1
|
Fernández M, Duarte C, Aldana M, Delgado-Rioseco J, Blanco-Herrera F, Varas O, Quijón PA, Quintanilla-Ahumada D, García-Huidobro MR, Pulgar J. The importance of upwelling conditions as drivers of feeding behavior and thermal tolerance in a prominent intertidal fish. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106896. [PMID: 39647425 DOI: 10.1016/j.marenvres.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Upwelling, as a large oceanographic phenomenon, increases coastal productivity and influences all levels of biological complexity. Despite decades of research on it, much remains to be understood about the impact of upwelling on the feeding behavior and thermal tolerance of important groups such as fish. Hence, our aim was to investigate how upwelling conditions modify the feeding behavior and thermal tolerance of a prominent intertidal fish, Girella laevifrons. We collected purple mussels (Perumytilus purpuratus) from upwelling (U) and downwelling sites (DU) in central Chile, and used them as prey in feeding trials and measuring the concentration of organic matter and proteins in their tissues. We assessed fish consumption rates and growth in fish collected from the same U and DU sites, feeding on either U or DU mussels. Lastly, we assessed the thermal tolerance of U and DU fish fed with the aforementioned U vs DU mussels. We found that U mussels held higher concentrations of organic matter and proteins compared to their DU counterparts. U mussels were also selected and consumed in larger amounts than DU mussels, although the origin of the fish also influenced consumption rates. Thermal tolerance assays revealed that U fish exhibited higher maximum performance (Max.pf) and critical thermal maxima (Ctmax) and lower sensitivity to temperature changes (as measured by Q10), compared to DU fish. Altogether, these results point to a strong influence of upwelling on the quality of organisms' tissues, indirectly altering key aspects of fish feeding behavior and thermal tolerance. These findings also contribute to understanding the physiological adjustments organisms make in productive upwelling systems, and how they may change in the future with ongoing climate events.
Collapse
Affiliation(s)
- Melissa Fernández
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Santiago, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para El Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Joaquín Delgado-Rioseco
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Biotecnología Vegetal, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago, Chile; Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Oscar Varas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para El Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
2
|
Marañón E, Fernández-González C, Tarran GA. Effect of temperature, nutrients and growth rate on picophytoplankton cell size across the Atlantic Ocean. Sci Rep 2024; 14:28034. [PMID: 39543313 PMCID: PMC11564571 DOI: 10.1038/s41598-024-78951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
The cell size of picophytoplankton populations affects their ecology and biogeochemical role, but how different environmental drivers control its variability is still not well understood. To gain insight into the role of temperature and nutrient availability as determinants of picophytoplankton population mean cell size, we carried out five microcosm experiments across the Atlantic Ocean (45°N-27°S) in which surface plankton assemblages were incubated under all combinations of three temperatures (in situ, 3 °C cooling and 3 °C warming) and two nutrient levels (unamended and addition of nitrogen and phosphorus). The overall range of variability in cell volume was 5-fold for Prochlorococcus, 8-fold for Synechococcus and 6-fold for the picoeukaryotes. We observed, in all the treatments and in the control, a consistent trend toward larger mean cell sizes over time for both Prochlorococcus and Synechococcus, which was likely the result of sample confinement. Changes in temperature and nutrient status alone did not cause clear changes in cell size, relative to the control, but the combination of warming and nutrient addition resulted in an increase in Prochlorococcus and Synechococcus cell size. The largest increases in cell volume were associated with slow or negative population net growth rates. Our results emphasize the importance of considering changes in biovolume to obtain accurate estimates of picophytoplankton biomass and suggest that the inverse relationship between growth rate and population mean cell size may be a general pattern in marine phytoplankton.
Collapse
Affiliation(s)
- Emilio Marañón
- Centro de Investigación Marina and Facultad de Ciencias del Mar, Universidade de Vigo, Vigo, Spain.
| | | | | |
Collapse
|
3
|
Lin T, Feng Y, Miao W, Wang S, Bao Z, Shao Z, Zhang D, Wang X, Jiang H, Zhang H. Elevated temperature alters bacterial community from mutualism to antagonism with Skeletonema costatum: insights into the role of a novel species, Tamlana sp. MS1. mSphere 2024; 9:e0019824. [PMID: 38940599 PMCID: PMC11288006 DOI: 10.1128/msphere.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
Skeletonema costatum, a cosmopolitan diatom primarily inhabiting coastal ecosystems, exhibits a typically close yet variable relationship with heterotrophic bacteria. The increasing temperature of surface seawater is expected to substantially affect the viability and ecological dynamics of S. costatum, potentially altering its relationship with bacteria. However, it remains unclear to what extent the elevated temperature could change these relationships. Here, the relationship between axenic S. costatum and natural seawater bacteria underwent a dramatic shift from mutualism to antagonism as the co-culture temperature increased from 20°C to 25°C. The co-occurrence network indicated significantly increased complexity of interaction between S. costatum and bacteria community after temperature elevation, especially with Flavobacteriaceae, implying their potential role in eliminating S. costatum under higher temperatures. Additionally, a Flavobacteriaceae isolate, namely MS1 identified as Tamlana genus, was isolated from the co-culture system at 25°C. MS1 had a remarkable ability to eliminate S. costatum, with the mortality rate at 25°C steadily rising from 30.2% at 48 h to 92.4% at 120 h. However, it promoted algal growth to some extent at 20°C. These results demonstrated that increased temperature promotes MS1 shifts from mutualism to antagonism with S. costatum. According to the comparative genomics analysis, changes in the lifestyle of MS1 were attributed to the increased gliding motility and attachment of MS1 under elevated temperature, enabling it to exert an algicidal effect through direct contact with alga. This investigation provided an advanced understanding of interactions between phytoplankton and bacteria in future warming oceanic ecosystems. IMPORTANCE Ocean warming profoundly influences the growth and metabolism of phytoplankton and bacteria, thereby significantly reshaping their interactions. Previous studies have shown that warming can change bacterial lifestyle from mutualism to antagonism with phytoplankton, but the underlying mechanism remains unclear. In this study, we found that high temperature promotes Tamlana sp. MS1 adhesion to Skeletonema costatum, leading to algal lysis through direct contact, demonstrating a transition in lifestyle from mutualism to antagonism with increasing temperature. Furthermore, the gliding motility of MS1 appears to be pivotal in mediating the transition of its lifestyle. These findings not only advance our understanding of the phytoplankton-bacteria relationship under ocean warming but also offer valuable insights for predicting the impact of warming on phytoplankton carbon sequestration.
Collapse
Affiliation(s)
- Tenghui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yumeng Feng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wenfei Miao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shuqi Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen Bao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zeyuan Shao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Junker JR, Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D, Ólafsson JS, Gíslason GM. Environmental warming increases the importance of high-turnover energy channels in stream food webs. Ecology 2024; 105:e4314. [PMID: 38710667 DOI: 10.1002/ecy.4314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024]
Abstract
Warming temperatures are altering communities and trophic networks across Earth's ecosystems. While the overall influence of warming on food webs is often context-dependent, increasing temperatures are predicted to change communities in two fundamental ways: (1) by reducing average body size and (2) by increasing individual metabolic rates. These warming-induced changes have the potential to influence the distribution of food web fluxes, food web stability, and the relative importance of deterministic and stochastic ecological processes shaping community assembly. Here, we quantified patterns and the relative distribution of organic matter fluxes through stream food webs spanning a broad natural temperature gradient (5-27°C). We then related these patterns to species and community trait distributions of mean body size and population biomass turnover (P:B) within and across streams. We predicted that (1) communities in warmer streams would exhibit smaller body size and higher P:B and (2) organic matter fluxes within warmer communities would increasingly skew toward smaller, higher P:B populations. Across the temperature gradient, warmer communities were characterized by smaller body size (~9% per °C) and higher P:B (~7% faster turnover per °C) populations on average. Additionally, organic matter fluxes within warmer streams were increasingly skewed toward higher P:B populations, demonstrating that warming can restructure organic matter fluxes in both an absolute and relative sense. With warming, the relative distribution of organic matter fluxes was decreasingly likely to arise through the random sorting of species, suggesting stronger selection for traits driving high turnover with increasing temperature. Our study suggests that a warming world will favor energy fluxes through "smaller and faster" populations, and that these changes may be more predictable than previously thought.
Collapse
Affiliation(s)
- James R Junker
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - James M Hood
- The Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Daniel Nelson
- National Aquatic Monitoring Center, Department of Watershed Sciences, Utah State University, Logan, Utah, USA
| | - Jón S Ólafsson
- Marine and Freshwater Research Institute, Hafnarfjördur, Iceland
| | - Gísli M Gíslason
- University of Iceland, Institute of Life and Environmental Sciences, Reykjavík, Iceland
| |
Collapse
|
5
|
Boratyński JS, Iwińska K, Wirowska M, Borowski Z, Zub K. Predation can shape the cascade interplay between heterothermy, exploration and maintenance metabolism under high food availability. Ecol Evol 2024; 14:e11579. [PMID: 38932950 PMCID: PMC11199196 DOI: 10.1002/ece3.11579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Maintenance metabolism as the minimum energy expenditure needed to maintain homeothermy (a high and stable body temperature, T b), reflects the magnitude of metabolic machinery and the associated costs of self-maintenance in endotherms (organisms able to produce heat endogenously). Therefore, it can interact with most, if not all, organismal functions, including the behavior-fitness linkage. Many endothermic animals can avoid the costs of maintaining homeothermy and temporally reduce T b and metabolism by entering heterothermic states like torpor, the most effective energy-saving strategy. Variations in BMR, behavior, and torpor use are considered to be shaped by food resources, but those conclusions are based on research studying these traits in isolation. We tested the effect of ecological contexts (food availability and predation risk) on the interplay between the maintenance costs of homeothermy, heterothermy, and exploration in a wild mammal-the yellow-necked mouse. We measured maintenance metabolism as basal metabolic rate (BMR) using respirometry, distance moved (exploration) in the open-field test, and variation in T b (heterothermy) during short-term fasting in animals captured at different locations of known natural food availability and predator presence, and with or without supplementary food resources. We found that in winter, heterothermy and exploration (but not BMR) negatively correlated with natural food availability (determined in autumn). Supplementary feeding increased mouse density, predation risk and finally had a positive effect on heterothermy (but not on BMR or exploration). The path analysis testing plausible causal relationships between the studied traits indicated that elevated predation risk increased heterothermy, which in turn negatively affected exploration, which positively correlated with BMR. Our study indicates that adaptive heterothermy is a compensation strategy for balancing the energy budget in endothermic animals experiencing low natural food availability. This study also suggests that under environmental challenges like increased predation risk, the use of an effective energy-saving strategy predicts behavioral expression better than self-maintenance costs under homeothermy.
