1
|
Ranjit B, Chattopadhyay A, Mandal A, Biswas S, Chattopadhyay J. Beyond predation: Fish-coral interactions can tip the scales of coral disease. J Theor Biol 2025; 599:112031. [PMID: 39708959 DOI: 10.1016/j.jtbi.2024.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Coral reefs are critical ecosystems, fostering biodiversity and sustaining the livelihoods of millions globally. Nonetheless, they confront escalating threats, with infectious diseases emerging as primary catalysts for extensive damage, surpassing the impacts of other human-induced stressors. Disease transmission via biotic factors, particularly during fish predation, is a crucial yet often overlooked pathway. While their feeding can spread infectious diseases through spores, it also controls the growth of macroalgae, a major competitor for space on the reef. Given this dual effect, the precise impact of fish on coral disease remains ambiguous and requires additional investigation. In this study, we addressed this gap for the first time by employing a mathematical model. Our analyses unveil intricate interactions between fish predation and coral health, revealing potential benefits and drawbacks for coral reef ecosystems. Coral survival hinges on a delicate balance of fish predation, with extremes (both low and high) offering some protection against disease outbreaks compared to moderate predation, which can cause sudden die-offs. More specifically, as fish predation intensifies, the ecosystem undergoes a tipping point, transitioning from a disease-dominated state to a healthier one. Moreover, the interplay between transmission rate and virulence in coral populations is significantly shaped by fish predation rates. Specifically, the threshold ratio of transmission to virulence, signalling a regime shift from a healthy to a disease-dominated state, exhibits a linear increase with fish predation rate. Overall, our findings emphasize the importance of considering biotic interactions in coral disease ecology and offer insights essential for effective reef conservation strategies.
Collapse
Affiliation(s)
- Buddhadev Ranjit
- Department of Mathematics, Jadavpur University, 188, Raja S.C. Mallik Road, Kolkata, 700032, West Bengal, India
| | - Arnab Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, West Bengal, India.
| | - Arindam Mandal
- Department of Mathematics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| | - Santosh Biswas
- Department of Mathematics, Jadavpur University, 188, Raja S.C. Mallik Road, Kolkata, 700032, West Bengal, India
| | - Joydev Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, West Bengal, India
| |
Collapse
|
2
|
Carvalho BC, Corrêa ALT, Silva ABD, Ciotti ÁM. Monitoring seawater temperature variability in stratified coastal waters: A case study for Alcatrazes Archipelago conservation area (SE Brazil). REGIONAL STUDIES IN MARINE SCIENCE 2025; 81:103991. [DOI: 10.1016/j.rsma.2024.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Sajid S, Zhang G, Zhang Z, Chen L, Lu Y, Fang JKH, Cai L. Comparative analysis of biofilm bacterial communities developed on different artificial reef materials. J Appl Microbiol 2024; 135:lxae268. [PMID: 39439203 DOI: 10.1093/jambio/lxae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
AIMS Artificial reefs play a vital role in restoring and creating new habitats for marine species by providing suitable substrates, especially in areas where natural substrates have been degraded or lost due to declining water quality, destructive fishing practices, and coral diseases. Artificial reef restoration aimed at coral larval settlement is gaining prominence and initially depends on the development of biofilms on reef surfaces. In this study, we hypothesized that different artificial reef materials selectively influence the composition of biofilm bacterial communities, which in turn affected coral larval settlement and the overall success of coral rehabilitation efforts. To test this hypothesis, we evaluated the impact of six different reef-made materials (porcelain, granite, coral skeleton, calcium carbonate, shell cement, and cement) on the development of biofilm bacterial communities and their potential to support coral larval settlement. METHODS AND RESULTS The biofilm bacterial communities were developed on different artificial reef materials and studied using 16S rRNA gene amplicon sequencing and analysis. The bacterial species richness and evenness were significantly (P < 0.05) low in the seawater, while these values were high in the reef materials. At the phylum level, the biofilm bacterial composition of all materials and seawater was majorly composed of Pseudomonadota, Cyanobacteria, and Bacteroidetes; however, significantly (P < 0.05) low Bacteroidetes were found in the seawater. At the genus level, Thalassomonas, Glaciecola, Halomicronema, Lewinella, Hyphomonas, Thalassospira, Polaribacter, and Tenacibaculum were significantly (P < 0.05) low in the coral skeleton and seawater, compared to the other reef materials. The genera Pseudoaltermonas and Thalassomonas (considered potential inducers of coral larval settlement) were highly abundant in the shell-cement biofilm, while low values were found in the biofilm of the other materials. CONCLUSION The biofilm bacterial community composition can be selective for different substrate materials, such as shell cement exhibited higher abundances of bacteria known to facilitate coral larval settlement, highlighting their potential in enhancing restoration outcomes.
Collapse
Affiliation(s)
- Sumbal Sajid
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoqiang Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Zongyao Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Lin Cai
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| |
Collapse
|
4
|
Wilkins EM, Anderson AM, Buckley KM, Strader ME. Temperature influences immune cell development and body length in purple sea urchin larvae. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106705. [PMID: 39232469 DOI: 10.1016/j.marenvres.2024.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Anthropogenic climate change has increased the frequency and intensity of marine heatwaves that may broadly impact the health of marine invertebrates. Rising ocean temperatures lead to increases in disease prevalence in marine organisms; it is therefore critical to understand how marine heatwaves impact immune system development. The purple sea urchin (Strongylocentrotus purpuratus) is an ecologically important, broadcast-spawning, omnivore that primarily inhabits kelp forests in the northeastern Pacific Ocean. The S. purpuratus life cycle includes a relatively long-lived (∼2 months) planktotrophic larval stage. Larvae have a well-characterized cellular immune system that is mediated, in part, by a subset of mesenchymal cells known as pigment cells. To assess the role of environmental temperature on the development of larval immune cells, embryos were generated from adult sea urchins conditioned at 14 °C. Embryos were then cultured in either ambient (14 °C) or elevated (18 °C) seawater. Results indicate that larvae raised in an elevated temperature were slightly larger and had more pigment cells than those raised at ambient temperature. Further, the larval phenotypes varied significantly among genetic crosses, which highlights the importance of genotype in structuring how the immune system develops in the context of the environment. Overall, these results indicate that larvae are phenotypically plastic in modulating their immune cells and body length in response to adverse developmental conditions.
Collapse
Affiliation(s)
- Emily M Wilkins
- Auburn University, Department of Biological Sciences, Auburn, AL, 36830, USA.
| | - Audrey M Anderson
- University of Nebraska - Lincoln, Department of Biological Systems Engineering, Lincoln, NE 68588, USA
| | - Katherine M Buckley
- Auburn University, Department of Biological Sciences, Auburn, AL, 36830, USA
| | - Marie E Strader
- Texas A&M University, Department of Biology, College Station, TX 77843, USA
| |
Collapse
|
5
|
Selwyn JD, Despard BA, Vollmer MV, Trytten EC, Vollmer SV. Identification of putative coral pathogens in endangered Caribbean staghorn coral using machine learning. Environ Microbiol 2024; 26:e16700. [PMID: 39289821 DOI: 10.1111/1462-2920.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Coral diseases contribute to the rapid decline in coral reefs worldwide, and yet coral bacterial pathogens have proved difficult to identify because 16S rRNA gene surveys typically identify tens to hundreds of disease-associate bacteria as putative pathogens. An example is white band disease (WBD), which has killed up to 95% of the now-endangered Caribbean Acropora corals since 1979, yet the pathogen is still unknown. The 16S rRNA gene surveys have identified hundreds of WBD-associated bacterial amplicon sequencing variants (ASVs) from at least nine bacterial families with little consensus across studies. We conducted a multi-year, multi-site 16S rRNA gene sequencing comparison of 269 healthy and 143 WBD-infected Acropora cervicornis and used machine learning modelling to accurately predict disease outcomes and identify the top ASVs contributing to disease. Our ensemble ML models accurately predicted disease with greater than 97% accuracy and identified 19 disease-associated ASVs and five healthy-associated ASVs that were consistently differentially abundant across sampling periods. Using a tank-based transmission experiment, we tested whether the 19 disease-associated ASVs met the assumption of a pathogen and identified two pathogenic candidate ASVs-ASV25 Cysteiniphilum litorale and ASV8 Vibrio sp. to target for future isolation, cultivation, and confirmation of Henle-Koch's postulate via transmission assays.
Collapse
Affiliation(s)
- Jason D Selwyn
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Brecia A Despard
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Miles V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Emily C Trytten
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Caldwell JM, Liu G, Geiger E, Heron SF, Eakin CM, De La Cour J, Greene A, Raymundo L, Dryden J, Schlaff A, Stella JS, Kindinger TL, Couch CS, Fenner D, Hoot W, Manzello D, Donahue MJ. Multi-Factor Coral Disease Risk: A new product for early warning and management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2961. [PMID: 38522943 DOI: 10.1002/eap.2961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
Ecological forecasts are becoming increasingly valuable tools for conservation and management. However, there are few examples of near-real-time forecasting systems that account for the wide range of ecological complexities. We developed a new coral disease ecological forecasting system that explores a suite of ecological relationships and their uncertainty and investigates how forecast skill changes with shorter lead times. The Multi-Factor Coral Disease Risk product introduced here uses a combination of ecological and marine environmental conditions to predict the risk of white syndromes and growth anomalies across reefs in the central and western Pacific and along the east coast of Australia and is available through the US National Oceanic and Atmospheric Administration Coral Reef Watch program. This product produces weekly forecasts for a moving window of 6 months at a resolution of ~5 km based on quantile regression forests. The forecasts show superior skill at predicting disease risk on withheld survey data from 2012 to 2020 compared with predecessor forecast systems, with the biggest improvements shown for predicting disease risk at mid- to high-disease levels. Most of the prediction uncertainty arises from model uncertainty, so prediction accuracy and precision do not improve substantially with shorter lead times. This result arises because many predictor variables cannot be accurately forecasted, which is a common challenge across ecosystems. Weekly forecasts and scenarios can be explored through an online decision support tool and data explorer, co-developed with end-user groups to improve use and understanding of ecological forecasts. The models provide near-real-time disease risk assessments and allow users to refine predictions and assess intervention scenarios. This work advances the field of ecological forecasting with real-world complexities and, in doing so, better supports near-term decision making for coral reef ecosystem managers and stakeholders. Secondarily, we identify clear needs and provide recommendations to further enhance our ability to forecast coral disease risk.
