1
|
Taheri S, González MA, Ruiz-López MJ, Soriguer R, Figuerola J. Patterns of West Nile virus vector co-occurrence and spatial overlap with human cases across Europe. One Health 2025; 20:101041. [PMID: 40321629 PMCID: PMC12047587 DOI: 10.1016/j.onehlt.2025.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Its geographic range expansion and rising incidence make West Nile Virus (WNV) a major public health challenge in Europe. Although numerous studies have investigated geographic variation in WNV incidence in humans or equines, most have focused on climate and land-use factors; however, the implications of vector co-occurrence and niche overlap remain largely unexplored. Identifying areas where highly competent vectors overlap with favourable environmental conditions is crucial for determining areas at risk for future WNV outbreaks. We analysed the distribution and habitat suitability of four Culex mosquito vectors across Europe using an ensemble of six modelling techniques and relevant environmental variables. We generated probability maps, converted them into binary distribution maps through threshold-based methods, and weighted them by WNV vector competence to identify hotspots of vector co-occurrence and human cases. Our findings indicate that WNV vectors are unevenly distributed across Europe, with southern regions emerging as hotspots, particularly due to the presence of highly competent vectors such as Culex univittatus s.l., Culex modestus, and Culex pipiens. The overlap of Cx. modestus, Cx. torrentium, and Cx. pipiens in central, western, and eastern Europe indicates that competent WNV vectors are present in nearly all European regions. Among the environmental factors analysed, mean winter temperatures were the most influential, suggesting that mild winters could increase the distribution of WNV competent vectors. Our results also revealed a strong spatial overlap between hotspots of human WNV cases and vector co-occurrence, highlighting regions of elevated transmission risk. The high-risk hotspots identified in this large-scale study can guide local surveillance efforts and optimize resource allocation, ultimately enhancing the effectiveness of WNV surveillance.
Collapse
Affiliation(s)
- Shirin Taheri
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mikel Alexander González
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - María José Ruiz-López
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ramón Soriguer
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Figuerola
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Rucci KA, Barco G, Onorato A, Beranek M, Pueta M, Díaz A. Effects of blood meal source and seasonality on reproductive traits of Culex quinquefasciatus (Diptera: Culicidae). eLife 2025; 12:RP89485. [PMID: 40353747 PMCID: PMC12068866 DOI: 10.7554/elife.89485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Host selection by mosquitoes is a keystone in understanding viral circulation and predicting future infection outbreaks. Culex mosquitoes frequently feed on birds during spring and early summer, shifting into mammals towards late summer and autumn. This host switch may be due to changes in mosquito fitness. The aim of this study was to assess if the interaction effect of blood meal source and seasonality may influence reproductive traits of Culex quinquefasciatus mosquitoes. For this purpose, Cx. quinquefasciatus mosquitoes were reared in simulated summer and autumn conditions and fed on two different hosts, chickens and mice, in a factorial design. Fecundity, fertility, and hatchability during two consecutive gonotrophic cycles were estimated. We found greater fecundity and fertility for mosquitoes fed upon birds than mammals. Fecundity and fertility did not vary between seasons for chicken-fed mosquitoes, whereas in autumn they decreased for mouse-fed mosquitoes. These traits decreased in the second gonotrophic cycle for mouse-fed mosquitoes, whereas they did not vary between cycles for chicken-fed mosquitoes. There was no statistically significant effect of blood meal source, seasonality or their interaction on hatchability, hence this variable was similar among treatments. Overall, these results indicate a statistically significant interaction effect of blood meal source and seasonality on fecundity and fertility. However, the pattern was opposite in relation to our hypothesis, suggesting that further studies are needed to confirm and expand our knowledge about mosquito biology and its relationship with seasonal host use shifting.
Collapse
Affiliation(s)
- Kevin Alen Rucci
- Laboratorio de Arbovirus, Instituto de Virología “Dr. J. M. Vanella” (InViV), Facultad de Ciencias Médicas (FCM), Universidad Nacional de Córdoba (UNC)CórdobaArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - Gabriel Barco
- Laboratorio de Arbovirus, Instituto de Virología “Dr. J. M. Vanella” (InViV), Facultad de Ciencias Médicas (FCM), Universidad Nacional de Córdoba (UNC)CórdobaArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - Andrea Onorato
- Laboratorio de Arbovirus, Instituto de Virología “Dr. J. M. Vanella” (InViV), Facultad de Ciencias Médicas (FCM), Universidad Nacional de Córdoba (UNC)CórdobaArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - Mauricio Beranek
- Laboratorio de Arbovirus, Instituto de Virología “Dr. J. M. Vanella” (InViV), Facultad de Ciencias Médicas (FCM), Universidad Nacional de Córdoba (UNC)CórdobaArgentina
| | - Mariana Pueta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET - Universidad Nacional de Comahue (UNCo)San Carlos de BarilocheArgentina
| | - Adrián Díaz
- Laboratorio de Arbovirus, Instituto de Virología “Dr. J. M. Vanella” (InViV), Facultad de Ciencias Médicas (FCM), Universidad Nacional de Córdoba (UNC)CórdobaArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina
| |
Collapse
|
3
|
Moore TC, Tang X, Brown HE. Assessing the Relationship Between Entomological Surveillance Indices and West Nile Virus Transmission, United States: Systematic Review. Vector Borne Zoonotic Dis 2025; 25:317-328. [PMID: 39943921 DOI: 10.1089/vbz.2024.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025] Open
Abstract
Background: Entomological surveillance indices are used to estimate the risk of West Nile virus (WNV; family Flaviviridae, genus Flavivirus) transmission. To determine when and where to initiate mosquito control activities, integrated vector management programs establish action thresholds based on entomological surveillance indices. However, the application of entomological surveillance indices needs further investigation relative to the human risk of WNV infection. Herein, we examine the evidence from studies that investigated the quantitative relationship between entomological surveillance indices and human WNV cases using systematic review methods. Results: Across three databases, 5378 articles were identified. Using the selection criteria, 38 studies were included for study. Most articles explored entomological indices weekly and devised unique geographic scales to aggregate human and/or mosquito data. The most used models were logistic and negative binomial regression. Maximum likelihood estimates (MLEs) and vector index (VI) demonstrated the greatest ratio of number of positive results to number of times tested. Among all selected articles, 35 unique U.S. locations assessed MLE and/or VI. Human WNV infection had a significant association with MLE across 81.25% (13/16) of locations. VI showed successful performance across 80.00% (24/30) sites tested. Conclusions: This systematic review identifies methods for quantifying relationships between entomological and human WNV infection data. We found entomological surveillance indices applied to human WNV risk should include a measure of virus presence, such as MLE and VI. Model type and covariates were too variable to identify geographic or species-specific trends, though, when tested, including temperature, land cover, population density, and time improved the model. This study is meant to be informative and designed to assist public health agencies in seasonal WNV preparations but are not meant to be a panacea for all WNV surveillance challenges.
Collapse
Affiliation(s)
- Thomas C Moore
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Xin Tang
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Heidi E Brown
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Bajwa WI, Zhou L. Epidemiology of West Nile Virus in New York City: Trends and Transmission Dynamics (2000-2019). Pathogens 2025; 14:364. [PMID: 40333145 PMCID: PMC12030726 DOI: 10.3390/pathogens14040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
The 1999 outbreak of West Nile virus (WNV) in New York City (NYC) marked the first documented introduction of the virus into the western hemisphere, prompting extensive public health surveillance. This study examines the epidemiology of WNV from 2000 to 2019, analyzing 381 human cases, including 66 cases of West Nile Fever (WNF) and 315 cases of West Nile Neuroinvasive Disease (WNND), with 35 fatalities. Simultaneously, 6632 WNV-positive mosquito pools were identified across 16 species. While Culex pipiens and Cx. restuans accounted for 91.4% of positive pools, Cx. salinarius, which comprised only 6.2%, exhibited a stronger correlation with human infections. Human surveillance involved comprehensive case investigations following laboratory-confirmed WNV infections, incorporating structured interviews with patients and healthcare providers. Mosquito surveillance was conducted through weekly collections from 52-71 permanent trap sites, supplemented by approximately 200 additional sites annually in areas with elevated WNV activity. Captured mosquitoes were species-identified, pooled, and tested for WNV RNA via RT-PCR. Findings highlight the dominant role of Culex species, particularly Cx. salinarius, in human WNV transmission, with 69% of cases occurring near WNV-positive mosquito pools. Spatial analyses identified transmission hotspots, emphasizing the importance of species-specific mosquito control strategies. Over the study period, WNV activity has increased in NYC, likely influenced by climate change, as warmer summers and extended breeding seasons align with peak outbreaks. Integrating spatial mapping, climate forecasting, and targeted surveillance could significantly improve WNV mitigation efforts in urban environments.
Collapse
Affiliation(s)
- Waheed I. Bajwa
- Department of Health and Mental Hygiene, New York City, 125 Worth Street, Manhattan, NY 10013, USA
| | | |
Collapse
|
5
|
Mayi MPA, Kowo C, Forfuet FD, Anong DN, Fonda AE, Elad M, Djomo CJP, Tchuinkam T, Sehgal RNM, Cornel AJ. Water sources selected for immature development of some African rainforest dwelling mosquitoes under different landscapes in Cameroon. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:301-314. [PMID: 39673423 PMCID: PMC11919648 DOI: 10.1093/jme/tjae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024]
Abstract
Little is known about the behaviors of African equatorial rain forest mosquito species and their potential role as sylvatic and bridge-vectors of various pathogens of animal and public health. In 2016 and 2017, the diversity and sources of water supporting immature development of mosquitoes in Talangaye Rainforest (South West Cameroon) before, during and after deforestation were investigated. Mosquito eggs, larvae and pupae were collected from 12 natural, seminatural, and artificial water sources and reared to adults. A total of 595 adult mosquitoes belonging to seven genera and at least 43 species were identified. Culex was the most abundant (56.3%) and was encountered in the majority in bamboo pots. Aedes and Uranotaenia species were mostly found in rock pools, while Anopheles and Hodgesia species solely prefer stream pools. In terms of mosquito abundance, rock pools were the most productive (29.91%) followed by bamboo pots (24.7%). Natural sites such as rock pools, tree holes, and stream pools recorded a greater number of species (S = 21, 14 and 12 respectively). During the rainy season, rock pools (46.23%) and bamboo pots (18.7%) were the most productive water bodies, while in the dry season, bamboo pots (35.71%) and stream pools (35.71%) harbored the most mosquitoes. The disturbed and pristine-like habitats had the greatest number of mosquitoes and breeding sites compared to palm plantation. This study provides some useful data on water sources used for immature development of forest mosquito species in Southwest Cameroon and how some species might adapt to changing landscapes, especially due to deforestation.
