1
|
Liang T, Zhang H, Hu Y, Solanki M, Zhang C, Sasaki T, Smith CE, Hu JCC, Simmer JP. Localizations of Laminin Chains Suggest Their Multifaceted Functions in Mouse Tooth Development. Int J Mol Sci 2025; 26:4134. [PMID: 40362374 PMCID: PMC12071823 DOI: 10.3390/ijms26094134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
The human laminin family is composed of five α, four β, and three γ chains. Laminins are heterotrimers of α, β, and γ chains. Laminins play critical roles during organogenesis, mostly as basement membrane components. The expression of all and the localization of most laminin chains were characterized in mouse developing teeth. Primary laminin isoforms in basement membranes along the inner enamel epithelium before the secretory stage and outside of the outer enamel epithelium were laminins 111 (α1β1γ1) and 511. The mouse laminin α3 chain has two variants, α3A and α3B. Although a basement membrane structure is absent, laminin 3A32 was localized along the secretory surface of the secretory stage ameloblast Tomes' processes. Laminin 3A32 was localized along the atypical basement membrane of maturation stage ameloblasts and the specialized basement membrane of junctional epithelium facing the enamel surface. The endothelial basement membrane in the dental papilla and outside of the enamel organ contained laminins 411 and 511. Laminin 332 was detected in the extracellular matrix but not the basement membrane of the apical loop. Laminin 111 was localized in the extracellular matrix of the apical dental papilla without forming a visible basement membrane. These findings suggest the multifaceted functions of laminins in tooth development and set the foundation for functional investigations.
Collapse
Affiliation(s)
- Tian Liang
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (Y.H.); (M.S.)
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (C.Z.); (C.E.S.); (J.C.-C.H.); (J.P.S.)
| | - Yuanyuan Hu
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (Y.H.); (M.S.)
| | - Mansi Solanki
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (Y.H.); (M.S.)
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (C.Z.); (C.E.S.); (J.C.-C.H.); (J.P.S.)
| | - Takako Sasaki
- Department of Matrix Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-Machi, Yufu City 879-5593, Oita, Japan;
| | - Charles E. Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (C.Z.); (C.E.S.); (J.C.-C.H.); (J.P.S.)
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, 3640 University St., Montreal, QC H3A 0C7, Canada
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (C.Z.); (C.E.S.); (J.C.-C.H.); (J.P.S.)
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (C.Z.); (C.E.S.); (J.C.-C.H.); (J.P.S.)
| |
Collapse
|
2
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
3
|
Xin T, Gallini S, Wei H, Gonzalez DG, Matte-Martone C, Machida H, Fujiwara H, Pasolli HA, Suozzi KC, Gonzalez LE, Regot S, Greco V. Oncogenic Kras induces spatiotemporally specific tissue deformation through converting pulsatile into sustained ERK activation. Nat Cell Biol 2024; 26:859-867. [PMID: 38689013 PMCID: PMC11519783 DOI: 10.1038/s41556-024-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Tissue regeneration and maintenance rely on coordinated stem cell behaviours. This orchestration can be impaired by oncogenic mutations leading to cancer. However, it is largely unclear how oncogenes perturb stem cells' orchestration to disrupt tissue. Here we used intravital imaging to investigate the mechanisms by which oncogenic Kras mutation causes tissue disruption in the hair follicle. Through longitudinally tracking hair follicles in live mice, we found that KrasG12D, a mutation that can lead to squamous cell carcinoma, induces epithelial tissue deformation in a spatiotemporally specific manner, linked with abnormal cell division and migration. Using a reporter mouse capture real-time ERK signal dynamics at the single-cell level, we discovered that KrasG12D, but not a closely related mutation HrasG12V, converts ERK signal in stem cells from pulsatile to sustained. Finally, we demonstrated that interrupting sustained ERK signal reverts KrasG12D-induced tissue deformation through modulating specific features of cell migration and division.
Collapse
Affiliation(s)
- Tianchi Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Sara Gallini
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Haoyang Wei
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - David G Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Hiroki Machida
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Kathleen C Suozzi
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Lauren E Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Buruiană A, Gheban BA, Gheban-Roșca IA, Georgiu C, Crișan D, Crișan M. The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression. Cancers (Basel) 2024; 16:1727. [PMID: 38730679 PMCID: PMC11083853 DOI: 10.3390/cancers16091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM-specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens-promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME's potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC.