Collapse
Affiliation(s)
- Jamie M Caldwell
- Hawai'i Institute of Marine Biology, Kaneohe, Hawaii, USA
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - Gang Liu
- NOAA/NESDIS/STAR Coral Reef Watch, College Park, Maryland, USA
| | - Erick Geiger
- NOAA/NESDIS/STAR Coral Reef Watch, College Park, Maryland, USA
- Global Science & Technology, Inc., Greenbelt, Maryland, USA
| | - Scott F Heron
- Physical Sciences and Marine Geophysics Laboratory, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - C Mark Eakin
- Corals and Climate, Silver Spring, Maryland, USA
| | - Jacqueline De La Cour
- NOAA/NESDIS/STAR Coral Reef Watch, College Park, Maryland, USA
- Global Science & Technology, Inc., Greenbelt, Maryland, USA
| | - Austin Greene
- Hawai'i Institute of Marine Biology, Kaneohe, Hawaii, USA
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | - Jen Dryden
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Audrey Schlaff
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Jessica S Stella
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Tye L Kindinger
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, Hawaii, USA
| | - Courtney S Couch
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, Hawaii, USA
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Douglas Fenner
- Lynker Technologies, LLC, Contractor, NOAA Fisheries Service, Pacific Islands Regional Office, Honolulu, Hawaii, USA
| | - Whitney Hoot
- Guam Coral Reef Initiative, Government of Guam, Hagatña, Guam, USA
| | - Derek Manzello
- NOAA/NESDIS/STAR Coral Reef Watch, College Park, Maryland, USA
| | | |
Collapse
|
7
|
Ju H, Zhang J, Zou Y, Xie F, Tang X, Zhang S, Li J. Bacteria undergo significant shifts while archaea maintain stability in Pocillopora damicornis under sustained heat stress. ENVIRONMENTAL RESEARCH 2024; 250:118469. [PMID: 38354884 DOI: 10.1016/j.envres.2024.118469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.
Collapse
Affiliation(s)
- Huimin Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Huang W, Meng L, Xiao Z, Tan R, Yang E, Wang Y, Huang X, Yu K. Heat-tolerant intertidal rock pool coral Porites lutea can potentially adapt to future warming. Mol Ecol 2024; 33:e17273. [PMID: 38265168 DOI: 10.1111/mec.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The growing threat of global warming on coral reefs underscores the urgency of identifying heat-tolerant corals and discovering their adaptation mechanisms to high temperatures. Corals growing in intertidal rock pools that vary markedly in daily temperature may have improved heat tolerance. In this study, heat stress experiments were performed on scleractinian coral Porites lutea from subtidal habitat and intertidal rock pool of Weizhou Island in the northern South China Sea. Thermotolerance differences in corals from the two habitats and their mechanisms were explored through phenotype, physiological indicators, ITS2, 16S rRNA, and RNA sequencing. At the extremely high temperature of 34°C, rock pool P. lutea had a stronger heat tolerance than those in the subtidal habitat. The strong antioxidant capacity of the coral host and its microbial partners was important in the resistance of rock pool corals to high temperatures. The host of rock pool corals at 34°C had stronger immune and apoptotic regulation, downregulated host metabolism and disease-infection-related pathways compared to the subtidal habitat. P. lutea, in this habitat, upregulated Cladocopium C15 (Symbiodiniaceae) photosynthetic efficiency and photoprotection, and significantly increased bacterial diversity and coral probiotics, including ABY1, Ruegeria, and Alteromonas. These findings indicate that rock pool corals can tolerate high temperatures through the integrated response of coral holobionts. These corals may be 'touchstones' for future warming. Our research provides new insights into the complex mechanisms by which corals resist global warming and the theoretical basis for coral reef ecosystem restoration and selection of stress-resistant coral populations.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zunyong Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Ronghua Tan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yonggang Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
9
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
10
|
Dirgantara D, Afzal MS, Nakamura T. Current status of coral disease prevalence at Karimunjawa Island: correlation between land zonation and lesion occurrence. DISEASES OF AQUATIC ORGANISMS 2024; 157:1-17. [PMID: 38236078 DOI: 10.3354/dao03767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Coral diseases have contributed significantly to the decline of coral populations at both local and global scales. The Karimunjawa Archipelago, located off the coast of Java in Indonesia, is a marine national park with a zonation-based approach, designated by the local government due to its rich coral reef biodiversity. Unfortunately, there is a limited amount of research regarding the prevalence of coral diseases in coral reefs located on the islands. We analyzed the coral reef lesion assemblages at 6 sites within 3 designated zones, namely Tourism, Aquaculture, and Core zones. Our investigation aimed to determine (1) the types, prevalence, and patterns of coral lesions, (2) the correlation between coral cover and lesion prevalence, and (3) the susceptibility of coral taxa to lesions. A significant difference of 80.54% in the total number of coral lesions was observed between the tourism zone (24.34%) and the core zone (10.36%). Fourteen different lesion types were identified; among the non-disease lesions, sediment damage was the most prevalent (9.95%), followed by disease lesions caused by white syndrome (3.7%). A correlation was found between the cover of dominant coral taxa and the prevalence of lesions (disease and non-disease) at all sites. Mean lesion prevalence across all zones ranged from moderate to high categories. These findings present current data on the distribution of coral lesions and their patterns across zones around Karimunjawa Island. Research on the etiology and epidemiology of coral lesions should be promoted to identify ways to prevent the spread of coral diseases in Karimunjawa.
Collapse
Affiliation(s)
- Dio Dirgantara
- Graduate school of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Mariyam Shidha Afzal
- Graduate school of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Takashi Nakamura
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
11
|
Cheng K, Li X, Tong M, Jong MC, Cai Z, Zheng H, Xiao B, Zhou J. Integrated metagenomic and metaproteomic analyses reveal bacterial micro-ecological mechanisms in coral bleaching. mSystems 2023; 8:e0050523. [PMID: 37882797 PMCID: PMC10734480 DOI: 10.1128/msystems.00505-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approaches were utilized to shed light on the changes in the composition and functions of coral symbiotic bacteria during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Through differential analyses of gene and protein expression, it becomes evident that symbionts experience functional disturbances in response to heat stress. These disturbances result in abnormal energy metabolism, which could potentially compromise the health and resilience of the symbionts. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria providing critical services to corals in stress responses and pathogenic bacteria driving coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under heat stress from the micro-ecological perspective and offers fundamental data for future monitoring of coral health.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Montaño-Salazar S, Quintanilla E, Sánchez JA. Microbial shifts associated to ENSO-derived thermal anomalies reveal coral acclimation at holobiont level. Sci Rep 2023; 13:22049. [PMID: 38087002 PMCID: PMC10716379 DOI: 10.1038/s41598-023-49049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
The coral microbiome conforms a proxy to study effects of changing environmental conditions. However, scarce information exists regarding microbiome dynamics and host acclimation in response to environmental changes associated to global-scale disturbances. We assessed El Niño Southern Oscillation (ENSO)-derived thermal anomalies shifts in the bacterial microbiome of Pacifigorgia cairnsi (Gorgoniidae: Octocorallia) from the remote island of Malpelo in the Tropical Eastern Pacific. Malpelo is a hot spot of biodiversity and lacks direct coastal anthropogenic impacts. We evaluated the community composition and predicted functional profiles of the microbiome during 2015, 2017 and 2018, including different phases of ENSO cycle. The bacterial community diversity and composition between the warming and cooling phase were similar, but differed from the neutral phase. Relative abundances of different microbiome core members such as Endozoicomonas and Mycoplasma mainly drove these differences. An acclimated coral holobiont is suggested not just to warm but also to cold stress by embracing similar microbiome shifts and functional redundancy that allow maintaining coral's viability under thermal stress. Responses of the microbiome of unperturbed sea fans such as P. cairnsi in Malpelo could be acting as an extended phenotype facilitating the acclimation at the holobiont level.