Collapse
Affiliation(s)
- Marie Paul Audrey Mayi
- Department of Microbiology, Faculty of Sciences of the University of Yaoundé I, Yaoundé, Cameroon
| | - Cyril Kowo
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | | | - Damian Nota Anong
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | | | - Mirabel Elad
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | | | - Timoleon Tchuinkam
- Department of Animal Biology, Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit, University of Dschang, Dschang, Cameroon
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Anthony John Cornel
- Department of Entomology and Nematology, Mosquito Control Research Laboratory, University of California, Parlier, CA, USA
| |
Collapse
|
6
|
Brüssow H, Figuerola J. The Spread of the Mosquito-Transmitted West Nile Virus in North America and Europe. Microb Biotechnol 2025; 18:e70120. [PMID: 40035176 PMCID: PMC11877000 DOI: 10.1111/1751-7915.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
West Nile virus (WNV) disease, a mosquito-transmitted Flavivirus infection, represents a substantial public health research interest. This virus was unknown in the Western hemisphere until it was introduced in 1999 into an immunologically naïve population. WNV caused an epizootic and epidemic in New York City. The infection then swept over North America, causing mass mortality in birds and cumulatively 60,000 human cases, half of whom were hospitalised, mostly with neurological symptoms. The virus closely resembled a goose virus isolated in Israel in 1998. Mosquitoes of the genus Culex were identified as the insect viral vectors. WNV can infect more than 300 bird species, but in the US, the American robin (Turdus migratorius) represented the ecologically most important bird viral reservoir. Mosquito-to-mosquito viral transmission might amplify the viral spread, and iatrogenic WNV transmission was also observed, leading to the screening of blood products. Compared with African WNV isolates, the New York WNV isolate NY99 showed a mutation in the nonstructural protein NS3 that increased its virulence in birds and was also observed in WNV outbreaks from Romania in 1996 and from Russia in 1999. During its spread across the US, NY99 acquired a mutation in the envelope gene E that favoured viral infection in the insect vector. Europe reported 1200 annual WNV cases in 2024, with a focus in Mediterranean countries, but a northward spread of the infection to Germany and The Netherlands was also noted. Global warming is likely to affect the geographical distribution of vector-borne infections such that people living in temperate climate areas might be increasingly exposed to these infections. Therefore, research on temperature effects on WNV transmission by Culex mosquitoes has become a recent focus of research. Pertinent climate aspects of WNV infections are retraced in the present review.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of Biosystems, Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| | - Jordi Figuerola
- Department of Global Change and ConservationEstación Biológica de Doñana‐CSICSevillaSpain
- CIBER Epidemiología y Salud PublicaMadridSpain
| |
Collapse
|
7
|
Ma J, Xu N, Xu Y, Huang ZYX, Chen C, Wang YXG. Impacts of Urbanization and Habitat Characteristics on the Human Risk of West Nile Disease in the United States. BIOLOGY 2025; 14:224. [PMID: 40136481 PMCID: PMC11939350 DOI: 10.3390/biology14030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025]
Abstract
Since its initial identification in 1999, West Nile virus has spread rapidly throughout North America, exhibiting high spatial heterogeneity. Previous studies exploring the spatial patterns of the human risk of West Nile Disease (WND) in the United States have demonstrated the important roles of landscape and climatic factors. However, relatively few studies have endeavored to elucidate the effects of habitat fragmentation on WND risk, though it has been considered to affect disease risk through its influence on host community composition, vector abundance and human-vector-host interactions. In this study, we investigated and compared the effects of landscape factors, with a particular focus on habitat fragmentation, on the human risk of WND in the eastern and western United States. Our results demonstrated that landscape factors exhibited significant relationships with disease risk in both regions, while their effects could vary between the regions. Generally, urbanization was positively correlated with the WND risk in both regions, while the fragmentation indices of developed areas showed negative correlations only in the east. In contrast, forest area positively correlated with WND risk in the west, while a negative relationship was found in the east. The fragmentation indices of natural areas in both regions were generally positively associated with WND risk. These differences may be due to the differences in vector species and related processes (host-related or vector-related) between the two regions. With ongoing environmental change, this study provides new insights into understanding the risk factors for WND in the United States and the effects of habitat fragmentation on animal disease risk.
Collapse
Affiliation(s)
- Jian Ma
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.M.); (N.X.); (Y.X.); (Z.Y.X.H.); (C.C.)
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Nuo Xu
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.M.); (N.X.); (Y.X.); (Z.Y.X.H.); (C.C.)
| | - Ying Xu
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.M.); (N.X.); (Y.X.); (Z.Y.X.H.); (C.C.)
| | - Zheng Y. X. Huang
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.M.); (N.X.); (Y.X.); (Z.Y.X.H.); (C.C.)
- School of Life Sciences, Nanjing Forestry University, Nanjing 210023, China
| | - Chuanwu Chen
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (J.M.); (N.X.); (Y.X.); (Z.Y.X.H.); (C.C.)
| | - Yingying X. G. Wang
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyvaskyla, Finland
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Griep JS, Grant E, Pilgrim J, Riabinina O, Baylis M, Wardeh M, Blagrove MSC. Meta-analyses of Culex blood-meals indicates strong regional effect on feeding patterns. PLoS Negl Trop Dis 2025; 19:e0012245. [PMID: 39854558 PMCID: PMC11785302 DOI: 10.1371/journal.pntd.0012245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/31/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Understanding host utilization by mosquito vectors is essential to assess the risk of vector-borne diseases. Many studies have investigated the feeding patterns of Culex mosquitoes by molecular analysis of blood-meals from field collected mosquitoes. However, these individual small-scale studies only provide a limited understanding of the complex host-vector interactions when considered in isolation. Here, we analyze the Culex blood-feeding data from 109 publications over the last 15 years to provide a global insight into the feeding patterns of Culex mosquitoes, with particular reference to vectors of currently emerging Culex-borne viruses such as West Nile and Usutu. Data on 29990 blood-meals from 70 different Culex species were extracted from published literature. The percentage of blood-meals on amphibian, avian, human, non-human mammalian, and reptilian hosts was determined for each Culex species. Our analysis showed that feeding patterns were not significantly explained by mosquito species-level phylogeny, indicating that external factors play an important role in determining mosquito feeding patterns. For Cx. quinquefasciatus, 'Cx. pipiens pooled', and Cx. tritaeniorhynchus, feeding patterns were compared across the world's seven biogeographical realms. Culex tritaeniorhynchus, 'Cx. pipiens pooled' and Cx. quinquefasciatus all had significantly varied feeding patterns between realms. These results demonstrate that feeding patterns of Culex mosquitoes vary between species but can also vary between geographically distinct populations of the same species, indicating that regional or population-level adaptations are major drivers of host utilization. Ultimately, these findings support the surveillance of vector-borne diseases by specifying which host groups are most likely to be at risk.
Collapse
Affiliation(s)
- Jet S. Griep
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eve Grant
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Olena Riabinina
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Maya Wardeh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
| | - Marcus S. C. Blagrove
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Khaledian M, Owliaee I, Sazmand A, Davari B, Zahirnia AH, Jalilian FA. West Nile virus in adults and larvae of Culiseta longiareolata and Culex hortensis (Diptera: Culicidae) captured in Hamedan, western Iran. Acta Trop 2024; 260:107434. [PMID: 39413896 DOI: 10.1016/j.actatropica.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
West Nile virus (WNV) is an emerging arbovirus transmitted by mosquitoes. Although it is considered the most widespread mosquito-borne arbovirus in Iran, vectors of this zoonotic pathogen remain unknown in many regions. This study aimed to assess the presence of WNV in mosquitoes collected in the western city of Hamedan in 2022. Adult mosquitoes were captured using light traps, and mosquito larvae were collected by dipping technique from 45 diverse habitats, including urban, suburban, and rural sites. Specimens were identified and pooled into 69 batches based on their species for viral RNA extraction and Real-Time PCR. In total, 3243 mosquitoes (2209 larvae and 1034 adults) were captured and identified as Culiseta longiareolata, Culex hortensis, Anopheles maculipennis s.l., Culex theileri, Culex pipiens, Anopheles claviger, and Anopheles superpictus s.l. in decreasing order. Molecular screening revealed seven WNV-positive pools of Culiseta longiareolata and Culex hortensis in rural (n = 5) and urban areas (n = 2). Detection of WNV RNA indicates active circulation in mosquitoes and risk of transmission to humans and animals in Hamadan. These findings identify putative vectors in Hamadan, though vectors likely vary regionally in Iran. Further surveillance is needed to elucidate local WNV epidemiology and transmission dynamics fully. Nonetheless, this study provides important baseline evidence of WNV activity to guide prevention strategies in this area.
Collapse
Affiliation(s)
- Mehran Khaledian
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Iman Owliaee
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan 6517658978, Iran.
| | - Behroz Davari
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Hossein Zahirnia
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Farid Azizi Jalilian
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Horton EB, Robertson SL. A stochastic multi-host model for West Nile virus transmission. JOURNAL OF BIOLOGICAL DYNAMICS 2024; 18:2293780. [PMID: 38153263 DOI: 10.1080/17513758.2023.2293780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
When initially introduced into a susceptible population, a disease may die out or result in a major outbreak. We present a Continuous-Time Markov Chain model for enzootic WNV transmission between two avian host species and a single vector, and use multitype branching process theory to determine the probability of disease extinction based upon the type of infected individual initially introducing the disease into the population - an exposed vector, infectious vector, or infectious host of either species. We explore how the likelihood of disease extinction depends on the ability of each host species to transmit WNV, vector biting rates on host species, and the relative abundance of host species, as well as vector abundance. Theoretical predictions are compared to the outcome of stochastic simulations. We find the community composition of hosts and vectors, as well as the means of disease introduction, can greatly affect the probability of disease extinction.
Collapse
Affiliation(s)
- Emily B Horton
- SYSM PhD Program, Virginia Commonwealth University, Richmond, VA, USA
| | - Suzanne L Robertson
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
11
|
Guillén-Rodríguez YG, Santiago-Alarcon D, Chapa-Vargas L, Suárez-Landa MT, Albino-Miranda S, Ibáñez-Bernal S. Seasonal haemosporidian detection in mosquitoes (Diptera: Culicidae) and their interactions with vertebrate hosts in a Mexican cloud forest. Parasitol Res 2024; 123:379. [PMID: 39535544 DOI: 10.1007/s00436-024-08387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Studies on avian haemosporidians in Mexico and around the world reveal poor knowledge about the vectors that transmit avian haemosporidian parasites and their association with vertebrate hosts. Seasonal variations given by changes in temperature and precipitation have significant repercussions on the dynamics of vector-borne infections. The seasonal dynamics of major haemosporidian parasites and their main vectors are mostly unknown. This study aimed to determine the presence of avian haemosporidians in hematophagous mosquitoes and to characterize mosquito-vertebrate host interactions during a year in a peri-urban cloud forest in Xalapa City, Veracruz, Mexico. We analyzed 12 species and a total of 1170 hematophagous mosquitoes. We found the presence of Plasmodium and Haemoproteus genera in the blood meals of mosquitoes. The highest haemosporidian detection and mosquito richness were in June (dry-warm season), whereas the highest mosquito abundance was in October (humid-warm season). We recorded three new haemosporidian lineages in this study. Analysis of blood meals showed that mosquitoes fed on different vertebrate groups (amphibians, reptiles, birds, and humans). This study contributed to the knowledge about the distribution of hematophagous mosquito-haemosporidian-vertebrate host interactions.