Collapse
Affiliation(s)
- Alexandra Buruiană
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Bogdan-Alexandru Gheban
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania;
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Doința Crișan
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Chrysostomou E, Mourikis P. The extracellular matrix niche of muscle stem cells. Curr Top Dev Biol 2024; 158:123-150. [PMID: 38670702 DOI: 10.1016/bs.ctdb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Preserving the potency of stem cells in adult tissues is very demanding and relies on the concerted action of various cellular and non-cellular elements in a precise stoichiometry. This balanced microenvironment is found in specific anatomical "pockets" within the tissue, known as the stem cell niche. In this review, we explore the interplay between stem cells and their niches, with a primary focus on skeletal muscle stem cells and the extracellular matrix (ECM). Quiescent muscle stem cells, known as satellite cells are active producers of a diverse array of ECM molecules, encompassing major constituents like collagens, laminins, and integrins, some of which are explored in this review. The conventional perception of ECM as merely a structural scaffold is evolving. Collagens can directly interact as ligands with receptors on satellite cells, while other ECM proteins have the capacity to sequester growth factors and regulate their release, especially relevant during satellite cell turnover in homeostasis or activation upon injury. Additionally, we explore an evolutionary perspective on the ECM across a range of multicellular organisms and discuss a model wherein satellite cells are self-sustained by generating their own niche. Considering the prevalence of ECM proteins in the connective tissue of various organs it is not surprising that mutations in ECM genes have pathological implications, including in muscle, where they can lead to myopathies. However, the particular role of certain disease-related ECM proteins in stem cell maintenance highlights the potential contribution of stem cell deregulation to the progression of these disorders.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), Créteil, France.
| |
Collapse
|
6
|
Ji ZH, Ren WZ, He S, Wu HY, Yuan B, Chen J, Jin HJ. A missense mutation in Lama3 causes androgen alopecia. Sci Rep 2023; 13:20818. [PMID: 38012251 PMCID: PMC10682005 DOI: 10.1038/s41598-023-48337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023] Open
Abstract
Hair loss disorders such as androgenetic alopecia have caused serious disturbances to normal human life. Animal models play an important role in exploring pathogenesis of disease and evaluating new therapies. NIH hairless mice are a spontaneous hairless mouse discovered and bred in our laboratory. In this study, we resequenced the genomes of NIH normal mice and NIH hairless mice and obtained 3,575,560 high-quality, plausible SNP loci and 995,475 InDels. The Euclidean distance algorithm was used to assess the association of SNP loci with the hairless phenotype, at a threshold of 0.62. Two regions of chromosome 18 having the highest association with the phenotype contained 345 genes with a total length of 13.98 Mb. The same algorithm was used to assess the association of InDels with the hairless phenotype at a threshold of 0.54 and revealed a region of 25.45 Mb in length, containing 518 genes. The mutation candidate gene Lama3 (NM_010680.2: c.652C>T; NP_034810.1: p. Arg217Cys) was selected based on the results of functional gene analysis and mutation prediction screening. Lama3 (R217C) mutant mice were further constructed using CRISPR/Cas9 technology, and the relationship between Lama3 point mutations and the hairless phenotype were clarified by phenotypic observation. The results showed that male Lama3 point mutation mice started to lose hair on the 80th day after birth, and the hair loss area gradually expanded over time. H&E staining of skin sections showed that the point mutation mice had increased sebaceous glands in the dermis and missing hair follicle structure (i.e., typical symptoms of androgenetic alopecia). This study is a good extension of the current body of knowledge about the function of Lama3, and the constructed Lama3 (R217C) mutant mice may be a good animal model for studying androgenetic alopecia.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, 130062, Jilin, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, China
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
- Jilin Academy of Agricultural Sciences, Jilin City, 132101, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| | - Hong-Juan Jin
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
7
|
Chavda ND, Sari B, Asiri FM, Hamill KJ. Laminin N-terminus (LaNt) proteins, laminins and basement membrane regulation. Biochem Soc Trans 2022; 50:1541-1553. [PMID: 36355367 PMCID: PMC9788559 DOI: 10.1042/bst20210240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/03/2023]
Abstract
Basement membranes (BMs) are structured regions of the extracellular matrix that provide multiple functions including physical support and acting as a barrier, as a repository for nutrients and growth factors, and as biophysical signalling hubs. At the core of all BMs is the laminin (LM) family of proteins. These large heterotrimeric glycoproteins are essential for tissue integrity, and differences between LM family members represent a key nexus in dictating context and tissue-specific functions. These variations reflect genetic diversity within the family, which allows for multiple structurally and functionally distinct heterotrimers to be produced, each with different architectures and affinities for other matrix proteins and cell surface receptors. The ratios of these LM isoforms also influence the biophysical properties of a BM owing to differences in their relative ability to form polymers or networks. Intriguingly, the LM superfamily is further diversified through the related netrin family of proteins and through alternative splicing leading to the generation of non-LM short proteins known as the laminin N-terminus (LaNt) domain proteins. Both the netrins and LaNt proteins contain structural domains involved in LM-to-LM interaction and network assembly. Emerging findings indicate that one netrin and at least one LaNt protein can potently influence the structure and function of BMs, disrupting the networks, changing physical properties, and thereby influencing tissue function. These findings are altering the way that we think about LM polymerisation and, in the case of the LaNt proteins, suggest a hitherto unappreciated form of LM self-regulation.
