWAS results for tibia composition traits, particularly for cortical lipid and tibia strength. Bone composition measurements by infrared spectroscopy showed more significant associations than thermogravimetry measurements. Based on the results of infrared spectroscopy, cortical lipid showed the highest genetic correlations with tibia density, which was negative (- 0.20 ± 0.04), followed by cortical CO3/PO4 (0.18 ± 0.04). Based on the results of thermogravimetry, medullary organic matter% and mineral% showed the highest genetic correlations with tibia density (- 0.25 ± 0.04 and 0.25 ± 0.04, respectively). CONCLUSIONS This study detected novel genetic associations for bone composition traits, particularly those involving organic matter, that could be used as a basis for further molecular genetic investigations. Tibia cortical lipids displayed the strongest genetic associations of all the composition measurements, including a significantly high genetic correlation with tibia density and strength. Our results also highlighted that cortical lipid may be a key measurement for further avian bone studies.
Collapse
Affiliation(s)
- Moh Sallam
- Swedish University of Agricultural Sciences, 75651, Uppsala, Sweden.
| | - Peter W Wilson
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | | | - Cristina Benavides
- Departamento de Mineralogia y Petrologia, Universidad de Granada, 18002, Granada, Spain
| | | | | | | | - Ian C Dunn
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | - Martin Johnsson
- Swedish University of Agricultural Sciences, 75651, Uppsala, Sweden
| |
Collapse
|
27
|
Xu K, Zhang L, Yu N, Ren Z, Wang T, Zhang Y, Zhao X, Yu T. Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: a systematic review. Stem Cell Res Ther 2023; 14:74. [PMID: 37038234 PMCID: PMC10088298 DOI: 10.1186/s13287-023-03324-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The formation and accumulation of advanced glycation end products (AGEs) have been associated with aging and the development, or worsening, of many degenerative diseases, such as atherosclerosis, chronic kidney disease, and diabetes. AGEs can accumulate in a variety of cells and tissues, and organs in the body, which in turn induces oxidative stress and inflammatory responses and adversely affects human health. In addition, under abnormal pathological conditions, AGEs create conditions that are not conducive to stem cell differentiation. Moreover, an accumulation of AGEs can affect the differentiation of stem cells. This, in turn, leads to impaired tissue repair and further aggravation of diabetic complications. Therefore, this systematic review clearly outlines the effects of AGEs on cell differentiation of various types of primary isolated stem cells and summarizes the possible regulatory mechanisms and interventions. Our study is expected to reveal the mechanism of tissue damage caused by the diabetic microenvironment from a cellular and molecular point of view and provide new ideas for treating complications caused by diabetes.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liang Zhang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Ning Yu
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xia Zhao
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
28
|
Jiang X, Kong X. Regulation of Wnt Signaling Pathway by Costic Acid Derivative, An Efficient Strategy for Treatment of Glucocorticoid‐Induced Osteoporosis in Rat Model. ChemistrySelect 2023. [DOI: 10.1002/slct.202204912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xue Jiang
- Department of Pharmaceutical Sciences The First People's Hospital of Lianyungang The Affiliated Lianyungang Hospital of Xuzhou Medical University Lianyungang 222000 China
| | - Xiangying Kong
- Bone and casualty Department Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine Lianyungang 222000 China
| |
Collapse
|
29
|
Weivoda MM, Bradley EW. Macrophages and Bone Remodeling. J Bone Miner Res 2023; 38:359-369. [PMID: 36651575 PMCID: PMC10023335 DOI: 10.1002/jbmr.4773] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Bone remodeling in the adult skeleton facilitates the removal and replacement of damaged and old bone to maintain bone quality. Tight coordination of bone resorption and bone formation during remodeling crucially maintains skeletal mass. Increasing evidence suggests that many cell types beyond osteoclasts and osteoblasts support bone remodeling, including macrophages and other myeloid lineage cells. Herein, we discuss the origin and functions for macrophages in the bone microenvironment, tissue resident macrophages, osteomacs, as well as newly identified osteomorphs that result from osteoclast fission. We also touch on the role of macrophages during inflammatory bone resorption. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Elizabeth W. Bradley
- Department of Orthopedics and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
30
|
Shulman D, Dubnov S, Zorbaz T, Madrer N, Paldor I, Bennett DA, Seshadri S, Mufson EJ, Greenberg DS, Loewenstein Y, Soreq H. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527612. [PMID: 36798311 PMCID: PMC9934682 DOI: 10.1101/2023.02.08.527612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Introduction Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in tRNA fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). Methods We analyzed small RNA-sequencing data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. Results NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. Discussion Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.