Collapse
Affiliation(s)
| | | | - Leonardo Chapa-Vargas
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, 78216, México
| | | | - Sergio Albino-Miranda
- Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Xalapa, 91073, Veracruz, México
| | | |
Collapse
|
12
|
Bhowmick S, Fritz ML, Smith RL. Host-feeding preferences and temperature shape the dynamics of West Nile virus: A mathematical model to predict the impacts of vector-host interactions and vector management on R 0. Acta Trop 2024; 258:107346. [PMID: 39111645 DOI: 10.1016/j.actatropica.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
West Nile virus (WNV) is prevalent across the United States, but its transmission patterns and spatio-temporal intensity vary significantly, particularly in the Eastern United States. For instance, Chicago has long been a hotspot for WNV cases due to its high cumulative incidence of infection, with the number of cases varying considerably from year to year. The abilities of host species to maintain and disseminate WNV, along with eco-epidemiological factors that influence vector-host contact rates underlie WNV transmission potential. There is growing evidence that several vectors exhibit strong feeding preferences towards different host communities. In our research study, we construct a process based weather driven ordinary differential equation (ODE) model to understand the impact of one vector species (Culex pipiens), its preferred avian and non-preferred human hosts on the basic reproduction number (R0). In developing this WNV transmission model, we account for the feeding index, which is defined as the relative preference of the vectors for taking blood meals from a competent avian host versus a non-competent mammalian host. We also include continuous introduction of infected agents into the model during the simulations as the introduction of WNV is not a single event phenomenon. We derive an analytic form of R0 to predict the conditions under which there will be an outbreak of WNV and the relationship between the feeding index and the efficacy of adulticide is highly nonlinear. In our mechanistic model, we also demonstrate that adulticide treatments produced significant reductions in the Culex pipiens population. Sensitivity analysis demonstrates that feeding index and rate of introduction of infected agents are two important factors beside the efficacy of adulticide. We validate our model by comparing simulations to surveillance data collected for the Culex pipiens complex in Cook County, Illinois, USA. Our results reveal that the interaction between the feeding index and mosquito abatement strategy is intricate, especially considering the fluctuating temperature conditions. This induces heterogeneous transmission patterns that need to be incorporated when modelling multi-host, multi-vector transmission models.
Collapse
Affiliation(s)
- Suman Bhowmick
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Megan Lindsay Fritz
- Department of Entomology, Institute for Advanced Computer Studies, University of Maryland, USA
| | - Rebecca Lee Smith
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Abstract
The host associations of mosquitoes vary by species, with some species being relative generalists, whereas others specialize, to varying extents, on a particular subset of the available host community. These host associations are driving factors in transmission dynamics of mosquito-vectored pathogens. For this reason, characterizing the host associations of mosquito species is critical for understanding the epidemiology of mosquito-vectored pathogens. Diverse methods have been used to associate mosquito species with their hosts. These typically include collecting mosquitoes that bite a restrained host (bait) or collecting wild blood-engorged mosquitoes and matching their blood meal to reference samples (blood meal analysis). Blood meal analysis refers to a collection of molecular techniques for determining the taxonomic identity of the source of a mosquito blood meal using cytological, serological, or DNA-based characteristics of the blood meal. Blood meal analyses that are based on DNA markers have advantages over cytological and serological methods and are effective for determining species-level identities of hosts from a broad range of potential host taxa. Here, we discuss effective techniques for analyzing blood meals.
Collapse
Affiliation(s)
- Lawrence E Reeves
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida 32962, USA
| | - Nathan D Burkett-Cadena
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida 32962, USA
| |
Collapse
|
14
|
Guidez A, Tirera S, Talaga S, Lacour G, Carinci R, Darcissac E, Donato D, Gaborit P, Clervil E, Epelboin Y, de Thoisy B, Dusfour I, Duchemin JB, Lavergne A. Mosquito Feeding Habits in Coastal French Guiana: Mammals in the Crosshairs? INSECTS 2024; 15:718. [PMID: 39336686 PMCID: PMC11432726 DOI: 10.3390/insects15090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024]
Abstract
Pathogens transmitted by mosquitoes (Diptera, Culicidae) in sylvatic or urban cycles involve wild or domestic animals and humans, driven by various mosquito species with distinct host preferences. Understanding mosquito-host associations is crucial for ecological insights and pathogen surveillance. In this study, we analyzed mosquito blood meals from coastal French Guiana by amplifying and sequencing host DNA from blood-fed females. Using the 12S ribosomal RNA gene and Sanger sequencing, we identified blood meals from 26 mosquito species across six genera, with 59% belonging to the Culex genus. Nanopore sequencing of selected samples showed 12 mosquito species with one to three mixed blood-meal sources. Mammals were the primary hosts (88%), followed by birds (7%), squamates (3%), and amphibians (2%), indicating a strong preference for mammalian hosts. A total of 46 vertebrate host species were identified, demonstrating high host diversity. This research provides insights into mosquito host usage and highlights the complexities of monitoring arboviruses of public health concern.
Collapse
Affiliation(s)
- Amandine Guidez
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Stanislas Talaga
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Guillaume Lacour
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Romuald Carinci
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Edith Darcissac
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Damien Donato
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Pascal Gaborit
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Emmanuelle Clervil
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Yanouk Epelboin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | - Isabelle Dusfour
- Unité d'Entomologie Médicale, Institut Pasteur de la Guyane, 97354 Cayenne, France
| | | | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 97354 Cayenne, France
| |
Collapse
|
15
|
Wehmeyer ML, Jaworski L, Jöst H, Șuleșco T, Rauhöft L, Afonso SMM, Neumann M, Kliemke K, Lange U, Kiel E, Schmidt-Chanasit J, Sauer FG, Lühken R. Host attraction and host feeding patterns indicate generalist feeding of Culex pipiens s.s. and Cx. torrentium. Parasit Vectors 2024; 17:369. [PMID: 39215365 PMCID: PMC11363403 DOI: 10.1186/s13071-024-06439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Mosquito host feeding patterns are an important factor of the species-specific vector capacity determining pathogen transmission routes. Culex pipiens s.s./Cx. torrentium are competent vectors of several arboviruses, such as West Nile virus and Usutu virus. However, studies on host feeding patterns rarely differentiate the morphologically indistinguishable females. METHODS We analyzed the host feeding attraction of Cx. pipiens and Cx. torrentium in host-choice studies for bird, mouse, and a human lure. In addition, we summarized published and unpublished data on host feeding patterns of field-collected specimens from Germany, Iran, and Moldova from 2012 to 2022, genetically identified as Cx. pipiens biotype pipiens, Cx. pipiens biotype molestus, Cx. pipiens hybrid biotype pipiens × molestus, and Cx. torrentium, and finally put the data in context with similar data found in a systematic literature search. RESULTS In the host-choice experiments, we did not find a significant attraction to bird, mouse, and human lure for Cx. pipiens pipiens and Cx. torrentium. Hosts of 992 field-collected specimens were identified for Germany, Iran, and Moldova, with the majority determined as Cx. pipiens pipiens, increasing the data available from studies known from the literature by two-thirds. All four Culex pipiens s.s./Cx. torrentium taxa had fed with significant proportions on birds, humans, and nonhuman mammals. Merged with the data from the literature from 23 different studies showing a high prevalence of blood meals from birds, more than 50% of the blood meals of Cx. pipiens s.s. were identified as birds, while up to 39% were human and nonhuman mammalian hosts. Culex torrentium fed half on birds and half on mammals. However, there were considerable geographical differences in the host feeding patterns. CONCLUSIONS In the light of these results, the clear characterization of the Cx. pipiens s.s./Cx. torrentium taxa as ornithophilic/-phagic or mammalophilic/-phagic needs to be reconsidered. Given their broad host ranges, all four Culex taxa could potentially serve as enzootic and bridge vectors.
Collapse
Affiliation(s)
| | - Linda Jaworski
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Carl Von Ossietzky University, Oldenburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tatiana Șuleșco
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Leif Rauhöft
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Markus Neumann
- Ministry of Social Affairs, Health and Sports Mecklenburg-Vorpommern, Werderstraße 124, 19055, Schwerin, Germany
| | | | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ellen Kiel
- Carl Von Ossietzky University, Oldenburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 22609, Hamburg, Germany
| | | | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
16
|
Zheng X, He Y, Xia B, Tang W, Zhang C, Wang D, Tang H, Zhao P, Peng H, Liu Y. Etravirine Prevents West Nile Virus and Chikungunya Virus Infection Both In Vitro and In Vivo by Inhibiting Viral Replication. Pharmaceutics 2024; 16:1111. [PMID: 39339151 PMCID: PMC11435157 DOI: 10.3390/pharmaceutics16091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Diseases transmitted by arthropod-borne viruses such as West Nile virus (WNV) and chikungunya virus (CHIKV) pose threat to global public health. Unfortunately, to date, there is no available approved drug for severe symptoms caused by both viruses. It has been reported that reverse transcriptase inhibitors can effectively inhibit RNA polymerase activity of RNA viruses. We screened the anti-WNV activity of the FDA-approved reverse transcriptase inhibitor library and found that 4 out of 27 compounds showed significant antiviral activity. Among the candidates, etravirine markedly inhibited WNV infection in both Huh 7 and SH-SY5Y cells. Further assays revealed that etravirine inhibited the infection of multiple arboviruses, including yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), and CHIKV. A deeper study at the phase of action showed that the drug works primarily during the viral replication process. This was supported by the strong interaction potential between etravirine and the RNA-dependent RNA polymerase (RdRp) of WNV and alphaviruses, as evaluated using molecular docking. In vivo, etravirine significantly rescued mice from WNV infection-induced weight loss, severe neurological symptoms, and death, as well as reduced the viral load and inflammatory cytokines in target tissues. Etravirine showed antiviral effects in both arthrophlogosis and lethal mouse models of CHIKV infection. This study revealed that etravirine is an effective anti-WNV and CHIKV arbovirus agent both in vitro and in vivo due to the inhibition of viral replication, providing promising candidates for clinical application.
Collapse
Affiliation(s)
- Xu Zheng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Yanhua He
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Binghui Xia
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Wanda Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Congcong Zhang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Dawei Wang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Hailin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Haoran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Yangang Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
17
|
Makhanthisa TI, Guarido MM, Kemp A, Weyer J, Rostal MK, Karesh WB, Thompson PN. Characterization of mosquito host-biting networks of potential Rift Valley fever virus vectors in north-eastern KwaZulu-Natal province, South Africa. Parasit Vectors 2024; 17:341. [PMID: 39138532 PMCID: PMC11323694 DOI: 10.1186/s13071-024-06416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Rift Valley fever virus (RVFV) is a zoonotic mosquito-borne virus with serious implications for livestock health, human health, and the economy in Africa, and is suspected to be endemic in north-eastern KwaZulu-Natal (KZN), South Africa. The vectors of RVFV in this area are poorly known, although several species, such as Aedes (Neomelaniconion) mcintoshi, Aedes (Neomelaniconion) circumluteolus, Aedes (Aedimorphus) durbanensis, and Culex (Lasioconops) poicilipes may be involved. The aim of the study was to determine the vertebrate blood meal sources of potential RVFV mosquito vectors in north-eastern KZN and to characterize the host-biting network. METHODS Blood-fed mosquitoes were collected monthly from November 2019 to February 2023 using a backpack aspirator, CO2-baited Centers for Disease Control and Prevention (CDC) miniature light traps and tent traps, in the vicinity of water bodies and livestock farming households. The mosquitoes were morphologically identified. DNA was extracted from individual mosquitoes and used as templates to amplify the vertebrate cytochrome c oxidase I (COI) and cytochrome b (cytb) genes using conventional polymerase chain reaction (PCR). Amplicons were sequenced and queried in GenBank and the Barcode of Life Data systems to identify the vertebrate blood meal sources and confirm mosquito identifications. All mosquitoes were screened for RVFV using real time reverse transcription (RT)-PCR. RESULTS We identified the mammalian (88.8%) and avian (11.3%) blood meal sources from 409 blood-fed mosquitoes. Aedes circumluteolus (n = 128) made up the largest proportion of collected mosquitoes. Cattle (n = 195) and nyala (n = 61) were the most frequent domestic and wild hosts, respectively. Bipartite network analysis showed that the rural network consisted of more host-biting interactions than the reserve network. All mosquitoes tested negative for RVFV. CONCLUSIONS Several mosquito species, including Ae. circumluteolus, and vertebrate host species, including cattle and nyala, could play a central role in RVFV transmission. Future research in this region should focus on these species to better understand RVFV amplification.