Collapse
Affiliation(s)
| | - Karolina Iwińska
- University of Białystok Doctoral School in Exact and Natural SciencesBiałystokPoland
| | - Martyna Wirowska
- Department of Systematic ZoologyAdam Mickiewicz UniversityPoznańPoland
| | - Zbigniew Borowski
- Department of Forest EcologyForest Research InstituteSękocin StaryPoland
| | - Karol Zub
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| |
Collapse
|
6
|
Srednick G, Swearer SE. Effects of protection and temperature variation on temporal stability in a marine reserve network. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14220. [PMID: 37937466 DOI: 10.1111/cobi.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Understanding the drivers of ecosystem stability has been a key focus of modern ecology as the impacts of the Anthropocene become more prevalent and extreme. Marine protected areas (MPAs) are tools used globally to promote biodiversity and mediate anthropogenic impacts. However, assessing the stability of natural ecosystems and responses to management actions is inherently challenging due to the complex dynamics of communities with many interdependent taxa. Using a 12-year time series of subtidal community structure in an MPA network in the Channel Islands (United States), we estimated species interaction strength (competition and predation), prey species synchrony, and temporal stability in trophic networks, as well as temporal variation in sea surface temperature to explore the causal drivers of temporal stability at community and metacommunity scales. At the community scale, only trophic networks in MPAs at Santa Rosa Island showed greater temporal stability than reference sites, likely driven by reduced prey synchrony. Across islands, competition was sometimes greater and predation always greater in MPAs compared with reference sites. Increases in interaction strength resulted in lower temporal stability of trophic networks. Although MPAs reduced prey synchrony at the metacommunity scale, reductions were insufficient to stabilize trophic networks. In contrast, temporal variation in sea surface temperature had strong positive direct effects on stability at the regional scale and indirect effects at the local scale through reductions in species interaction strength. Although MPAs can be effective management strategies for protecting certain species or locations, our findings for this MPA network suggest that temperature variation has a stronger influence on metacommunity temporal stability by mediating species interactions and promoting a mosaic of spatiotemporal variation in community structure of trophic networks. By capturing the full spectrum of environmental variation in network planning, MPAs will have the greatest capacity to promote ecosystem stability in response to climate change.
Collapse
Affiliation(s)
- Griffin Srednick
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen E Swearer
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Hu N, Bourdeau PE, Hollander J. Responses of marine trophic levels to the combined effects of ocean acidification and warming. Nat Commun 2024; 15:3400. [PMID: 38649374 PMCID: PMC11035698 DOI: 10.1038/s41467-024-47563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Marine organisms are simultaneously exposed to anthropogenic stressors associated with ocean acidification and ocean warming, with expected interactive effects. Species from different trophic levels with dissimilar characteristics and evolutionary histories are likely to respond differently. Here, we perform a meta-analysis of controlled experiments including both ocean acidification and ocean warming factors to investigate single and interactive effects of these stressors on marine species. Contrary to expectations, we find that synergistic interactions are less common (16%) than additive (40%) and antagonistic (44%) interactions overall and their proportion decreases with increasing trophic level. Predators are the most tolerant trophic level to both individual and combined effects. For interactive effects, calcifying and non-calcifying species show similar patterns. We also identify climate region-specific patterns, with interactive effects ranging from synergistic in temperate regions to compensatory in subtropical regions, to positive in tropical regions. Our findings improve understanding of how ocean warming, and acidification affect marine trophic levels and highlight the need for deeper consideration of multiple stressors in conservation efforts.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biology- Aquatic Ecology, Lund University, Lund, Sweden
| | - Paul E Bourdeau
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA, USA
| | - Johan Hollander
- World Maritime University, Ocean Sustainability, Governance & Management Unit, 211 18, Malmö, Sweden.
| |
Collapse
|
8
|
Kilner CL, Carrell AA, Wieczynski DJ, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gibert JP. Temperature and CO 2 interactively drive shifts in the compositional and functional structure of peatland protist communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17203. [PMID: 38433341 DOI: 10.1111/gcb.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long-term whole-ecosystem warming experiment at a boreal peatland to answer how temperature and CO2 jointly influence communities of abundant, diverse, yet poorly understood, non-fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high-throughput fluid imaging and 18S amplicon sequencing, we report large climate-induced, community-wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2 with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2 and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2 levels could alter the structure and function of peatland microbial food webs-a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation.
Collapse
Affiliation(s)
- Christopher L Kilner
- Department of Biology, Duke University, Durham, North Carolina, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Samantha Votzke
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Katrina DeWitt
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
9
|
O'Gorman EJ, Zhao L, Kordas RL, Dudgeon S, Woodward G. Warming indirectly simplifies food webs through effects on apex predators. Nat Ecol Evol 2023; 7:1983-1992. [PMID: 37798434 PMCID: PMC10697836 DOI: 10.1038/s41559-023-02216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
Warming alters ecosystems through direct physiological effects on organisms and indirect effects via biotic interactions, but their relative impacts in the wild are unknown due to the difficulty in warming natural environments. Here we bridge this gap by embedding manipulative field experiments within a natural stream temperature gradient to test whether warming and apex fish predators have interactive effects on freshwater ecosystems. Fish exerted cascading effects on algal production and microbial decomposition via both green and brown pathways in the food web, but only under warming. Neither temperature nor the presence of fish altered food web structure alone, but connectance and mean trophic level declined as consumer species were lost when both drivers acted together. A mechanistic model indicates that this temperature-induced trophic cascade is determined primarily by altered interactions, which cautions against extrapolating the impacts of warming from reductionist approaches that do not consider the wider food web.
Collapse
Affiliation(s)
- Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK.
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
| | - Rebecca L Kordas
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
| | - Steve Dudgeon
- Department of Biology, California State University, Northridge, CA, USA
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK.
| |
Collapse
|
10
|
Kalloniati K, Christou ED, Kournopoulou A, Gittings JA, Theodorou I, Zervoudaki S, Raitsos DE. Long-term warming and human-induced plankton shifts at a coastal Eastern Mediterranean site. Sci Rep 2023; 13:21068. [PMID: 38030672 PMCID: PMC10687065 DOI: 10.1038/s41598-023-48254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Plankton are key ecological indicators for assessing the impacts of human-induced pressures like climate change and waste-water discharge. Here, 26 years (1988-2015) of biweekly in-situ chlorophyll-a concentration, mesozooplankton biomass and remotely-sensed sea surface temperature (SST) data are utilized to investigate long-term changes of plankton biomass and timing of growth (phenology) in relation to warming, in a coastal region of the Saronikos Gulf (Aegean Sea). A Waste-Water Treatment Plant (WWTP) was established in 1995, leading to decreased nutrient concentrations circa 2004. Overall, the results indicate an interplay between warming and changes in ecological status. During higher nutrient input (1989-2004), a temporal mismatch between zooplankton and phytoplankton, and a positive zooplankton growth-SST association, are evident. Conversely, in the warmer, less mesotrophic period 2005-2015, an earlier timing of zooplankton growth (related to copepod abundance) synchronizes with phytoplankton growth, including a secondary autumn growth period. Concurrently, an abrupt negative interannual relationship between SST and mesozooplankton, and a summer biomass decrease (linked with cladoceran abundance) are observed. This work provides evidence that current warming could alter plankton abundance and phenology in nearshore Eastern Mediterranean ecosystems, suggesting shifts in plankton community composition that could trigger potential cascading effects on higher trophic levels.
Collapse
Affiliation(s)
- K Kalloniati
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece.
| | - E D Christou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 19013, Anavyssos, Attica, Greece
| | - A Kournopoulou
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - J A Gittings
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - I Theodorou
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - S Zervoudaki
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 19013, Anavyssos, Attica, Greece
| | - D E Raitsos
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| |
Collapse
|
11
|
Thomas CM, de Cerff C, Maniel GAV, Oyatoye AE, Rocke E, Marco HG, Pillay D. Water filtration by endobenthic sandprawns enhances resilience against eutrophication under experimental global change conditions. Sci Rep 2023; 13:19067. [PMID: 37925538 PMCID: PMC10625564 DOI: 10.1038/s41598-023-46168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Identifying processes that confer resilience against global change is a scientific challenge but is central to managing ecosystem functionality in future. Detecting resilience-enhancing mechanisms is especially relevant in coastal ecosystems, where multi-stressor interactions can drive degradation over time. Here, we quantify the resilience-conferring potential of endobenthic sandprawns against eutrophication, including under high temperatures. We show using a global change mesocosm experiment that sandprawn presence was associated with declines in phytoplankton biomass, particularly under eutrophic conditions, where sandprawns reduced phytoplankton biomass by approximately 74% and prevented a shift to extreme eutrophy. Eutrophic waters were nanophytoplankton-dominated, but sandprawn presence countered this, resulting in even contributions of pico- and nanophytoplankton. Our findings highlight the potential for sandprawns to increase resilience against eutrophication by limiting phytoplankton blooms, preventing extreme eutrophy and counteracting nanophytoplankton dominance. Incorporating endobenthic crustaceans into resilience-based management practices can assist in arresting future water quality declines in coastal ecosystems.
Collapse
Affiliation(s)
- C M Thomas
- Department of Biological Sciences, Marine and Antarctic Research Centre for Innovation and Sustainability, University of Cape Town, Cape Town, 7701, South Africa
| | - C de Cerff
- Department of Biological Sciences, Marine and Antarctic Research Centre for Innovation and Sustainability, University of Cape Town, Cape Town, 7701, South Africa
- Marine and Freshwater Research Centre, Atlantic Technological University, Galway, Ireland
| | - G A V Maniel
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA), Muséum national d'Histoire naturelle, 61 rue Buffon, 75005, Paris, France
| | - A E Oyatoye
- Department of Biological Sciences, Marine and Antarctic Research Centre for Innovation and Sustainability, University of Cape Town, Cape Town, 7701, South Africa
| | - E Rocke
- Department of Biological Sciences, Marine and Antarctic Research Centre for Innovation and Sustainability, University of Cape Town, Cape Town, 7701, South Africa
| | - H G Marco
- Department of Biological Sciences, Marine and Antarctic Research Centre for Innovation and Sustainability, University of Cape Town, Cape Town, 7701, South Africa
| | - D Pillay
- Department of Biological Sciences, Marine and Antarctic Research Centre for Innovation and Sustainability, University of Cape Town, Cape Town, 7701, South Africa.
| |
Collapse
|
12
|
DeLong JP, Coblentz KE, Uiterwaal SF, Akwani C, Salsbery ME. Temperature and predators as interactive drivers of community properties. Ecol Evol 2023; 13:e10665. [PMID: 37920766 PMCID: PMC10618570 DOI: 10.1002/ece3.10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
The effects of warming on ecological communities emerge from a range of potentially asymmetric impacts on individual physiology and development. Understanding these responses, however, is limited by our ability to connect mechanisms or emergent patterns across the many processes that drive variation in demography. Further complicating this understanding is the gain or loss of predators to many communities, which may interact with changes in temperature to drive community change. Here we conducted a factorial warming and predation experiment to test generalized predictions about responses to warming. We used microcosms with a range of protists, rotifers, and a gastrotrich, with and without the predator Actinosphaerium, to assess changes in diversity, body size, function, and composition in response to warming. We find that community respiration and predator:prey biovolume ratios peak at intermediate temperatures, while species richness declined with temperature. We also found that overall biomass increased with species richness, driven by the effect of temperature on richness. There was little evidence of an interaction between predation and temperature change, likely because the predator was mostly limited to the intermediate temperatures. Overall, our results suggest that general predictions about community change are still challenging to make but may benefit by considering multiple dimensions of community patterns in an integrated way.