Collapse
Affiliation(s)
- Natasha D. Chavda
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool L78TX, U.K
| | - Bilge Sari
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool L78TX, U.K
| | - Fawziah M. Asiri
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool L78TX, U.K
| | - Kevin J. Hamill
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool L78TX, U.K
| |
Collapse
|
8
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
9
|
Suzuki T, Ito T, Gilhar A, Tokura Y, Reich K, Paus R. The hair follicle-psoriasis axis: Shared regulatory mechanisms and therapeutic targets. Exp Dermatol 2021; 31:266-279. [PMID: 34587317 DOI: 10.1111/exd.14462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
It has long been known that there is a special affinity of psoriasis for the scalp: Here, it occurs most frequently, lesions terminate sharply in frontal skin beyond the hair line and are difficult to treat. Yet, surprisingly, scalp psoriasis only rarely causes alopecia, even though the pilosebaceous unit clearly is affected. Here, we systematically explore the peculiar, insufficiently investigated connection between psoriasis and growing (anagen) terminal scalp hair follicles (HFs), with emphasis on shared regulatory mechanism and therapeutic targets. Interestingly, several drugs and stressors that can trigger/aggravate psoriasis can inhibit hair growth (e.g. beta-blockers, chloroquine, carbamazepine, interferon-alpha, perceived stress). Instead, several anti-psoriatic agents can stimulate hair growth (e.g. cyclosporine, glucocorticoids, dithranol, UV irradiation), while skin/HF trauma (Köbner phenomenon/depilation) favours the development of psoriatic lesions and induces anagen in "quiescent" (telogen) HFs. On this basis, we propose two interconnected working models: (a) the existence of a bidirectional "hair follicle-psoriasis axis," along which keratinocytes of anagen scalp HFs secrete signals that favour the development and maintenance of psoriatic scalp lesions and respond to signals from these lesions, and (b) that anagen induction and psoriatic lesions share molecular "switch-on" mechanisms, which invite pharmacological targeting, once identified. Therefore, we advocate a novel, cross-fertilizing and integrative approach to psoriasis and hair research that systematically characterizes the "HF-psoriasis axis," focused on identification and therapeutic targeting of selected, shared signalling pathways in the future management of both, psoriasis and hair growth disorders.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Allergic Disease Research Center, Chutoen General Medical Center, Kakegawa, Japan
| | - Kristian Reich
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Monasterium Laboratory, Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Center, Manchester, UK
| |
Collapse
|
10
|
Natsumi A, Sugawara K, Yasumizu M, Mizukami Y, Sano S, Morita A, Paus R, Tsuruta D. Re-investigating the Basement Membrane Zone of Psoriatic Epidermal Lesions: Is Laminin-511 a New Player in Psoriasis Pathogenesis? J Histochem Cytochem 2018; 66:847-862. [PMID: 29906214 PMCID: PMC6262504 DOI: 10.1369/0022155418782693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a complex chronic inflammatory skin disease characterized by epidermal thickening on the basis of increased keratinocyte proliferation and insufficient apoptosis. Laminins are important components of the basement membrane (BM) and impact on epidermal keratinocyte growth/apoptosis. Although several laminins are involved in the pathogenesis of psoriasis, it is still controversial about the expression patterns of laminin isoforms and which laminins are important in the development of psoriasis. Because laminin-511 and -332 are key BM components in human skin, and laminin-511 stimulates human hair follicle growth, we asked whether the BM zone in psoriasis shows any laminin-related abnormalities. This showed that the BM expression of laminin-511 and -332 was significantly increased within the skin lesion of psoriasis. Immunofluorescence microscopy revealed that laminin-511, -332, and collagen type IV proteins were also significantly increased in psoriasis-like skin lesions of Imiquimod-treated mice. Transmission electron microscopy showed a few gaps of lamina densa, and its thickness was significantly increased. Finally, laminin-511 treatment significantly stimulated the proliferation and inhibited apoptosis of HaCaT cells, while laminin-α5 chain gene knockdown decreased proliferation and induced apoptosis. These phenomenological observations raise the question of whether laminin-511-controlled keratinocyte growth/death may be a previously overlooked player in the pathogenesis of psoriatic epidermal lesions.