Collapse
Affiliation(s)
- Dana Shulman
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Serafima Dubnov
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tamara Zorbaz
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nimrod Madrer
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Iddo Paldor
- The Neurosurgery Department, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 600 South Paulina, Suite 1028, Chicago, IL 60612, USA
| | - Sudha Seshadri
- UT Health Medical Arts & Research Center, San Antonio, TX 78229, USA
| | - Elliott J. Mufson
- Barrow Neurological Institute, St. Joseph’s Medical Center, Phoenix, AZ, 85013, USA
| | - David S. Greenberg
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yonatan Loewenstein
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Federmann Center for the Study of Rationality, Jerusalem 9190401, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
31
|
Kim K, Kim MG, Lee GM. Improving bone morphogenetic protein (BMP) production in CHO cells through understanding of BMP synthesis, signaling and endocytosis. Biotechnol Adv 2023; 62:108080. [PMID: 36526238 DOI: 10.1016/j.biotechadv.2022.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors with the clinical potential to regulate cartilage and bone formation. Functionally active mature recombinant human BMPs (rhBMPs), produced primarily in Chinese hamster ovary (CHO) cells for clinical applications, are considered difficult to express because they undergo maturation processes, signaling pathways, or endocytosis. Although BMPs are a family of proteins with similar mature domain sequence identities, their individual properties are diverse. Thus, understanding the properties of individual rhBMPs is essential to improve rhBMP production in CHO cells. In this review, we discuss various approaches to improve rhBMP production in CHO cells by understanding the overall maturation process, signaling pathways and endocytosis of individual rhBMPs.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi Gyeom Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
32
|
Improved Protocol to Study Osteoblast and Adipocyte Differentiation Balance. Biomedicines 2022; 11:biomedicines11010031. [PMID: 36672539 PMCID: PMC9855576 DOI: 10.3390/biomedicines11010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Adipogenesis-osteoblastogenesis balance-rupture is relevant in multiple diseases. Current human mesenchymal stem cells (hMSCs) in vitro differentiation models are expensive, and are hardly reproducible. Their scarcity and variability make an affordable and reliable method to study adipocyte-osteoblast-equilibrium difficult. Moreover, media composition has been inconstant throughout the literature. Our aims were to compare improved differentiation lab-made media with consensus/commercial media, and to identify a cell-line to simultaneously evaluate both MSCs differentiations. Lab-made media were compared with consensus and commercial media in C3H10T1/2 and hMSC, respectively. Lab-made media were tested on aged women primary pre-osteoblast-like cells. To determine the optimum cell line, C3H10T1/2 and hMSC-TERT cells were differentiated to both cell fates. Differentiation processes were evaluated by adipocytic and osteoblastic gene-markers expression and staining. Lab-made media significantly increased consensus medium induction and overcame commercial media in hMSCs differentiation to adipocytes and osteoblasts. Pre-osteoblast-like cells only properly differentiate to adipocyte. Lab-made media promoted adipocyte gene-markers expression in C3H10T1/2 and hMSC-TERT, and osteoblast gene-markers in C3H10T1/2. Oil Red O and Alizarin Red staining supported these findings. Optimized lab-made media were better at differentiating MSCs compared to consensus/commercial media, and evidenced the adipogenic commitment of pre-osteoblast-like cells from aged-women. C3H10T1/2 is an optimum MSC line by which to study adipocyte-osteoblast differentiation balance.
Collapse
|
33
|
Maloberti A, Fabbri S, Colombo V, Gualini E, Monticelli M, Daus F, Busti A, Galasso M, De Censi L, Algeri M, Merlini PA, Giannattasio C. Lipoprotein(a): Cardiovascular Disease, Aortic Stenosis and New Therapeutic Option. Int J Mol Sci 2022; 24:ijms24010170. [PMID: 36613613 PMCID: PMC9820656 DOI: 10.3390/ijms24010170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic and progressive inflammatory process beginning early in life with late clinical manifestation. This slow pathological trend underlines the importance to early identify high-risk patients and to treat intensively risk factors to prevent the onset and/or the progression of atherosclerotic lesions. In addition to the common Cardiovascular (CV) risk factors, new markers able to increase the risk of CV disease have been identified. Among them, high levels of Lipoprotein(a)-Lp(a)-lead to very high risk of future CV diseases; this relationship has been well demonstrated in epidemiological, mendelian randomization and genome-wide association studies as well as in meta-analyses. Recently, new aspects have been identified, such as its association with aortic stenosis. Although till recent years it has been considered an unmodifiable risk factor, specific drugs have been developed with a strong efficacy in reducing the circulating levels of Lp(a) and their capacity to reduce subsequent CV events is under testing in ongoing trials. In this paper we will review all these aspects: from the synthesis, clearance and measurement of Lp(a), through the findings that examine its association with CV diseases and aortic stenosis to the new therapeutic options that will be available in the next years.
