1
|
Mukherjee SD, Suryavanshi M, Knight J, Lange D, Miller AW. Metagenomic and phylogenetic analyses reveal gene-level selection constrained by bacterial phylogeny, surrounding oxalate metabolism in the gut microbiota. mSphere 2025:e0091324. [PMID: 40358144 DOI: 10.1128/msphere.00913-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/09/2025] [Indexed: 05/15/2025] Open
Abstract
The gut microbiota is critical for neutralizing dietary toxins. Oxalate is a toxin commonly produced by plants to deter herbivory and is widely consumed in the human diet. Excess levels of systemic or urinary oxalate increase risk of multiple urologic and cardiometabolic diseases. The current study employed multiple amplicon-based and shotgun metagenomic methodologies, alongside comparative phylogenetic analyses, to interrogate evolutionary radiation surrounding microbial oxalate degradation within the human gut microbiome. In conservative genome-based estimates, over 30% of gut microbial species harbored at least one oxalate-handling gene, with the specific pathways used dependent on bacterial phylum. Co-occurrence analyses revealed interactions between specialist genes that can metabolize oxalate or its by-products, but not multi-functional genes that can act in more than one oxalate-related pathway. Specialization was rare at the genome level. Amplicon-based metagenomic sequencing of the oxalate-degrading gene, formyl-CoA transferase (frc), coupled with molecular clock phylogenetic analyses are indicative of rapid evolutionary divergence, constrained by phylum. This was corroborated by paired analyses of non-synonymous to synonymous substitutions (dN/dS ratios), which pointed toward neutral to positive selection. Sequence similarity network analyses of frc sequences suggest extensive horizontal gene transferring has occurred with the frc gene, which may have facilitated rapid divergence. The frc gene was primarily allocated to the Pseudomonodota phylum, particularly the Bradyrhizobium genus, which is a species capable of utilizing oxalate as a sole carbon and energy source. Collectively evidence provides strong support that, for oxalate metabolism, evolutionary selection occurs at the gene level, through horizontal gene transfer, rather than at the species level.IMPORTANCEA critical function of the gut microbiota is to neutralize dietary toxins, such as oxalate, which is highly prevalent in plant-based foods and is not degraded by host enzymes. However, little is known about the co-evolutionary patterns of plant toxins and the mammalian gut microbiota, which are expected to exhibit features of an evolutionary arms race. In the current work, we present molecular evidence that microbial genes for oxalate degradation are highly prevalent in humans, potentially driven by extensive horizontal gene transfer events. Phylogenetic analyses reveal that oxalate-degrading genes are under a positive selection pressure and have historically undergone rapid diversification events, which has led to diverse ecological strategies for handling oxalate by gut bacteria. Collectively, data shed light on potential evolutionary relationships between the diet and the gut microbiota that occur relatively independently of the mammalian host.
Collapse
Affiliation(s)
- Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dirk Lange
- The Stone Centre at VGH, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron W Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Murtskhvaladze M, Ninua L, Budagashvili N, Tevdoradze E, Gurgenidze Z, Kotorashvili A, Kotaria N, Gavashelishvili A, Javakhishvili Z. Tracheal and cloacal bacterial diversity of red listed Eastern Imperial Eagle ( Aquila heliaca). Front Microbiol 2025; 16:1477032. [PMID: 40415931 PMCID: PMC12098392 DOI: 10.3389/fmicb.2025.1477032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/16/2025] [Indexed: 05/27/2025] Open
Abstract
This study aimed to improve knowledge of raptor microbiomes by providing the first description of tracheal and cloacal bacterial diversity of Eastern Imperial Eagles (Aquila heliaca). To date, only few studies are available and they are carried out mainly on captive birds. The Eastern Imperial Eagle is species of significant conservation concern and, therefore, characterization microbiota contributes valuable information to the field of avian microbiology and aids in conservation efforts for this threatened species, moreover, identification of avian and human pathogens within microbial communities and evaluation of potential threats to birds, humans, and other species are crucial for sustainably balancing the wellbeing of ecosystems, 3,500 OTUs were identified from each sample supported by ∼2.8 Million sequence reads. The tracheal and cloacal microbiomes were dominated by Gammaproteobacteria (67.5%), Bacilli (43.8%), and Negativicutes (22.0%). We detected dissimilarities between cloacal (unique 440 OTUs) and tracheal (337 unique OTUs) samples, and significant evidence of moderate positive monotonic relationship between cloacal and tracheal bacterial communities. No significant differences between individuals from different nests. Aquila heliaca can serve as an indicator of presence of bacterial species in its respective habitats. Efforts aiming at protection of red-listed birds may not presently prioritize microbiome considerations but integrating microbiome research into conservation strategies could yield significant benefits.