Collapse
Affiliation(s)
- Aki Natsumi
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Koji Sugawara
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Makiko Yasumizu
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yukari Mizukami
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ralf Paus
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL and Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
11
|
Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci 2018; 19:ijms19041003. [PMID: 29584689 PMCID: PMC5979429 DOI: 10.3390/ijms19041003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
Collapse
Affiliation(s)
- Elina Chermnykh
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
12
|
Abstract
Stem cells hold great promise in treating many diseases either through promoting endogenous cell repair or through direct cell transplants. In order to maximize their potential, understanding the fundamental signals and mechanisms that regulate their behavior is essential. The extracellular matrix (ECM) is one such component involved in mediating stem cell fate. Recent studies have made significant progress in understanding stem cell-ECM interactions. Technological developments have provided greater clarity in how cells may sense and respond to the ECM, in particular the physical properties of the matrix. This review summarizes recent developments, providing illustrative examples of the different modes with which the ECM controls both embryonic and adult stem cell behavior.
Collapse
|
13
|
Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun 2015; 5:3195. [PMID: 24463987 DOI: 10.1038/ncomms4195] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/02/2014] [Indexed: 01/22/2023] Open
Abstract
Lack of robust methods for establishment and expansion of pluripotent human embryonic stem (hES) cells still hampers development of cell therapy. Laminins (LN) are a family of highly cell-type specific basement membrane proteins important for cell adhesion, differentiation, migration and phenotype stability. Here we produce and isolate a human recombinant LN-521 isoform and develop a cell culture matrix containing LN-521 and E-cadherin, which both localize to stem cell niches in vivo. This matrix allows clonal derivation, clonal survival and long-term self-renewal of hES cells under completely chemically defined and xeno-free conditions without ROCK inhibitors. Neither LN-521 nor E-cadherin alone enable clonal survival of hES cells. The LN-521/E-cadherin matrix allows hES cell line derivation from blastocyst inner cell mass and single blastomere cells without a need to destroy the embryo. This method can facilitate the generation of hES cell lines for development of different cell types for regenerative medicine purposes.
Collapse
|
14
|
Morgner J, Ghatak S, Jakobi T, Dieterich C, Aumailley M, Wickström SA. Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Nat Commun 2015; 6:8198. [PMID: 26349061 PMCID: PMC4569844 DOI: 10.1038/ncomms9198] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in specialized niches that are critical for their function. Quiescent hair follicle stem cells (HFSCs) are confined within the bulge niche, but how the molecular composition of the niche regulates stem cell behaviour is poorly understood. Here we show that integrin-linked kinase (ILK) is a key regulator of the bulge extracellular matrix microenvironment, thereby governing the activation and maintenance of HFSCs. ILK mediates deposition of inverse laminin (LN)-332 and LN-511 gradients within the basement membrane (BM) wrapping the hair follicles. The precise BM composition tunes activities of Wnt and transforming growth factor-β pathways and subsequently regulates HFSC activation. Notably, reconstituting an optimal LN microenvironment restores the altered signalling in ILK-deficient cells. Aberrant stem cell activation in ILK-deficient epidermis leads to increased replicative stress, predisposing the tissue to carcinogenesis. Overall, our findings uncover a critical role for the BM niche in regulating stem cell activation and thereby skin homeostasis.
Collapse
Affiliation(s)
- Jessica Morgner
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Sushmita Ghatak
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Tobias Jakobi
- Computational RNA Biology and Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Christoph Dieterich
- Computational RNA Biology and Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Monique Aumailley
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Sara A. Wickström
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
15
|
Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nat Protoc 2014; 9:2354-68. [PMID: 25211513 DOI: 10.1038/nprot.2014.159] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A robust method for culturing human pluripotent stem (hPS) cells under chemically defined and xeno-free conditions is an important tool for stem cell research and for the development of regenerative medicine. Here, we describe a protocol for monolayer culturing of Oct-4-positive hPS cells on a specific laminin-521 (LN-521) isoform, under xeno-free and chemically defined conditions. The cells are dispersed into single-cell suspension and then plated on LN-521 isoform at densities higher than 5,000 cells per cm², where they attach, migrate and survive by forming small monolayer cell groups. The cells avidly divide and expand horizontally until the entire dish is covered by a confluent monolayer. LN-521, in combination with E-cadherin, allows cloning of individual hPS cells in separate wells of 96-well plates without the presence of rho-associated protein kinase (ROCK) inhibitors or any other inhibitors of anoikis. Characterization of cells maintained for several months in culture reveals pluripotency with a minimal degree of genetic abnormalities.