Collapse
Affiliation(s)
- John P. DeLong
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
| | - Kyle E. Coblentz
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
| | - Stella F. Uiterwaal
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
- Present address:
Living Earth CollaborativeWashington University in St. LouisSt. LouisMissouriUSA
| | - Chika Akwani
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
| | - Miranda E. Salsbery
- School of Biological SciencesUniversity of Nebraska – LincolnLincolnNebraskaUSA
- Present address:
Rochester Institute of Technology K‐12 University CenterRochesterNew YorkUSA
| |
Collapse
|
13
|
Kruszelnicki A, Schelker J, Leoni B, Nava V, Kalem J, Attermeyer K, Gwinnett C. An investigation into the use of riverine mesocosms to analyse the effect of flow velocity and recipient textiles on forensic fibre persistence studies. Forensic Sci Int 2023; 351:111818. [PMID: 37713772 DOI: 10.1016/j.forsciint.2023.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Textile fibre evidence can provide important activity level information in criminal cases. To date, very few studies have investigated fibre persistence on fabrics exposed to aquatic conditions, even though items of evidence and victim's bodies can regularly be found in aquatic environments. This lack of research on whether fibres (and other trace evidence) persist on evidence submerged in water, has shown to impact practice as it is reported that crime scene examiners do not attempt to recover this evidence, due to the belief that it would not be present. The dynamic nature of aquatic environments mean that the studies are difficult to conduct in situ and variables, such as water flow rate are not possible to control and thought to be difficult to monitor. To address these challenges, artificial streams (also known as mesocosms) were employed in this study to investigate the persistence rate of polyester fibres on different fabric types (Woollen/nylon mix carpet, 100% polyester fleece, and 95% polyester/5% elastane sports vest) for a four week exposure time (1, 8, 24, 48, 120, 168, 264, 336, 504 and 672 hrs). The effect of water flow rate on the persistence of fibres was investigated by conducting the experiment with two flow velocities; 'high' (∼2.75 L/s) or 'low' (∼0.7 L/s). Significant differences between textile type were seen at 504 hrs under low flow conditions and 8, 24, 168 and 264 hrs under high flow conditions. When comparing flow velocities, a significant difference was seen at 1 hr exposure for the fleece textile only, indicating that the two flow rates used in this study do not significantly affect fibre persistence. Initial loss rates were highest for the first hour of submergence for the carpet, fleece and sports vest. Fibre persistence rates were highest on the carpet, followed by fleece and then sports vest. Persistence rates remained mostly constant after 24 hrs for all textiles but with redistribution of fibres between textiles being seen after this exposure time. The use of artificial flumes in this study provided a balance between realistic experimentation and a controlled study; key experimental variables could be continously and safely monitored. This study provides the first fibre persistence data in river type environments and proposes a new method for testing persistence in aquatic environments. This approach is not limited to fibres evidence and could be employed for other evidence such as glass, pollen, fingerprints and DNA.
Collapse
Affiliation(s)
- Afsané Kruszelnicki
- Department of Crime, Society and Environment, Staffordshire University, Stoke-on-Trent, United Kingdom
| | - Jakob Schelker
- WasserCluster Lunz - Biologische Station, Dr. Carl Kupelwieser Promenade 5, Lunz am See 3293, Austria; Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Barbara Leoni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano 20126, Italy
| | - Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano 20126, Italy
| | - Jovan Kalem
- WasserCluster Lunz - Biologische Station, Dr. Carl Kupelwieser Promenade 5, Lunz am See 3293, Austria
| | - Katrin Attermeyer
- WasserCluster Lunz - Biologische Station, Dr. Carl Kupelwieser Promenade 5, Lunz am See 3293, Austria; Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria.
| | - Claire Gwinnett
- Department of Crime, Society and Environment, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
14
|
Shakya AW, Allgeier JE. Water column contributions to coral reef productivity: overcoming challenges of context dependence. Biol Rev Camb Philos Soc 2023; 98:1812-1828. [PMID: 37315947 DOI: 10.1111/brv.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Coral reefs are declining at an unprecedented rate. Effective management and conservation initiatives necessitate improved understanding of the drivers of production because the high rates found in these ecosystems are the foundation of the many services they provide. The water column is the nexus of coral reef ecosystem dynamics, and functions as the interface through which essentially all energy and nutrients are transferred to fuel both new and recycled production. Substantial research has described many aspects of water column dynamics, often focusing on specific components because water column dynamics are highly spatially and temporally context dependent. Although necessary, a cost of this approach is that these dynamics are often not well linked to the broader ecosystem or across systems. To help overcome the challenge of context dependence, we provide a comprehensive review of this literature, and synthesise it through the perspective of ecosystem ecology. Specifically, we provide a framework to organise the drivers of temporal and spatial variation in production dynamics, structured around five primary state factors. These state factors are used to deconstruct the environmental contexts in which three water column sub-food webs mediate 'new' and 'recycled' production. We then highlight critical pathways by which global change drivers are altering coral reefs via the water column. We end by discussing four key knowledge gaps hindering understanding of the role of the water column for mediating coral reef production, and how overcoming these could improve conservation and management strategies. Throughout, we identify areas of extensive research and those where studies remain lacking and provide a database of 84 published studies. Improved integration of water column dynamics into models of coral reef ecosystem function is imperative to achieve the understanding of ecosystem production necessary to develop effective conservation and management strategies needed to stem global coral loss.
Collapse
Affiliation(s)
- Anjali W Shakya
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI, 48109, USA
| | - Jacob E Allgeier
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI, 48109, USA
| |
Collapse
|
15
|
Vad CF, Hanny-Endrédi A, Kratina P, Abonyi A, Mironova E, Murray DS, Samchyshyna L, Tsakalakis I, Smeti E, Spatharis S, Tan H, Preiler C, Petrusek A, Bengtsson MM, Ptacnik R. Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities. GLOBAL CHANGE BIOLOGY 2023; 29:3054-3071. [PMID: 36946870 DOI: 10.1111/gcb.16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/08/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.
Collapse
Affiliation(s)
- Csaba F Vad
- WasserCluster Lunz-Biologische Station, Lunz am See, Austria
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Budapest, Hungary
| | - Anett Hanny-Endrédi
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - András Abonyi
- WasserCluster Lunz-Biologische Station, Lunz am See, Austria
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Ekaterina Mironova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - David S Murray
- Collaborative Centre for Sustainable Use of the Seas (CCSUS), School of Biological Sciences, University of East Anglia, Norfolk, UK
- The Centre for Environmental, Fisheries and Aquaculture Science (Cefas), Suffolk, Lowestoft, UK
| | - Larysa Samchyshyna
- Institute of Fisheries, National Academy of Agrarian Sciences, Kyiv, Ukraine
- Institute of Fisheries and Marine Ecology, Berdiansk, Ukraine
| | - Ioannis Tsakalakis
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Evangelia Smeti
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece
| | - Sofie Spatharis
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Hanrong Tan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Ptacnik
- WasserCluster Lunz-Biologische Station, Lunz am See, Austria
| |
Collapse
|
16
|
Resetarits EJ, Ellis WT, Byers JE. The opposing roles of lethal and nonlethal effects of parasites on host resource consumption. Ecol Evol 2023; 13:e9973. [PMID: 37066062 PMCID: PMC10099202 DOI: 10.1002/ece3.9973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 04/18/2023] Open
Abstract
Although parasites can kill their hosts, they also commonly cause nonlethal effects on their hosts, such as altered behaviors or feeding rates. Both the lethal and nonlethal effects of parasites can influence host resource consumption. However, few studies have explicitly examined the joint lethal and nonlethal effects of parasites to understand the net impacts of parasitism on host resource consumption. To do this, we adapted equations used in the indirect effects literature to quantify how parasites jointly influence basal resource consumption through nonlethal effects (altered host feeding rate) and lethal effects (increased host mortality). To parametrize these equations and to examine the potential temperature sensitivity of parasite influences, we conducted a fully factorial lab experiment (crossing trematode infection status and a range of temperatures) to quantify feeding rates and survivorship curves of snail hosts. We found that infected snails had significantly higher mortality and ate nearly twice as much as uninfected snails and had significantly higher mortality, resulting in negative lethal effects and positive nonlethal effects of trematodes on host resource consumption. The net effects of parasites on resource consumption were overall positive in this system, but did vary with temperature and experimental duration, highlighting the context dependency of outcomes for the host and ecosystem. Our work demonstrates the importance of jointly investigating lethal and nonlethal effects of parasites and provides a novel framework for doing so.
Collapse
Affiliation(s)
- Emlyn J. Resetarits
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia30602USA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgia30602USA
- Marine InstituteUniversity of GeorgiaDarienGeorgia31305USA
| | - William T. Ellis
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia30602USA
| | - James E. Byers
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia30602USA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgia30602USA
| |
Collapse
|
17
|
Eloranta AP, Perälä T, Kuparinen A. Effects of temporal abiotic drivers on the dynamics of an allometric trophic network model. Ecol Evol 2023; 13:e9928. [PMID: 36969931 PMCID: PMC10034489 DOI: 10.1002/ece3.9928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 03/25/2023] Open
Abstract
Current ecological research and ecosystem management call for improved understanding of the abiotic drivers of community dynamics, including temperature effects on species interactions and biomass accumulation. Allometric trophic network (ATN) models, which simulate material (carbon) transfer in trophic networks from producers to consumers based on mass‐specific metabolic rates, provide an attractive framework to study consumer–resource interactions from organisms to ecosystems. However, the developed ATN models rarely consider temporal changes in some key abiotic drivers that affect, for example, consumer metabolism and producer growth. Here, we evaluate how temporal changes in carrying capacity and light‐dependent growth rate of producers and in temperature‐dependent mass‐specific metabolic rate of consumers affect ATN model dynamics, namely seasonal biomass accumulation, productivity, and standing stock biomass of different trophic guilds, including age‐structured fish communities. Our simulations of the pelagic Lake Constance food web indicated marked effects of temporally changing abiotic parameters on seasonal biomass accumulation of different guild groups, particularly among the lowest trophic levels (primary producers and invertebrates). While the adjustment of average irradiance had minor effect, increasing metabolic rate associated with 1–2°C temperature increase led to a marked decline of larval (0‐year age) fish biomass, but to a substantial biomass increase of 2‐ and 3‐year‐old fish that were not predated by ≥4‐year‐old top predator fish, European perch (Perca fluviatilis). However, when averaged across the 100 simulation years, the inclusion of seasonality in abiotic drivers caused only minor changes in standing stock biomasses and productivity of different trophic guilds. Our results demonstrate the potential of introducing seasonality in and adjusting the average values of abiotic ATN model parameters to simulate temporal fluctuations in food‐web dynamics, which is an important step in ATN model development aiming to, for example, assess potential future community‐level responses to ongoing environmental changes.