Collapse
Affiliation(s)
- Sandra Montaño-Salazar
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Elena Quintanilla
- Department of Soil and Water Sciences, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32610, USA.
| | - Juan A Sánchez
- Laboratory of Marine Molecular Biology (BIOMMAR), Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
13
|
Villafranca N, Changsut I, Diaz de Villegas S, Womack H, Fuess LE. Characterization of trade-offs between immunity and reproduction in the coral species Astrangia poculata. PeerJ 2023; 11:e16586. [PMID: 38077420 PMCID: PMC10702360 DOI: 10.7717/peerj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Living organisms face ubiquitous pathogenic threats and have consequently evolved immune systems to protect against potential invaders. However, many components of the immune system are physiologically costly to maintain and engage, often drawing resources away from other organismal processes such as growth and reproduction. Evidence from a diversity of systems has demonstrated that organisms use complex resource allocation mechanisms to manage competing needs and optimize fitness. However, understanding of resource allocation patterns is limited across taxa. Cnidarians, which include ecologically important organisms like hard corals, have been historically understudied in the context of resource allocations. Improving understanding of resource allocation-associated trade-offs in cnidarians is critical for understanding future ecological dynamics in the face of rapid environmental change. Methods Here, we characterize trade-offs between constitutive immunity and reproduction in the facultatively symbiotic coral Astrangia poculata. Male colonies underwent ex situ spawning and sperm density was quantified. We then examined the effects of variable symbiont density and energetic budget on physiological traits, including immune activity and reproductive investment. Furthermore, we tested for potential trade-offs between immune activity and reproductive investment. Results We found limited associations between energetic budget and immune metrics; melanin production was significantly positively associated with carbohydrate concentration. However, we failed to document any associations between immunity and reproductive output which would be indicative of trade-offs, possibly due to experimental limitations. Our results provide a preliminary framework for future studies investigating immune trade-offs in cnidarians.
Collapse
Affiliation(s)
- Natalie Villafranca
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Isabella Changsut
- Department of Biology, Texas State University, San Marcos, TX, United States
| | | | - Haley Womack
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| |
Collapse
|
14
|
Heitzman JM, Mitushasi G, Spatafora D, Agostini S. Seasonal coral-algae interactions drive White Mat Syndrome coral disease outbreaks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166379. [PMID: 37595912 DOI: 10.1016/j.scitotenv.2023.166379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Ocean warming drives not only the increase of known coral disease prevalence but facilitates the emergence of new undescribed ones too. As climate change is restructuring coral ecosystems, novel biological interactions could lead to an increase in coral disease in both tropical and marginal coral communities. White Mat Syndrome (WMS) represents one such emerging coral disease, with outbreaks associated with high algal interactions and seasonal summer temperatures. However, the mechanisms behind its pathogenesis, modes of transmission and causative pathogens remain to be identified. Ex situ infection experiments pairing the coral Porites heronensis together with local potential contributory factors show that the macroalga Gelidium elegans hosts and proliferates the WMS microbial mat. This pathogenic consortium then infects adjacent corals, leading to their mortality. WMS was also observed to transmit following the fragmentation of the microbial mat, which was able to infect healthy corals. Sulfur-cycling bacteria (i.e., Beggiatoa, Desulfobacter sp., Arcobacteraceae species) and the free-living spirochete Oceanospirochaeta sediminicola were found consistently in both WMS and G. elegans consortia, suggesting they are putative pathogens of WMS. The predicted functional roles of these pathogenic consortia showed degradative processes, hinting that tissue lyses could drive mat formation and spread. Coral-algae interactions will rise due to ongoing ocean warming and coral ecosystem degradation, likely promoting the virulence and prevalence of algal-driven coral diseases.
Collapse
Affiliation(s)
- Joshua M Heitzman
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan.
| | - Guinther Mitushasi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
| | - Davide Spatafora
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
| |
Collapse
|
15
|
Vicente-Santos A, Willink B, Nowak K, Civitello DJ, Gillespie TR. Host-pathogen interactions under pressure: A review and meta-analysis of stress-mediated effects on disease dynamics. Ecol Lett 2023; 26:2003-2020. [PMID: 37804128 PMCID: PMC10874615 DOI: 10.1111/ele.14319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
Human activities have increased the intensity and frequency of natural stressors and created novel stressors, altering host-pathogen interactions and changing the risk of emerging infectious diseases. Despite the ubiquity of such anthropogenic impacts, predicting the directionality of outcomes has proven challenging. Here, we conduct a review and meta-analysis to determine the primary mechanisms through which stressors affect host-pathogen interactions and to evaluate the impacts stress has on host fitness (survival and fecundity) and pathogen infectivity (prevalence and intensity). We assessed 891 effect sizes from 71 host species (representing seven taxonomic groups) and 78 parasite taxa from 98 studies. We found that infected and uninfected hosts had similar sensitivity to stressors and that responses varied according to stressor type. Specifically, limited resources compromised host fecundity and decreased pathogen intensity, while abiotic environmental stressors (e.g., temperature and salinity) decreased host survivorship and increased pathogen intensity, and pollution increased mortality but decreased pathogen prevalence. We then used our meta-analysis results to develop susceptible-infected theoretical models to illustrate scenarios where infection rates are expected to increase or decrease in response to resource limitations or environmental stress gradients. Our results carry implications for conservation and disease emergence and reveal areas for future work.
Collapse
Affiliation(s)
- Amanda Vicente-Santos
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
| | - Beatriz Willink
- Department of Zoology, Stockholm University, Stockholm 106-91, Sweden
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- School of Biology, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Kacy Nowak
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - David J. Civitello
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Thomas R. Gillespie
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Vollmer SV, Selwyn JD, Despard BA, Roesel CL. Genomic signatures of disease resistance in endangered staghorn corals. Science 2023; 381:1451-1454. [PMID: 37769073 DOI: 10.1126/science.adi3601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
White band disease (WBD) has caused unprecedented declines in the Caribbean Acropora corals, which are now listed as critically endangered species. Highly disease-resistant Acropora cervicornis genotypes exist, but the genetic underpinnings of disease resistance are not understood. Using transmission experiments, a newly assembled genome, and whole-genome resequencing of 76 A. cervicornis genotypes from Florida and Panama, we identified 10 genomic regions and 73 single-nucleotide polymorphisms that are associated with disease resistance and that include functional protein-coding changes in four genes involved in coral immunity and pathogen detection. Polygenic scores calculated from 10 genomic loci indicate that genetic screens can detect disease resistance in wild and nursery stocks of A. cervicornis across the Caribbean.
Collapse
Affiliation(s)
- Steven V Vollmer
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Jason D Selwyn
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Brecia A Despard
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Charles L Roesel
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| |
Collapse
|
17
|
Wang C, Zheng X, Kvitt H, Sheng H, Sun D, Niu G, Tchernov D, Shi T. Lineage-specific symbionts mediate differential coral responses to thermal stress. MICROBIOME 2023; 11:211. [PMID: 37752514 PMCID: PMC10521517 DOI: 10.1186/s40168-023-01653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such as elevated temperature, there is little data directly comparing physiological performance that accounts for symbiont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics of symbiont community change under thermal stress in a laboratory-controlled experiment. RESULTS We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durusdinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the thermally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced increase in Durusdinium proportion in the PdC holobiont; however, this "symbiont shuffling" in the background was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced calcification. CONCLUSIONS These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses to thermal stress. In addition, we found that "symbiont shuffling" may begin with stress-forced, subtle changes in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals' association with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities of corals. Video Abstract.
Collapse
Affiliation(s)
- Chenying Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai, 536015, China.
| | - Hagit Kvitt
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel
- Israel Oceanographic and Limnological Research, National Center for Mariculture, 88112, Eilat, Israel
| | - Huaxia Sheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Danye Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Gaofeng Niu
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Tuo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510000, China.
| |
Collapse
|
18
|
Mudge L, Bruno JF. Disturbance intensification is altering the trait composition of Caribbean reefs, locking them into a low functioning state. Sci Rep 2023; 13:14022. [PMID: 37640770 PMCID: PMC10462730 DOI: 10.1038/s41598-023-40672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Anthropogenic climate change is intensifying natural disturbance regimes, which negatively affects some species, while benefiting others. This could alter the trait composition of ecological communities and influence resilience to disturbance. We investigated how the frequency and intensification of the regional storm regime (and likely other disturbances) is altering coral species composition and in turn resistance and recovery. We developed regional databases of coral cover and composition (3144 reef locations from 1970 to 2017) and of the path and strength of cyclonic storms in the region (including 10,058 unique storm-reef intersections). We found that total living coral cover declined steadily through 2017 (the median annual loss rate was ~ 0.25% per year). Our results also indicate that despite the observed increase in the intensity of Atlantic cyclonic storms, their effect on coral cover has decreased markedly. This could be due in part to selection for disturbance-resistant taxa in response to the intensifying disturbance regime. We found that storms accelerated the loss of threatened acroporid corals but had no measurable effect on the cover of more resilient "weedy" corals, thereby increasing their relative cover. Although resistance to disturbance has increased, recovery rates have slowed due to the dominance of small, slow-growing species. This feedback loop is locking coral communities into a low-functioning state dominated by weedy species with limited ecological or societal value.
Collapse
Affiliation(s)
- Laura Mudge
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Barefoot Ocean, LLC., Houston, Texas, USA.
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Contardi M, Fadda M, Isa V, Louis YD, Madaschi A, Vencato S, Montalbetti E, Bertolacci L, Ceseracciu L, Seveso D, Lavorano S, Galli P, Athanassiou A, Montano S. Biodegradable Zein-Based Biocomposite Films for Underwater Delivery of Curcumin Reduce Thermal Stress Effects in Corals. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37376819 PMCID: PMC10360034 DOI: 10.1021/acsami.3c01166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.