Collapse
Affiliation(s)
- Marine Murtskhvaladze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
- R. L. Lugar Center, L. Sakvarelidze National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Levan Ninua
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | | | - Ekaterine Tevdoradze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | | | - Adam Kotorashvili
- R. L. Lugar Center, L. Sakvarelidze National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Nato Kotaria
- R. L. Lugar Center, L. Sakvarelidze National Center for Disease Control and Public Health, Tbilisi, Georgia
| | | | - Zurab Javakhishvili
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
3
|
Singh S, Saini V, Jha HC. The role of secondary genomes in neurodevelopment and co-evolutionary dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:245-297. [PMID: 40414634 DOI: 10.1016/bs.irn.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
This chapter examines how human biology and microbial "secondary genomes" have co-evolved to shape neurodevelopment through the gut-brain axis. Microbial communities generate metabolites that cross blood-brain and placental barriers, influencing synaptogenesis, immune responses, and neural circuit formation. Simultaneously, Human Accelerated Regions (HARs) and Endogenous Retroviruses (ERVs) modulate gene expression and immune pathways, determining which microbes thrive in the gut and impacting brain maturation. These factors converge to form a dynamic host-microbe dialogue with significant consequences for neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and schizophrenia. Building on evolutionary perspectives, the chapter elucidates how genetic and immune mechanisms orchestrate beneficial and pathological host-microbe interactions in early brain development. It then explores therapeutic strategies, such as probiotics, prebiotics, fecal microbiota transplantation, and CRISPR-driven microbial engineering, targeting gut dysbiosis to mitigate or prevent neurodevelopmental dysfunctions. Furthermore, innovative organ-on-chip models reveal mechanistic insights under physiologically relevant conditions, offering a translational bridge between in vitro experiments and clinical applications. As the field continues to evolve, this work underscores the translational potential of manipulating the microbiome to optimize neurological outcomes. It enriches our understanding of the intricate evolutionary interplay between host genomes and the microbial world.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| | - Vaishali Saini
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
4
|
Maillet L, Norest M, Kautsky A, Geraci A, Oddo E, Troia A, Guillerm‐Erckelboudt A, Falentin C, Rousseau‐Gueutin M, Chèvre A, Istace B, Cruaud C, Belser C, Aury J, Schicchi R, Frachon L, Bartoli C. Plant Genetic Bases Associated With Microbiota Descriptors Shed Light Into a Novel Holobiont Generalist Genes Theory. Environ Microbiol 2025; 27:e70108. [PMID: 40375625 PMCID: PMC12082060 DOI: 10.1111/1462-2920.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025]
Abstract
Plants as animals are associated with a cortege of microbes influencing their health, fitness and evolution. Scientists refer to all living organisms as holobionts, complex genetic units that coevolve simultaneously. This is what has been recently proposed as the hologenome theory. This exciting theory has important implications on animal and plant health; however, it still needs consistent proof to be validated. Indeed, holobionts are still poorly studied in their natural habitats where coevolution processes occur. Compared to animals, wild plant populations are an excellent model to explore the hologenome theory. These sessile holobionts have coevolved with their microbiota for decades, and natural selection and adaptive processes acting on wild plants are likely to regulate the plant-microbe interactions. Here, we conducted a microbiota survey, plant genome sequencing and genome-environmental analysis (GEA) of 26 natural populations of the plant species Brassica rapa. We collected plants over two seasons in Italy and France and analysed the root and rhizosphere microbiota. When conducting GEA, we evidenced neat peaks of association correlating with both fungal and bacterial microbiota. Surprisingly, we found 13 common genes between fungal and bacterial diversity descriptors that we referred to under the name of holobiont generalist genes (HGGs).