Collapse
Affiliation(s)
- Antti P. Eloranta
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Tommi Perälä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
18
|
Merz E, Saberski E, Gilarranz LJ, Isles PDF, Sugihara G, Berger C, Pomati F. Disruption of ecological networks in lakes by climate change and nutrient fluctuations. NATURE CLIMATE CHANGE 2023; 13:389-396. [PMID: 37038592 PMCID: PMC10079529 DOI: 10.1038/s41558-023-01615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/24/2023] [Indexed: 06/19/2023]
Abstract
Climate change interacts with local processes to threaten biodiversity by disrupting the complex network of ecological interactions. While changes in network interactions drastically affect ecosystems, how ecological networks respond to climate change, in particular warming and nutrient supply fluctuations, is largely unknown. Here, using an equation-free modelling approach on monthly plankton community data in ten Swiss lakes, we show that the number and strength of plankton community interactions fluctuate and respond nonlinearly to water temperature and phosphorus. While lakes show system-specific responses, warming generally reduces network interactions, particularly under high phosphate levels. This network reorganization shifts trophic control of food webs, leading to consumers being controlled by resources. Small grazers and cyanobacteria emerge as sensitive indicators of changes in plankton networks. By exposing the outcomes of a complex interplay between environmental drivers, our results provide tools for studying and advancing our understanding of how climate change impacts entire ecological communities.
Collapse
Affiliation(s)
- Ewa Merz
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Erik Saberski
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA USA
| | - Luis J. Gilarranz
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Peter D. F. Isles
- Vermont Department of Environmental Conservation, Montpelier, VT USA
| | - George Sugihara
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA USA
| | - Christine Berger
- Stadt Zuerich, Wasserversorgung, Qualitaetsueberwachung, Zuerich, Switzerland
| | - Francesco Pomati
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
19
|
Ratnarajah L, Abu-Alhaija R, Atkinson A, Batten S, Bax NJ, Bernard KS, Canonico G, Cornils A, Everett JD, Grigoratou M, Ishak NHA, Johns D, Lombard F, Muxagata E, Ostle C, Pitois S, Richardson AJ, Schmidt K, Stemmann L, Swadling KM, Yang G, Yebra L. Monitoring and modelling marine zooplankton in a changing climate. Nat Commun 2023; 14:564. [PMID: 36732509 PMCID: PMC9895051 DOI: 10.1038/s41467-023-36241-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Zooplankton are major consumers of phytoplankton primary production in marine ecosystems. As such, they represent a critical link for energy and matter transfer between phytoplankton and bacterioplankton to higher trophic levels and play an important role in global biogeochemical cycles. In this Review, we discuss key responses of zooplankton to ocean warming, including shifts in phenology, range, and body size, and assess the implications to the biological carbon pump and interactions with higher trophic levels. Our synthesis highlights key knowledge gaps and geographic gaps in monitoring coverage that need to be urgently addressed. We also discuss an integrated sampling approach that combines traditional and novel techniques to improve zooplankton observation for the benefit of monitoring zooplankton populations and modelling future scenarios under global changes.
Collapse
Affiliation(s)
- Lavenia Ratnarajah
- Integrated Marine Observing System, Hobart, Tasmania, Australia. .,Global Ocean Observing System, International Oceanographic Commission, UNESCO, Paris, France.
| | - Rana Abu-Alhaija
- Cyprus Subsea Consulting and Services C.S.C.S. ltd, Lefkosia, Cyprus
| | - Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK
| | - Sonia Batten
- North Pacific Marine Science Organization (PICES), 9860 West Saanich Road, V8L 4B2, Sidney, BC, Canada
| | | | - Kim S Bernard
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg., Corvallis, OR, 97330, USA
| | - Gabrielle Canonico
- US Integrated Ocean Observing System (US IOOS), NOAA, Silver Spring, MD, USA
| | - Astrid Cornils
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Polar Biological Oceanography, Am Handelshafen 12, Bremerhaven, Germany
| | - Jason D Everett
- School of Mathematics and Physics, University of Queensland, St. Lucia, QLD, Australia.,CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, 4067, Australia.,Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Maria Grigoratou
- Gulf of Maine Research Institute, 350 Commercial St, Portland, ME, 04101, USA.,Mercator Ocean International, 2 Av. de l'Aérodrome de Montaudran, 31400, Toulouse, France
| | - Nurul Huda Ahmad Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.,Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - David Johns
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Fabien Lombard
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016, Paris, France.,Institut Universitaire de France, 75231, Paris, France
| | - Erik Muxagata
- Universidade Federal de Rio Grande - FURG - Laboratório de Zooplâncton - Instituto de Oceanografia, Av. Itália, Km 8 - Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Clare Ostle
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Sophie Pitois
- Centre for Environment, Fisheries and Aquaculture Centre (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
| | - Anthony J Richardson
- School of Mathematics and Physics, University of Queensland, St. Lucia, QLD, Australia.,CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, 4067, Australia
| | - Katrin Schmidt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Lars Stemmann
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France
| | - Kerrie M Swadling
- Institute for Marine and Antarctic Studies & Australian Antarctic Program Partnership, University of Tasmania, Hobart, Tasmania, Australia
| | - Guang Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Lidia Yebra
- Centro Oceanográfico de Málaga (IEO, CSIC), Puerto Pesquero s/n, 29640, Fuengirola, Spain
| |
Collapse
|
20
|
Mino Y, Sukigara C, Ishizaka J. Enhanced oxygen consumption results in summertime hypoxia in Mikawa Bay, Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26120-26136. [PMID: 36350443 DOI: 10.1007/s11356-022-23850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
In Mikawa Bay, where hypoxia occurs in the bottom layer during summer, six shipboard observations were conducted from the mouth to the head of the bay from May to August 2014 to investigate the spatiotemporal variation in the bottom layer oxygen consumption rate (OCR). The OCR was determined from the dark incubation of sample waters using an optical oxygen sensor, which showed a range of 5.7-38.3 mmol m-3 days-1. A high OCR was observed at the inner-most station, where higher concentrations of nutrients and chlorophyll a (Chl a) than at the other stations were found, and bottom hypoxic water appeared during the observation period after late June. These OCRs can deplete the oxygen dissolved in water within a week. The OCR showed a highly significant positive correlation with particulate organic carbon concentrations in the bottom water. Considering the relatively low carbon-to-nitrogen mole ratio (~ 6.4-7.6) and high carbon isotope ratio (between approximately - 20.2 and - 18.8‰) of particulate organic matter at the stations, the supply of fresh organic matter produced in the bay as opposed to the land may have affected the OCR by acting as a substrate for microbial aerobic respiration. High temporal resolution data from two automated observation buoys near the bay mouth and the inner area captured increases in Chl a at both sites in response to typhoon events, along with the subsequent appearance of bottom hypoxic water at the inner site and its expansion at the mouth. This supports our hypothesis that enhanced organic matter production due to nutrient input to the surface layer through vertical mixing would increase the bottom OCR, resulting in hypoxia. The apparent oxygen decline in the bottom layer from the buoy data was consistent with incubation-based OCRs during the observation period. Therefore, it is essential to model the OCR in numerical simulations of hypoxia, to which the variability characteristics that we revealed made significant contributions.
Collapse
Affiliation(s)
- Yoshihisa Mino
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan.
| | - Chiho Sukigara
- Center for Marine Research and Operation, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Joji Ishizaka
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
21
|
Polazzo F, Hermann M, Crettaz-Minaglia M, Rico A. Impacts of extreme climatic events on trophic network complexity and multidimensional stability. Ecology 2023; 104:e3951. [PMID: 36484732 PMCID: PMC10078413 DOI: 10.1002/ecy.3951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Untangling the relationship between network complexity and ecological stability under climate change is an arduous challenge for theoretical and empirical ecology. Even more so, when considering extreme climatic events. Here, we studied the effects of extreme climatic events (heatwaves) on the complexity of realistic freshwater ecosystems using topological and quantitative trophic network metrics. Next, we linked changes in network complexity with the investigation of four stability components (temporal stability, resistance, resilience, and recovery) of community's functional, compositional, and energy flux stability. We found reduction in topological network complexity to be correlated with reduction of functional and compositional resistance. However, temperature-driven increase in link-weighted network complexity increased functional and energy flux recovery and resilience, but at the cost of increased compositional instability. Overall, we propose an overarching approach to elucidate the effects of climate change on multidimensional stability through the lens of network complexity, providing helpful insights for preserving ecosystems stability under climate change.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
| | - Melina Crettaz-Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain.,Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
22
|
Pilakouta N, O'Donnell PJ, Crespel A, Levet M, Claireaux M, Humble JL, Kristjánsson BK, Skúlason S, Lindström J, Metcalfe NB, Killen SS, Parsons KJ. A warmer environment can reduce sociability in an ectotherm. GLOBAL CHANGE BIOLOGY 2023; 29:206-214. [PMID: 36259414 PMCID: PMC10092372 DOI: 10.1111/gcb.16451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/25/2022] [Indexed: 05/05/2023]
Abstract
The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a 'natural experiment' of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations.
Collapse
Affiliation(s)
- Natalie Pilakouta
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - Patrick J. O'Donnell
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Amélie Crespel
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Marie Levet
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- Department of Biological SciencesUniversity of MontrealMontrealCanada
| | - Marion Claireaux
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
- Norwegian Institute of Marine ResearchBergenNorway
| | - Joseph L. Humble
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | | | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | - Jan Lindström
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Neil B. Metcalfe
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Shaun S. Killen
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Kevin J. Parsons
- School of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
23
|
Pilakouta N, O'Donnell PJ, Crespel A, Levet M, Claireaux M, Humble JL, Kristjánsson BK, Skúlason S, Lindström J, Metcalfe NB, Killen SS, Parsons KJ. A warmer environment can reduce sociability in an ectotherm. GLOBAL CHANGE BIOLOGY 2023; 29:206-214. [PMID: 36259414 DOI: 10.5061/dryad.1g1jwsv0v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/25/2022] [Indexed: 05/21/2023]
Abstract
The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a 'natural experiment' of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations.
Collapse
Affiliation(s)
- Natalie Pilakouta
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Patrick J O'Donnell
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Amélie Crespel
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Department of Biology, University of Turku, Turku, Finland
| | - Marie Levet
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - Marion Claireaux
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Norwegian Institute of Marine Research, Bergen, Norway
| | - Joseph L Humble
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
- Icelandic Museum of Natural History, Reykjavík, Iceland
| | - Jan Lindström
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Shaun S Killen
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Kevin J Parsons
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Gibert JP, Wieczynski DJ, Han Z, Yammine A. Rapid eco-phenotypic feedback and the temperature response of biomass dynamics. Ecol Evol 2023; 13:e9685. [PMID: 36644704 PMCID: PMC9831973 DOI: 10.1002/ece3.9685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Biomass dynamics capture information on population dynamics and ecosystem-level processes (e.g., changes in production over time). Understanding how rising temperatures associated with global climate change influence biomass dynamics is thus a pressing issue in ecology. The total biomass of a species depends on its density and its average mass. Consequently, disentangling how biomass dynamics responds to increasingly warm and variable temperatures ultimately depends on understanding how temperature influences both density and mass dynamics. Here, we address this issue by keeping track of experimental microbial populations growing to carrying capacity for 15 days at two different temperatures, and in the presence and absence of temperature variability. We develop a simple mathematical expression to partition the contribution of changes in density and mass to changes in biomass and assess how temperature responses in either one influence biomass shifts. Moreover, we use time-series analysis (Convergent Cross Mapping) to address how temperature and temperature variability influence reciprocal effects of density on mass and vice versa. We show that temperature influences biomass through its effects on density and mass dynamics, which have opposite effects on biomass and can offset each other. We also show that temperature variability influences biomass, but that effect is independent of any effects on density or mass dynamics. Last, we show that reciprocal effects of density and mass shift significantly across temperature regimes, suggesting that rapid and environment-dependent eco-phenotypic dynamics underlie biomass responses. Overall, our results connect temperature effects on population and phenotypic dynamics to explain how biomass responds to temperature regimes, thus shedding light on processes at play in cosmopolitan and abundant microbes as the world experiences increasingly warm and variable temperatures.