Collapse
Affiliation(s)
- Alessandro Maloberti
- Cardiology 4, Cardio Center A. De Gasperis, ASST GOM Niguarda, 20162 Milan, Italy
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
- Correspondence: ; Tel.: +39-02-644-478-55; Fax: +39-02-644-425-66
| | - Saverio Fabbri
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Valentina Colombo
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Elena Gualini
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | | | - Francesca Daus
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Andrea Busti
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Michele Galasso
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Lorenzo De Censi
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Michela Algeri
- Cardiology 4, Cardio Center A. De Gasperis, ASST GOM Niguarda, 20162 Milan, Italy
| | | | - Cristina Giannattasio
- Cardiology 4, Cardio Center A. De Gasperis, ASST GOM Niguarda, 20162 Milan, Italy
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| |
Collapse
|
34
|
Zhang Y, Zhao Y, Xie Z, Li M, Liu Y, Tu X. Activating Wnt/β-Catenin Signaling in Osteocytes Promotes Osteogenic Differentiation of BMSCs through BMP-7. Int J Mol Sci 2022; 23:ijms232416045. [PMID: 36555684 PMCID: PMC9785209 DOI: 10.3390/ijms232416045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Bone formation is critically needed in orthopedic clinical practice. We found that, bone morphogenetic protein-7 (BMP-7) gene expression was significantly increased in fractured mice, which activates canonical Wnt signaling exclusively in osteocytes. Wnt and BMP signaling appear to exhibit synergistic or antagonistic effects in different kinds of cells. However, the communication between Wnt/β-catenin signaling and BMP signaling in osteocytes is almost unknown. Our study verified in vitro that BMP-7 expression was significantly increased when Wnt signaling was activated in osteocytes. Next, BMP-7 in osteocytes was overexpressed using an adenovirus, the osteogenesis of bone marrow stem cells (BMSCs) was enhanced, when cocultured with osteocytes. On the contrary, BMP-7 in osteocytes was silenced using an adenovirus, the osteogenesis of bone marrow stem cells (BMSCs) was weakened. In addition, the osteogenesis of BMSCs was no longer promoted by Wnt-activated osteocytes when BMP-7 was silenced. Therefore, the results showed that BMP-7 mediated the anabolic actions of Wnt/β-catenin signaling in osteocytes. Our study provides new evidence for the clinical application of BMP-7-overexpressed osteocytes.
Collapse
Affiliation(s)
- Yining Zhang
- Correspondence: (Y.Z.); (X.T.); Tel.: +86-23-6365-1934 (X.T.)
| | | | | | | | | | - Xiaolin Tu
- Correspondence: (Y.Z.); (X.T.); Tel.: +86-23-6365-1934 (X.T.)
| |
Collapse
|
35
|
Huang W, Wu X, Xiang S, Qiao M, Li H, Zhu Y, Zhu Z, Zhao Z. Regulatory of miRNAs in tri-lineage differentiation of C3H10T1/2. Stem Cell Res Ther 2022; 13:521. [PMID: 36414991 PMCID: PMC9682817 DOI: 10.1186/s13287-022-03205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which play a vital role in cell generation, metabolism, apoptosis and stem cell differentiation. C3H10T1/2, a mesenchymal cell extracted from mouse embryos, is capable of osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. Extensive studies have shown that not only miRNAs can directly trigger targeted genes to regulate the tri-lineage differentiation of C3H10T1/2, but it also can indirectly regulate the differentiation by triggering different signaling pathways or various downstream molecules. This paper aims to clarify the regulatory roles of different miRNAs on C3H10T1/2 differentiation, and discussing their balance effect among osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation of C3H10T1/2. We also review the biogenesis of miRNAs, Wnt signaling pathways, MAPK signaling pathways and BMP signaling pathways and provide some specific examples of how these signaling pathways act on C3H10T1/2 tri-lineage differentiation. On this basis, we hope that a deeper understanding of the differentiation and regulation mechanism of miRNAs in C3H10T1/2 can provide a promising therapeutic method for the clinical treatment of bone defects, osteoporosis, osteoarthritis and other diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingxin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanfei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
36
|
Age-Related Low Bone Mineral Density in C57BL/6 Mice Is Reflective of Aberrant Bone Morphogenetic Protein-2 Signaling Observed in Human Patients Diagnosed with Osteoporosis. Int J Mol Sci 2022; 23:ijms231911205. [PMID: 36232525 PMCID: PMC9570292 DOI: 10.3390/ijms231911205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis (OP) is a bone disorder characterized by decreased bone mineral density (BMD). Bone Morphogenetic Protein-2 (BMP-2) injections are used to promote bone formation in OP patients. However, patients are unresponsive to BMP-2 while displaying an upregulation of BMP Receptor Type 1a (BMPRIa) and protein kinase CK2α (CK2α). A synthetically produced peptide named casein kinase 2.3 (CK2.3) utilizes the BMP-signaling pathway as it enhances osteogenesis of primary osteoblasts isolated from OP patients, whereas BMP-2 does not. Although shown in OP patients, there is currently no reliable mouse model to study BMP-2 and CK2.3 signaling. In this publication, we show that BMPRIa was required for CK2.3-mediated osteogenesis in C2C12 cells with a CRISPR-Cas9-mediated gene knockout for BMPRIa. We utilized the C57BL/6 (B6) mouse strain as an aging-model to study aberrant BMP-2 signaling, demonstrating that, like OP patients, in 15 and 20-month mice, BMP-2 did not increase bone growth and displayed upregulated BMPRIa and CK2α protein expression. Furthermore, CK2.3 enhanced osteogenesis and decreased osteoclastogenesis in all age groups, whereas BMP-2 only increased mineralization in 6-month mice while increasing osteoclast formation in all age groups. These data demonstrated that aging B6 mice were a reliable model and mimicked data obtained from OP patients.