Collapse
Affiliation(s)
- Marco Contardi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Marta Fadda
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Valerio Isa
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Yohan D Louis
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Andrea Madaschi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Sara Vencato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Laura Bertolacci
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Luca Ceseracciu
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Genova 16128, Italy
| | - Paolo Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
- Dubai Business School, University of Dubai, Dubai 14143, United Arab Emirates
| | | | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| |
Collapse
|
20
|
Barrile GM, Augustine DJ, Porensky LM, Duchardt CJ, Shoemaker KT, Hartway CR, Derner JD, Hunter EA, Davidson AD. A big data-model integration approach for predicting epizootics and population recovery in a keystone species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2827. [PMID: 36846939 DOI: 10.1002/eap.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 06/02/2023]
Abstract
Infectious diseases pose a significant threat to global health and biodiversity. Yet, predicting the spatiotemporal dynamics of wildlife epizootics remains challenging. Disease outbreaks result from complex nonlinear interactions among a large collection of variables that rarely adhere to the assumptions of parametric regression modeling. We adopted a nonparametric machine learning approach to model wildlife epizootics and population recovery, using the disease system of colonial black-tailed prairie dogs (BTPD, Cynomys ludovicianus) and sylvatic plague as an example. We synthesized colony data between 2001 and 2020 from eight USDA Forest Service National Grasslands across the range of BTPDs in central North America. We then modeled extinctions due to plague and colony recovery of BTPDs in relation to complex interactions among climate, topoedaphic variables, colony characteristics, and disease history. Extinctions due to plague occurred more frequently when BTPD colonies were spatially clustered, in closer proximity to colonies decimated by plague during the previous year, following cooler than average temperatures the previous summer, and when wetter winter/springs were preceded by drier summers/falls. Rigorous cross-validations and spatial predictions indicated that our final models predicted plague outbreaks and colony recovery in BTPD with high accuracy (e.g., AUC generally >0.80). Thus, these spatially explicit models can reliably predict the spatial and temporal dynamics of wildlife epizootics and subsequent population recovery in a highly complex host-pathogen system. Our models can be used to support strategic management planning (e.g., plague mitigation) to optimize benefits of this keystone species to associated wildlife communities and ecosystem functioning. This optimization can reduce conflicts among different landowners and resource managers, as well as economic losses to the ranching industry. More broadly, our big data-model integration approach provides a general framework for spatially explicit forecasting of disease-induced population fluctuations for use in natural resource management decision-making.
Collapse
Affiliation(s)
- Gabriel M Barrile
- Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | | | - Courtney J Duchardt
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin T Shoemaker
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| | | | | | - Elizabeth A Hunter
- U.S. Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Ana D Davidson
- Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
21
|
Dawson MN, Duffin PJ, Giakoumis M, Schiebelhut LM, Beas-Luna R, Bosley KL, Castilho R, Ewers-Saucedo C, Gavenus KA, Keller A, Konar B, Largier JL, Lorda J, Miner CM, Moritsch MM, Navarrete SA, Traiger SB, Turner MS, Wares JP. A Decade of Death and Other Dynamics: Deepening Perspectives on the Diversity and Distribution of Sea Stars and Wasting. THE BIOLOGICAL BULLETIN 2023; 244:143-163. [PMID: 38457680 DOI: 10.1086/727969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species. We evaluated the impacts of abiotic characteristics hypothetically associated with sea star wasting (sea surface temperature, pelagic primary productivity, upwelling wind forcing, wave exposure, freshwater runoff) and species characteristics (depth distribution, developmental mode, diet, habitat, reproductive period). We find that the 2010s sea star wasting outbreak clearly affected a little over a dozen species, primarily intertidal and shallow subtidal taxa, causing instantaneous wasting prevalence rates of 5%-80%. Despite the collapse of some populations within weeks, environmental and species variation protracted the outbreak, which lasted 2-3 years from onset until declining to chronic background rates of ∼2% sea star wasting prevalence. Recruitment began immediately in many species, and in general, sea star assemblages trended toward recovery; however, recovery was heterogeneous, and a marine heatwave in 2019 raised concerns of a second decline. The abiotic stressors most associated with the 2010s sea star wasting outbreak were elevated sea surface temperature and low wave exposure, as well as freshwater discharge in the north. However, detailed data speaking directly to the biological, ecological, and environmental cause(s) and consequences of the sea star wasting outbreak remain limited in scope, unavoidably retrospective, and perhaps always indeterminate. Redressing this shortfall for the future will require a broad spectrum of monitoring studies not less than the taxonomically broad cross-scale framework we have modeled in this synthesis.
Collapse
|
22
|
Thilakarathne EPDN, Jayarathna WNDS, Sewwandi SWR, Jayamanne SC, Liyanage NPP. Tropical coral reefs in Sri Lanka are threatened due to the fluctuation of seasonal and interannual sea surface temperature. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:756. [PMID: 37247096 DOI: 10.1007/s10661-023-11381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
The thermal stress of oceans causes coral bleaching, which induces loss of life in coral reefs and makes them exposed to other threats which directly and indirectly affect millions of other species that inhabit the reef. However, studies focusing on how those thermal stresses affect Sri Lankan fringing reef ecosystems are scarce. Hence, the patterns of long-term and short-term fluctuations of sea surface temperature (SST) over the shallow reefs around the country were studied by separating them into different zones as the eastern coast (Passikudha, Kayankerni, Adukkuparu, Parrot Rock, and Pigeon Island), the southern coast (Beruwala Barbarian, Hikkaduwa, Unawatuna, Ahangama, Mirissa, Madiha, Polhena, and Devundara), and northern-northwestern coasts (Valiththoondal, Palk Bay, Mannar, Kalpitiya, Thalwila, and Uswatakeiyawa). The 1 km Multiscale Ultrahigh Resolution (MUR) Level 4 SST dataset was used to analyze seasonal and interannual SST variability from 2005 to 2021. The data were correlated with the Indian Ocean Dipole (IOD), Ekman velocity, and wind stress curl. The annual, seasonal, and monthly variability of SST on different coasts is significantly different. Higher increasing trends of SST from 0.0324 to 0.0411 ℃/year are observed on different coasts, and most of the time higher positive anomalies are recorded after 2014. The First Inter Monsoon (IM-1) and the month of April are more critical since they reach the maximum SST, and the minimum is in the North West Monsoon (NWM) and January. Significant positive relationships are recorded between the Indian Ocean Dipole (IOD) index and the monthly average SST on different coasts, which was robust on the southern coast. Therefore, tropical coral reefs in Sri Lanka are severely threatened due elevation of SST by global warming and climate variability.
Collapse
Affiliation(s)
- E P D N Thilakarathne
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka.
| | - W N D S Jayarathna
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - S W R Sewwandi
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - S C Jayamanne
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka
| | - N P P Liyanage
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, 90000, Sri Lanka
| |
Collapse
|
23
|
Page CE, Leggat W, Egan S, Ainsworth TD. A coral disease outbreak highlights vulnerability of remote high-latitude lagoons to global and local stressors. iScience 2023; 26:106205. [PMID: 36915696 PMCID: PMC10006636 DOI: 10.1016/j.isci.2023.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/17/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Outbreaks of coral disease are often associated with global and local stressors like changes in temperature and poor water quality. A severe coral disease outbreak was recorded in the primary reef-building taxa Montipora spp. in a high-latitude lagoon at Norfolk Island following heat stress and pollution events in 2020. Disease signs suggest the occurrence of a Montiporid White Syndrome with four distinct phases and maximum measured tissue loss of 329 mm-2 day-1. In December 2020 and April 2021, 60% of the Montipora community were impacted and disease severity increased by 54% over this period. Spatial patterns in prevalence indicate the disease is associated with exposure to poor water quality in addition to size class of coral colonies. High prevalence levels make this event comparable to some of the most severe coral disease outbreaks recorded to date demonstrating the vulnerability of this system to combined impacts of warming and pollution.
Collapse
Affiliation(s)
- Charlotte E Page
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - William Leggat
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, NSW 2308, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - Tracy D Ainsworth
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| |
Collapse
|
24
|
Thirukanthan CS, Azra MN, Lananan F, Sara’ G, Grinfelde I, Rudovica V, Vincevica-Gaile Z, Burlakovs J. The Evolution of Coral Reef under Changing Climate: A Scientometric Review. Animals (Basel) 2023; 13:ani13050949. [PMID: 36899805 PMCID: PMC10000160 DOI: 10.3390/ani13050949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
In this scientometric review, we employ the Web of Science Core Collection to assess current publications and research trends regarding coral reefs in relation to climate change. Thirty-seven keywords for climate change and seven keywords for coral reefs were used in the analysis of 7743 articles on coral reefs and climate change. The field entered an accelerated uptrend phase in 2016, and it is anticipated that this phase will last for the next 5 to 10 years of research publication and citation. The United States and Australia have produced the greatest number of publications in this field. A cluster (i.e., focused issue) analysis showed that coral bleaching dominated the literature from 2000 to 2010, ocean acidification from 2010 to 2020, and sea-level rise, as well as the central Red Sea (Africa/Asia), in 2021. Three different types of keywords appear in the analysis based on which are the (i) most recent (2021), (ii) most influential (highly cited), and (iii) mostly used (frequently used keywords in the article) in the field. The Great Barrier Reef, which is found in the waters of Australia, is thought to be the subject of current coral reef and climate change research. Interestingly, climate-induced temperature changes in "ocean warming" and "sea surface temperature" are the most recent significant and dominant keywords in the coral reef and climate change area.