Collapse
Affiliation(s)
- Takalani I Makhanthisa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Milehna M Guarido
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Peter N Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| |
Collapse
|
18
|
Tung GA, Fonseca DM. Internal and external drivers interact to create highly dynamic mosquito blood-feeding behaviour. Proc Biol Sci 2024; 291:20241105. [PMID: 39196275 DOI: 10.1098/rspb.2024.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Blood-feeding, which is necessary for most female mosquitoes to reproduce, provides an opportunity for pathogen transmission. Blood-feeding is influenced by external factors such as light, temperature, humidity and intra- and inter-specific interactions. Physiologically, blood-feeding cycles are linked to nutritional conditions and governed by conserved hormonal signalling pathways that prepare mosquito sensory systems to locate and evaluate hosts. Human activities also alter mosquito blood-feeding behaviour through selection pressures such as insecticide usage, habitat and ecosystem alterations, and climate change. Notably, blood-feeding behaviour changes within a mosquito's lifespan, an underexplored phenomenon from an epidemiological standpoint. A review of the literature indicates that our understanding of mosquito biology and blood-feeding behaviour is predominantly based on studies of a handful of primarily tropical species. This focus likely skews our comprehension of the diversity of critical drivers of blood-feeding behaviour, especially under constraints imposed by harsh conditions. We found evidence of remarkable adaptability in blood-feeding and significant knowledge gaps regarding the determinants of host use. Specifically, epidemiological analyses assume host use is modified by external factors, while neglecting internal physiology. Integrating all significant factors is essential for developing effective models of mosquito-borne disease transmission in a rapidly changing world.
Collapse
Affiliation(s)
- Grayson A Tung
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| |
Collapse
|
19
|
de Wit MM, Dimas Martins A, Delecroix C, Heesterbeek H, ten Bosch QA. Mechanistic models for West Nile virus transmission: a systematic review of features, aims and parametrization. Proc Biol Sci 2024; 291:20232432. [PMID: 38471554 PMCID: PMC10932716 DOI: 10.1098/rspb.2023.2432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Mathematical models within the Ross-Macdonald framework increasingly play a role in our understanding of vector-borne disease dynamics and as tools for assessing scenarios to respond to emerging threats. These threats are typically characterized by a high degree of heterogeneity, introducing a range of possible complexities in models and challenges to maintain the link with empirical evidence. We systematically identified and analysed a total of 77 published papers presenting compartmental West Nile virus (WNV) models that use parameter values derived from empirical studies. Using a set of 15 criteria, we measured the dissimilarity compared with the Ross-Macdonald framework. We also retrieved the purpose and type of models and traced the empirical sources of their parameters. Our review highlights the increasing refinements in WNV models. Models for prediction included the highest number of refinements. We found uneven distributions of refinements and of evidence for parameter values. We identified several challenges in parametrizing such increasingly complex models. For parameters common to most models, we also synthesize the empirical evidence for their values and ranges. The study highlights the potential to improve the quality of WNV models and their applicability for policy by establishing closer collaboration between mathematical modelling and empirical work.
Collapse
Affiliation(s)
- Mariken M. de Wit
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Afonso Dimas Martins
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Clara Delecroix
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Environmental Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
González-Pérez MI, Faulhaber B, Aranda C, Williams M, Villalonga P, Silva M, Costa Osório H, Encarnaçao J, Talavera S, Busquets N. Field evaluation of an automated mosquito surveillance system which classifies Aedes and Culex mosquitoes by genus and sex. Parasit Vectors 2024; 17:97. [PMID: 38424626 PMCID: PMC10905882 DOI: 10.1186/s13071-024-06177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Mosquito-borne diseases are a major concern for public and veterinary health authorities, highlighting the importance of effective vector surveillance and control programs. Traditional surveillance methods are labor-intensive and do not provide high temporal resolution, which may hinder a full assessment of the risk of mosquito-borne pathogen transmission. Emerging technologies for automated remote mosquito monitoring have the potential to address these limitations; however, few studies have tested the performance of such systems in the field. METHODS In the present work, an optical sensor coupled to the entrance of a standard mosquito suction trap was used to record 14,067 mosquito flights of Aedes and Culex genera at four temperature regimes in the laboratory, and the resulting dataset was used to train a machine learning (ML) model. The trap, sensor, and ML model, which form the core of an automated mosquito surveillance system, were tested in the field for two classification purposes: to discriminate Aedes and Culex mosquitoes from other insects that enter the trap and to classify the target mosquitoes by genus and sex. The field performance of the system was assessed using balanced accuracy and regression metrics by comparing the classifications made by the system with those made by the manual inspection of the trap. RESULTS The field system discriminated the target mosquitoes (Aedes and Culex genera) with a balanced accuracy of 95.5% and classified the genus and sex of those mosquitoes with a balanced accuracy of 88.8%. An analysis of the daily and seasonal temporal dynamics of Aedes and Culex mosquito populations was also performed using the time-stamped classifications from the system. CONCLUSIONS This study reports results for automated mosquito genus and sex classification using an optical sensor coupled to a mosquito trap in the field with highly balanced accuracy. The compatibility of the sensor with commercial mosquito traps enables the sensor to be integrated into conventional mosquito surveillance methods to provide accurate automatic monitoring with high temporal resolution of Aedes and Culex mosquitoes, two of the most concerning genera in terms of arbovirus transmission.
Collapse
Affiliation(s)
- María I González-Pérez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de La Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | - Carles Aranda
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de La Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Servei de Control de Mosquits del Consell Comarcal del Baix Llobregat, El Prat de Llobregat, Spain
| | | | | | - Manuel Silva
- National Institute of Health/Centre for Vectors and Infectious Diseases Research, Águas de Moura, Portugal
| | - Hugo Costa Osório
- National Institute of Health/Centre for Vectors and Infectious Diseases Research, Águas de Moura, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Sandra Talavera
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de La Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Núria Busquets
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de La Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| |
Collapse
|
21
|
Anwar S, Ahmed B, Qadir MI. Arboviruses: Transmission and Host Resistance. Crit Rev Eukaryot Gene Expr 2024; 34:15-31. [PMID: 38073439 DOI: 10.1615/critreveukaryotgeneexpr.2023049820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In this review, there is a complete description of the classes of arboviruses, their evolutionary process, virus characterization, disease transmission methods; it also describes about the vectors involved in transmission and their mood of transmission, both biologically as well as non-biologically and, about host, the resistance mechanism in host, and artificial methods of preventing those viral transmissions. Arboviruses transmitted to hosts by some vectors such as mosquitoes, ticks, etc. The virus replicates in the host can be prevented by some host resistance mechanisms like RNA interference (RNAi), which degrade virus RNA by its antiviral activity, insect repellents, IGRs, and PI technology.
Collapse
Affiliation(s)
- Sidra Anwar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Bilal Ahmed
- University of Science And Technology of Fujairah, UAE; School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Muhammad Imran Qadir
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
22
|
Ward MJ, Sorek‐Hamer M, Henke JA, Little E, Patel A, Shaman J, Vemuri K, DeFelice NB. A Spatially Resolved and Environmentally Informed Forecast Model of West Nile Virus in Coachella Valley, California. GEOHEALTH 2023; 7:e2023GH000855. [PMID: 38077289 PMCID: PMC10702611 DOI: 10.1029/2023gh000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 01/11/2024]
Abstract
West Nile virus (WNV) is the most significant arbovirus in the United States in terms of both morbidity and mortality. West Nile exists in a complex transmission cycle between avian hosts and the arthropod vector, Culex spp. mosquitoes. Human spillover events occur when humans are bitten by an infected mosquito and predicting these rates of infection and therefore the risk to humans may be associated with fluctuations in environmental conditions. In this study, we evaluate the hydrological and meteorological drivers associated with mosquito biology and viral development to determine if these associations can be used to forecast seasonal mosquito infection rates with WNV in the Coachella Valley of California. We developed and tested a spatially resolved ensemble forecast model of the WNV mosquito infection rate in the Coachella Valley using 17 years of mosquito surveillance data and North American Land Data Assimilation System-2 environmental data. Our multi-model inference system indicated that the combination of a cooler and dryer winter, followed by a wetter and warmer spring, and a cooler than normal summer was most predictive of the prevalence of West Nile positive mosquitoes in the Coachella Valley. The ability to make accurate early season predictions of West Nile risk has the potential to allow local abatement districts and public health entities to implement early season interventions such as targeted adulticiding and public health messaging before human transmission occurs. Such early and targeted interventions could better mitigate the risk of WNV to humans.
Collapse
Affiliation(s)
- Matthew J. Ward
- Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Meytar Sorek‐Hamer
- Universities Space Research Association (USRA) at NASA Ames Research CenterMoffett FieldCAUSA
| | | | - Eliza Little
- Connecticut Department of Public HealthHartfordCTUSA
| | - Aman Patel
- Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jeffery Shaman
- Columbia Climate SchoolNew YorkNYUSA
- Mailman School of Public HealthNew YorkNYUSA
| | - Krishna Vemuri
- Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Nicholas B. DeFelice
- Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
23
|
Fenton A, Withenshaw SM, Devevey G, Morris A, Erazo D, Pedersen AB. Experimental assessment of cross-species transmission in a natural multihost-multivector-multipathogen community. Proc Biol Sci 2023; 290:20231900. [PMID: 37964529 PMCID: PMC10646469 DOI: 10.1098/rspb.2023.1900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Vector-borne pathogens, many of which cause major suffering worldwide, often circulate in diverse wildlife communities comprising multiple reservoir host and/or vector species. However, the complexities of these systems make it challenging to determine the contributions these different species make to transmission. We experimentally manipulated transmission within a natural multihost-multipathogen-multivector system, by blocking flea-borne pathogen transmission from either of two co-occurring host species (bank voles and wood mice). Through genetic analysis of the resulting infections in the hosts and vectors, we show that both host species likely act together to maintain the overall flea community, but cross-species pathogen transmission is relatively rare-most pathogens were predominantly found in only one host species, and there were few cases where targeted treatment affected pathogens in the other host species. However, we do provide experimental evidence of some reservoir-spillover dynamics whereby reductions of some infections in one host species are achieved by blocking transmission from the other host species. Overall, despite the apparent complexity of such systems, we show there can be 'covert simplicity', whereby pathogen transmission is primarily dominated by single host species, potentially facilitating the targeting of key hosts for control, even in diverse ecological communities.