Collapse
|
16
|
Imanishi H, Tsuruta D, Tateishi C, Sugawara K, Kobayashi H, Ishii M, Kishi K. Spatial and temporal control of laminin-332 and -511 expressions during hair morphogenesis. Med Mol Morphol 2014; 47:38-42. [PMID: 23529140 DOI: 10.1007/s00795-013-0040-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
Hair is one of the smallest organs, but has many important functions to mammals. Hair morphogenesis occurs through the reciprocal exchange of epithelial and mesenchymal signals. There are some reports about the expression of laminin-511 and -332 during hair morphogenesis, but are no reports of the chronological expression and function of laminin-511 and its counter regulator laminin-332 during hair morphogenesis. Our results of immunoblotting revealed that laminin-332 proteins were detected at stage 0 and downregulated during stage 1 to stage 2, and then recovered at stage 3. However, laminin α5 expression was constant throughout stages 0-3. According to the results of semi-quantitative RT-PCR, the mRNA expression of all laminin-332 subunits increased gradually from stage 0 to stage 2, while the mRNA expression of all laminin-511 subunits remained constant from stage 0 to stage 3. Our results suggest that the proper expression of laminin-332 and laminin-511 may regulate appropriate hair morphogenesis.
Collapse
Affiliation(s)
- Hisayoshi Imanishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Sugawara K, Zákány N, Hundt T, Emelianov V, Tsuruta D, Schäfer C, Kloepper JE, Bíró T, Paus R. Cannabinoid receptor 1 controls human mucosal-type mast cell degranulation and maturation in situ. J Allergy Clin Immunol 2013; 132:182-93. [PMID: 23453134 DOI: 10.1016/j.jaci.2013.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/12/2012] [Accepted: 01/03/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Because many chronic inflammatory and allergic disorders are intimately linked to excessive mast cell (MC) numbers and activation, it is clinically important to understand the physiologic mechanisms preventing excess MC accumulation/degranulation in normal human tissues. OBJECTIVE Because endocannabinoids are increasingly recognized as neuroendocrine regulators of MC biology, we investigated how cannabinoid receptor (CB) 1 signaling affects human mucosal-type mast cells (hMMCs). METHODS Using organ-cultured nasal polyps as a surrogate tissue for human bronchial mucosa, we investigated how CB1 stimulation, inhibition, or knockdown affects hMMC biology using quantitative (immuno)histomorphometry and electron microscopy. RESULTS Kit(+) hMMCs express functional CB1 in situ. Blockade of CB1 signaling (with the specific CB1 antagonist N-(piperidin-1-yl)-1-(2,4-dichlorophenyl)-5-(4-chlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide [AM251] or CB1 gene knockdown) enhanced hMMC degranulation and increased total numbers without affecting their proliferation in situ. This suggests that inhibiting CB1 signaling induces hMMC maturation from resident progenitor cells within human mucosal stroma. hMMC maturation was induced at least in part through upregulating stem cell factor production. Both the prototypic endocannabinoid anandamide and the CB1-selective agonist arachidonyl-2-chloroethylamide effectively counteracted secretagogue-triggered excessive hMMC degranulation. CONCLUSIONS The current serum-free nasal polyp organ culture model allows physiologically and clinically relevant insights into the biology and pharmacologic responses of primary hMMCs in situ. In human airway mucosa hMMC activation and maturation are subject to a potent inhibitory endocannabinoid tone through CB1 stimulation. This invites one to target the endocannabinoid system in human airway mucosa as a novel strategy in the future management of allergic diseases.
Collapse
Affiliation(s)
- Koji Sugawara
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| |
Collapse
|
19
|
Greciano PG, Moyano JV, Buschmann MM, Tang J, Lu Y, Rudnicki J, Manninen A, Matlin KS. Laminin 511 partners with laminin 332 to mediate directional migration of Madin-Darby canine kidney epithelial cells. Mol Biol Cell 2011; 23:121-36. [PMID: 22031290 PMCID: PMC3248892 DOI: 10.1091/mbc.e11-08-0718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Sustained directional migration of epithelial cells is essential for regeneration of injured epithelia. Front-rear polarity of migrating cells is determined by local activation of a signaling network involving Cdc42 and other factors in response to spatial cues from the environment, the nature of which are obscure. We examined the roles of laminin (LM)-511 and LM-332, two structurally different laminin isoforms, in the migration of Madin-Darby canine kidney cells by suppressing expression of their α subunits using RNA interference. We determined that knockdown of LM-511 inhibits directional migration and destabilizes cell-cell contacts, in part by disturbing the localization and activity of the polarization machinery. Suppression of integrin α3, a laminin receptor subunit, in cells synthesizing normal amounts of both laminins has a similar effect as knockdown of LM-511. Surprisingly, simultaneous suppression of both laminin α5 and laminin α3 restores directional migration and cell-cell contact stability, suggesting that cells recognize a haptotactic gradient formed by a combination of laminins.