Collapse
Affiliation(s)
- Chandra Segaran Thirukanthan
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang 83352, Indonesia
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Gianluca Sara’
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo, 90133 Palermo, Italy
| | - Inga Grinfelde
- Laboratory of Forest and Water Resources, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Vite Rudovica
- Department of Analytical Chemistry, University of Latvia, LV-1004 Riga, Latvia
| | | | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 31-261 Krakow, Poland
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| |
Collapse
|
25
|
Klinges JG, Patel SH, Duke WC, Muller EM, Vega Thurber RL. Microbiomes of a disease-resistant genotype of Acropora cervicornis are resistant to acute, but not chronic, nutrient enrichment. Sci Rep 2023; 13:3617. [PMID: 36869057 PMCID: PMC9984465 DOI: 10.1038/s41598-023-30615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Chronically high levels of inorganic nutrients have been documented in Florida's coral reefs and are linked to increased prevalence and severity of coral bleaching and disease. Naturally disease-resistant genotypes of the staghorn coral Acropora cervicornis are rare, and it is unknown whether prolonged exposure to acute or chronic high nutrient levels will reduce the disease tolerance of these genotypes. Recently, the relative abundance of the bacterial genus Aquarickettsia was identified as a significant indicator of disease susceptibility in A. cervicornis, and the abundance of this bacterial species was previously found to increase under chronic and acute nutrient enrichment. We therefore examined the impact of common constituents of nutrient pollution (phosphate, nitrate, and ammonium) on microbial community structure in a disease-resistant genotype with naturally low abundances of Aquarickettsia. We found that although this putative parasite responded positively to nutrient enrichment in a disease-resistant host, relative abundances remained low (< 0.5%). Further, while microbial diversity was not altered significantly after 3 weeks of nutrient enrichment, 6 weeks of enrichment was sufficient to shift microbiome diversity and composition. Coral growth rates were also reduced by 6 weeks of nitrate treatment compared to untreated conditions. Together these data suggest that the microbiomes of disease-resistant A. cervicornis may be initially resistant to shifts in microbial community structure, but succumb to compositional and diversity alterations after more sustained environmental pressure. As the maintenance of disease-resistant genotypes is critical for coral population management and restoration, a complete understanding of how these genotypes respond to environmental stressors is necessary to predict their longevity.
Collapse
Affiliation(s)
- J Grace Klinges
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA.
| | - Shalvi H Patel
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - William C Duke
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Erinn M Muller
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
26
|
Tavakoli-Kolour P, Sinniger F, Morita M, Harii S. Acclimation potential of Acropora to mesophotic environment. MARINE POLLUTION BULLETIN 2023; 188:114698. [PMID: 36860026 DOI: 10.1016/j.marpolbul.2023.114698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mesophotic coral ecosystems may serve as a refuge for reef-building corals to survive the ongoing climate change. Distribution of coral species changes during larval dispersal. However, the acclimation potential in the early life stages of corals at different depths is unknown. This study investigated the acclimation potential of four shallow Acropora species at different depths via the transplantation of larvae and early polyps settled on tiles to 5, 10, 20, and 40 m depths. We then examined physiological parameters, such as size, survival, growth rate, and morphological characteristics. The survival and size of juveniles of A. tenuis and A. valida at 40 m depth were significantly higher than those at other depths. In contrast, A. digitifera and A. hyacinthus showed higher survival rates at shallow depths. The morphology (i.e., size of the corallites) also varied among the depths. Collectively, the shallow coral larvae and juveniles displayed substantial plasticity at depth.
Collapse
Affiliation(s)
| | - Frederic Sinniger
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
27
|
Trivedi DD, Dalai SK, Bakshi SR. The Mystery of Cancer Resistance: A Revelation Within Nature. J Mol Evol 2023; 91:133-155. [PMID: 36693985 DOI: 10.1007/s00239-023-10092-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).
Collapse
|
28
|
Huang W, Yang E, Yu K, Meng L, Wang Y, Liang J, Huang X, Wang G. Lower cold tolerance of tropical Porites lutea is possibly detrimental to its migration to relatively high latitude refuges in the South China Sea. Mol Ecol 2022; 31:5339-5355. [PMID: 35976256 DOI: 10.1111/mec.16662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
As high temperature stress due to climate change threatens tropical corals, cooler areas at relatively high latitudes may be potential refuges. Tolerance to low temperatures is critical in determining whether corals can successfully migrate to higher latitudes. However, the physiological and molecular adaptations that protect corals from low temperature stress are unclear. In this study, scleractinian Porites lutea samples from the tropical Xisha Islands (XS) and subtropical Daya Bay (DY) in the South China Sea were subjected to a reduction in ambient temperature from 26 to 12°C. Differences in physiological changes and gene expression were analysed. P. lutea from both XS and DY exhibited physiological bleaching under low temperature stress, and the Symbiodiniaceae density, Fv/Fm, and chlorophyll-α content were significantly reduced. Symbiosome antioxidative stress and metabolic enzyme activity first increased and then decreased. RNA-seq analysis showed that the host responded to low temperature stress by activating immune, apoptotic, and autophagic pathways and reducing metabolic levels. Nevertheless, Symbiodiniaceae lacked the physiological regulatory capacity to adapt to low temperatures. The lower cold tolerance of XS tropical P. lutea may attribute to lower oxidative stress resistance, lower photosynthetic capacity, worse energy supply, and higher susceptibility to bacterial and viral infections and diseases in XS corals. The difference in cold tolerance may result from genetic differences between the geographic populations and is possibly detrimental to the migration of tropical coral to relatively high latitude refuges. This study provides a theoretical basis for anthropogenically assisted coral migration as a response to global change.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yonggang Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Guanghua Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
29
|
DeFilippo LB, McManus LC, Schindler DE, Pinsky ML, Colton MA, Fox HE, Tekwa EW, Palumbi SR, Essington TE, Webster MM. Assessing the potential for demographic restoration and assisted evolution to build climate resilience in coral reefs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2650. [PMID: 35538738 PMCID: PMC9788104 DOI: 10.1002/eap.2650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Interest is growing in developing conservation strategies to restore and maintain coral reef ecosystems in the face of mounting anthropogenic stressors, particularly climate warming and associated mass bleaching events. One such approach is to propagate coral colonies ex situ and transplant them to degraded reef areas to augment habitat for reef-dependent fauna, prevent colonization from spatial competitors, and enhance coral reproductive output. In addition to such "demographic restoration" efforts, manipulating the thermal tolerance of outplanted colonies through assisted relocation, selective breeding, or genetic engineering is being considered for enhancing rates of evolutionary adaptation to warming. Although research into such "assisted evolution" strategies has been growing, their expected performance remains unclear. We evaluated the potential outcomes of demographic restoration and assisted evolution in climate change scenarios using an eco-evolutionary simulation model. We found that supplementing reefs with pre-existing genotypes (demographic restoration) offers little climate resilience benefits unless input levels are large and maintained for centuries. Supplementation with thermally resistant colonies was successful at improving coral cover at lower input levels, but only if maintained for at least a century. Overall, we found that, although demographic restoration and assisted evolution have the potential to improve long-term coral cover, both approaches had a limited impact in preventing severe declines under climate change scenarios. Conversely, with sufficient natural genetic variance and time, corals could readily adapt to warming temperatures, suggesting that restoration approaches focused on building genetic variance may outperform those based solely on introducing heat-tolerant genotypes.
Collapse
Affiliation(s)
- Lukas B. DeFilippo
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
- Present address:
Resource Assessment and Conservation Engineering DivisionNOAA Alaska Fisheries Science CenterSeattleWashingtonUSA
| | - Lisa C. McManus
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at ManoaKaneʻoheHawaiiUSA
| | - Daniel E. Schindler
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | - E. W. Tekwa
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Stephen R. Palumbi
- Department of Biology, Hopkins Marine StationStanford UniversityPacific GroveCaliforniaUSA
| | - Timothy E. Essington
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Michael M. Webster
- Department of Environmental StudiesNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
30
|
Predicting shifts in demography of Orbicella franksi following simulated disturbance and restoration. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Glidden CK, Field LC, Bachhuber S, Hennessey SM, Cates R, Cohen L, Crockett E, Degnin M, Feezell MK, Fulton‐Bennett HK, Pires D, Poirson BN, Randell ZH, White E, Gravem SA. Strategies for managing marine disease. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2643. [PMID: 35470930 PMCID: PMC9786832 DOI: 10.1002/eap.2643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The incidence of emerging infectious diseases (EIDs) has increased in wildlife populations in recent years and is expected to continue to increase with global environmental change. Marine diseases are relatively understudied compared with terrestrial diseases but warrant parallel attention as they can disrupt ecosystems, cause economic loss, and threaten human livelihoods. Although there are many existing tools to combat the direct and indirect consequences of EIDs, these management strategies are often insufficient or ineffective in marine habitats compared with their terrestrial counterparts, often due to fundamental differences between marine and terrestrial systems. Here, we first illustrate how the marine environment and marine organism life histories present challenges and opportunities for wildlife disease management. We then assess the application of common disease management strategies to marine versus terrestrial systems to identify those that may be most effective for marine disease outbreak prevention, response, and recovery. Finally, we recommend multiple actions that will enable more successful management of marine wildlife disease emergencies in the future. These include prioritizing marine disease research and understanding its links to climate change, improving marine ecosystem health, forming better monitoring and response networks, developing marine veterinary medicine programs, and enacting policy that addresses marine and other wildlife diseases. Overall, we encourage a more proactive rather than reactive approach to marine wildlife disease management and emphasize that multidisciplinary collaborations are crucial to managing marine wildlife health.