Collapse
Affiliation(s)
- Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Susan M. Withenshaw
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Godefroy Devevey
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alexandra Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- School of Biological Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Diana Erazo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Amy B. Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
24
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Kouroupis D, Charisi K, Pyrpasopoulou A. The Ongoing Epidemic of West Nile Virus in Greece: The Contribution of Biological Vectors and Reservoirs and the Importance of Climate and Socioeconomic Factors Revisited. Trop Med Infect Dis 2023; 8:453. [PMID: 37755914 PMCID: PMC10536956 DOI: 10.3390/tropicalmed8090453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Emerging infectious diseases have inflicted a significant health and socioeconomic burden upon the global population and governments worldwide. West Nile virus, a zoonotic, mosquito-borne flavivirus, was originally isolated in 1937 from a febrile patient in the West Nile Province of Uganda. It remained confined mainly to Africa, the Middle East, and parts of Europe and Australia until 1999, circulating in an enzootic mosquito-bird transmission cycle. Since the beginning of the 21st century, a new, neurotropic, more virulent strain was isolated from human outbreaks initially occurring in North America and later expanding to South and South-eastern Europe. Since 2010, when the first epidemic was recorded in Greece, annual incidence has fluctuated significantly. A variety of environmental, biological and socioeconomic factors have been globally addressed as potential regulators of the anticipated intensity of the annual incidence rate; circulation within the zoonotic reservoirs, recruitment and adaptation of new potent arthropod vectors, average winter and summer temperatures, precipitation during the early summer months, and socioeconomic factors, such as the emergence and progression of urbanization and the development of densely populated areas in association with insufficient health policy measures. This paper presents a review of the biological and socioenvironmental factors influencing the dynamics of the epidemics of West Nile virus (WNV) cases in Greece, one of the highest-ranked European countries in terms of annual incidence. To date, WNV remains an unpredictable opponent as is also the case with other emerging infectious diseases, forcing the National Health systems to develop response strategies, control the number of infections, and shorten the duration of the epidemics, thus minimizing the impact on human and material resources.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantina Charisi
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Athina Pyrpasopoulou
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| |
Collapse
|
26
|
Fyie LR, Tronetti HR, Gardiner MM, Meuti ME. Potential for urban warming to postpone overwintering dormancy of temperate mosquitoes. J Therm Biol 2023; 115:103594. [PMID: 37429087 PMCID: PMC11493156 DOI: 10.1016/j.jtherbio.2023.103594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/12/2023]
Abstract
Cities are generally hotter than surrounding rural areas due to the Urban Heat Island (UHI) effect. These increases in temperature advance plant and animal phenology, development, and reproduction in the spring. However, research determining how increased temperatures affect the seasonal physiology of animals in the fall has been limited. The Northern house mosquito, Culex pipiens, is abundant in cities and transmits several pathogens including West Nile virus. Females of this species enter a state of developmental arrest, or reproductive diapause, in response to short days and low temperatures during autumn. Diapausing females halt reproduction and blood-feeding, and instead accumulate fat and seek sheltered overwintering sites. We found that exposure to increased temperatures in the lab that mimic the UHI effect induced ovarian development and blood-feeding, and that females exposed to these temperatures were as fecund as non-diapausing mosquitoes. We also found that females exposed to higher temperatures had lower survival rates in winter-like conditions, despite having accumulated equivalent lipid reserves relative to their diapausing congeners. These data suggest that urban warming may inhibit diapause initiation in the autumn, thereby extending the active biting season of temperate mosquitoes.
Collapse
Affiliation(s)
- Lydia R Fyie
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, USA, 43210.
| | - Hannah R Tronetti
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Rd, Columbus, OH, USA, 43210
| | - Mary M Gardiner
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, USA, 43210
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, USA, 43210
| |
Collapse
|
27
|
Lambrechts L. Does arbovirus emergence in humans require adaptation to domestic mosquitoes? Curr Opin Virol 2023; 60:101315. [PMID: 36996522 DOI: 10.1016/j.coviro.2023.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
In the last few decades, several mosquito-borne arboviruses of zoonotic origin have established large-scale epidemic transmission cycles in the human population. It is often considered that arbovirus emergence is driven by adaptive evolution, such as virus adaptation for transmission by 'domestic' mosquito vector species that live in close association with humans. Here, I argue that although arbovirus adaptation to domestic mosquito vectors has been observed for several emerging arboviruses, it was generally not directly responsible for their initial emergence. Secondary adaptation to domestic mosquitoes often amplified epidemic transmission, however, this was more likely a consequence than a cause of arbovirus emergence. Considering that emerging arboviruses are generally 'preadapted' for transmission by domestic mosquito vectors may help to enhance preparedness toward future arbovirus emergence events.
Collapse
|
28
|
Fesce E, Marini G, Rosà R, Lelli D, Cerioli MP, Chiari M, Farioli M, Ferrari N. Understanding West Nile virus transmission: Mathematical modelling to quantify the most critical parameters to predict infection dynamics. PLoS Negl Trop Dis 2023; 17:e0010252. [PMID: 37126524 PMCID: PMC10174579 DOI: 10.1371/journal.pntd.0010252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
West Nile disease is a vector-borne disease caused by West Nile virus (WNV), involving mosquitoes as vectors and birds as maintenance hosts. Humans and other mammals can be infected via mosquito bites, developing symptoms ranging from mild fever to severe neurological infection. Due to the worldwide spread of WNV, human infection risk is high in several countries. Nevertheless, there are still several knowledge gaps regarding WNV dynamics. Several aspects of transmission taking place between birds and mosquitoes, such as the length of the infectious period in birds or mosquito biting rates, are still not fully understood, and precise quantitative estimates are still lacking for the European species involved. This lack of knowledge affects the precision of parameter values when modelling the infection, consequently resulting in a potential impairment of the reliability of model simulations and predictions and in a lack of the overall understanding of WNV spread. Further investigations are thus needed to better understand these aspects, but field studies, especially those involving several wild species, such as in the case of WNV, can be challenging. Thus, it becomes crucial to identify which transmission processes most influence the dynamics of WNV. In the present work, we propose a sensitivity analysis to investigate which of the selected epidemiological parameters of WNV have the largest impact on the spread of the infection. Based on a mathematical model simulating WNV spread into the Lombardy region (northern Italy), the basic reproduction number of the infection was estimated and used to quantify infection spread into mosquitoes and birds. Then, we quantified how variations in four epidemiological parameters representing the duration of the infectious period in birds, the mosquito biting rate on birds, and the competence and susceptibility to infection of different bird species might affect WNV transmission. Our study highlights that knowledge gaps in WNV epidemiology affect the precision in several parameters. Although all investigated parameters affected the spread of WNV and the modelling precision, the duration of the infectious period in birds and mosquito biting rate are the most impactful, pointing out the need of focusing future studies on a better estimate of these parameters at first. In addition, our study suggests that a WNV outbreak is very likely to occur in all areas with suitable temperatures, highlighting the wide area where WNV represents a serious risk for public health.
Collapse
Affiliation(s)
- Elisa Fesce
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento (TN), Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento (TN), Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Monica Pierangela Cerioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia (BS), Italy
| | - Mario Chiari
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Marco Farioli
- Regional Veterinary Authority of Lombardy, Direzione Generale Welfare, Milano (MI), Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Science (DiVAS), Wildlife Health management & One Health Lab, Università degli Studi di Milano, Lodi (LO), Italy
- Centro di Ricerca Coordinata Epidemiologia e Sorveglianza Molecolare delle Infezioni, Università degli Studi di Milano, Milano (MI), Italy
| |
Collapse
|
29
|
Perrin A, Khimoun A, Ollivier A, Richard Y, Pérez-Rodríguez A, Faivre B, Garnier S. Habitat fragmentation matters more than habitat loss: The case of host-parasite interactions. Mol Ecol 2023; 32:951-969. [PMID: 36461661 DOI: 10.1111/mec.16807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
While ecologists agree that habitat loss has a substantial negative effect on biodiversity it is still very much a matter of debate whether habitat fragmentation has a lesser effect and whether this effect is positive or negative for biodiversity. Here, we assess the relative influence of tropical forest loss and fragmentation on the prevalence of vector-borne blood parasites of the genera Plasmodium and Haemoproteus in six forest bird species. We also determine whether habitat loss and fragmentation are associated with a rise or fall in prevalence. We sample more than 4000 individual birds from 58 forest sites in Guadeloupe and Martinique. Considering 34 host-parasite combinations independently and a fine characterization of the amount and spatial configuration of habitat, we use partial least square regressions to disentangle the relative effects of forest loss, forest fragmentation, landscape heterogeneity, and local weather conditions on spatial variability of parasite prevalence. Then we test for the magnitude and the sign of the effect of each environmental descriptor. Strikingly, we show that forest fragmentation explains twice as much of the variance in prevalence as habitat loss or landscape heterogeneity. In addition, habitat fragmentation leads to an overall rise in prevalence in Guadeloupe, but its effect is variable in Martinique. Both habitat loss and landscape heterogeneity exhibit taxon-specific effects. Our results suggest that habitat loss and fragmentation may have contrasting effects between tropical and temperate regions and that inter-specific interactions may not respond in the same way as more commonly used biodiversity metrics such as abundance and diversity.
Collapse
Affiliation(s)
- Antoine Perrin
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Anthony Ollivier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Yves Richard
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
30
|
Sallam MF, Whitehead S, Barve N, Bauer A, Guralnick R, Allen J, Tavares Y, Gibson S, Linthicum KJ, Giordano BV, Campbell LP. Co-occurrence probabilities between mosquito vectors of West Nile and Eastern equine encephalitis viruses using Markov Random Fields (MRFcov). Parasit Vectors 2023; 16:10. [PMID: 36627717 PMCID: PMC9830877 DOI: 10.1186/s13071-022-05530-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/22/2022] [Indexed: 01/11/2023] Open
Abstract
Mosquito vectors of eastern equine encephalitis virus (EEEV) and West Nile virus (WNV) in the USA reside within broad multi-species assemblages that vary in spatial and temporal composition, relative abundances and vector competence. These variations impact the risk of pathogen transmission and the operational management of these species by local public health vector control districts. However, most models of mosquito vector dynamics focus on single species and do not account for co-occurrence probabilities between mosquito species pairs across environmental gradients. In this investigation, we use for the first time conditional Markov Random Fields (CRF) to evaluate spatial co-occurrence patterns between host-seeking mosquito vectors of EEEV and WNV around sampling sites in Manatee County, Florida. Specifically, we aimed to: (i) quantify correlations between mosquito vector species and other mosquito species; (ii) quantify correlations between mosquito vectors and landscape and climate variables; and (iii) investigate whether the strength of correlations between species pairs are conditional on landscape or climate variables. We hypothesized that either mosquito species pairs co-occur in patterns driven by the landscape and/or climate variables, or these vector species pairs are unconditionally dependent on each other regardless of the environmental variables. Our results indicated that landscape and bioclimatic covariates did not substantially improve the overall model performance and that the log abundances of the majority of WNV and EEEV vector species were positively dependent on other vector and non-vector mosquito species, unconditionally. Only five individual mosquito vectors were weakly dependent on environmental variables with one exception, Culiseta melanura, the primary vector for EEEV, which showed a strong correlation with woody wetland, precipitation seasonality and average temperature of driest quarter. Our analyses showed that majority of the studied mosquito species' abundance and distribution are insignificantly better predicted by the biotic correlations than by environmental variables. Additionally, these mosquito vector species may be habitat generalists, as indicated by the unconditional correlation matrices between species pairs, which could have confounded our analysis, but also indicated that the approach could be operationalized to leverage species co-occurrences as indicators of vector abundances in unsampled areas, or under scenarios where environmental variables are not informative.