Collapse
Affiliation(s)
- Patricia G Greciano
- Department of Surgery and Committee on Molecular Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
DeRouen MC, Zhen H, Tan SH, Williams S, Marinkovich MP, Oro AE. Laminin-511 and integrin beta-1 in hair follicle development and basal cell carcinoma formation. BMC DEVELOPMENTAL BIOLOGY 2010; 10:112. [PMID: 21067603 PMCID: PMC2995472 DOI: 10.1186/1471-213x-10-112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/10/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND Initiation of the hair follicle placode and its subsequent growth, maturation and cycling in post-natal skin requires signaling interactions between epithelial cells and adjacent dermal cells and involves Shh signaling via the primary cilium. Previous reports have implicated laminins in hair follicle epithelial invagination. RESULTS Here we use a human BCC model system and mouse mutants to re-evaluate the role of laminin-511 in epithelial invagination in the skin. Blocking laminin 511 and 332 in BCCs maintains primary cilia and Shh signalling, but prevents invagination. Similarly, in laminin-511 and dermal beta-1 integrin mutants, dermal papilla development and primary cilia formation are normal. Dermal beta-1 integrin mutants have normal hair follicle development. CONCLUSIONS Our data provides support for a primary role of laminin-511 promoting hair follicle epithelial downgrowth without affecting dermal primary cilia and Shh target gene induction.
Collapse
Affiliation(s)
- Mindy C DeRouen
- Cancer Biology Graduate Program 251 Campus Drive, MSOB X234, Stanford, 94305-5173), USA
- Program in Epithelial Biology, Stanford University, School of Medicine, CCSR 2145c, 269 Campus Drive, Stanford, CA 94305, USA
| | - Hanson Zhen
- Program in Epithelial Biology, Stanford University, School of Medicine, CCSR 2145c, 269 Campus Drive, Stanford, CA 94305, USA
| | - Si Hui Tan
- Cancer Biology Graduate Program 251 Campus Drive, MSOB X234, Stanford, 94305-5173), USA
| | - Samantha Williams
- Program in Epithelial Biology, Stanford University, School of Medicine, CCSR 2145c, 269 Campus Drive, Stanford, CA 94305, USA
| | - M Peter Marinkovich
- Program in Epithelial Biology, Stanford University, School of Medicine, CCSR 2145c, 269 Campus Drive, Stanford, CA 94305, USA
- Dermatology Service, Palo Alto VA Medical Center, 3801 Miranda Ave Palo Alto, California 94304, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University, School of Medicine, CCSR 2145c, 269 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Zhang Z, Chometon G, Wen T, Qu H, Mauch C, Krieg T, Aumailley M. Migration of epithelial cells on laminins: RhoA antagonizes directionally persistent migration. Eur J Cell Biol 2010; 90:1-12. [PMID: 20971525 DOI: 10.1016/j.ejcb.2010.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 11/15/2022] Open
Abstract
Spatial and temporal expression of laminin isoforms is assumed to provide specific local information to neighboring cells. Here, we report the remarkably selective presence of LM-111 at the very tip of hair follicles where LM-332 is absent, suggesting that epithelial cells lining the dermal-epidermal junction at this location may receive different signals from the two laminins. This hypothesis was tested in vitro by characterizing with functional and molecular assays the comportment of keratinocytes exposed to LM-111 and LM-332. The two laminins induced morphologically distinct focal adhesions, and LM-332, but not LM-111, elicited persistent migration of keratinocytes. The different impact on cellular behavior was associated with distinct activation patterns of Rho GTPases and other signaling intermediates. In particular, while LM-111 triggered a robust activation of Cdc42, LM-332 provoked a strong and sustained activation of FAK. Interestingly, activation of Rac1 was necessary but not sufficient to promote migration because there was no directed migration on LM-111 despite Rac1 activation. In contrast, RhoA antagonized directional migration, since silencing of RhoA by RNA interference boosted unidirectional migration on LM-332. Molecular analysis of the role of RhoA strongly suggested that the mechanisms involve disassembly of cell-cell contacts, loss of the cortical actin network, mobilization of α6β4 integrin out of stable adhesions, and displacement of the integrin from its association with the insoluble pool of intermediate filaments.