Collapse
Affiliation(s)
- Caroline K. Glidden
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
- Present address:
Department of BiologyStanford UniversityStanfordCaliforniaUSA
| | - Laurel C. Field
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Silke Bachhuber
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | | | - Robyn Cates
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Lesley Cohen
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Elin Crockett
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Michelle Degnin
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | - Maya K. Feezell
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | | | - Devyn Pires
- College of Veterinary MedicineOregon State UniversityCorvallisOregonUSA
| | | | - Zachary H. Randell
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Erick White
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Sarah A. Gravem
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
32
|
Kirk D, O’Connor MI, Mordecai EA. Scaling effects of temperature on parasitism from individuals to populations. J Anim Ecol 2022; 91:2087-2102. [PMID: 35900837 PMCID: PMC9532350 DOI: 10.1111/1365-2656.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
Parasitism is expected to change in a warmer future, but whether warming leads to substantial increases in parasitism remains unclear. Understanding how warming effects on parasitism in individual hosts (e.g. parasite load) translate to effects on population-level parasitism (e.g. prevalence, R0 ) remains a major knowledge gap. We conducted a literature review and identified 24 host-parasite systems that had information on the temperature dependence of parasitism at both individual host and host population levels: 13 vector-borne systems and 11 environmentally transmitted systems. We found a strong positive correlation between the thermal optima of individual- and population-level parasitism, although several of the environmentally transmitted systems exhibited thermal optima >5°C apart between individual and population levels. Parasitism thermal optima were close to vector performance thermal optima in vector-borne systems but not hosts in environmentally transmitted systems, suggesting these thermal mismatches may be more common in certain types of host-parasite systems. We also adapted and simulated simple models for both types of transmission modes and found the same pattern across the two modes: thermal optima were more strongly correlated across scales when there were more traits linking individual- to population-level processes. Generally, our results suggest that information on the temperature dependence, and specifically the thermal optimum, at either the individual or population level should provide a useful-although not quantitatively exact-baseline for predicting temperature dependence at the other level, especially in vector-borne parasite systems. Environmentally transmitted parasitism may operate by a different set of rules, in which temperature dependence is decoupled in some systems, requiring the need for trait-based studies of temperature dependence at individual and population levels.
Collapse
Affiliation(s)
- Devin Kirk
- Department of Biology, Stanford University, Stanford, USA
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Mary I. O’Connor
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
33
|
Danylchuk AJ, Griffin LP, Ahrens R, Allen MS, Boucek RE, Brownscombe JW, Casselberry GA, Danylchuk SC, Filous A, Goldberg TL, Perez AU, Rehage JS, Santos RO, Shenker J, Wilson JK, Adams AJ, Cooke SJ. Cascading effects of climate change on recreational marine flats fishes and fisheries. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 106:381-416. [PMID: 36118617 PMCID: PMC9465673 DOI: 10.1007/s10641-022-01333-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.
Collapse
Affiliation(s)
- Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Lucas P. Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Robert Ahrens
- Fisheries Research and Monitoring Division, NOAA Pacific Islands Fisheries Science Center, 1845 Wasp Blvd., Bldg 176, Honolulu, HI 96818 USA
| | - Micheal S. Allen
- Nature Coast Biological Station, School of Forest, Fisheries and Geomatics Sciences, The University of Florida, 552 First Street, Cedar Key, FL 32625 USA
| | - Ross E. Boucek
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Jacob W. Brownscombe
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Grace A. Casselberry
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Sascha Clark Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
- Keep Fish Wet, 11 Kingman Road, Amherst, MA 01002 USA
| | - Alex Filous
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706 USA
| | - Addiel U. Perez
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Jennifer S. Rehage
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Rolando O. Santos
- Department of Biological Sciences, Florida International University, Miami, FL 33181 USA
| | - Jonathan Shenker
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32904 USA
| | - JoEllen K. Wilson
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Aaron J. Adams
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Florida Atlantic University Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - Steven J. Cooke
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
34
|
Hofmeister E, Ruhs EC, Fortini LB, Hopkins MC, Jones L, Lafferty KD, Sleeman J, LeDee O. Future Directions to Manage Wildlife Health in a Changing Climate. ECOHEALTH 2022; 19:329-334. [PMID: 35759113 DOI: 10.1007/s10393-022-01604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Erik Hofmeister
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA.
| | | | - Lucas Berio Fortini
- U.S. Geological Survey Pacific Islands Ecological Research Center, Inouye Regional Center, 1845 Wasp Blvd., Bldg. 176, Honolulu, HI, 96818, USA
| | - M Camille Hopkins
- U.S. Geological Survey Ecosystems Mission Area, 12201 Sunrise Valley Drive, Reston, VA, 20192, USA
| | - Lee Jones
- USFWS-Natural Resource Program Center, 10 E. Babcock, Rm 105, Bozeman, MT, 59715, USA
| | - Kevin D Lafferty
- Marine Science Institute, U.S. Geological Survey Western Ecological Research Center, University of California, 805, Santa Barbara, CA, 93106, USA
| | - Jonathan Sleeman
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | - Olivia LeDee
- U.S. Geological Survey, Climate Adaptation Science Centers, 1956 Buford Ave. St, Paul, MN, 55108, USA
| |
Collapse
|
35
|
Heitzman JM, Caputo N, Yang SY, Harvey BP, Agostini S. Recurrent disease outbreak in a warm temperate marginal coral community. MARINE POLLUTION BULLETIN 2022; 182:113954. [PMID: 35914433 DOI: 10.1016/j.marpolbul.2022.113954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Coral diseases contribute to the rapid degradation of coral reefs on a global scale. Although widespread in tropical and subtropical reefs, disease outbreaks have not been described in warm temperate areas. Here, we report the outbreak of a new coral disease in a warm temperate marginal coral community in Japan. Outbreaks of the disease have been observed during the summer and autumn months since 2014. It affects the coral species Porites heronensis and was tentatively named "White Mat Syndrome" (WMS) as it consists of a white microbial mat dominated by Thiothrix sp., a sulfide oxidizing bacteria. Outbreaks followed high seasonal temperatures and were associated with the macroalga Gelidium elegans, which acts as a pathogen reservoir. With ocean warming and the anticipated increase in novel coral-algae interactions as some coral species shift poleward, WMS and emerging diseases could hinder the role of temperate areas as a future coral refuge.
Collapse
Affiliation(s)
- Joshua M Heitzman
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan.
| | - Nicolè Caputo
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan; Alma Mater Studiorum, University of Bologna, Via S. Alberto 163, 48121 Ravenna, Italy
| | - Sung-Yin Yang
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan; Department of Aquatic Sciences, National Chiayi University A303, Department of Aquatic Sciences, No. 300 Syuefu Rd., Chiayi City 600355, Taiwan
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan.
| |
Collapse
|
36
|
Schul M, Mason A, Ushijima B, Sneed JM. Microbiome and Metabolome Contributions to Coral Health and Disease. THE BIOLOGICAL BULLETIN 2022; 243:76-83. [PMID: 36108037 DOI: 10.1086/720971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractCoral populations are declining worldwide as a result of increased environmental stressors, including disease. Coral health is greatly dependent on complex interactions between the host animal and its associated microbial symbionts. While relatively understudied, there is growing evidence that the coral microbiome contributes to the health and resilience of corals in a variety of ways, similar to more well-studied systems, such as the human microbiome. Many of these interactions are dependent upon the production and exchange of natural products, including antibacterial compounds, quorum-sensing molecules, internal signaling molecules, nutrients, and so on. While advances in sequencing, culturing, and metabolomic techniques have aided in moving forward the understanding of coral microbiome interactions, current sequence and metabolite databases are lacking, hindering detailed descriptions of the microbes and metabolites involved. This review focuses on the roles of coral microbiomes in health and disease processes of coral hosts, with special attention to the coral metabolome. We discuss what is currently known about the relationship between the coral microbiome and disease, of beneficial microbial products or services, and how the manipulation of the coral microbiome may chemically benefit the coral host against disease. Understanding coral microbiome-metabolome interactions is critical to assisting management, conservation, and restoration strategies.
Collapse
|
37
|
Alvarez-Filip L, González-Barrios FJ, Pérez-Cervantes E, Molina-Hernández A, Estrada-Saldívar N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun Biol 2022; 5:440. [PMID: 35681037 PMCID: PMC9184636 DOI: 10.1038/s42003-022-03398-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Diseases are major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef functionality, and reef-related ecosystems services. An outbreak of a new disease is currently rampaging through the populations of the remaining reef-building corals across the Caribbean region. The outbreak was first reported in Florida in 2014 and reached the northern Mesoamerican Reef by summer 2018, where it spread across the ~450-km reef system in only a few months. Rapid spread was generalized across all sites and mortality rates ranged from 94% to <10% among the 21 afflicted coral species. Most species of the family Meandrinadae (maze corals) and subfamily Faviinae (brain corals) sustained losses >50%. This single event further modified the coral communities across the region by increasing the relative dominance of weedy corals and reducing reef functionality, both in terms of functional diversity and calcium carbonate production. This emergent disease is likely to become the most lethal disturbance ever recorded in the Caribbean, and it will likely result in the onset of a new functional regime where key reef-building and complex branching acroporids, an apparently unaffected genus that underwent severe population declines decades ago and retained low population levels, will once again become conspicuous structural features in reef systems with yet even lower levels of physical functionality.