Collapse
Affiliation(s)
- Loeiz Maillet
- IGEPP, INRAE, Institut AgroUniversité de RennesLe RheuFrance
| | - Manon Norest
- IGEPP, INRAE, Institut AgroUniversité de RennesLe RheuFrance
| | - Adam Kautsky
- IGEPP, INRAE, Institut AgroUniversité de RennesLe RheuFrance
| | - Anna Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)Università Degli Studi di PalermoPalermoItaly
| | - Elisabetta Oddo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)Università Degli Studi di PalermoPalermoItaly
| | - Angelo Troia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)Università Degli Studi di PalermoPalermoItaly
| | | | - Cyril Falentin
- IGEPP, INRAE, Institut AgroUniversité de RennesLe RheuFrance
| | | | | | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François‐Jacob, Commissariat à L'energie Atomique (CEA)Université Paris‐SaclayEvryFrance
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
| | - Jean‐Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
| | - Rosario Schicchi
- Department of Agricultural, Food and Forest Sciences (SAAF)Università Degli Studi di PalermoPalermoItaly
| | - Léa Frachon
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZürichSwitzerland
- Agroécologie, INRAEInstitut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonFrance
| | - Claudia Bartoli
- IGEPP, INRAE, Institut AgroUniversité de RennesLe RheuFrance
- LIPME, INRAE, CNRSUniversité de ToulouseCastanet‐TolosanFrance
| |
Collapse
|
5
|
Greene LK, Andriatiavina T, Foss ED, Andriantsalohimisantatra A, Rivoharison TV, Rakotoarison F, Randriamboavonjy T, Yoder AD, Ratsoavina F, Blanco MB. The gut microbiome of Madagascar's lemurs from forest fragments in the central highlands. Primates 2025; 66:313-325. [PMID: 39976822 DOI: 10.1007/s10329-025-01182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/03/2025] [Indexed: 04/23/2025]
Abstract
The gut microbiome is now understood to play essential roles in host nutrition and health and has become a dominant research focus in primatology. Over the past decade, research has clarified the evolutionary traits that govern gut microbiome structure across species and the ecological traits that further influence consortia within them. Nevertheless, we stand to gain resolution by sampling hosts in understudied habitats. We focus on the lemurs of Madagascar's central highlands. Madagascar's highlands have a deep history as heterogeneous grassland-forest mosaics, but due to significant anthropogenic modification, have long been overlooked as lemur habitat. We collected fecal samples from Verreaux's sifakas (Propithecus verreauxi), common brown lemurs (Eulemur fulvus), and Goodman's mouse lemurs (Microcebus lehilahytsara) inhabiting two protected areas in the highlands and used amplicon sequencing to determine gut microbiome diversity and membership. As expected, the lemurs harbored distinct gut consortia tuned to their feeding strategies. Mouse lemurs harbored abundant Bifidobacterium and Alloprevotella that are implicated in gum metabolism, sifakas harbored abundant Lachnospiraceae that are implicated in leaf-fiber metabolism, and brown lemurs harbored diverse consortia with abundant WCBH1-41 that could be associated with frugivory in harsh seasons and habitats. Within brown lemurs, a suite of bacteria varied between seed-packed and leaf-packed feces, a proxy for dietary intakes, collected from the same group over days. Our results underscore the evolutionary and ecological factors that govern primate gut microbiomes. More broadly, we showcase the forests of Madagascar's central highlands as rich habitat for future research of lemur ecology and evolution.
Collapse
Affiliation(s)
- Lydia K Greene
- Department of Biology, Duke University, Durham, NC, USA.
- Duke Lemur Center, Duke University, Durham, NC, USA.
| | - Tsinjo Andriatiavina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Elissa D Foss
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | | | | | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | - Fanomezana Ratsoavina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Marina B Blanco
- Department of Biology, Duke University, Durham, NC, USA
- Duke Lemur Center, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Laguerre H, Noël C, Jégou C, Fleury Y, Le Chevalier P. The Cœlomic Microbiota Among Three Echinoderms: The Black Sea Cucumber Holothuria forskali, the Sea Star Marthasterias glacialis, and the Sea Urchin Sphaerechinus granularis. BIOLOGY 2025; 14:430. [PMID: 40282295 PMCID: PMC12024532 DOI: 10.3390/biology14040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
In this study, the bacterial communities of the cœlomic microbiota were characterized in three Echinoderms: the deposit feeder sea Cucumber Holothuria forskali, the herbivorous sea Urchin Sphaerechinus granularis, and the carnivorous sea Star Marthasterias glacialis. Samples were collected from the same habitat in the Glénan Archipelago (Brittany, France) at different times for 2 years. The cœlomic microbiota were analyzed by targeted metagenomic with V4-16S metabarcoding and by a culturable approach with the isolation of strains and antimicrobial activity assays. Most of the OTUs of the cœlomic microbiota were affiliated with the phylum Proteobacteria and, notably, five orders: Burkholderiales, Flavobacteriales, Alteromonadales, Vibrionales and Pseudomonadales. Significant differences were observed regarding richness, biodiversity and composition between species and sampling dates. They could be explained by sub-abundant taxa that represented the global diversity. Cœlomic microbiota also revealed shared and unshared bacterial communities, validating a potential "specific" microbiota among the three Echinoderm species. Moreover, significant variations of the microbiota occurred among the sampling dates, suggesting a plasticity and, thus, a potential selection of these microbiota. Finally, out of the 831 bacterial strains isolated from culturable microbiota, 20 strains exhibited antibacterial activities, most of them assigned to the genera Shewanella, Pseudoalteromonas and Vibrio.