Collapse
Affiliation(s)
- Mohamed F. Sallam
- grid.265436.00000 0001 0421 5525Preventive Medicine and Biostatistics Department, Uniformed Service University of the Health Sciences, Bethesda, MD 20814 USA ,grid.266818.30000 0004 1936 914XDepartment of Biology, University of Nevada, Reno, NV USA
| | - Shelley Whitehead
- Whitehead Entomology Consulting, Gainesville, FL USA ,Manatee County Mosquito Control District, Palmetto, FL USA
| | - Narayani Barve
- grid.15276.370000 0004 1936 8091Department of Natural Resources, University of Florida, Gainesville, FL USA
| | - Amely Bauer
- grid.15276.370000 0004 1936 8091Florida Medical Entomology Laboratory (FMEL), Department of Entomology and Nematology, University of Florida Institute of Food and Agricultural Sciences (UF/IFAS), Gainesville, FL USA
| | - Robert Guralnick
- grid.15276.370000 0004 1936 8091Department of Natural Resources, University of Florida, Gainesville, FL USA
| | - Julie Allen
- grid.265436.00000 0001 0421 5525Preventive Medicine and Biostatistics Department, Uniformed Service University of the Health Sciences, Bethesda, MD 20814 USA
| | - Yasmin Tavares
- grid.15276.370000 0004 1936 8091Florida Medical Entomology Laboratory (FMEL), Department of Entomology and Nematology, University of Florida Institute of Food and Agricultural Sciences (UF/IFAS), Gainesville, FL USA
| | - Seth Gibson
- grid.417548.b0000 0004 0478 6311U.S. Department of Agriculture, Gainesville, FL USA
| | - Kenneth J. Linthicum
- grid.417548.b0000 0004 0478 6311U.S. Department of Agriculture, Gainesville, FL USA
| | - Bryan V. Giordano
- grid.15276.370000 0004 1936 8091Florida Medical Entomology Laboratory (FMEL), Department of Entomology and Nematology, University of Florida Institute of Food and Agricultural Sciences (UF/IFAS), Gainesville, FL USA
| | - Lindsay P. Campbell
- grid.15276.370000 0004 1936 8091Florida Medical Entomology Laboratory (FMEL), Department of Entomology and Nematology, University of Florida Institute of Food and Agricultural Sciences (UF/IFAS), Gainesville, FL USA
| |
Collapse
|
31
|
Yee KT, Vetter DE. Detection of West Nile Virus Envelope Protein in Brain Tissue with an Immunohistochemical Assay. Methods Mol Biol 2023; 2585:51-69. [PMID: 36331765 DOI: 10.1007/978-1-0716-2760-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Immunohistochemistry is a valuable tool for probing not only scientific questions but also clinical diagnoses. It provides power from localization of a protein within the milieu of a tissue section that may reflect positioning within or beyond the boundaries of a cell that is representative of the tissue at a discrete moment in time. The method can be applied broadly, including to tissues under normal, developmental, chemically, or genetically altered conditions and disease states.Disease manifesting from West Nile virus infection ranges from acute, systemic febrile symptoms to compromise of central nervous system function. Immunohistochemistry has been used to assess WNV infection in the nervous system in postmortem and experimental conditions, despite the lack of understanding of the precise route of viral entry. In addition to imprecise knowledge of initial viral entry into cells and whether entry is even the same between cell types, the fact that spontaneous viral mutations and environmental pressures from climate change may alter the prevalence of the disease state across geographical and climatological boundaries highlights the need for continued assessment of infection. Immunohistochemistry is a useful way to assess these aspects of WNV infection with the aim being to better understand the organs and cell types that are compromised by WNV infection. This chapter outlines how this can be carried out on brain tissue, but the procedures discussed can also be applied more broadly on tissue outside of the central nervous system.
Collapse
Affiliation(s)
- Kathleen T Yee
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Douglas E Vetter
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
32
|
Karim SU, Bai F. Introduction to West Nile Virus. Methods Mol Biol 2023; 2585:1-7. [PMID: 36331759 DOI: 10.1007/978-1-0716-2760-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne, single-stranded, positive-sense RNA virus belonging to the Flaviviridae family. After WNV gains entry through an infected mosquito bite, it replicates in a variety of human cell types and produces a viremia. Although the majority of infected individuals remain asymptomatic, the manifested symptoms in some people range from a mild fever to severe neurological disorder with high morbidity and mortality. In addition, many who recover from WNV neuroinvasive infection present with long-term deficits, including weakness, fatigue, and cognitive problems. Since entering the USA in 1999, WNV has become the most common mosquito-borne virus in North America. Despite the intensive research over 20 years, there are still no approved vaccines or specific treatments for humans, and it remains an urgent need to understand the pathogenesis of WNV and develop specific therapeutics and vaccines.
Collapse
Affiliation(s)
- Shazeed-Ul Karim
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
33
|
Albrecht L, Kaufeld KA. Investigating the impact of environmental factors on West Nile virus human case prediction in Ontario, Canada. Front Public Health 2023; 11:1100543. [PMID: 36875397 PMCID: PMC9981635 DOI: 10.3389/fpubh.2023.1100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
West Nile virus is the most common mosquito borne disease in North America and the leading cause of viral encephalitis. West Nile virus is primarily transmitted between birds and mosquitoes while humans are incidental, dead-end hosts. Climate change may increase the risk of human infections as climatic variables have been shown to affect the mosquito life cycle, biting rate, incubation period of the disease in mosquitoes, and bird migration patterns. We develop a zero-inflated Poisson model to investigate how human West Nile virus case counts vary with respect to mosquito abundance and infection rates, bird abundance, and other environmental covariates. We use a Bayesian paradigm to fit our model to data from 2010-2019 in Ontario, Canada. Our results show mosquito infection rate, temperature, precipitation, and crow abundance are positively correlated with human cases while NDVI and robin abundance are negatively correlated with human cases. We find the inclusion of spatial random effects allows for more accurate predictions, particularly in years where cases are higher. Our model is able to accurately predict the magnitude and timing of yearly West Nile virus outbreaks and could be a valuable tool for public health officials to implement prevention strategies to mitigate these outbreaks.
Collapse
Affiliation(s)
- Laura Albrecht
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM, United States.,Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, United States
| | - Kimberly A Kaufeld
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
34
|
Bialosuknia SM, Dupuis II AP, Zink SD, Koetzner CA, Maffei JG, Owen JC, Landwerlen H, Kramer LD, Ciota AT. Adaptive evolution of West Nile virus facilitated increased transmissibility and prevalence in New York State. Emerg Microbes Infect 2022; 11:988-999. [PMID: 35317702 PMCID: PMC8982463 DOI: 10.1080/22221751.2022.2056521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022]
Abstract
West Nile virus (WNV; Flavivirus, Flaviviridae) was introduced to New York State (NYS) in 1999 and rapidly expanded its range through the continental United States (US). Apart from the displacement of the introductory NY99 genotype with the WN02 genotype, there has been little evidence of adaptive evolution of WNV in the US. WNV NY10, characterized by shared amino acid substitutions R1331K and I2513M, emerged in 2010 coincident with increased WNV cases in humans and prevalence in mosquitoes. Previous studies demonstrated an increase in frequency of NY10 strains in NYS and evidence of positive selection. Here, we present updated surveillance and sequencing data for WNV in NYS and investigate if NY10 genotype strains are associated with phenotypic change consistent with an adaptive advantage. Results confirm a significant increase in prevalence in mosquitoes though 2018, and updated sequencing demonstrates a continued dominance of NY10. We evaluated NY10 strains in Culex pipiens mosquitoes to assess vector competence and found that the NY10 genotype is associated with both increased infectivity and transmissibility. Experimental infection of American robins (Turdus migratorius) was additionally completed to assess viremia kinetics of NY10 relative to WN02. Modelling the increased infectivity and transmissibility of the NY10 strains together with strain-specific viremia demonstrates a mechanistic basis for selection that has likely contributed to the increased prevalence of WNV in NYS.
Collapse
Affiliation(s)
- Sean M. Bialosuknia
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
| | - Alan P. Dupuis II
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Steven D. Zink
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Cheri A. Koetzner
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Joseph G. Maffei
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Hannah Landwerlen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Laura D. Kramer
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
| | - Alexander T. Ciota
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| |
Collapse
|
35
|
An epidemiological model for mosquito host selection and temperature-dependent transmission of West Nile virus. Sci Rep 2022; 12:19946. [PMID: 36402904 PMCID: PMC9675847 DOI: 10.1038/s41598-022-24527-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
We extend a previously developed epidemiological model for West Nile virus (WNV) infection in humans in Greece, employing laboratory-confirmed WNV cases and mosquito-specific characteristics of transmission, such as host selection and temperature-dependent transmission of the virus. Host selection was defined by bird host selection and human host selection, the latter accounting only for the fraction of humans that develop symptoms after the virus is acquired. To model the role of temperature on virus transmission, we considered five temperature intervals (≤ 19.25 °C; > 19.25 and < 21.75 °C; ≥ 21.75 and < 24.25 °C; ≥ 24.25 and < 26.75 °C; and > 26.75 °C). The capacity of the new model to fit human cases and the week of first case occurrence was compared with the original model and showed improved performance. The model was also used to infer further quantities of interest, such as the force of infection for different temperatures as well as mosquito and bird abundances. Our results indicate that the inclusion of mosquito-specific characteristics in epidemiological models of mosquito-borne diseases leads to improved modelling capacity.
Collapse
|
36
|
Cavalleri JV, Korbacska‐Kutasi O, Leblond A, Paillot R, Pusterla N, Steinmann E, Tomlinson J. European College of Equine Internal Medicine consensus statement on equine flaviviridae infections in Europe. Vet Med (Auckl) 2022; 36:1858-1871. [DOI: 10.1111/jvim.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jessika‐M. V. Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Orsolya Korbacska‐Kutasi
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
- Department for Animal Breeding, Nutrition and Laboratory Animal Science University of Veterinary Medicine Budapest Hungary
- Hungarian Academy of Sciences—Szent Istvan University (MTA‐SZIE) Large Animal Clinical Research Group Üllő Dóra major Hungary
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup University of Lyon Marcy l'Etoile France
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy Writtle University College Chelmsford UK
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine University of California Davis California USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine Ruhr University Bochum Bochum Germany
| | - Joy Tomlinson
- Baker Institute for Animal Health Cornell University College of Veterinary Medicine Ithaca New York USA
| |
Collapse
|
37
|
Host selection and forage ratio in West Nile virus-transmitting Culex mosquitoes: Challenges and knowledge gaps. PLoS Negl Trop Dis 2022; 16:e0010819. [PMID: 36301825 PMCID: PMC9612463 DOI: 10.1371/journal.pntd.0010819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND To date, no specific therapy or vaccination is available for West Nile virus (WNV) infections in humans; preventive strategies represent the only possibility to control transmission. To focus these strategies, detailed knowledge of the virus dynamics is of paramount importance. However, several aspects of WNV transmission are still unclear, especially regarding the role of potential vertebrate host species. Whereas mosquitoes' intrinsic characteristics cause them to favour certain hosts (host preference), absolute selection is impossible in natural settings. Conversely, the selection carried out among available hosts and influenced from hosts' availability and other ecological/environmental factors is defined as host selection. METHODOLOGY/PRINCIPAL FINDINGS In July 2022, we searched PubMed database for original articles exploring host selection among WNV-transmitting Culex mosquitoes, the main WNV vector. We considered only original field studies estimating and reporting forage ratio. This index results from the ratio between the proportion of blood meals taken by mosquitoes on potential host species and the hosts' relative abundance. From the originally retrieved 585 articles, 9 matched the inclusion criteria and were included in this review. All but one of the included studies were conducted in the Americas, six in the United States, and one each in Mexico and Colombia. The remaining study was conducted in Italy. American Robin, Northern Cardinal, and House Finch were the most significantly preferred birds in the Americas, Common Blackbird in Italy. CONCLUSIONS/SIGNIFICANCE Although ornithophilic, all observed WNV-transmitting mosquitoes presented opportunistic feeding behaviour. All the observed species showed potential to act as bridges for zoonotic diseases, feeding also on humans. All the observed mosquitoes presented host selection patterns and did not feed on hosts as expected by chance alone. The articles observe different species of mosquitoes in different environments. In addition, the way the relative host abundance was determined differed. Finally, this review is not systematic. Therefore, the translation of our results to different settings should be conducted cautiously.