Collapse
Affiliation(s)
- Lorenzo Alvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México.
| | - F Javier González-Barrios
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Esmeralda Pérez-Cervantes
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Ana Molina-Hernández
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Nuria Estrada-Saldívar
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
38
|
Howells EJ, Hagedorn M, Van Oppen MJ, Burt JA. Challenges of sperm cryopreservation in transferring heat adaptation of corals across ocean basins. PeerJ 2022; 10:e13395. [PMID: 35651741 PMCID: PMC9150692 DOI: 10.7717/peerj.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/16/2022] [Indexed: 01/14/2023] Open
Abstract
Reef-building corals live very close to their upper thermal limits and their persistence is imperiled by a rapidly warming climate. Human interventions may be used to increase the thermal limits of sensitive corals by cross-breeding with heat-adapted populations. However, the scope of breeding interventions is constrained by regional variation in the annual reproductive cycle of corals. Here we use cryopreservation technology to overcome this barrier and cross-breed conspecific coral populations across ocean basins for the first time. During regional spawning events, sperm samples were cryopreserved from populations of the widespread Indo-Pacific coral, Platygyra daedalea, from the southern Persian Gulf (maximum daily sea surface temperature of 36 °C), the Oman Sea (33 °C), and the central Great Barrier Reef (30 °C). These sperm samples were thawed during a later spawning event to test their ability to fertilize freshly spawned eggs of P. daedalea colonies from the central Great Barrier Reef. Average fertilization success for the Persian Gulf (9%) and Oman Sea (6%) sperm were 1.4-2.5 times lower than those for the native cryopreserved sperm from Great Barrier Reef (13-15%), potentially due to lower sperm quality of the Middle Eastern sperm and/or reproductive incompatibility between these distant populations. Overall, fertilization success with cryopreserved sperm was low compared with fresh sperm (>80%), likely due to the low motility of thawed sperm (≤5%, reduced from 50% to >90% in fresh sperm). To evaluate whether cross-bred offspring had enhanced thermal tolerance, the survival of larvae sired by Persian Gulf cryopreserved sperm, Great Barrier Reef cryopreserved sperm, and Great Barrier Reef fresh sperm was monitored for six days at ambient (27 °C) and elevated (33 °C) temperature. Against expectations of thermal tolerance enhancement, survival of larvae sired by Persian Gulf cryopreserved sperm was 2.6 times lower than larvae sired by Great Barrier Reef fresh sperm at 33 °C (27% versus 71%), but did not differ at 27 °C (77% versus 84%). This lack of enhanced thermal tolerance was unlikely due to outbreeding depression as survival was equally poor in larvae sired by Great Barrier Reef cryopreserved sperm. Rather, follow-up tests showed that cryoprotectant exposure during fertilization (0.1% DMSO) has a negative effect on the survival of P. daedalea larvae which is exacerbated at elevated temperature. Collectively, our findings highlight challenges of breeding corals for enhanced thermal tolerance using cryopreserved sperm, which may be overcome by methodological advances in the collection and preservation of high-quality motile sperm and minimizing the exposure time of eggs to cryoprotectants.
Collapse
Affiliation(s)
- Emily J. Howells
- Water Research Center and Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates,National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Mary Hagedorn
- Center for Species Survival, Smithsonian Conservation Biology Institute, Smithsonian Institution, Free Royal, Virginia, United States of America,Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii, United States of America
| | - Madeleine J.H. Van Oppen
- School of Biocsiences, The University of Melbourne, Melbourne, Victoria, Australia,Australian Institute of Marine Science, Townsville, Queenslabd, Australia
| | - John A. Burt
- Water Research Center and Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
39
|
Cowen LJ, Putnam HM. Bioinformatics of Corals: Investigating Heterogeneous Omics Data from Coral Holobionts for Insight into Reef Health and Resilience. Annu Rev Biomed Data Sci 2022; 5:205-231. [PMID: 35537462 DOI: 10.1146/annurev-biodatasci-122120-030732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coral reefs are home to over two million species and provide habitat for roughly 25% of all marine animals, but they are being severely threatened by pollution and climate change. A large amount of genomic, transcriptomic, and other omics data is becoming increasingly available from different species of reef-building corals, the unicellular dinoflagellates, and the coral microbiome (bacteria, archaea, viruses, fungi, etc.). Such new data present an opportunity for bioinformatics researchers and computational biologists to contribute to a timely, compelling, and urgent investigation of critical factors that influence reef health and resilience. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lenore J Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA;
| |
Collapse
|
40
|
Boakes Z, Hall AE, Elvan Ampou E, Jones GC, Gusti Ngurah Agung Suryaputra I, Putu Mahyuni L, Prasetyo R, Stafford R. Coral reef conservation in Bali in light of international best practice, a literature review. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Schlecker L, Page C, Matz M, Wright RM. Mechanisms and potential immune tradeoffs of accelerated coral growth induced by microfragmentation. PeerJ 2022; 10:e13158. [PMID: 35368334 PMCID: PMC8973463 DOI: 10.7717/peerj.13158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
Microfragmentation is the act of cutting corals into small pieces (~1 cm2) to accelerate the growth rates of corals relative to growth rates observed when maintaining larger-sized fragments. This rapid tissue and skeletal expansion technique offers great potential for supporting reef restoration, yet the biological processes and tradeoffs involved in microfragmentation-mediated accelerated growth are not well understood. Here we compared growth rates across a range of successively smaller fragment sizes in multiple genets of reef-building corals, Orbicella faveolata and Montastraea cavernosa. Our results confirm prior findings that smaller initial sizes confer accelerated growth after four months of recovery in a raceway. O. faveolata transcript levels associated with growth rate include genes encoding carbonic anhydrase and glutamic acid-rich proteins, which have been previously implicated in coral biomineralization, as well as a number of unannotated transcripts that warrant further characterization. Innate immunity enzyme activity assays and gene expression results suggest a potential tradeoff between growth rate after microfragmentation and immune investment. Microfragmentation-based restoration practices have had great success on Caribbean reefs, despite widespread mortality among wild corals due to infectious diseases. Future studies should continue to examine potential immune tradeoffs throughout the microfragmentation recovery period that may affect growout survival and disease transmission after outplanting.
Collapse
Affiliation(s)
| | | | - Mikhail Matz
- University of Texas at Austin, Austin, Texas, United States
| | - Rachel M. Wright
- Smith College, Northampton, Massachusetts, United States
- University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
42
|
Crandall G, Jensen PC, White SJ, Roberts S. Characterization of the Gene Repertoire and Environmentally Driven Expression Patterns in Tanner Crab (Chionoecetes bairdi). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:216-225. [PMID: 35262806 DOI: 10.1007/s10126-022-10100-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Tanner crab (Chionoecetes bairdi) is an economically important species that is threatened by ocean warming and bitter crab disease, which is caused by an endoparasitic dinoflagellate, Hematodinium. Little is known about disease transmission or its link to host mortality, or how ocean warming will affect pathogenicity or host susceptibility. To provide a transcriptomic resource for the Tanner crab, we generated a suite of RNA-seq libraries encompassing pooled hemolymph samples from crab displaying differing infection statuses and maintained at different temperatures (ambient (7.5˚C), elevated (10˚C), or decreased (4˚C)). After assembling a transcriptome and performing a multifactor differential gene expression analysis, we found genes influenced by temperature in relation to infection and detected some of those genes over time at the individual level using RNA-seq data from one crab. Biological processes associated with those genes include lipid storage, transcription, response to oxidative stress, cell adhesion, and morphogenesis. Alteration in lipid storage and transcription provide insight into how temperature impacts energy allocation in Hematodinium infected crabs. Alteration in expression patterns in genes associated with morphogenesis could suggest that hemocytes were changing morphology and/or type in response to temperature. This project provides insight into how Hematodinium infection could influence crab physiology as oceans warm.
Collapse
Affiliation(s)
- Grace Crandall
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Pamela C Jensen
- Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA, 98115, USA
| | - Samuel J White
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
43
|
Alves C, Valdivia A, Aronson RB, Bood N, Castillo KD, Cox C, Fieseler C, Locklear Z, McField M, Mudge L, Umbanhowar J, Bruno JF. Twenty years of change in benthic communities across the Belizean Barrier Reef. PLoS One 2022; 17:e0249155. [PMID: 35041688 PMCID: PMC8765652 DOI: 10.1371/journal.pone.0249155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
Disease, storms, ocean warming, and pollution have caused the mass mortality of reef-building corals across the Caribbean over the last four decades. Subsequently, stony corals have been replaced by macroalgae, bacterial mats, and invertebrates including soft corals and sponges, causing changes to the functioning of Caribbean reef ecosystems. Here we describe changes in the absolute cover of benthic reef taxa, including corals, gorgonians, sponges, and algae, at 15 fore-reef sites (12-15m depth) across the Belizean Barrier Reef (BBR) from 1997 to 2016. We also tested whether Marine Protected Areas (MPAs), in which fishing was prohibited but likely still occurred, mitigated these changes. Additionally, we determined whether ocean-temperature anomalies (measured via satellite) or local human impacts (estimated using the Human Influence Index, HII) were related to changes in benthic community structure. We observed a reduction in the cover of reef-building corals, including the long-lived, massive corals Orbicella spp. (from 13 to 2%), and an increase in fleshy and corticated macroalgae across most sites. These and other changes to the benthic communities were unaffected by local protection. The covers of hard-coral taxa, including Acropora spp., Montastraea cavernosa, Orbicella spp., and Porites spp., were negatively related to the frequency of ocean-temperature anomalies. Only gorgonian cover was related, negatively, to our metric of the magnitude of local impacts (HII). Our results suggest that benthic communities along the BBR have experienced disturbances that are beyond the capacity of the current management structure to mitigate. We recommend that managers devote greater resources and capacity to enforcing and expanding existing marine protected areas and to mitigating local stressors, and most importantly, that government, industry, and the public act immediately to reduce global carbon emissions.