Collapse
|
37
|
Lu YN, Wang L, Zhang YZ. The promising roles of macrophages in geriatric hip fracture. Front Cell Dev Biol 2022; 10:962990. [PMID: 36092716 PMCID: PMC9458961 DOI: 10.3389/fcell.2022.962990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
As aging becomes a global burden, the incidence of hip fracture (HF), which is the most common fracture in the elderly population and can be fatal, is rapidly increasing, and its extremely high fatality rate places significant medical and financial burdens on patients. Fractures trigger a complex set of immune responses, and recent studies have shown that with aging, the immune system shows decreased activity or malfunctions in a process known as immune senescence, leading to disease and death. These phenomena are the reasons why elderly individuals typically exhibit chronically low levels of inflammation and increased rates of infection and chronic disease. Macrophages, which are key players in the inflammatory response, are critical in initiating the inflammatory response, clearing pathogens, controlling the innate and adaptive immune responses and repairing damaged tissues. Tissue-resident macrophages (TRMs) are widely present in tissues and perform immune sentinel and homeostatic functions. TRMs are combinations of macrophages with different functions and phenotypes that can be directly influenced by neighboring cells and the microenvironment. They form a critical component of the first line of defense in all tissues of the body. Immune system disorders caused by aging could affect the biology of macrophages and thus the cascaded immune response after fracture in various ways. In this review, we outline recent studies and discuss the potential link between monocytes and macrophages and their potential roles in HF in elderly individuals.
Collapse
Affiliation(s)
- Yi-ning Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| | - Ying-ze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| |
Collapse
|
38
|
Park KR, Kim B, Lee JY, Moon HJ, Kwon IK, Yun HM. Effects of Scoparone on differentiation, adhesion, migration, autophagy and mineralization through the osteogenic signalling pathways. J Cell Mol Med 2022; 26:4520-4529. [PMID: 35796406 PMCID: PMC9357629 DOI: 10.1111/jcmm.17476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 12/18/2022] Open
Abstract
Scoparone (SCOP), an active and efficient coumarin compound derived from Artemisia capillaris Thunb, has been used as a traditional Chinese herbal medicine. Herein, we investigated the effects of SCOP on the osteogenic processes using MC3T3‐E1 pre‐osteoblasts in in vitro cell systems. SCOP (C11H10O4, > 99.17%) was purified and identified from A. capillaries. SCOP (0.1 to 100 μM concentrations) did not have cytotoxic effects in pre‐osteoblasts; however, it promoted alkaline phosphatase (ALP) staining and activity, and mineralized nodule formation under early and late osteogenic induction. SCOP elevated osteogenic signals through the bone morphogenetic protein 2 (BMP2)‐Smad1/5/8 pathway, leading to the increased expression of runt‐related transcription factor 2 (RUNX2) with its target protein, matrix metallopeptidase 13 (MMP13). SCOP also induced the non‐canonical BMP2‐MAPKs pathway, but not the Wnt3a‐β‐catenin pathway. Moreover, SCOP promoted autophagy, migration and adhesion under the osteogenic induction. Overall, the findings of this study demonstrated that SCOP has osteogenic effects associated with cell differentiation, adhesion, migration, autophagy and mineralization.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Korea
| | - Bomi Kim
- National Development Institute of Korean Medicine, Gyeongsan, Korea
| | - Joon Yeop Lee
- National Development Institute of Korean Medicine, Gyeongsan, Korea
| | - Ho-Jin Moon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Korea.,Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
39
|
Chatzopoulos GS, Koidou VP, Wolff LF. Expression of Wnt signaling agonists and antagonists in periodontitis and healthy subjects, before and after non-surgical periodontal treatment: A systematic review. J Periodontal Res 2022; 57:698-710. [PMID: 35719081 DOI: 10.1111/jre.13029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Periodontitis is a preventable and treatable multifactorial chronic inflammatory disease that can lead to irreversible periodontal destruction and tooth loss. Wnt signaling and its regulators play an important role in periodontal inflammation, destruction, regeneration, and reconstruction. This systematic review aimed at investigating the involvement of Wnt signaling agonists and antagonists in periodontitis and healthy subjects, before and after periodontal treatment. Electronic searches were carried out using MEDLINE/PubMed, EMBASE, and Cochrane Library databases in addition to hand searches. Studies having different designs assessing the levels of Wnt signaling antagonist and agonist levels in gingival crevicular fluid, serum, and tissue in patients diagnosed with periodontitis or gingivitis, compared with healthy individuals were included. In addition, studies compared these levels in periodontitis patients before and after non-surgical periodontal therapy were also eligible. Sixteen studies met