Collapse
|
38
|
Vaughan JA, Newman RA, Turell MJ. Bird species define the relationship between West Nile viremia and infectiousness to Culex pipiens mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010835. [PMID: 36201566 PMCID: PMC9578590 DOI: 10.1371/journal.pntd.0010835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/18/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
The transmission cycle of West Nile virus (WNV) involves multiple species of birds. The relative importance of various bird species to the overall transmission is often inferred from the level and duration of viremia that they experience upon infection. Reports utilizing in vitro feeding techniques suggest that the source and condition of blood in which arboviruses are fed to mosquitoes can significantly alter the infectiousness of arbovirus to mosquitoes. We confirmed this using live hosts. A series of mosquito feedings with Culex pipiens was conducted on WNV-infected American robins and common grackles over a range of viremias. Mosquitoes were assayed individually by plaque assay for WNV at 3 to 7 days after feeding. At equivalent viremia, robins always infected more mosquitoes than did grackles. We conclude that the infectiousness of viremic birds cannot always be deduced from viremia alone. If information concerning the infectiousness of a particular bird species is important, such information is best acquired by feeding mosquitoes directly on experimentally infected individuals of that species.
Collapse
Affiliation(s)
- Jefferson A. Vaughan
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Robert A. Newman
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Michael J. Turell
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
39
|
Guinn A, Su T, Thieme J, Cheng ML, Brown MQ, Thiemann T. Characterization of the Blood-Feeding Patterns of Culex quinquefasciatus (Diptera: Culicidae) in San Bernardino County, California. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1756-1765. [PMID: 35808969 DOI: 10.1093/jme/tjac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 06/15/2023]
Abstract
West Nile virus (WNV) is a zoonotic disease that is endemic in North America and is known to cause a range of symptoms from mild to life threatening in humans. Culex quinquefasciatus is one of the most prominent vectors of WNV in Southern California. The goal of this study was to identify which animal species are most fed upon by these mosquitoes in various habitats in the West Valley area of San Bernardino County, California, and determine the relationship between blood-feeding patterns and WNV activity in the region. Culex quinquefasciatus specimens were collected by West Valley Mosquito and Vector Control District during 2011 from 32 different sites. The bloodmeals of 683 individuals (92.4% of those tested) were identified using the mitochondrial gene cytochrome c oxidase 1 (COI). These bloodmeals comprised 29 vertebrate species across four different habitats. Species richness (ranging from 10 to 17) was not significantly different between habitats when rarified to account for sample size. Across habitats, the highest percentage of avian bloodmeals were taken from house sparrows (18.8-39.1%) and house finches (2.6-31.5%). Bloodmeals were identified from five mammalian species, accounting for 5.1-59.2% of bloodmeals by habitat, including humans (0-4.1%). A seasonal shift towards increased mammalian bloodmeal prevalence, specifically for domestic dog and human bloodmeals, was observed in urban habitats. The WNV activity during 2011 in San Bernardino County occurred mostly in urban and suburban areas as indicated by minimum infection rate (MIR) in Culex quinquefasciatus, notable as all human bloodmeals were identified from these two habitats.
Collapse
Affiliation(s)
| | - Tianyun Su
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Jennifer Thieme
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Min-Lee Cheng
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Michelle Q Brown
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | | |
Collapse
|
40
|
Adelman JS, Tokarz RE, Euken AE, Field EN, Russell MC, Smith RC. Relative Influence of Land Use, Mosquito Abundance, and Bird Communities in Defining West Nile Virus Infection Rates in Culex Mosquito Populations. INSECTS 2022; 13:758. [PMID: 36135459 PMCID: PMC9502061 DOI: 10.3390/insects13090758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Since its introduction to North America in 1999, the West Nile virus (WNV) has resulted in over 50,000 human cases and 2400 deaths. WNV transmission is maintained via mosquito vectors and avian reservoir hosts, yet mosquito and avian infections are not uniform across ecological landscapes. As a result, it remains unclear whether the ecological communities of the vectors or reservoir hosts are more predictive of zoonotic risk at the microhabitat level. We examined this question in central Iowa, representative of the midwestern United States, across a land use gradient consisting of suburban interfaces with natural and agricultural habitats. At eight sites, we captured mosquito abundance data using New Jersey light traps and monitored bird communities using visual and auditory point count surveys. We found that the mosquito minimum infection rate (MIR) was better predicted by metrics of the mosquito community than metrics of the bird community, where sites with higher proportions of Culex pipiens group mosquitoes during late summer (after late July) showed higher MIRs. Bird community metrics did not significantly influence mosquito MIRs across sites. Together, these data suggest that the microhabitat suitability of Culex vector species is of greater importance than avian community composition in driving WNV infection dynamics at the urban and agricultural interface.
Collapse
Affiliation(s)
- James S. Adelman
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, USA
| | - Ryan E. Tokarz
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Department of International and Global Health, Mercer University, Macon, GA 31207, USA
| | - Alec E. Euken
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
| | - Eleanor N. Field
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Marie C. Russell
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Ryan C. Smith
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
41
|
Peach DAH, Matthews BJ. The Invasive Mosquitoes of Canada: An Entomological, Medical, and Veterinary Review. Am J Trop Med Hyg 2022; 107:231-244. [PMID: 35895394 PMCID: PMC9393454 DOI: 10.4269/ajtmh.21-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/03/2022] [Indexed: 11/07/2022] Open
Abstract
Several invasive mosquitoes have become established in Canada, including important pathogen vectors such as Aedes albopictus, Ae. japonicus, and Culex pipiens. Some species have been present for decades, while others are recent arrivals. Several species present new health concerns and may result in autochthonous seasonal outbreaks of pathogens, particularly in southern Canada, that were previously restricted to imported cases. This review provides an overview of current knowledge of the biological, medical, and veterinary perspectives of these invasive species and highlights the need for increased monitoring efforts and information sharing.
Collapse
Affiliation(s)
- Daniel A. H. Peach
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
42
|
Blood feeding habits of mosquitoes: hardly a bite in South America. Parasitol Res 2022; 121:1829-1852. [PMID: 35562516 PMCID: PMC9106385 DOI: 10.1007/s00436-022-07537-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Mosquito blood feeding plays a key role in epidemiology. Despite its importance and large number of studies worldwide, less attention has been paid in South America. We summarized some general concepts and methodological issues related to the study of mosquito blood feeding habits, and compiled and analyzed all published information regarding the subject in the continent until 2020. Available literature comprised 152 scientific studies, that pursued different approaches: human landing catches (102 studies), baited trap (19), and blood meal analyses of collected specimens (38). Among the latter, 23 used serological and 15 molecular techniques. Species most frequently studied were those incriminated in malaria transmission, whereas relevant vectors such as Aedes aegypti, Ae. albopictus, and Haemagogus janthinomys were surprisingly neglected. Brazil was the leading country both in number of works and species studied. For over 70% of the species and three out of 13 South American countries there is no single information on mosquito blood feeding habits. Data from baited traps included 143 mosquito species, 83.9% of which were attracted to humans, either exclusively (10.5%) or in combination with other vertebrates (73.4%). Host blood identification of field collected specimens provided data on 102 mosquito species, and 60.8% of these fed on humans (55.9% combined with other vertebrates). Only 17 of the 73 species assessed by both methods yielded similar feeding patterns. Finally, supplementary tables are provided in a comprehensive summary of all information available and information gaps are highlighted for future research in the continent.
Collapse
|
43
|
Musto C, Tamba M, Calzolari M, Torri D, Marzani K, Cerri J, Bonilauri P, Delogu M. Usutu virus in blackbirds (Turdus merula) with clinical signs, a case study from northern Italy. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01572-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractUsutu virus (USUV) is a mosquito-borne virus belonging to the family Flaviviridae, genus Flavivirus. Natural transmission cycle of USUV involves mosquitoes and birds, so humans and other mammals are considered incidental hosts. In this study, USUV infection was diagnosed in all wild blackbirds, collected from July to September 2018 in a wildlife recovery center in the province of Bologna, in the Emilia-Romagna region, northern Italy. All blackbirds showed neurological clinical signs, such as overturning, pedaling, and incoordination. Moreover, the subjects died shortly after arriving at the hospitalization center. Virological investigations were performed by real-time PCR on frozen samples of the spleen, kidney, myocardium, and brain for the detection of Usutu (USUV) and West Nile (WNV) viruses. The small and large intestine were used as a matrix for the detection of Newcastle disease virus (NDV). All 56 subjects with neurological clinical signs were positive for USUV, only one subject (1.8%) tested positive for WNV, and no subject was positive for NDV. The most represented age class was class 1 J (58.9%), followed by class 3 (25.0%), and lastly from class 4 (16.1%). Most of the blackbirds before dying were in good (51.8%) and fair (39.3%) nutritional status, while only five subjects (8.9%) were cachectic. The USUV genomes detected in the blackbirds of this study fall within the sub-clade already called EU2 that has been detected since 2009 in the Emilia-Romagna region. Neurological clinical signs in USUV-affected blackbirds are still widely discussed and there are few works in the literature. Although our results require further studies, we believe them to be useful for understanding the clinical signs of Usutu virus in blackbirds, helping to increase the knowledge of this zoonotic agent in wild species and to understand its effect on the ecosystem. The goal of this study was to report—in the context of the regional passive surveillance program—the detection of USUV RNA in its most important amplifying host, the common blackbird, when showing clinical signs before death.
Collapse
|
44
|
Combs MA, Kache PA, VanAcker MC, Gregory N, Plimpton LD, Tufts DM, Fernandez MP, Diuk-Wasser MA. Socio-ecological drivers of multiple zoonotic hazards in highly urbanized cities. GLOBAL CHANGE BIOLOGY 2022; 28:1705-1724. [PMID: 34889003 DOI: 10.1111/gcb.16033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
The ongoing COVID-19 pandemic is a stark reminder of the devastating consequences of pathogen spillover from wildlife to human hosts, particularly in densely populated urban centers. Prevention of future zoonotic disease is contingent on informed surveillance for known and novel threats across diverse human-wildlife interfaces. Cities are a key venue for potential spillover events because of the presence of zoonotic pathogens transmitted by hosts and vectors living in close proximity to dense human settlements. Effectively identifying and managing zoonotic hazards requires understanding the socio-ecological processes driving hazard distribution and pathogen prevalence in dynamic and heterogeneous urban landscapes. Despite increasing awareness of the human health impacts of zoonotic hazards, the integration of an eco-epidemiological perspective into public health management plans remains limited. Here we discuss how landscape patterns, abiotic conditions, and biotic interactions influence zoonotic hazards across highly urbanized cities (HUCs) in temperate climates to promote their efficient and effective management by a multi-sectoral coalition of public health stakeholders. We describe how to interpret both direct and indirect ecological processes, incorporate spatial scale, and evaluate networks of connectivity specific to different zoonotic hazards to promote biologically-informed and targeted decision-making. Using New York City, USA as a case study, we identify major zoonotic threats, apply knowledge of relevant ecological factors, and highlight opportunities and challenges for research and intervention. We aim to broaden the toolbox of urban public health stakeholders by providing ecologically-informed, practical guidance for the evaluation and management of zoonotic hazards.