Collapse
Affiliation(s)
- Jean P. Gibert
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Ze‐Yi Han
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Andrea Yammine
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
25
|
Shokri M, Cozzoli F, Vignes F, Bertoli M, Pizzul E, Basset A. Metabolic rate and climate change across latitudes: evidence of mass-dependent responses in aquatic amphipods. J Exp Biol 2022; 225:280993. [PMID: 36337048 PMCID: PMC9720750 DOI: 10.1242/jeb.244842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Predictions of individual responses to climate change are often based on the assumption that temperature affects the metabolism of individuals independently of their body mass. However, empirical evidence indicates that interactive effects exist. Here, we investigated the response of individual standard metabolic rate (SMR) to annual temperature range and forecasted temperature rises of 0.6-1.2°C above the current maxima, under the conservative climate change scenario IPCC RCP2.6. As a model organism, we used the amphipod Gammarus insensibilis, collected across latitudes along the western coast of the Adriatic Sea down to the southernmost limit of the species' distributional range, with individuals varying in body mass (0.4-13.57 mg). Overall, we found that the effect of temperature on SMR is mass dependent. Within the annual temperature range, the mass-specific SMR of small/young individuals increased with temperature at a greater rate (activation energy: E=0.48 eV) than large/old individuals (E=0.29 eV), with a higher metabolic level for high-latitude than low-latitude populations. However, under the forecasted climate conditions, the mass-specific SMR of large individuals responded differently across latitudes. Unlike the higher-latitude population, whose mass-specific SMR increased in response to the forecasted climate change across all size classes, in the lower-latitude populations, this increase was not seen in large individuals. The larger/older conspecifics at lower latitudes could therefore be the first to experience the negative impacts of warming on metabolism-related processes. Although the ecological collapse of such a basic trophic level (aquatic amphipods) owing to climate change would have profound consequences for population ecology, the risk is significantly mitigated by phenotypic and genotypic adaptation.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Research Institute on Terrestrial Ecosystems (IRET–URT Lecce), National Research Council of Italy (CNR), Campus Ecotekne, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Marco Bertoli
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elisabetta Pizzul
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
26
|
Harvey JA, Tougeron K, Gols R, Heinen R, Abarca M, Abram PK, Basset Y, Berg M, Boggs C, Brodeur J, Cardoso P, de Boer JG, De Snoo GR, Deacon C, Dell JE, Desneux N, Dillon ME, Duffy GA, Dyer LA, Ellers J, Espíndola A, Fordyce J, Forister ML, Fukushima C, Gage MJG, García‐Robledo C, Gely C, Gobbi M, Hallmann C, Hance T, Harte J, Hochkirch A, Hof C, Hoffmann AA, Kingsolver JG, Lamarre GPA, Laurance WF, Lavandero B, Leather SR, Lehmann P, Le Lann C, López‐Uribe MM, Ma C, Ma G, Moiroux J, Monticelli L, Nice C, Ode PJ, Pincebourde S, Ripple WJ, Rowe M, Samways MJ, Sentis A, Shah AA, Stork N, Terblanche JS, Thakur MP, Thomas MB, Tylianakis JM, Van Baaren J, Van de Pol M, Van der Putten WH, Van Dyck H, Verberk WCEP, Wagner DL, Weisser WW, Wetzel WC, Woods HA, Wyckhuys KAG, Chown SL. Scientists' warning on climate change and insects. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey A. Harvey
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Kévin Tougeron
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
- EDYSAN, UMR 7058, Université de Picardie Jules Verne, CNRS Amiens France
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Wageningen The Netherlands
| | - Robin Heinen
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Mariana Abarca
- Department of Biological Sciences Smith College Northampton Massachusetts USA
| | - Paul K. Abram
- Agriculture and Agri‐Food Canada, Agassiz Research and Development Centre Agassiz British Columbia Canada
| | - Yves Basset
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - Matty Berg
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Groningen Institute of Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Carol Boggs
- School of the Earth, Ocean and Environment and Department of Biological Sciences University of South Carolina Columbia South Carolina USA
- Rocky Mountain Biological Laboratory Gothic Colorado USA
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques Université de Montréal Montréal Québec Canada
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | - Jetske G. de Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Geert R. De Snoo
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Jane E. Dell
- Geosciences and Natural Resources Department Western Carolina University Cullowhee North Carolina USA
| | | | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | - Grant A. Duffy
- School of Biological Sciences Monash University Melbourne Victoria Australia
- Department of Marine Science University of Otago Dunedin New Zealand
| | - Lee A. Dyer
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Jacintha Ellers
- Department of Ecological Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Anahí Espíndola
- Department of Entomology University of Maryland College Park Maryland USA
| | - James Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee, Knoxville Knoxville Tennessee USA
| | - Matthew L. Forister
- University of Nevada Reno – Ecology, Evolution and Conservation Biology Reno Nevada USA
| | - Caroline Fukushima
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus University of Helsinki Helsinki Finland
| | | | | | - Claire Gely
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Mauro Gobbi
- MUSE‐Science Museum, Research and Museum Collections Office Climate and Ecology Unit Trento Italy
| | - Caspar Hallmann
- Radboud Institute for Biological and Environmental Sciences Radboud University Nijmegen The Netherlands
| | - Thierry Hance
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - John Harte
- Energy and Resources Group University of California Berkeley California USA
| | - Axel Hochkirch
- Department of Biogeography Trier University Trier Germany
- IUCN SSC Invertebrate Conservation Committee
| | - Christian Hof
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - Ary A. Hoffmann
- Bio21 Institute, School of BioSciences University of Melbourne Melbourne Victoria Australia
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill North Carolina USA
| | - Greg P. A. Lamarre
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Ecology Institute of Entomology, Czech Academy of Sciences Ceske Budejovice Czech Republic
| | - William F. Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Cairns Queensland Australia
| | - Blas Lavandero
- Laboratorio de Control Biológico Universidad de Talca Talca Chile
| | - Simon R. Leather
- Center for Integrated Pest Management Harper Adams University Newport UK
| | - Philipp Lehmann
- Department of Zoology Stockholm University Stockholm Sweden
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Cécile Le Lann
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing China
| | | | | | - Chris Nice
- Department of Biology Texas State University San Marcos Texas USA
| | - Paul J. Ode
- Department of Agricultural Biology Colorado State University Fort Collins Colorado USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS Université de Tours Tours France
| | - William J. Ripple
- Department of Forest Ecosystems and Society Oregon State University Oregon USA
| | - Melissah Rowe
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
| | - Michael J. Samways
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Arnaud Sentis
- INRAE, Aix‐Marseille University, UMR RECOVER Aix‐en‐Provence France
| | - Alisha A. Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University East Lansing Michigan USA
| | - Nigel Stork
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Queensland Australia
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences Stellenbosch University Stellenbosch South Africa
| | - Madhav P. Thakur
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Matthew B. Thomas
- York Environmental Sustainability Institute and Department of Biology University of York York UK
| | - Jason M. Tylianakis
- Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Joan Van Baaren
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] ‐ UMR 6553 Rennes France
| | - Martijn Van de Pol
- Netherlands Institute of Ecology (NIOO‐KNAW) Department of Animal Ecology Wageningen The Netherlands
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Wim H. Van der Putten
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Hans Van Dyck
- Earth and Life Institute, Ecology & Biodiversity Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | | | - David L. Wagner
- Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Wolfgang W. Weisser
- Department of Life Science Systems, School of Life Sciences Technical University of Munich, Terrestrial Ecology Research Group Freising Germany
| | - William C. Wetzel
- Department of Entomology, Department of Integrative Biology, and Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Kris A. G. Wyckhuys
- Chrysalis Consulting Hanoi Vietnam
- China Academy of Agricultural Sciences Beijing China
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
27
|
Hampton SE, Sharma S, Brousil MR, Filazzola A. Winter and summer storms modify chlorophyll relationships with nutrients in seasonally ice‐covered lakes. Ecosphere 2022. [DOI: 10.1002/ecs2.4272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Sapna Sharma
- Department of Biology York University Toronto Ontario Canada
| | - Matthew R. Brousil
- School of the Environment Washington State University Pullman Washington USA
| | | |
Collapse
|
28
|
Ho HC, Brodersen J, Gossner MM, Graham CH, Kaeser S, Reji Chacko M, Seehausen O, Zimmermann NE, Pellissier L, Altermatt F. Blue and green food webs respond differently to elevation and land use. Nat Commun 2022; 13:6415. [PMID: 36302854 PMCID: PMC9613893 DOI: 10.1038/s41467-022-34132-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
While aquatic (blue) and terrestrial (green) food webs are parts of the same landscape, it remains unclear whether they respond similarly to shared environmental gradients. We use empirical community data from hundreds of sites across Switzerland and a synthesis of interaction information in the form of a metaweb to show that inferred blue and green food webs have different structural and ecological properties along elevation and among various land-use types. Specifically, in green food webs, their modular structure increases with elevation and the overlap of consumers' diet niche decreases, while the opposite pattern is observed in blue food webs. Such differences between blue and green food webs are particularly pronounced in farmland-dominated habitats, indicating that anthropogenic habitat modification modulates the climatic effects on food webs but differently in blue versus green systems. These findings indicate general structural differences between blue and green food webs and suggest their potential divergent future alterations through land-use or climatic changes.
Collapse
Affiliation(s)
- Hsi-Cheng Ho
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.
| | - Jakob Brodersen
- Department Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
| | - Martin M Gossner
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Catherine H Graham
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Silvana Kaeser
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Merin Reji Chacko
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Ole Seehausen
- Department Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland
- Division Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland
| | - Niklaus E Zimmermann
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Loïc Pellissier
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, CH-8092, Zürich, Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
29
|
Zhang P, Wang T, Zhang H, Wang H, Hilt S, Shi P, Cheng H, Feng M, Pan M, Guo Y, Wang K, Xu X, Chen J, Zhao K, He Y, Zhang M, Xu J. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems. ENVIRONMENT INTERNATIONAL 2022; 168:107478. [PMID: 35998413 DOI: 10.1016/j.envint.2022.107478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Submerged macrophytes are vital components in shallow aquatic ecosystems, but their abundances have declined globally. Shading by periphyton and phytoplankton/turbidity plays a major role in this decline, and the competing aquatic primary producers are subject to the complex influence of multiple stressors such as increasing temperatures, nutrient loading and herbicides. Their joint impact has rarely been tested and is difficult to predict due to potentially opposing effects on the different primary producers, their interactions and their grazers. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes dominated by two typical submerged macrophytes, bottom-dwelling Vallisneria denseserrulata and canopy-forming Hydrilla verticillata, and associated food web components. We applied a combination of nutrient loading, continuous warming, heat waves and glyphosate-based herbicides to test how these stressors interactively impact the growth of submerged macrophytes, phytoplankton and periphyton as competing primary producers. Warming or heat waves alone did not affect phytoplankton and periphyton abundance, but negatively influenced the biomass of V. denseserrulata. Nutrient loading alone increased phytoplankton biomass and water turbidity and thus negatively affected submerged macrophyte biomass, particularly for V. denseserrulata, by shading. Glyphosate alone did not affect biomass of each primary producer under ambient temperatures. However, heat waves facilitated phytoplankton growth under combined nutrient loading and glyphosate treatments more than continuous warming. As a consequence, H. verticillata biomass was lowest under these conditions indicating the potential of multiple stressors for macrophyte decline. Our study demonstrated that multiple stressors interactively alter the biomass of primary producers and their interactions and can eventually lead to a loss of macrophyte communities and shift to phytoplankton dominance. These results show the risks in shallow lakes and ponds in agricultural landscapes and underline the need for multiple stressor studies as a base for their future management.