the eligibility criteria. Sclerostin (SOST) has been mainly investigated in the literature (8 publications). Sclerostin (5 studies), Wnt-5a (2 studies), secreted frizzled-related protein 1 (SFRP1) (3 studies), and β-catenin (3 studies) show increased levels in periodontitis compared with periodontal health. Strong correlations between marker levels and periodontal clinical parameters were identified for SOST (5 studies), SFRP1 (2 studies), and β-catenin (2 studies). SOST (3 studies) and SFRP1 (1 study) levels significantly decrease following non-surgical periodontal treatment. The present systematic review demonstrated an association between Wnt signaling agonist and antagonist levels and periodontitis. Wnt agonists and antagonists may serve as valuable diagnostic and prognostic markers for periodontitis onset and progression. Further case-control and longitudinal studies should be conducted for different Wnt signaling agonists and antagonists.
Collapse
Affiliation(s)
- Georgios S Chatzopoulos
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki P Koidou
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA.,Centre for Oral Immunobiology and Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University London (QMUL), London, UK
| | - Larry F Wolff
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
40
|
Jeon EY, Um SH, Park J, Jung Y, Cheon CH, Jeon H, Chung JJ. Precisely Localized Bone Regeneration Mediated by Marine-Derived Microdroplets with Superior BMP-2 Binding Affinity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200416. [PMID: 35543974 DOI: 10.1002/smll.202200416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Prompt and robust bone regeneration has been clinically achieved using supraphysiological doses of bone morphogenetic protein-2 (BMP-2) to overcome the short half-life and rapid clearance. However, uncontrolled burst release of exogenous BMP-2 causes severe complications such as heterotopic ossification and soft tissue inflammation. Therefore, numerous researches have focused on developing a new BMP-2 delivery system for a sustained release profile by immobilizing BMP-2 in various polymeric vehicles. Herein, to avoid denaturation of BMP-2 and enhance therapeutic action via localized delivery, a complex coacervate consisting of fucoidan, a marine-derived glycosaminoglycan, and poly-l-lysine (PLL) is fabricated. Superior BMP-2 binding ability and electrostatic interaction-driven engulfment enable facile and highly efficient microencapsulation of BMP-2. The microencapsulation ability of the coacervate significantly improves BMP-2 bioactivity and provides protection against antagonist and proteolysis, while allowing prolonged release. Moreover, BMP-2 containing coacervate is coated on conventional collagen sponges. The bioactivity and localized bone regenerating ability are confirmed through in vitro (human-derived stem cells), and in vivo (calvarial bone defect model) evaluations.
Collapse
Affiliation(s)
- Eun Young Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seung-Hoon Um
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jaeho Park
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Seoul, 03722, Republic of Korea
| | - Cheol-Hong Cheon
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Justin J Chung
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
41
|
Hou J, Tamura Y, Lu HY, Takahashi Y, Kasugai S, Nakata H, Kuroda S. An In Vitro Evaluation of Selenium Nanoparticles on Osteoblastic Differentiation and Antimicrobial Properties against Porphyromonas gingivalis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1850. [PMID: 35683706 PMCID: PMC9182271 DOI: 10.3390/nano12111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023]
Abstract
Despite numerous treatment methods, there is no gold standard for the treatment of peri-implantitis-an infectious peri-implant disease. Here, we examined selenium nanoparticles (SeNPs) at a wide range of concentrations to investigate their cytotoxicity, regulation of osteoblastic differentiation, and assessed the antibacterial effect against Porphyromonas gingivalis. SeNPs (mean size: 70 nm; shape: near-spherical; concentration: 0-2048 ppm) were tested against the MC3T3-E1 osteoblast precursor cell line and P. gingivalis red complex pathogen. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) analysis was used to evaluate the bone morphogenetic protein 2 (BMP-2) signaling pathway. SeNPs at concentrations of 2-16 ppm showed no obvious cytotoxicity and promoted good mineralization and calcification. SeNPs at concentrations 64 ppm and below influenced gene expression promoting osteoblastic differentiation, whereas at high concentrations inhibited the expression of Runt-related transcription factor 2 (Runx2). The growth of P. gingivalis was significantly inhibited at SeNP concentrations of more than 4 ppm. SeNPs at low concentrations promoted osteoblastic differentiation while strongly inhibiting peri-implantitis pathogen growth. This study represents one of the few in vitro assessments of SeNPs against a red complex pathogen and the regulatory effect on osteoblastic differentiation. The findings demonstrate SeNPs could potentially be used for future application on implant coating.