Collapse
Affiliation(s)
- Zhigang Zhang
- Center for Biochemistry, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Margadant C, Charafeddine RA, Sonnenberg A. Unique and redundant functions of integrins in the epidermis. FASEB J 2010; 24:4133-52. [DOI: 10.1096/fj.09-151449] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Coert Margadant
- Division of Cell BiologyThe Netherlands Cancer Institute Amsterdam The Netherlands
| | | | - Arnoud Sonnenberg
- Division of Cell BiologyThe Netherlands Cancer Institute Amsterdam The Netherlands
| |
Collapse
|
23
|
Imanishi H, Tsuruta D, Tateishi C, Sugawara K, Paus R, Tsuji T, Ishii M, Ikeda K, Kunimoto H, Nakajima K, Jones JC, Kobayashi H. Laminin-511, inducer of hair growth, is down-regulated and its suppressor in hair growth, laminin-332 up-regulated in chemotherapy-induced alopecia. J Dermatol Sci 2010; 58:43-54. [PMID: 20211547 PMCID: PMC2864493 DOI: 10.1016/j.jdermsci.2010.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 01/26/2010] [Accepted: 02/08/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chemotherapy-induced alopecia (CIA) has a devastating cosmetic effect, especially in the young. Recent data indicate that two major basement membrane components (laminin-332 and -511) of the skin have opposing effects on hair growth. OBJECTIVE In this study, we examined the role and localization of laminin-332 and -511 in CIA. METHODS We examined the expression of laminin-332 and -511 during the dystrophic catagen form of CIA induced in C57BL/6 mice by cyclophosphamide (CYP) treatment. RESULTS Our data indicate that both laminin-332 and its receptor alpha 6 beta 4 integrin are up-regulated (both quantitatively and spatially) after mid to late dystrophic catagen around the outer root sheath (ORS) in the lower third of hair follicles in CIA. This up-regulation also occurs at the transcriptional level. In contrast, laminin-511 is down-regulated after mid dystrophic catagen at the protein level, with transcriptional inactivation of laminin-511 occurring transiently at the early dystrophic catagen stage in both epidermal and ORS keratinocytes. Laminin-511 expression correlates with expression of alpha 3 integrin in CIA and we also demonstrate that laminin-511 can up-regulate the activity of the alpha 3 integrin promoter in cultured keratinocytes. Injection of a laminin-511 rich protein extract, but not recombinant laminin-332, in the back skin of mice delays hair loss in CYP-induced CIA. CONCLUSIONS We propose that abrupt hair loss in CIA is, at least in part, caused by down-regulation of laminin-511 and up-regulation of laminin-332 at the transcriptional and translational levels.
Collapse
Affiliation(s)
- Hisayoshi Imanishi
- Department of Dermatology Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Daisuke Tsuruta
- Department of Dermatology Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Chiharu Tateishi
- Department of Dermatology Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Koji Sugawara
- Department of Dermatology Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Ralf Paus
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Masamitsu Ishii
- Department of Dermatology Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Kazuo Ikeda
- Department of Functional Anatomy, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kunimoto
- Department of Immunology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koichi Nakajima
- Department of Immunology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Jonathan C.R. Jones
- Department of Cell and Molecular Biology, Northwestern University Graduate School of Medicine, Chicago, IL, Japan
| | - Hiromi Kobayashi
- Department of Dermatology Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
24
|
Tateishi C, Tsuruta D, Sugawara K, Yoshizato K, Imanishi H, Nishida K, Ishii M, Kobayashi H. Spatial and temporal control of laminin-511 and -332 expressions during catagen. J Dermatol Sci 2010; 58:55-63. [PMID: 20226633 DOI: 10.1016/j.jdermsci.2010.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND We recently reported that the basement membrane (BM) zone components laminin-511 and -332 precisely regulate hair growth spatially and temporally during the anagen stage of the hair cycle. OBJECTIVE In this study, we examined the localization and roles of laminin-511 and -332 during catagen in mice. METHODS Using tissue from C57BL/6 hair depilation model mice, we performed immunohistochemistry, in situ hybridization, western blotting, and quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) studies. RESULTS Although the distribution of laminin-332 around the BM of lower hair follicles changed during catagen, its total expression was stable throughout catagen stages at both the mRNA and protein levels. In sharp contrast, in situ hybridization, western blotting, and QRT-PCR studies of laminin alpha 5 showed that laminin-511 expression was gradually downregulated. Moreover, while the injection of recombinant laminin-332 at anagen stage VI did not affect catagen progression, injection of a laminin-511-rich A549 cell conditioned media protein extract at anagen stage VI delayed progression of catagen. CONCLUSION These results indicated that downregulation of laminin-511 is important for hair regression.
Collapse
Affiliation(s)
- Chiharu Tateishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ko MS, Marinkovich MP. Role of dermal-epidermal basement membrane zone in skin, cancer, and developmental disorders. Dermatol Clin 2010; 28:1-16. [PMID: 19945611 DOI: 10.1016/j.det.2009.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The dermal-epidermal basement membrane zone is an important epithelial and stromal interface, consisting of an intricately organized collection of intracellular, transmembrane, and extracellular matrix proteins. The basement membrane zone has several main functions including acting as a permeability barrier, forming an adhesive interface between epithelial cells and the underlying matrix, and controlling cellular organization and differentiation. This article identifies key molecular players of the dermal-epidermal membrane zone, and highlights recent research studies that have identified structural and functional roles of these components in the context of various blistering, neoplastic, and developmental syndromes.