Collapse
Affiliation(s)
- Catherine Alves
- Environment, Ecology, and Energy Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- ECS Federal, Inc., in support of Northeast Fisheries Science Center, Social Science Branch, National Oceanic and Atmospheric Administration, Narragansett, RI, United States of America
| | | | - Richard B. Aronson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - Nadia Bood
- World Wildlife Fund Mesoamerica, Belize Field Programme Office, Belize City, Belize, Central America
| | - Karl D. Castillo
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Courtney Cox
- Rare, Arlington, Virginia, United States of America
| | - Clare Fieseler
- Science, Technology, and International Affairs Program, Georgetown University, Washington, District of Columbia, United States of America
| | - Zachary Locklear
- Green Bay Wildlife Conservation Office, United States Fish and Wildlife Service, New Franken, Wisconsin, United States of America
| | - Melanie McField
- Healthy Reefs for Healthy People Initiative, Smithsonian Institution, Fort Pierce, FL, United States of America
| | - Laura Mudge
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integral Consulting Inc., Annapolis, Maryland, United States of America
| | - James Umbanhowar
- Environment, Ecology, and Energy Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John F. Bruno
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
44
|
Four-Year Field Survey of Black Band Disease and Skeletal Growth Anomalies in Encrusting Montipora spp. Corals around Sesoko Island, Okinawa. DIVERSITY 2022. [DOI: 10.3390/d14010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Indo-Pacific zooxanthellate scleractinian coral genus Montipora is the host of many coral diseases. Among these are cyanobacterial Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs), but in general data on both diseases are lacking from many regions of the Indo-Pacific, including from Okinawa, southern Japan. In this study, we collected annual prevalence data of Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs) affecting the encrusting form of genus Montipora within the shallow reefs of the subtropical Sesoko Island (off the central west coast of Okinawajima Island) from summer to autumn for four years (2017 to 2020). In 2020 Montipora percent coverage and colony count were also assessed. Generalized Linear Models (GLM) were used to understand the spatial and temporal variation of both BBD and GAs in the nearshore (NE) and reef edge (RE) sites, which revealed higher probability of BBD occurrence in RE sites. BBD prevalence was significantly higher in 2017 in some sites than all other years with site S12 having significant higher probability during all four surveyed years. In terms of GAs, certain sites in 2020 had higher probability of occurrence than during the other years. While the general trend of GAs increased from 2017 to 2020, it was observed to be non-fatal to colonies. In both diseases, the interaction between sites and years was significant. We also observed certain BBD-infected colonies escaping complete mortality. BBD progression rates were monitored in 2020 at site S4, and progression was related to seawater temperatures and was suppressed during periods of heavy rain and large strong typhoons. Our results suggest that higher BBD progression rates are linked with high sea water temperatures (SST > bleaching threshold SST) and higher light levels (>1400 µmol m−2 s−1), indicating the need for further controlled laboratory experiments. The current research will help form the basis for continued future research into these diseases and their causes in Okinawa and the Indo-Pacific Ocean.
Collapse
|
45
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
46
|
Bass AL, Bateman AW, Connors BM, Staton BA, Rondeau EB, Mordecai GJ, Teffer AK, Kaukinen KH, Li S, Tabata AM, Patterson DA, Hinch SG, Miller KM. Identification of infectious agents in early marine Chinook and Coho salmon associated with cohort survival. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent decades have seen an increased appreciation for the role infectious diseases can play in mass mortality events across a diversity of marine taxa. At the same time many Pacific salmon populations have declined in abundance as a result of reduced marine survival. However, few studies have explicitly considered the potential role pathogens could play in these declines. Using a multi-year dataset spanning 59 pathogen taxa in Chinook and Coho salmon sampled along the British Columbia coast, we carried out an exploratory analysis to quantify evidence for associations between pathogen prevalence and cohort survival and between pathogen load and body condition. While a variety of pathogens had moderate to strong negative correlations with body condition or survival for one host species in one season, we found that Tenacibaculum maritimum and Piscine orthoreovirus had consistently negative associations with body condition in both host species and seasons and were negatively associated with survival for Chinook salmon collected in the fall and winter. Our analyses, which offer the most comprehensive examination of associations between pathogen prevalence and Pacific salmon survival to date, suggest that pathogens in Pacific salmon warrant further attention, especially those whose distribution and abundance may be influenced by anthropogenic stressors.
Collapse
Affiliation(s)
- Arthur L. Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrew W. Bateman
- Pacific Salmon Foundation, Vancouver, BC V6J 4S6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Brendan M. Connors
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 5T5, Canada
| | - Benjamin A. Staton
- Fisheries Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR 97232, USA
| | - Eric B. Rondeau
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Gideon J. Mordecai
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V9T 6N7, Canada
| | - Amy K. Teffer
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karia H. Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Amy M. Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Science Branch, Burnaby, BC V5A 1S6, Canada
| | - Scott G. Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kristina M. Miller
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
47
|
Baumann JH, Zhao L, Stier AC, Bruno JF. Remoteness does not enhance coral reef resilience. GLOBAL CHANGE BIOLOGY 2022; 28:417-428. [PMID: 34668280 PMCID: PMC8671335 DOI: 10.1111/gcb.15904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/02/2023]
Abstract
Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes.
Collapse
Affiliation(s)
- Justin H. Baumann
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3300 USA
- Biology Department, Bowdoin College, Brunswick, Maine, 04011 USA
- Correspondence to: or
| | - Lily Zhao
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, The University of California Santa Barbara, Santa Barbara CA, 93106-9620, USA
| | - John F. Bruno
- The Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280 USA
- Correspondence to: or
| |
Collapse
|
48
|
Xuereb A, Rougemont Q, Tiffin P, Xue H, Phifer-Rixey M. Individual-based eco-evolutionary models for understanding adaptation in changing seas. Proc Biol Sci 2021; 288:20212006. [PMID: 34753353 PMCID: PMC8580472 DOI: 10.1098/rspb.2021.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 01/09/2023] Open
Abstract
As climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems. Our survey suggested that this is an emerging area of research fuelled in part by developments in modelling frameworks that allow simulation of increasingly complex ecological, genetic and demographic processes. The studies we identified illustrate the promise of this approach and advance our understanding of the capacity for adaptation to outpace climate change. These studies also identify limitations of current models and opportunities for further development. We discuss three main topics that emerged across studies: (i) effects of genetic architecture and non-genetic responses on adaptive potential; (ii) capacity for gene flow to facilitate rapid adaptation; and (iii) impacts of multiple stressors on persistence. Finally, we demonstrate the approach using simple simulations and provide a framework for users to explore eco-evolutionary IBMs as tools for understanding adaptation in changing seas.
Collapse
Affiliation(s)
- Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, 3050 Avenue de la Médecine, Québec, Quebec, Canada G1 V 0A6
| | - Quentin Rougemont
- CEFE, Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Huijie Xue
- School of Marine Sciences, University of Maine, 5706 Aubert Hall, Orono, ME 04469-5706, USA
| | - Megan Phifer-Rixey
- Department of Biology, Monmouth University, 400 Cedar Avenue, West Long Branch, NJ, USA
| |
Collapse
|
49
|
Kramer N, Tamir R, Ben‐Zvi O, Jacques SL, Loya Y, Wangpraseurt D. Efficient light‐harvesting of mesophotic corals is facilitated by coral optical traits. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Raz Tamir
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Or Ben‐Zvi
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Steven L. Jacques
- Department of Bioengineering University of Washington Seattle WA USA
| | - Yossi Loya
- School of Zoology Tel‐Aviv University Tel Aviv Israel
| | - Daniel Wangpraseurt
- Department of Nanoengineering University of California San Diego San Diego CA USA
- Department of Chemistry University of Cambridge Cambridge UK
| |
Collapse
|
50
|
Huang CY, Hwang JS, Yamashiro H, Tang SL. Spatial and cross-seasonal patterns of coral diseases in reefs of Taiwan: high prevalence and regional variation. DISEASES OF AQUATIC ORGANISMS 2021; 146:145-156. [PMID: 34672264 DOI: 10.3354/dao03624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although research on coral diseases is increasing worldwide, it remains limited in Taiwan. Taiwan is located at the Tropic of Cancer and contains both tropical and subtropical reefs. We conducted spatial and cross-seasonal surveys in Taiwan in 2018 and identified 7 types of disease and nondisease lesions and 6 potential factors influencing coral health. The overall mean prevalence of disease and nondisease lesions varied considerably across the reef regions, and host susceptibility differed among the coral taxa. The overall mean prevalence of disease and nondisease lesions was highest in Kenting (mean ± SEM: 8.58 ± 1.81%) and lowest on the Southern Islands (2.12 ± 0.73%). Although the prevalence of diseases did not differ significantly between the seasons, cyanobacteria-related diseases-including black band disease (BBD), BBD-like syndrome, and other cyanobacterial syndromes-were slightly more prevalent in autumn than in spring. Furthermore, 3 of the potential factors influencing coral health (i.e. turf algae, bioeroding sponges, and coral bleaching) were strong predictors of disease and nondisease lesion prevalence. These results advance our understanding of coral disease ecology in Taiwan and highlight the need for further research on the correlations between diseases, hosts, and environment.
Collapse
Affiliation(s)
- Ching-Yun Huang
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|