Collapse
Affiliation(s)
- Jason Hou
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| | - Yukihiko Tamura
- Department of Dental Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Hsin-Ying Lu
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| | - Yuta Takahashi
- Dental Hospital Clinical Laboratory Division, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Shohei Kasugai
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| | - Hidemi Nakata
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| | - Shinji Kuroda
- Department of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.H.); (H.-Y.L.); (S.K.)
| |
Collapse
|
42
|
Franco CN, Noe MM, Albrecht LV. Metabolism and Endocrine Disorders: What Wnt Wrong? Front Endocrinol (Lausanne) 2022; 13:887037. [PMID: 35600583 PMCID: PMC9120667 DOI: 10.3389/fendo.2022.887037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in cell biology underlies how nutrients are regenerated to maintain and renew tissues. Physiologically, the canonical Wnt signaling is a vital pathway for cell growth, tissue remodeling, and organ formation; pathologically, Wnt signaling contributes to the development of myriad human diseases such as cancer. Despite being the focus of intense research, how Wnt intersects with the metabolic networks to promote tissue growth and remodeling has remained mysterious. Our understanding of metabolism has been revolutionized by technological advances in the fields of chemical biology, metabolomics, and live microscopy that have now made it possible to visualize and manipulate metabolism in living cells and tissues. The application of these toolsets to innovative model systems have propelled the Wnt field into new realms at the forefront answering the most pressing paradigms of cell metabolism in health and disease states. Elucidating the basis of Wnt signaling and metabolism in a cell-type and tissue-specific manner will provide a powerful base of knowledge for both basic biomedical fields and clinician scientists, and has the promise to generate new, transformative therapies in disease and even processes of aging.
Collapse
Affiliation(s)
- Carolina N. Franco
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - May M. Noe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - Lauren V. Albrecht
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
43
|
Gunn SA, Kreps LM, Zhao H, Landon K, Ilacqua JS, Addison CL. Focal Adhesion Kinase Inhibitors Prevent Osteoblast Mineralization in Part Due to Suppression of Akt-mediated stabilization of Osterix. J Bone Oncol 2022; 34:100432. [PMID: 35620245 PMCID: PMC9126966 DOI: 10.1016/j.jbo.2022.100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Pharmacological blockade of FAK results in reduced ALP expression and mineralization by differentiated osteoblasts. Although FAK inhibition resulted in increased levels of BMP2, Wnt3a and Mdm2, and decreased p53, alteration of these pathways was unable to restore mineralization in the presence of FAK tyrosine kinase inhibitors. FAK tyrosine kinase inhibitors resulted in decreased levels of phospho-S473 Akt which led to increased levels of active GSK3β which in turn inhibited Runx2 activity that could contribute to the observed reduced ALP levels. FAK tyrosine kinase inhibitors blocked Akt-mediated stabilization of osterix leading to decreased overall levels of osterix and impaired mineralization in MC3T3-E1 cells differentiated into osteoblasts.
Focal Adhesion Kinase (FAK) is an important regulator of tumor cell proliferation, survival and metastasis. As such it has become a therapeutic target of interest in cancer. Previous studies suggested that use of FAK tyrosine kinase inhibitors (TKIs) blocks osteolysis in in vivo models of bone metastasis. However, from these studies it was not clear whether FAK TKIs blocked bone degradation by osteoclasts or also promoted bone formation by osteoblasts. In this study we evaluated whether use of the FAK TKI PF-562,271 affected the differentiation of pre-osteoblasts, or activity of mature differentiated osteoblasts. MC3T3-E1 pre-osteoblastic cells were treated with various doses of PF-562,271 following 3 or 10 days of differentiation which led to the inhibition of alkaline phosphatase (ALP) expression and reduced viable cell numbers in a dose-dependent manner. MC3T3-E1 cells which had been differentiated for 21 days prior to treatment with PF-562,271 showed a dose dependent decrease in mineralization as assessed by Alizarin Red staining, with concomitant decreased expression of ALP which is known to facilitate the bone mineralization activity of osteoblasts, however mRNA levels of the transcription factors RUNX2 and osterix which are important for osteoblast maturation and mineralization appeared unaffected at this time point. We speculated that this may be due to altered function of RUNX2 protein due to inhibitory phosphorylation by GSK3β. We found treatment with PF-562,271 resulted in increased GSK3β activity as measured by reduced levels of phospho-Ser9-GSK3β which would result in phosphorylation and inhibition of RUNX2. Treatment of 21 day differentiated MC3T3-E1 cells with PF-562,271 in combination with GSK3β inhibitors partially restored mineralization however this was not statistically significant. As we observed that FAK TKI also resulted in suppression of Akt, which is known to alter osterix protein stability downstream of RUNX2, we examined protein levels by western blot and found a dose-dependent decrease in osterix in FAK TKI treated differentiated MC3T3-E1 cells which is likely responsible for the reduced mineralization observed. Taken together our results suggest that use of FAK TKIs as therapeutics in the bone metastatic setting may block new bone formation as an off-target effect and thereby exacerbate the defective bone regulation that is characteristic of the bone metastatic environment.