Collapse
Affiliation(s)
- Peiyu Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Penglan Shi
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Meng Pan
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Yulun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kang Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoqi Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianlin Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhan He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
30
|
Fernández-González C, Tarran GA, Schuback N, Woodward EMS, Arístegui J, Marañón E. Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic. Commun Biol 2022; 5:1035. [PMID: 36175608 PMCID: PMC9522883 DOI: 10.1038/s42003-022-03971-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Temperature and nutrient supply interactively control phytoplankton growth and productivity, yet the role of these drivers together still has not been determined experimentally over large spatial scales in the oligotrophic ocean. We conducted four microcosm experiments in the tropical and subtropical Atlantic (29°N-27°S) in which surface plankton assemblages were exposed to all combinations of three temperatures (in situ, 3 °C warming and 3 °C cooling) and two nutrient treatments (unamended and enrichment with nitrogen and phosphorus). We found that chlorophyll a concentration and the biomass of picophytoplankton consistently increase in response to nutrient addition, whereas changes in temperature have a smaller and more variable effect. Nutrient enrichment leads to increased picoeukaryote abundance, depressed Prochlorococcus abundance, and increased contribution of small nanophytoplankton to total biomass. Warming and nutrient addition synergistically stimulate light-harvesting capacity, and accordingly the largest biomass response is observed in the warmed, nutrient-enriched treatment at the warmest and least oligotrophic location (12.7°N). While moderate nutrient increases have a much larger impact than varying temperature upon the growth and community structure of tropical phytoplankton, ocean warming may increase their ability to exploit events of enhanced nutrient availability. Microcosm experiments in the tropical and subtropical Atlantic reveal consistent responses of phytoplankton to changing temperature and nutrient availability, with implications for the impacts of ocean warming in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Cristina Fernández-González
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain.,Centro de Investigacións Mariñas, Universidade de Vigo, Vigo, Spain
| | | | | | | | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Emilio Marañón
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain. .,Centro de Investigacións Mariñas, Universidade de Vigo, Vigo, Spain.
| |
Collapse
|
31
|
Hu N, Bourdeau PE, Harlos C, Liu Y, Hollander J. Meta-analysis reveals variance in tolerance to climate change across marine trophic levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154244. [PMID: 35245550 DOI: 10.1016/j.scitotenv.2022.154244] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Marine ecosystems are currently facing a variety of anthropogenic perturbations, including climate change. Trophic differences in response to climate change may disrupt ecological interactions and thereby threaten marine ecosystem function. Yet, we still do not have a comprehensive understanding of how different trophic levels respond to climate change stressors in marine ecosystems. By including 1278 experiments, comprising 236 different marine species from 18 different phyla in a meta-analysis of studies measuring the direct effect of ocean acidification and ocean warming on marine organisms, we found that higher trophic level species display greater tolerance to ocean acidification but greater sensitivity to warming. In contrast, marine herbivores were the most vulnerable trophic level to both acidification and warming. Such imbalances in the community and a general reduction of biodiversity and biomass in lower trophic levels can significantly disrupt the system and could drive negative bottom-up effects. In conclusion, with ocean acidification and elevated temperatures, there is an alarming risk that trophic disparity may disrupt species interactions, and thereby drive community destabilization under ocean climate change.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biology- Aquatic ecology, Lund University, Lund, Sweden
| | - Paul E Bourdeau
- Department of Biological Sciences, Humboldt State University, Arcata, CA, USA
| | - Christian Harlos
- Department of Biology- Aquatic ecology, Lund University, Lund, Sweden
| | - Ying Liu
- Department of Biology- Aquatic ecology, Lund University, Lund, Sweden; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Johan Hollander
- Sasakawa Global Ocean Institute, World Maritime University, Malmö, Sweden.
| |
Collapse
|
32
|
Ren L, Lu Z, Xia X, Peng Y, Gong S, Song X, Jeppesen E, Han BP, Wu QL. Metagenomics reveals bacterioplankton community adaptation to long-term thermal pollution through the strategy of functional regulation in a subtropical bay. WATER RESEARCH 2022; 216:118298. [PMID: 35316678 DOI: 10.1016/j.watres.2022.118298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Thermal effluents from coastal nuclear power plants have led to undesirable pollution and subsequent ecological impacts on local marine ecosystems. However, despite the ecological importance, we know little about the impacts on functionality of bacterioplankton subjected in systems with long-term thermal pollution. We used metagenomic sequencing to study of the effect of thermal pollution on bacterioplankton community metagenomics in summer in a subtropical bay located on the northern coast of the South China Sea. Thermal pollution (>15 y), which resulted in an increase in the summer seawater temperature around 8°C and caused seawater temperature up to approximate 39°C, significantly decreased bacterioplankton metabolic potentials in photosynthesis, organic carbon synthesis, and energy production. The bacterioplankton community metagenomics underwent a significant change in its structure from Synechococcus-dominant autotrophy to Alteromonas, Vibrio, and Pseudoalteromonas-dominated heterotrophy, and significantly up-regulated genes involved in organic compound degradation and dissimilatory nitrate reduction for the matter and energy acquisition under thermal pollution. Moreover, the bacterioplankton community metagenomics showed an up-regulation with heating of genes involved in DNA repair systems, heat shock responsive chaperones and proteins, and proteins involved in other biological processes, such as biofilm formation and the biosynthesis of unsaturated fatty acids and glycan, to adapt to the thermal environment. Collectively, it indicates a functional regulation of bacterioplankton adaptation to high-temperature stress, which might advance the understanding of the molecular mechanisms of community adaptation to global extreme warming in aquatic ecosystems.
Collapse
Affiliation(s)
- Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China; Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Zhe Lu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yuyang Peng
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xingyu Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China; Department of Bioscience, Aarhus University, Silkeborg, Denmark; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin, Turkey
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qinglong L Wu
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
33
|
Almeida J, Lopes AR, Ribeiro L, Castanho S, Candeias-Mendes A, Pousão-Ferreira P, Faria AM. Effects of exposure to elevated temperature and different food levels on the escape response and metabolism of early life stages of white seabream, Diplodus sargus. CONSERVATION PHYSIOLOGY 2022; 10:coac023. [PMID: 35586725 PMCID: PMC9109722 DOI: 10.1093/conphys/coac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Recent literature suggests that anthropogenic stressors can disrupt ecologically relevant behaviours in fish, such as the ability to escape from predators. Disruption of these behaviours at critical life history transitions, such as the transition from the pelagic environment to the juvenile/adult habitat, may have even greater repercussions. The literature suggests that an increase in temperature can affect fish escape response, as well as metabolism; however, few studies have focused on the acute sensitivity responses and the potential for acclimation through developmental plasticity. Here, we aimed at evaluating the acute and long-term effects of exposure to warming conditions on the escape response and routine metabolic rate (RMR) of early life stages of the white seabream, Diplodus sargus. Additionally, as food availability may modulate the response to warming, we further tested the effects of long-term exposure to high temperature and food shortage, as individual and interacting drivers, on escape response and RMR. Temperature treatments were adjusted to ambient temperature (19°C) and a high temperature (22°C). Feeding treatments were established as high ration and low ration (50% of high ration). Escape response and RMR were measured after the high temperature was reached (acute exposure) and after 4 weeks (prolonged exposure). Acute warming had a significant effect on escape response and generated an upward trend in RMR. In the long term, however, there seems to be an acclimation of the escape response and RMR. Food shortage, interacting with high temperature, led to an increase in latency response and a significant reduction in RMR. The current study provides relevant experimental data on fishes' behavioural and physiological responses to the combined effects of multiple stressors. This knowledge can be incorporated in recruitment models, thereby contributing to fine-tuning of models required for fisheries management and species conservation.
Collapse
Affiliation(s)
- João Almeida
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
| | - Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, 8700-194, Lisbon, Portugal
| | - Laura Ribeiro
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Sara Castanho
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana Candeias-Mendes
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana M Faria
- Corresponding author: MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal. Tel: + 351 218 811 700. E-mail:
| |
Collapse
|
34
|
The Coupling Response between Different Bacterial Metabolic Functions in Water and Sediment Improve the Ability to Mitigate Climate Change. WATER 2022. [DOI: 10.3390/w14081203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extreme climatic events, such as heat wave and large temperature fluctuations, are predicted to increase in frequency and intensity during the next hundred years, which may rapidly alter the composition and function of lake bacterial communities. Here, we conducted a year-long experiment to explore the effect of warming on bacterial metabolic function of lake water and sediment. Predictions of the metabolic capabilities of these communities were performed with FAPROTAX using 16S rRNA sequencing data. The results indicated that the increase in temperature changed the structure of bacterial metabolic functional groups in water and sediment. During periods of low temperature, the carbon degradation pathway decreased, and the synthesis pathway increased, under the stimulation of warming, especially under the conditions temperature fluctuation. We also observed that nitrogen fixation ability was especially important in the warming treatments during the summer season. However, an elevated temperature significantly led to reduced nitrogen fixation abilities in winter. Compared with the water column, the most predominant functional groups of nitrogen cycle in sediment were nitrite oxidation and nitrification. Variable warming significantly promoted nitrite oxidation and nitrification function in winter, and constant warming was significantly inhibited in spring, with control in sediments. Co-occurrence network results showed that warming, especially variable warming, made microbial co-occurrence networks larger, more connected and less modular, and eventually functional groups in the water column and sediment cooperated to resist warming. We concluded that warming changed bacterial functional potentials important to the biogeochemical cycling in the experimental mesocosms in winter and spring with low temperature. The effect of different bacteria metabolism functions in water column and sediment may change the carbon and nitrogen fluxes in aquatic ecosystems. In conclusion, the coupling response between different bacterial metabolic functions in water and sediment may improve the ability to mitigate climate change.
Collapse
|
35
|
Rocca JD, Yammine A, Simonin M, Gibert JP. Protist Predation Influences the Temperature Response of Bacterial Communities. Front Microbiol 2022; 13:847964. [PMID: 35464948 PMCID: PMC9022080 DOI: 10.3389/fmicb.2022.847964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Temperature strongly influences microbial community structure and function, in turn contributing to global carbon cycling that can fuel further warming. Recent studies suggest that biotic interactions among microbes may play an important role in determining the temperature responses of these communities. However, how predation regulates these microbiomes under future climates is still poorly understood. Here, we assess whether predation by a key global bacterial consumer-protists-influences the temperature response of the community structure and function of a freshwater microbiome. To do so, we exposed microbial communities to two cosmopolitan protist species-Tetrahymena thermophila and Colpidium sp.-at two different temperatures, in a month-long microcosm experiment. While microbial biomass and respiration increased with temperature due to community shifts, these responses changed over time and in the presence of protists. Protists influenced microbial biomass and respiration rate through direct and indirect effects on bacterial community structure, and predator presence actually reduced microbial respiration at elevated temperature. Indicator species analyses showed that these predator effects were mostly determined by phylum-specific bacterial responses to protist density and cell size. Our study supports previous findings that temperature is an important driver of microbial communities but also demonstrates that the presence of a large predator can mediate these responses to warming.