Collapse
Affiliation(s)
- Matthew A Combs
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Pallavi A Kache
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Meredith C VanAcker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Nichar Gregory
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Laura D Plimpton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Danielle M Tufts
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Infectious Diseases and Microbiology Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria P Fernandez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
45
|
Reeves LE, Burkett-Cadena ND. Lizards Are Important Hosts for Zoonotic Flavivirus Vectors, Subgenus Culex, in the Southern USA. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.842523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host association is among the most important factors that drive the transmission dynamics of mosquito-vectored pathogens. Competent vectors that feed exclusively upon non-competent hosts will not transmit pathogens, and highly competent hosts that are not bitten by competent vectors will not contribute to pathogen amplification. Therefore, characterizing the blood-feeding ecology of vector mosquitoes is critical to understanding how zoonotic pathogens amplify within ecosystems and spillover to humans and domesticated animals. In North America, mosquito species of the subgenus Culex are considered the most important vectors of zoonotic Flaviviruses, particularly West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and western equine encephalitis virus. Many species of the Culex subgenus Culex are thought to feed predominantly upon birds and mammals, a behavior that facilitates the amplification and spillover of these zoonotic pathogens. Much of our understanding of the host associations of Culex vectors is based on research conducted in the 1960s and 1970s that used serological methods to infer host group(s). Here we reevaluate host associations of six Culex species from the southern US (Florida and Arizona) using DNA barcoding-based blood meal analysis. Our results demonstrate that reptiles, particularly lizards, constitute an important, and previously underappreciated, group of vertebrate hosts for several subgenus Culex mosquitoes. In Florida, >25% of Culex nigripalpus blood meals were derived from lizards (mainly Anolis spp.), and reptile host use generally increased from north to south with ~10%, ~25% and ~60% of Cx. nigripalpus blood meals derived from reptiles in northern, central, and southern Florida, respectively. In southern Arizona, lizards (mainly Sceloporus spp. and Urosaurus ornatus) constituted 40-45% of blood meals of Culex tarsalis, Culex thriambus, and Culex stigmatosoma. Other species of the subgenus Culex, including Culex quinquefasciatus, were not found to feed upon reptiles at the same sites, suggesting host association variation within Culex subgenus Culex. Whether or not lizards contribute to or dilute amplification of zoonotic Flaviviruses depends upon host competency of the lizard species bitten for WNV and SLEV. To date, very few studies have evaluated host competence of lizards for these viruses, so their roles in transmission cycles of zoonotic Flaviviruses remains obscure.
Collapse
|
46
|
Abstract
It is unclear whether West Nile virus (WNV) circulates endemically in Portugal. Despite the country’s adequate climate for transmission, Portugal has only reported four human WNV infections so far. We performed a review of WNV-related data (1966–2020), explored mosquito (2016–2019) and land type distributions (1992–2019), and used climate data (1981–2019) to estimate WNV transmission suitability in Portugal. Serological and molecular evidence of WNV circulation from animals and vectors was largely restricted to the south. Land type and climate-driven transmission suitability distributions, but not the distribution of WNV-capable vectors, were compatible with the North-South divide present in serological and molecular evidence of WNV circulation. Our study offers a comprehensive, data-informed perspective and review on the past epidemiology, surveillance and climate-driven transmission suitability of WNV in Portugal, highlighting the south as a subregion of importance. Given the recent WNV outbreaks across Europe, our results support a timely change towards local, active surveillance. Lourenço et al. review historical data and quantify the transmission potential of West Nile virus in Portugal. They report a North-South divide in infection patterns, a higher ecological capacity in the south, and an increasing positive effect of climate change over the last 40 years.
Collapse
|
47
|
Fikrig K, Martin E, Dang S, St Fleur K, Goldsmith H, Qu S, Rosenthal H, Pitcher S, Harrington LC. The Effects of Host Availability and Fitness on Aedes albopictus Blood Feeding Patterns in New York. Am J Trop Med Hyg 2022; 106:320-331. [PMID: 34662859 PMCID: PMC8733534 DOI: 10.4269/ajtmh.21-0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
Aedes albopictus is a competent vector of numerous pathogens, representing a range of transmission cycles involving unique hosts. Despite the important status of this vector, variation in its feeding patterns is poorly understood. We examined the feeding patterns of Ae. albopictus utilizing resting collections in Long Island, NY, and contextualized blood meal sources with host availability measured by household interviews and camera traps. We identified 90 blood meals, including 29 humans, 22 cats, 16 horses, 12 opossums, 5 dogs, 2 goats, and 1 each of rabbit, rat, squirrel, and raccoon. This is only the third study of Ae. albopictus blood feeding biology that quantitatively assessed domestic host availability and is the first to do so with wild animals. Host feeding indices showed that cats and dogs were fed upon disproportionately often compared with humans. Forage ratios suggested a tendency to feed on cats and opossums and to avoid raccoons, squirrels, and birds. This feeding pattern was different from another published study from Baltimore, where Ae. albopictus fed more often on rats than humans. To understand whether these differences were because of host availability or mosquito population variation, we compared the fitness of New York and Baltimore Ae. albopictus after feeding on rat and human blood. In addition, we examined fitness within the New York population after feeding on human, rat, cat, horse, and opossum blood. Together, our results do not indicate major mosquito fitness differences by blood hosts, suggesting that fitness benefits do not drive Northeastern Ae. albopictus feeding patterns.
Collapse
Affiliation(s)
- Kara Fikrig
- Entomology Department, Cornell University, Ithaca, New York,Address correspondence to Kara Fikrig, Entomology Department, Cornell University, Ithaca, NY 14850. E-mail:
| | | | - Sharon Dang
- Entomology Department, Cornell University, Ithaca, New York
| | | | | | - Sophia Qu
- Entomology Department, Cornell University, Ithaca, New York
| | | | - Sylvie Pitcher
- Entomology Department, Cornell University, Ithaca, New York
| | | |
Collapse
|
48
|
Tajudeen YA, Oladunjoye IO, Mustapha MO, Mustapha ST, Ajide-Bamigboye NT. Tackling the global health threat of arboviruses: An appraisal of the three holistic approaches to health. Health Promot Perspect 2021; 11:371-381. [PMID: 35079581 PMCID: PMC8767080 DOI: 10.34172/hpp.2021.48] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The rapid circulation of arboviruses in the human population has been linked with changes in climatic, environmental, and socio-economic conditions. These changes are known to alter the transmission cycles of arboviruses involving the anthropophilic vectors and thus facilitate an extensive geographical distribution of medically important arboviral diseases, thereby posing a significant health threat. Using our current understanding and assessment of relevant literature, this review aimed to understand the underlying factors promoting the spread of arboviruses and how the three most renowned interdisciplinary and holistic approaches to health such as One Health, Eco-Health, and Planetary Health can be a panacea for control of arboviruses. Methods: A comprehensive structured search of relevant databases such as Medline, PubMed, WHO, Scopus, Science Direct, DOAJ, AJOL, and Google Scholar was conducted to identify recent articles on arboviruses and holistic approaches to health using the keywords including "arboviral diseases", "arbovirus vectors", "arboviral infections", "epidemiology of arboviruses", "holistic approaches", "One Health", "Eco-Health", and "Planetary Health". Results: Changes in climatic factors like temperature, humidity, and precipitation support the growth, breeding, and fecundity of arthropod vectors transmitting the arboviral diseases. Increased human migration and urbanization due to socio-economic factors play an important role in population increase leading to the rapid geographical distribution of arthropod vectors and transmission of arboviral diseases. Medical factors like misdiagnosis and misclassification also contribute to the spread of arboviruses. Conclusion: This review highlights two important findings: First, climatic, environmental, socio-economic, and medical factors influence the constant distributions of arthropod vectors. Second, either of the three holistic approaches or a combination of any two can be adopted on arboviral disease control. Our findings underline the need for holistic approaches as the best strategy to mitigating and controlling the emerging and reemerging arboviruses.
Collapse
|
49
|
Noden BH, Cote NM, Reiskind MH, Talley JL. Invasive Plants as Foci of Mosquito-Borne Pathogens: Red Cedar in the Southern Great Plains of the USA. ECOHEALTH 2021; 18:475-486. [PMID: 34613506 DOI: 10.1007/s10393-021-01562-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
West Nile virus (WNV) is the most significant mosquito-borne disease affecting humans in the United States. Eastern redcedar (ERC) is a native encroaching plant in the southern Great Plains that greatly alters abiotic conditions and bird and mosquito populations. This study tested the hypotheses that mosquito communities and their likelihood of WNV infection differ between ERC and other habitats in the southern Great Plains of the United States. We found support for our first hypothesis, with significantly more Culex tarsalis and Culex erraticus in ERC than deciduous and grass habitats. Mosquito communities in Central Oklahoma were more diverse (21 species) than western Oklahoma (11 species) but this difference was not associated with vegetation. Our second hypothesis was also supported, with significantly more WNV-infected Culex from ERC in both regions, as was our third hypothesis, with significantly more Culex tarsalis and Culex pipiens collected in ERC than other habitats in urban areas. The connection of mosquito-borne disease with invasive plants suggests that land management initiatives can affect human health and should be considered in light of public health impact. Evidence from other vector-borne disease suggests invasive plants, both in the Great Plains and globally, may facilitate the transmission of vector-borne pathogens.
Collapse
Affiliation(s)
- Bruce H Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK, 74078, USA.
| | - Noel M Cote
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK, 74078, USA
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, 2310 Gardner Hall, Raleigh, NC, 27696, USA
| | - Justin L Talley
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK, 74078, USA
| |
Collapse
|
50
|
Gorris ME, Bartlow AW, Temple SD, Romero-Alvarez D, Shutt DP, Fair JM, Kaufeld KA, Del Valle SY, Manore CA. Updated distribution maps of predominant Culex mosquitoes across the Americas. Parasit Vectors 2021; 14:547. [PMID: 34688314 PMCID: PMC8542338 DOI: 10.1186/s13071-021-05051-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Estimates of the geographical distribution of Culex mosquitoes in the Americas have been limited to state and provincial levels in the United States and Canada and based on data from the 1980s. Since these estimates were made, there have been many more documented observations of mosquitoes and new methods have been developed for species distribution modeling. Moreover, mosquito distributions are affected by environmental conditions, which have changed since the 1980s. This calls for updated estimates of these distributions to understand the risk of emerging and re-emerging mosquito-borne diseases. METHODS We used contemporary mosquito data, environmental drivers, and a machine learning ecological niche model to create updated estimates of the geographical range of seven predominant Culex species across North America and South America: Culex erraticus, Culex nigripalpus, Culex pipiens, Culex quinquefasciatus, Culex restuans, Culex salinarius, and Culex tarsalis. RESULTS We found that Culex mosquito species differ in their geographical range. Each Culex species is sensitive to both natural and human-influenced environmental factors, especially climate and land cover type. Some prefer urban environments instead of rural ones, and some are limited to tropical or humid areas. Many are found throughout the Central Plains of the USA. CONCLUSIONS Our updated contemporary Culex distribution maps may be used to assess mosquito-borne disease risk. It is critical to understand the current geographical distributions of these important disease vectors and the key environmental predictors structuring their distributions not only to assess current risk, but also to understand how they will respond to climate change. Since the environmental predictors structuring the geographical distribution of mosquito species varied, we hypothesize that each species may have a different response to climate change.
Collapse
Affiliation(s)
- Morgan E. Gorris
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Andrew W. Bartlow
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Seth D. Temple
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM USA
- Department of Statistics, University of Washington, Seattle, WA USA
| | - Daniel Romero-Alvarez
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS USA
- OneHealth Research Group, Facultad de Medicina, Universidad de las Américas, Quito, Ecuador
| | - Deborah P. Shutt
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Jeanne M. Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Sara Y. Del Valle
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Carrie A. Manore
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| |
Collapse
|