Collapse
Affiliation(s)
- Myung S Ko
- Program in Epithelial Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
26
|
Hamill KJ, Langbein L, Jones JCR, McLean WHI. Identification of a novel family of laminin N-terminal alternate splice isoforms: structural and functional characterization. J Biol Chem 2010; 284:35588-96. [PMID: 19773554 PMCID: PMC2790989 DOI: 10.1074/jbc.m109.052811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The laminins are a family of heterotrimeric basement membrane proteins that play roles in cellular adhesion, migration, and tissue morphogenesis. Through in silico analysis of the laminin-encoding genes, we identified a novel family of alternate splice isoforms derived from the 5'-end of the LAMA3 and LAMA5 genes. These isoforms resemble the netrins in that they contain a laminin N-terminal domain followed by a short stretch of laminin-type epidermal growth factor-like repeats. We suggest the terms LaNt (laminin N terminus) alpha3 and LaNt alpha5, for the predicted protein products of these mRNAs. RT-PCR confirmed the presence of these transcripts at the mRNA level. Moreover, they exhibit differential, tissue-specific, expression profiles. To confirm the existence of LaNt alpha3 protein, we generated an antibody to a unique domain within the putative polypeptide. This antibody recognizes a protein at the predicted molecular mass of 64 kDa by immunoblotting. Furthermore, immunofluorescence analyses revealed a basement membrane staining in epithelial tissue for LaNt alpha3 and LaNt alpha3 localized along the substratum-associated surface of cultured keratinocytes. We have also tested the functionality LaNt alpha3 through RNAi-mediated knockdown. Keratinocytes exhibiting specific knockdown of LaNt alpha3 displayed impaired adhesion, stress resistance, and reduced ability to close scratch wounds in vitro.
Collapse
Affiliation(s)
- Kevin J Hamill
- Epithelial Genetics Group, Human Genetics Unit, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Masuda R, Mochizuki M, Hozumi K, Takeda A, Uchinuma E, Yamashina S, Nomizu M, Kadoya Y. A novel cell-adhesive scaffold material for delivering keratinocytes reduces granulation tissue in dermal wounds. Wound Repair Regen 2009; 17:127-35. [DOI: 10.1111/j.1524-475x.2008.00450.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Abstract
The extracellular matrix (ECM) was long thought to be merely a structural tissue support and/or a filter. However, recent studies have suggested that ECM proteins regulate many intracellular and extracellular events, including cell growth, cell adhesion, cell division, cell movement, and apoptosis. They do so through activation of several families of cell surface receptor, including the integrins and syndecans. The focus of this review is on two laminin isoforms expressed in the skin. Laminins are an important molecular component of the basement membranes in a variety of tissue types. They have a cruciform shape, and are composed of three chains-alpha, beta, and gamma. Keratinocytes of the skin secrete numerous laminin isoforms, including laminin-511 and laminin-332. The latter are known to affect the behaviour of keratinocytes through binding to membrane-penetrating receptors (outside-in signal transduction). Conversely, the expression, secretion and assembly of laminin-rich matrices is regulated by cell surface receptors through inside-out signal transduction. We will review how integrins regulate laminin matrix assembly and the signals elicited by laminins that support either migration or stable adhesion of keratinocytes. We will also discuss recent data indicating that laminins plays key regulatory roles in the development of skin appendages and contribute to the pathogenesis of skin cancer.
Collapse
Affiliation(s)
- Koji Sugawara
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | |
Collapse
|
29
|
Tzu J, Marinkovich MP. Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol 2007; 40:199-214. [PMID: 17855154 PMCID: PMC2192629 DOI: 10.1016/j.biocel.2007.07.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 07/07/2007] [Accepted: 07/20/2007] [Indexed: 01/13/2023]
Abstract
The basement membrane is a highly intricate and organized portion of the extracellular matrix that interfaces with a variety of cell types including epithelial, endothelial, muscle, nerve, and fat cells. The laminin family of glycoproteins is a major constituent of the basement membrane. The 16 known laminin isoforms are formed from combinations of alpha, beta, and gamma chains, with each chain containing specific domains capable of interacting with cellular receptors such as integrins and other extracellular ligands. In addition to its role in the assembly and architectural integrity of the basement membrane, laminins interact with cells to influence proliferation, differentiation, adhesion, and migration, processes activated in normal and pathologic states. In vitro these functions are regulated by the post-translational modifications of the individual laminin chains. In vivo laminin knockout mouse studies have been particularly instructive in defining the function of specific laminins in mammalian development and have also highlighted its role as a key component of the basement membrane. In this review, we will define how laminin structure complements function and explore its role in both normal and pathologic processes.
Collapse
Affiliation(s)
- Julia Tzu
- Department of Dermatology, Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|