Collapse
Affiliation(s)
- Hélène Laguerre
- Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, University of Brest, F-29000 Quimper, France; (H.L.); (C.J.)
| | - Cyril Noël
- IFREMER-IRSI-Service de Bioinformatique (SeBiMER), 1625 Route de Sainte-Anne, F-29280 Plouzané, France;
| | - Camille Jégou
- Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, University of Brest, F-29000 Quimper, France; (H.L.); (C.J.)
| | - Yannick Fleury
- Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, University of Brest, F-29000 Quimper, France; (H.L.); (C.J.)
| | - Patrick Le Chevalier
- Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, University of Brest, F-29000 Quimper, France; (H.L.); (C.J.)
| |
Collapse
|
7
|
Pandey BK, George TS, Cooper HV, Sturrock CJ, Bennett T, Bennett MJ. Root RADAR: how 'rhizocrine' signals allow roots to detect and respond to their soil environment and stresses. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1500-1509. [PMID: 39707161 PMCID: PMC11981895 DOI: 10.1093/jxb/erae490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Agricultural intensification coupled with changing climate are causing soils to become increasingly vulnerable to stresses such as drought, soil erosion, and compaction. The mechanisms by which roots detect and respond to soil stresses remain poorly understood. Recent breakthroughs show that roots release volatile and soluble hormone signals into the surrounding soil, then monitor their levels to sense soil stresses. Our review discusses how hormones can act 'outside the plant' as 'rhizocrine' signals that function to improve plant resilience to different soil stresses. We also propose a novel signalling paradigm which we term 'root RADAR' where 'rhizocrine' levels change in soil in response to environmental stresses, feeding back to roots and triggering adaptive responses.
Collapse
Affiliation(s)
- Bipin K Pandey
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | | - Hannah V Cooper
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Craig J Sturrock
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Malcolm J Bennett
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
8
|
Salazar A, Mitri S. Can a microbial community become an evolutionary individual? Curr Opin Microbiol 2025; 84:102596. [PMID: 39983253 DOI: 10.1016/j.mib.2025.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
Microbial communities provide crucial services for human well-being, driving an interest in designing and controlling them towards optimised or novel functions. Unfortunately, promising strategies such as community breeding - sometimes referred to as 'directed evolution' or 'artificial community selection' - have shown limited success. A key issue is that microbial communities do not reliably exhibit heritable variation, limiting their capacity for adaptive evolution. In other words, microbial communities are not evolutionary individuals. Here, we provide an overview of the literature on evolutionary transitions in individuality and, with insights from paradigmatic organisms, build a multidimensional space in which the individuality of a multispecies community is characterised by three ecological traits: positive interactions, functional integration, and entrenchment. We then place microbial communities within this individuality space, explore how they can be directed toward increased individuality, and discuss how this perspective can help improve our approach to community breeding.