Collapse
|
44
|
Bartlett CL, Cave EM, Crowther NJ, Ferris WF. A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation. Mol Cell Biochem 2022; 477:2093-2106. [PMID: 35471716 DOI: 10.1007/s11010-022-04429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is one of four isozymes, which include germ cell, placental and intestinal alkaline phosphatases. The TNAP isozyme has 3 isoforms (liver, bone and kidney) which differ by tissue expression and glycosylation pattern. Despite a long history of investigation, the exact function of TNAP in many tissues is largely unknown. Only the bone isoform has been well characterised during mineralization where the enzyme hydrolyses pyrophosphate to inorganic phosphate, which combines with calcium to form hydroxyapatite crystals deposited as new bone. The inorganic phosphate also increases gene expression of proteins that support tissue mineralization. Recent studies have shown that TNAP is expressed in preadipocytes from several species, and that inhibition of TNAP activity causes attenuation of intracellular lipid accumulation in these and other lipid-storing cells. The mechanism by which TNAP stimulates lipid accumulation is not known; however, proteins that are important for controlling phosphate levels in bone are also expressed in adipocytes. This review examines the evidence that inorganic phosphate generated by TNAP promotes transcription that enhances the expression of the regulators of lipid storage and consequently, that TNAP has a major function of lipid metabolism.
Collapse
Affiliation(s)
- Cara-Lesley Bartlett
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eleanor Margaret Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Nigel John Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - William Frank Ferris
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
45
|
Xu Z, Han S, Chen H, Zhu Z, Han L, Dong X, Du M, Li T. Characterization of Chelation and Absorption of Calcium by a Mytilus edulis Derived Osteogenic Peptide. Front Nutr 2022; 9:840638. [PMID: 35449539 PMCID: PMC9016177 DOI: 10.3389/fnut.2022.840638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
In a previous study, the peptide LGKDQVRT, which was identified by enzymatic hydrolysis, released during the proteolysis of Mytilus edulis, had potential osteogenic activity. In this study, the octapeptide LGKDQVRT was able to spontaneously bind calcium in a 1:1 stoichiometric ratio, and the calcium-binding site likely involves calcium and amino acid VAL6 in the LGKDQVRT peptide to form a metal-donor to metal acceptor complex. The peptide LGKDQVRT has the activity of promoting the proliferation and differentiation of osteoblasts. The results of this study suggest that hydrolyzed peptides from Mytilus edulis protein can be used as a dietary supplement to improve calcium absorption and prevent osteoporosis.