Collapse
Affiliation(s)
- Jennifer D. Rocca
- Department of Biology, Duke University, Durham, NC, United States
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, NC, United States
| | - Marie Simonin
- Department of Biology, Duke University, Durham, NC, United States
- University of Angers, Institut Agro, Institut National de la Recherche Agronomique, L’Institut de Recherche en Horticulture et Semences, Structure Fédérative de Recherche Qualité et Santé du Végétal, Angers, France
| | - Jean P. Gibert
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
36
|
Uszko W, Huss M, Gårdmark A. Smaller species but larger stages: Warming effects on inter- and intraspecific community size structure. Ecology 2022; 103:e3699. [PMID: 35352827 PMCID: PMC9285768 DOI: 10.1002/ecy.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Global warming can alter size distributions of animal communities, but the contribution of size shifts within versus between species to such changes remains unknown. In particular, it is unclear if expected body size shrinkage in response to warming, observed at the interspecific level, can be used to infer similar size shifts within species. In this study, we compare warming effects on interspecific (relative species abundance) versus intraspecific (relative stage abundance) size structure of competing consumers by analyzing stage‐structured bioenergetic food web models consisting of one or two consumer species and two resources, parameterized for pelagic plankton. Varying composition and temperature and body size dependencies in these models, we predicted interspecific versus intraspecific size structure across temperature. We found that warming shifted community size structure toward dominance of smaller species, in line with empirical evidence summarized in our review of 136 literature studies. However, this result emerged only given a size–temperature interaction favoring small over large individuals in warm environments. In contrast, the same mechanism caused an intraspecific shift toward dominance of larger (adult) stages, reconciling disparate observations of size responses within and across zooplankton species in the literature. As the empirical evidence for warming‐driven stage shifts is scarce and equivocal, we call for more experimental studies on intraspecific size changes with warming. Understanding the global warming impacts on animal communities requires that we consider and quantify the relative importance of mechanisms concurrently shaping size distributions within and among species.
Collapse
Affiliation(s)
- Wojciech Uszko
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, Öregrund, Sweden
| | - Magnus Huss
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, Öregrund, Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, Öregrund, Sweden
| |
Collapse
|
37
|
Schulhof MA, Van de Waal DB, Declerck SAJ, Shurin JB. Phytoplankton functional composition determines limitation by nutrients and grazers across a lake productivity gradient. Ecosphere 2022. [DOI: 10.1002/ecs2.4008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marika A. Schulhof
- Division of Biological Sciences Section of Ecology, Behavior & Evolution, University of California San Diego La Jolla California USA
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Steven A. J. Declerck
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Laboratory of Aquatic Ecology Evolution and Conservation, KU Leuven Leuven Belgium
| | - Jonathan B. Shurin
- Division of Biological Sciences Section of Ecology, Behavior & Evolution, University of California San Diego La Jolla California USA
| |
Collapse
|
38
|
Gupta A, Furrer R, Petchey OL. Simultaneously estimating food web connectance and structure with uncertainty. Ecol Evol 2022; 12:e8643. [PMID: 35342563 PMCID: PMC8928887 DOI: 10.1002/ece3.8643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
Food web models explain and predict the trophic interactions in a food web, and they can infer missing interactions among the organisms. The allometric diet breadth model (ADBM) is a food web model based on the foraging theory. In the ADBM, the foraging parameters are allometrically scaled to body sizes of predators and prey. In Petchey et al. (Proceedings of the National Academy of Sciences, 2008; 105: 4191), the parameterization of the ADBM had two limitations: (a) the model parameters were point estimates and (b) food web connectance was not estimated.The novelty of our current approach is: (a) We consider multiple predictions from the ADBM by parameterizing it with approximate Bayesian computation, to estimate parameter distributions and not point estimates. (b) Connectance emerges from the parameterization, by measuring model fit using the true skill statistic, which takes into account prediction of both the presences and absences of links.We fit the ADBM using approximate Bayesian computation to 12 observed food webs from a wide variety of ecosystems. Estimated connectance was consistently greater than previously found. In some of the food webs, considerable variation in estimated parameter distributions occurred and resulted in considerable variation (i.e., uncertainty) in predicted food web structure.These results lend weight to the possibility that the observed food web data is missing some trophic links that do actually occur. It also seems likely that the ADBM likely predicts some links that do not exist. The latter could be addressed by accounting in the ADBM for additional traits other than body size. Further work could also address the significance of uncertainty in parameter estimates for predicted food web responses to environmental change.
Collapse
Affiliation(s)
- Anubhav Gupta
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Reinhard Furrer
- Department of Mathematics and Department of Computational ScienceUniversity of ZurichZurichSwitzerland
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
39
|
Polazzo F, Roth SK, Hermann M, Mangold‐Döring A, Rico A, Sobek A, Van den Brink PJ, Jackson M. Combined effects of heatwaves and micropollutants on freshwater ecosystems: Towards an integrated assessment of extreme events in multiple stressors research. GLOBAL CHANGE BIOLOGY 2022; 28:1248-1267. [PMID: 34735747 PMCID: PMC9298819 DOI: 10.1111/gcb.15971] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 05/11/2023]
Abstract
Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
| | - Sabrina K. Roth
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Annika Mangold‐Döring
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Anna Sobek
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Paul J. Van den Brink
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
- Wageningen Environmental ResearchWageningenThe Netherlands
| | | |
Collapse
|
40
|
Effects of Habitat-Specific Primary Production on Fish Size, Biomass, and Production in Northern Oligotrophic Lakes. Ecosystems 2022. [DOI: 10.1007/s10021-021-00733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractEcological theory predicts that the relative distribution of primary production across habitats influence fish size structure and biomass production. In this study, we assessed individual, population, and community-level consequences for brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) of variation in estimated habitat specific (benthic and pelagic) and total whole lake (GPPwhole) gross primary production in 27 northern oligotrophic lakes. We found that higher contribution of benthic primary production to GPPwhole was associated with higher community biomass and larger maximum and mean sizes of fish. At the population level, species-specific responses differed. Increased benthic primary production (GPPBenthic) correlated to higher population biomass of brown trout regardless of being alone or in sympatry, while Arctic char responded positively to pelagic primary production (GPPPelagic) in sympatric populations. In sympatric lakes, the maximum size of both species was positively related to both GPPBenthic and the benthic contribution to GPPWhole. In allopatric lakes, brown trout mean and maximum size and Arctic char mean size were positively related to the benthic proportion of GPPWhole. Our results highlight the importance of light-controlled benthic primary production for fish biomass production in oligotrophic northern lakes. Our results further suggest that consequences of ontogenetic asymmetry and niche shifts may cause the distribution of primary production across habitats to be more important than the total ecosystem primary production for fish size, population biomass, and production. Awareness of the relationships between light availability and asymmetric resource production favoring large fish and fish production may allow for cost-efficient and more informed management actions in northern oligotrophic lakes.
Collapse
|
41
|
Schuster JM, Kurt Gamperl A, Gagnon P, Bates AE. Distinct realized physiologies in green sea urchin ( Strongylocentrotus droebachiensis) populations from barren and kelp habitats. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Overgrazing of habitat-forming kelps by sea urchins is reshaping reef seascapes in many temperate regions. Loss of kelp, in particular as a food source, may alter individual consumer physiology, which in turn may impair their ability to respond to climate warming. Here, we measured the temperature dependence of absolute and mass-independent oxygen consumption ([Formula: see text]) using two different exposure protocols (acute exposure and temperature “ramping”), as proxies of realized physiology, between green sea urchin ( Strongylocentrotus droebachiensis) populations from neighbouring barren and kelp habitats. Sea urchins from kelp habitats consumed 8%–78% more oxygen than sea urchins from barrens (across the range of temperatures tested (4–32 °C)) and had higher maximum [Formula: see text] values (by 26%). This was in part because kelp urchins typically had greater body masses. However, higher mass-independent [Formula: see text] values of kelp urchins suggest metabolic plasticity in response to habitat per se. In addition, the [Formula: see text] of sea urchins from kelp habitats was less sensitive to increases in temperature. We conclude that sea urchins from barren and kelp habitats of comparable body mass represent different energetic units. This highlights that habitat type can drive population-level variation that may shape urchins activities and environmental impact. Such variation should be integrated into energy-based models.
Collapse
Affiliation(s)
- Jasmin M. Schuster
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, Newfoundland & Labrador, Canada
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, Newfoundland & Labrador, Canada
| | - Patrick Gagnon
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, Newfoundland & Labrador, Canada
| | - Amanda E. Bates
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, Newfoundland & Labrador, Canada
| |
Collapse
|
42
|
Thunell V, Lindmark M, Huss M, Gårdmark A. Effects of Warming on Intraguild Predator Communities with Ontogenetic Diet Shifts. Am Nat 2021; 198:706-718. [PMID: 34762572 DOI: 10.1086/716927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSpecies interactions mediate how warming affects community composition via individual growth and population size structure. While predictions on how warming affects composition of size- or stage-structured communities have so far focused on linear (food chain) communities, mixed competition-predation interactions, such as intraguild predation, are common. Intraguild predation often results from changes in diet over ontogeny ("ontogenetic diet shifts") and strongly affects community composition and dynamics. Here, we study how warming affects a community of intraguild predators with ontogenetic diet shifts, consumers, and shared prey by analyzing a stage-structured bioenergetics multispecies model with temperature- and body size-dependent individual-level rates. We find that warming can strengthen competition and decrease predation, leading to a loss of a cultivation mechanism (the feedback between predation on and competition with consumers exerted by predators) and ultimately predator collapse. Furthermore, we show that the effect of warming on community composition depends on the extent of the ontogenetic diet shift and that warming can cause a sequence of community reconfigurations in species with partial diet shifts. Our findings contrast previous predictions concerning individual growth of predators and the mechanisms behind predator loss in warmer environments and highlight how feedbacks between temperature and intraspecific size structure are important for understanding such effects on community composition.
Collapse
|
43
|
Paul C, Sommer U, Matthiessen B. Composition and Dominance of Edible and Inedible Phytoplankton Predict Responses of Baltic Sea Summer Communities to Elevated Temperature and CO 2. Microorganisms 2021; 9:microorganisms9112294. [PMID: 34835420 PMCID: PMC8621663 DOI: 10.3390/microorganisms9112294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Previous studies with Baltic Sea phytoplankton combining elevated seawater temperature with CO2 revealed the importance of size trait-based analyses, in particular dividing the plankton into edible (>5 and <100 µm) and inedible (<5 and >100 µm) size classes for mesozoopankton grazers. While the edible phytoplankton responded predominantly negative to warming and the inedible group stayed unaffected or increased, independent from edibility most phytoplankton groups gained from CO2. Because the ratio between edible and inedible taxa changes profoundly over seasons, we investigated if community responses can be predicted according to the prevailing composition of edible and inedible groups. We experimentally explored the combined effects of elevated temperatures and CO2 concentrations on a late-summer Baltic Sea community. Total phytoplankton significantly increased in response to elevated CO2 in particular in combination with temperature, driven by a significant gain of the inedible <5 µm fraction and large filamentous cyanobacteria. Large flagellates disappeared. The edible group was low as usual in summer and decreased with both factors due to enhanced copepod grazing and overall decline of small flagellates. Our results emphasize that the responses of summer communities are complex, but can be predicted by the composition and dominance of size classes and groups.