Collapse
Affiliation(s)
- Afra Salazar
- Department of Fundamental Microbiology, University of Lausanne, Lausanne 1015, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
9
|
Kamitaki N, Handsaker RE, Hujoel MLA, Mukamel RE, Usher CL, McCarroll SA, Loh PR. Human and bacterial genetic variation shape oral microbiomes and health. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25324952. [PMID: 40236410 PMCID: PMC11998847 DOI: 10.1101/2025.03.31.25324952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
It is largely unknown which human genetic variants shape a person's oral microbiome and potentially promote its dysbiosis. We characterized the oral microbiomes of 12,519 people by analyzing whole-genome sequencing reads from previously sequenced saliva-derived DNA. Human genetic variation at 11 loci (10 novel) associated with differences in oral microbiome composition. Nearly all of these associations implicated candidate genes with readily interpretable functions, several related to carbohydrate availability. The strongest association ( p =3.0x10 -188 ) involved the common FUT2 W154X loss-of-function variant, which associated with the abundances of 32 bacterial species. Human host genetics also appeared to powerfully shape within-species genetic variation in oral bacteria. Variation at the 11 human loci associated with variation in gene dosages in 68 regions of bacterial genomes. Several such associations implicated interactions of bacterial proteins with histo-blood group antigens presented on host mucosal cell surfaces and salivary proteins. Common, multi-allelic copy-number variation of AMY1 , which encodes salivary amylase, associated with oral microbiome composition ( p =1.5x10 -53 ) and with dentures use in UK Biobank ( p =5.9x10 -35 , n=418k), suggesting that amylase abundance impacts oral health by influencing the oral microbiome. Two other microbiome composition-associated loci, FUT2 and PITX1 , also significantly associated with dentures risk, collectively nominating numerous microbial taxa that might contribute to tooth decay.
Collapse
|
10
|
Trukovich JJ. From reactions to reflection: A recursive framework for the evolution of cognition and complexity. Biosystems 2025; 250:105408. [PMID: 39892697 DOI: 10.1016/j.biosystems.2025.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
This paper presents a comprehensive framework that traces the evolution of consciousness through a continuum of recursive processes spanning reaction, temporogenesis, symbiogenesis, and cognogenesis. By integrating biological cooperation, temporal structuring, and self-referential processing, our model provides a novel perspective on how complexity emerges and scales across evolutionary time. Reaction is established as the foundational mechanism that enables adaptive responses to environmental stimuli, which, through recursive refinement, transitions into temporogenesis-the synchronization of internal processes with external temporal rhythms. Symbiogenesis further enhances this process by fostering cooperative interactions at multiple biological levels, facilitating the emergence of higher-order cognitive functions. Cognogenesis represents the culmination of these recursive processes, where self-awareness and intentionality arise through iterative feedback loops. Our framework offers a biologically grounded pathway to addressing the "hard problem" of consciousness by proposing that subjective experience emerges as a result of progressively complex recursive interactions rather than as a static or isolated phenomenon. In comparing our approach with established theories such as Integrated Information Theory, Global Workspace Theory, and enactive cognition, we highlight its unique contributions in situating consciousness within a broader evolutionary and biological context. This work aims to provide a foundational model that bridges the gap between reaction and reflection, offering empirical avenues for further exploration in neuroscience, evolutionary biology, and artificial intelligence.
Collapse
|
11
|
Barnes CJ, Bahram M, Nicolaisen M, Gilbert MTP, Vestergård M. Microbiome selection and evolution within wild and domesticated plants. Trends Microbiol 2025; 33:447-458. [PMID: 39701859 DOI: 10.1016/j.tim.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Microbes are ubiquitously found across plant surfaces and even within their cells, forming the plant microbiome. Many of these microbes contribute to the functioning of the host and consequently affect its fitness. Therefore, in many contexts, including microbiome effects enables a better understanding of the phenotype of the plant rather than considering the genome alone. Changes in the microbiome composition are also associated with changes in the functioning of the host, and there has been considerable focus on how environmental variables regulate plant microbiomes. More recently, studies suggest that the host genome also preconditions the microbiome to the environment of the plant, and the microbiome is therefore subject to evolutionary forces. Here, we outline how plant microbiomes are governed by both environmental variables and evolutionary processes and how they can regulate plant health together.
Collapse
Affiliation(s)
- Christopher James Barnes
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark; Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark.