Collapse
Affiliation(s)
- Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Shiying Han
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Hui Chen
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhixuan Zhu
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Xiufang Dong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| |
Collapse
|
46
|
Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, Che Z, Liu T, Liu H, Huang L. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:810880. [PMID: 35433652 PMCID: PMC9008764 DOI: 10.3389/fbioe.2022.810880] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/01/2022] [Indexed: 01/15/2023] Open
Abstract
At present, bone nonunion and delayed union are still difficult problems in orthopaedics. Since the discovery of bone morphogenetic protein (BMP), it has been widely used in various studies due to its powerful role in promoting osteogenesis and chondrogenesis. Current results show that BMPs can promote healing of bone defects and reduce the occurrence of complications. However, the mechanism of BMP in vivo still needs to be explored, and application of BMP alone to a bone defect site cannot achieve good therapeutic effects. It is particularly important to modify implants to carry BMP to achieve slow and sustained release effects by taking advantage of the nature of the implant. This review aims to explain the mechanism of BMP action in vivo, its biological function, and how BMP can be applied to orthopaedic implants to effectively stimulate bone healing in the long term. Notably, implantation of a system that allows sustained release of BMP can provide an effective method to treat bone nonunion and delayed bone healing in the clinic.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyi Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhenjia Che
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tengyue Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| | - Lanfeng Huang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| |
Collapse
|
47
|
Feng Y, Luo J, Cheng J, Xu A, Qiu D, He S, Zheng D, Jia C, Zhang Q, Lin N. A Small-Molecule Cocktails-Based Strategy in Culture of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022; 10:819148. [PMID: 35360405 PMCID: PMC8963903 DOI: 10.3389/fbioe.2022.819148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a variety of unique properties, such as stem cell multipotency and immune regulation, making them attractive for use in cell therapy. Before infusion therapy, MSCs are required to undergo tissue separation, purification, and expansion in vitro for a certain duration. During the process of in vitro expansion of MSCs, the influence of culture time and environment can lead to cell senescence, increased heterogeneity, and function attenuation, which limits their clinical applications. We used a cocktail of three small-molecule compounds, ACY (A-83-01, CHIR99021, and Y-27632), to increase the proliferation activity of MSCs in vitro and reduce cell senescence. ACY inhibited the increase in heterogeneity of MSCs and conserved their differentiation potential. Additionally, ACY maintained the phenotype of MSCs and upregulated the expression of immunomodulatory factors. These results suggest that ACY can effectively improve the quantity and quality of MSCs.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jintao Cheng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aimin Xu
- The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Dongbo Qiu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sixiao He
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dayong Zheng
- The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Changchang Jia
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
48
|
Vermeulen S, Birgani ZT, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials 2022; 283:121431. [DOI: 10.1016/j.biomaterials.2022.121431] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
|
49
|
Santangelo G, Faggiano A, Bernardi N, Carugo S, Giammanco A, Faggiano P. Lipoprotein(a) and aortic valve stenosis: A casual or causal association? Nutr Metab Cardiovasc Dis 2022; 32:309-317. [PMID: 34893419 DOI: 10.1016/j.numecd.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023]
Abstract
AIMS This review aims to provide an update of available methods for imaging calcification activity and potential therapeutic options. DATA SYNTHESIS Aortic valve calcification represents the most common heart valve condition requiring treatment among adults in Western societies. No medical therapies are proven to be effective in treating symptoms or reducing disease progression. Therefore, surgical or transcatheter aortic valve replacement remains the only available treatment option. Elevated circulating concentrations of lipoprotein(a) is strongly associated with degenerative aortic stenosis. This relationship was first observed in prospective observational studies, and the causal relationship was confirmed in genetic studies. CONCLUSIONS New therapeutic targets have been identified and new imaging techniques could be used to test the effectiveness of new agents and further clarify the pathophysiology of AVS. No therapy that specifically lowers Lp (a) levels has been approved for clinical use.
Collapse
Affiliation(s)
- Gloria Santangelo
- Division of Cardiology, San Paolo Hospital, Department of Health Sciences, University of Milan, Italy
| | - Andrea Faggiano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Cardiac Unit, University of Milan, Italy
| | - Nicola Bernardi
- Cardiology Division, Spedali Civili and University of Brescia, Italy
| | - Stefano Carugo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Cardiac Unit, University of Milan, Italy
| | - Antonella Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties-University of Palermo, Italy
| | - Pompilio Faggiano
- Cardiovascular Department, Fondazione Poliambulanza, Brescia, Italy.
| |
Collapse
|
50
|
Chang R, Liu Y, Zhang Y, Zhang S, Han B, Chen F, Chen Y. Phosphorylated and Phosphonated Low-Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103829. [PMID: 34978158 PMCID: PMC8867149 DOI: 10.1002/advs.202103829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Biomimetic mineralization based on self-assembly has made great progress, providing bottom-up strategies for the construction of new organic-inorganic hybrid materials applied in the treatment of hard tissue defects. Herein, inspired by the cooperative effects of key components in biomineralization microenvironments, a new type of biocompatible peptide scaffold based on flexibly self-assembling low-complexity protein segments (LCPSs) containing phosphate or phosphonate groups is developed. These LCPSs can retard the transformation of amorphous calcium phosphate into hydroxyapatite (HAP), leading to merged mineralization structures. Moreover, the application of phosphonated LCPS over phosphorylated LCPS can prevent hydrolysis by phosphatases that are enriched in extracellular mineralization microenvironments. After being coated on the etched tooth enamel, these LCPSs facilitate the growth of HAP to generate new enamel layers comparable to the natural layers and mitigate the adhesion of Streptococcus mutans. In addition, they can effectively stimulate the differentiation pathways of osteoblasts. These results shed light on the potential biomedical applications of two LCPSs in hard tissue repair.
Collapse
Affiliation(s)
- Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang‐Jia Liu
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yun‐Lai Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Shi‐Ying Zhang
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Bei‐Bei Han
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijing100081China
| | - Yong‐Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|