Collapse
|
44
|
Nunes LT, Barneche DR, Lastrucci NS, Fraga AA, Nunes JACC, Ferreira CEL, Floeter SR. Predicting the effects of body size, temperature and diet on animal feeding rates. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lucas T. Nunes
- Marine Macroecology and Biogeography Lab Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Santa Catarina Brazil
| | - Diego R. Barneche
- Australian Institute of Marine Science Crawley WA Australia
- Oceans InstituteThe University of Western Australia Crawley WA Australia
| | - Naomi S. Lastrucci
- Marine Macroecology and Biogeography Lab Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Santa Catarina Brazil
| | - Alana A. Fraga
- Marine Macroecology and Biogeography Lab Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Santa Catarina Brazil
| | - José A. C. C. Nunes
- Laboratório de Ecologia Bentônica Universidade Federal da Bahia Salvador Brazil
| | - Carlos E. L. Ferreira
- Reef Systems Ecology and Conservation Lab Departamento de Biologia Marinha Universidade Federal Fluminense Niterói Rio de Janeiro Brazil
| | - Sergio R. Floeter
- Marine Macroecology and Biogeography Lab Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Santa Catarina Brazil
| |
Collapse
|
45
|
Walker JB, Grosholz ED, Long JD. Predicting burrowing crab impacts on salt marsh plants. Ecosphere 2021. [DOI: 10.1002/ecs2.3803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Janet B. Walker
- Biology Department San Diego State University 5500 Campanile Drive San Diego California 92182 USA
- Department of Environmental Science and Policy University of California, Davis One Shields Avenue Davis California 95616 USA
- Southern California Coastal Water Research Project 3535 Harbor Blvd, Suite 110 Costa Mesa California 92626 USA
| | - Edwin D. Grosholz
- Department of Environmental Science and Policy University of California, Davis One Shields Avenue Davis California 95616 USA
| | - Jeremy D. Long
- Biology Department San Diego State University 5500 Campanile Drive San Diego California 92182 USA
| |
Collapse
|
46
|
Synodinos AD, Haegeman B, Sentis A, Montoya JM. Theory of temperature-dependent consumer-resource interactions. Ecol Lett 2021; 24:1539-1555. [PMID: 34120390 PMCID: PMC7614043 DOI: 10.1111/ele.13780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 04/19/2021] [Indexed: 01/16/2023]
Abstract
Changes in temperature affect consumer-resource interactions, which underpin the functioning of ecosystems. However, existing studies report contrasting predictions regarding the impacts of warming on biological rates and community dynamics. To improve prediction accuracy and comparability, we develop an approach that combines sensitivity analysis and aggregate parameters. The former determines which biological parameters impact the community most strongly. The use of aggregate parameters (i.e., maximal energetic efficiency, ρ, and interaction strength, κ), that combine multiple biological parameters, increases explanatory power and reduces the complexity of theoretical analyses. We illustrate the approach using empirically derived thermal dependence curves of biological rates and applying it to consumer-resource biomass ratio and community stability. Based on our analyses, we generate four predictions: (1) resource growth rate regulates biomass distributions at mild temperatures, (2) interaction strength alone determines the thermal boundaries of the community, (3) warming destabilises dynamics at low and mild temperatures only and (4) interactions strength must decrease faster than maximal energetic efficiency for warming to stabilise dynamics. We argue for the potential benefits of directly working with the aggregate parameters to increase the accuracy of predictions on warming impacts on food webs and promote cross-system comparisons.
Collapse
Affiliation(s)
| | - Bart Haegeman
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Arnaud Sentis
- INRAE, Aix Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - José M. Montoya
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| |
Collapse
|
47
|
Moss JB, While GM. The thermal environment as a moderator of social evolution. Biol Rev Camb Philos Soc 2021; 96:2890-2910. [PMID: 34309173 DOI: 10.1111/brv.12784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
Animal sociality plays a crucial organisational role in evolution. As a result, understanding the factors that promote the emergence, maintenance, and diversification of animal societies is of great interest to biologists. Climate is among the foremost ecological factors implicated in evolutionary transitions in social organisation, but we are only beginning to unravel the possible mechanisms and specific climatic variables that underlie these associations. Ambient temperature is a key abiotic factor shaping the spatio-temporal distribution of individuals and has a particularly strong influence on behaviour. Whether such effects play a broader role in social evolution remains to be seen. In this review, we develop a conceptual framework for understanding how thermal effects integrate into pathways that mediate the opportunities, nature, and context of social interactions. We then implement this framework to discuss the capacity for temperature to initiate organisational changes across three broad categories of social evolution: group formation, group maintenance, and group elaboration. For each category, we focus on pivotal traits likely to have underpinned key social transitions and explore the potential for temperature to affect changes in these traits by leveraging empirical examples from the literature on thermal and behavioural ecology. Finally, we discuss research directions that should be prioritised to understand the potentially constructive and/or destructive effects of future warming on the origins, maintenance, and diversification of animal societies.
Collapse
Affiliation(s)
- Jeanette B Moss
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| | - Geoffrey M While
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| |
Collapse
|
48
|
Cabrerizo MJ, Marañón E. Geographical and Seasonal Thermal Sensitivity of Grazing Pressure by Microzooplankton in Contrasting Marine Ecosystems. Front Microbiol 2021; 12:679863. [PMID: 34290682 PMCID: PMC8287633 DOI: 10.3389/fmicb.2021.679863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
Grazing pressure, estimated as the ratio between microzooplankton grazing and phytoplankton growth rates (g:μ), is a strong determinant of microbial food-web structure and element cycling in the upper ocean. It is generally accepted that g is more sensitive to temperature than μ, but it remains unknown how the thermal dependence (activation energy, Ea) of g:μ varies over spatial and temporal scales. To tackle this uncertainty, we used an extensive literature analysis obtaining 751 paired rate estimates of μ and g from dilution experiments performed throughout the world’s marine environments. On a geographical scale, we found a stimulatory effect of temperature in polar open-ocean (∼0.5 eV) and tropical coastal (∼0.2 eV) regions, and an inhibitory one in the remaining biomes (values between −0.1 and −0.4 eV). On a seasonal scale, the temperature effect on g:μ ratios was stimulatory, particularly in polar environments; however, the large variability existing between estimates resulted in non-significant differences among biomes. We observed that increases in nitrate availability stimulated the temperature dependence of grazing pressure (i.e., led to more positive Ea of g:μ) in open-ocean ecosystems and inhibited it in coastal ones, particularly in polar environments. The percentage of primary production grazed by microzooplankton (∼56%) was similar in all regions. Our results suggest that warming of surface ocean waters could exert a highly variable impact, in terms of both magnitude and direction (stimulation or inhibition), on microzooplankton grazing pressure in different ocean regions.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain.,Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Vigo, Spain
| | - Emilio Marañón
- Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain.,Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
49
|
Kozlov MV, Sokolova IV, Zverev V, Zvereva EL. Changes in plant collection practices from the 16th to 21st centuries: implications for the use of herbarium specimens in global change research. ANNALS OF BOTANY 2021; 127:865-873. [PMID: 33556168 PMCID: PMC8225282 DOI: 10.1093/aob/mcab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Herbaria were recently advertised as reliable sources of information regarding historical changes in plant traits and biotic interactions. To justify the use of herbaria in global change research, we asked whether the characteristics of herbarium specimens have changed during the past centuries and whether these changes were due to shifts in plant collection practices. METHODS We measured nine characteristics from 515 herbarium specimens of common European trees and large shrubs collected from 1558 to 2016. We asked botanists to rank these specimens by their scientific quality, and asked artists to rank these specimens by their beauty. KEY RESULTS Eight of 11 assessed characteristics of herbarium specimens changed significantly during the study period. The average number of leaves in plant specimens increased 3-fold, whereas the quality of specimen preparation decreased. Leaf size negatively correlated with leaf number in specimens in both among-species and within-species analyses. The proportion of herbarium sheets containing plant reproductive structures peaked in the 1850s. The scientific value of herbarium specimens increased until the 1700s, but then did not change, whereas their aesthetic value showed no systematic trends. CONCLUSIONS Our findings strongly support the hypothesis that many characteristics of herbarium specimens have changed systematically and substantially from the 16th to 21st centuries due to changes in plant collection and preservation practices. These changes may both create patterns which could be erroneously attributed to environmental changes and obscure historical trends in plant traits. The utmost care ought to be taken to guard against the possibility of misinterpretation of data obtained from herbarium specimens. We recommend that directional changes in characters of herbarium specimens which occurred during the past 150‒200 years, primarily in specimen size and in the presence of reproductive structures, are accounted for when searching for the effects of past environmental changes on plant traits.
Collapse
Affiliation(s)
| | - Irina V Sokolova
- Herbarium, V. L. Komarov Botanical Institute, Professora Popova Str. 2, 197376, St. Petersburg, Russia
| | - Vitali Zverev
- Department of Biology, University of Turku, Turku, Finland
| | | |
Collapse
|
50
|
Wu X, Liu H, Ru Z, Tu G, Xing L, Ding Y. Meta-analysis of the response of marine phytoplankton to nutrient addition and seawater warming. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105294. [PMID: 33770674 DOI: 10.1016/j.marenvres.2021.105294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
As an indispensable part of the marine ecosystem, phytoplankton are important prey for zooplankton and various marine animals with important commercial value. The influence of seawater warming and eutrophication on phytoplankton communities is well known, but few studies have explained the effects of the interaction between temperature and nutrients on marine phytoplankton. Through meta-analysis and meta-regression, the phytoplankton responses to the effects of nutrient addition and seawater warming were evaluated in this study. Nitrogen (N) addition led to an increase in phytoplankton biomass, while phosphorus (P) had no significant effect on phytoplankton biomass. However, this result may be biased by the uneven distribution of the research area. N limitation is widespread in the areas where these collected studies were conducted, including many parts of North and South Atlantic and West Pacific Oceans. The key limiting nutrient in other areas lacking corresponding experiments, however, remain unclear. The effect of seawater warming was not significant, which indicates the uncertainty about the effect of temperature on phytoplankton. The results of ANOVA show that nutrient addition and seawater warming had similar effects in various marine habitats (coastal regions, estuaries and open seas), while salinity could have caused the difference in the N effects among the three habitats. Furthermore, our results showed that the impact of temperature depends on nutrient conditions, especially N status, which has rarely been considered before. This result demonstrated the importance of evaluating nutrient limitation patterns when studying climate warming. The impact of rising temperatures may need to be reevaluated because N limitation is common.
Collapse
Affiliation(s)
- Xuerong Wu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Haifei Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhiming Ru
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Gangqin Tu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Liming Xing
- School of Environment, Beijing Normal University, Beijing, 100875, China; Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yu Ding
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|