| | - Mo Bahram
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark; Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005, Tartu, Estonia
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| | - M Thomas P Gilbert
- Centre for Evolutionary Hologenomics, The Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, 4200, Denmark
| |
Collapse
|
12
|
Carrier TJ, Elder H, Macrander J, Dimond JL, Bingham BL, Reitzel AM. Symbiont-Mediated Metabolic Shift in the Sea Anemone Anthopleura elegantissima. Mol Ecol 2025; 34:e17722. [PMID: 40091861 PMCID: PMC11974494 DOI: 10.1111/mec.17722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Coral reefs and their photosynthetic algae form one of the most ecologically and economically impactful symbioses in the animal kingdom. The stability of this nutritional mutualism and this ecosystem is, however, at risk due to increasing sea surface temperatures that cause corals to expel their symbionts. Symbioses with these microeukaryotes have independently evolved multiple times, and non-coral cnidarians (e.g., sea anemones) serve as a valuable and insightful comparative system due to their ease of husbandry in the laboratory and their ability to shuffle different strains of their photosymbionts to acclimate to thermal conditions. This breadth of symbiont shuffling is exemplified by the sea anemone Anthopleura elegantissima , which naturally occurs in symbiosis with the dinoflagellate Breviolum muscatinei (formerly Symbiodinium) or the chlorophyte Elliptochloris marina as well as being aposymbiotic. Here, we assembled a draft genome and used multi-omics to characterise multiple physiological levels of each phenotype. We find that A. elegantissima has symbiont-specific transcriptional and metabolomic signatures, but a similar bacterial community dominated by a single Sphingomonas species that is commonly found in the cnidarian microbiome. Symbiosis with either eukaryotic symbiont resulted in differential gene expression and metabolic abundance for diverse processes spanning metabolism and immunity to reproduction and development, with some of these processes being unique to either symbiont. The ability to culture A. elegantissima with its phylogenetically divergent photosymbionts and perform experimental manipulations makes A. elegantissima another tractable sea anemone system to decode the symbiotic conversations of coral reef ecosystems and aid in wider conservation efforts.
Collapse
Affiliation(s)
- Tyler J. Carrier
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Center for Computational Intelligence to Predict Health and Environmental RisksUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Holland Elder
- Department of Integrative BiologyOregon State UniversityCorvallisORUSA
- Australian Institute of Marine ScienceTownsvilleAustralia
| | - Jason Macrander
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Biology DepartmentFlorida Southern CollegeLakelandFLUSA
| | - James L. Dimond
- Shannon Point Marine CenterWestern Washington UniversityAnacortesWAUSA
| | - Brian L. Bingham
- Shannon Point Marine CenterWestern Washington UniversityAnacortesWAUSA
- Department of Environmental SciencesWestern Washington UniversityBellinghamWAUSA
| | - Adam M. Reitzel
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Center for Computational Intelligence to Predict Health and Environmental RisksUniversity of North Carolina at CharlotteCharlotteNCUSA
| |
Collapse
|
13
|
Mannaa M, Park AR, Kim JC, Seo YS. Microbial allies recruited by Bacillus subtilis JCK-1398 to defend pine trees against pinewood nematode. Sci Rep 2025; 15:9670. [PMID: 40113967 PMCID: PMC11926234 DOI: 10.1038/s41598-025-94434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Pine wilt disease (PWD) is a devastating disease caused by the pinewood nematode (Bursaphelenchus xylophilus). Its substantial ecological disruption harms global forestry and poses serious economic challenges. Although previous research has demonstrated that Bacillus subtilis JCK-1398 has the potential to induce systemic resistance in pine trees, the ecological mechanisms underlying its biocontrol efficacy remain underexplored. This study investigated how JCK-1398 treatment influences rhizosphere- and nematode-associated microbial communities to mitigate PWD. Metabarcoding analyses revealed that JCK-1398 treatment increased the abundance of beneficial microbial taxa (e.g., Nocardioides and Mesorhizobium) in the rhizosphere microbiome. Concurrently, nematode-associated microbial communities became dominated by Pantoea, a genus with known nematicidal properties. Isolation and characterization of Pantoea dispersa BC11 confirmed that it significantly limits nematode viability. These findings highlight the multifaceted defense that JCK-1398 offers, not only inducing systemic resistance, but also orchestrating beneficial microbiome dynamics. This study emphasizes the potential of manipulating a microbial holobiont for eco-friendly and sustainable disease management. The ability of JCK-1398 to recruit and enhance microbial allies offers a novel framework for developing biocontrol agents, with implications for managing PWD and other plant-pathogen systems.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
- Institude of System Biology, Pusan National University, Busan, 46241, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Ae Ran Park
- JAN153 Biotech Incorporated, Gwangju, 61186, Republic of Korea
| | - Jin-Cheol Kim
- JAN153 Biotech Incorporated, Gwangju, 61186, Republic of Korea
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.
- Institude of System Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
14
|
Walling LK, Gamache MH, González-Pech RA, Harwood VJ, Ibrahim-Hashim A, Jung JH, Lewis DB, Margres MJ, McMinds R, Rasheed K, Reis F, van Riemsdijk I, Santiago-Alarcon D, Sarmiento C, Whelan CJ, Zalamea PC, Parkinson JE, Richards CL. Incorporating microbiome analyses can enhance conservation of threatened species and ecosystem functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178826. [PMID: 40054249 DOI: 10.1016/j.scitotenv.2025.178826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/09/2025] [Indexed: 03/17/2025]
Abstract
Conservation genomics is a rapidly growing subdiscipline of conservation biology that uses genome-wide information to inform management of biodiversity at all levels. Such efforts typically focus on species or systems of conservation interest, but rarely consider associated microbes. At least three major approaches have been used to study how microorganisms broadly contribute to conservation areas: (1) diversity surveys map out microbial species distribution patterns in a variety of hosts, natural environments or regions; (2) functional surveys associate microbial communities with factors of interest, such as host health, symbiotic interactions, environmental characteristics, ecosystem processes, and biological invasions; and (3) manipulative experiments examine the response of changes to microbial communities or determine the functional roles of specific microbes within hosts or communities by adding, removing, or genetically modifying microbes. In practice, multiple approaches are often applied simultaneously. The results from all three conservation genomics approaches can be used to help design practical interventions and improve management actions, some of which we highlight below. However, experimental manipulations allow for more robust causal inferences and should be the ultimate goal of future work. Here we discuss how further integration of microbial research of a host's microbiome and of free living microbes into conservation biology will be an essential advancement for conservation of charismatic organisms and ecosystem functions in light of ongoing global environmental change.
Collapse
Affiliation(s)
| | - Matthew H Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Raúl A González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Arig Ibrahim-Hashim
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Faculty of Education and Arts, Sohar University, Sohar, Oman
| | - Jun Hee Jung
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany
| | - David B Lewis
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Ryan McMinds
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Center for Global Health and Interdisciplinary Research (GHIDR), University of South Florida, Tampa, FL, USA; Northwest Indian Fisheries Commission
| | - Kiran Rasheed
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Frank Reis
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany
| | - Isolde van Riemsdijk
- Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany; Biodiversity and Evolution, Lund University, Lund, Sweden
| | | | - Carolina Sarmiento
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Christopher J Whelan
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Paul-Camilo Zalamea
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | | | - Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Plant Evolutionary Ecology Group, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Saad MJA, Santos A. The Microbiota and Evolution of Obesity. Endocr Rev 2025; 46:300-316. [PMID: 39673174 PMCID: PMC11894537 DOI: 10.1210/endrev/bnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique genetic makeup of different populations, and the influence of gut microbiome on host genetics.
Collapse
Affiliation(s)
- Mario J A Saad
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| |
Collapse
|
16
|
Ngando FJ, Tang H, Zhang X, Zhang X, Yang F, Shang Y, Cai J, Guo Y, Zhao L, Zhang C. Effects of Feeding Sources and Different Temperature Changes on the Gut Microbiome Structure of Chrysomya megacephala (Diptera: Calliphoridae). INSECTS 2025; 16:283. [PMID: 40266727 PMCID: PMC11943086 DOI: 10.3390/insects16030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 04/25/2025]
Abstract
Chrysomya megacephala (Diptera: Calliphoridae), commonly referred to as the oriental latrine fly, is a synanthropic blowfly species frequently associated with decomposing organic matter. This study sought to investigate the influence of various feeding substrates and temperature conditions, specifically constant temperatures of 15, 25, 35 °C, and variable temperatures averaging 23.31 °C, on the gut microbiome of C. megacephala. The microbiome analysis was conducted using the Illumina HiSeq platform for 16S rRNA gene sequencing in Changsha, China. Across all experimental conditions, the gut microbiome of C. megacephala yielded 1257 operational taxonomic units (OTUs), which were categorized into 26 phyla, 72 classes, 165 orders, 270 families, 516 genera, and 794 species. The study showed significant differences in the gut microbiome of C. megacephala between different feeding sources and temperature conditions across the lifespan. Low temperature had the potential to reduce the proportion abundance of bacterial communities in the gut microbiome, while high and variable temperature increased them. Metabolism was the main predicted function with diverse phenotypic characters in the gut microbiota of C. megacephala. The presence of diverse bacterial phenotypes in the gut microbiome of C. megacephala highlights its significant interest for medicine and offers promising applications in industry and agriculture.
Collapse
Affiliation(s)
- Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
| | - Haojie Tang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
| | - Xianqi Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
| | - Lei Zhao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
- Institute of Forensic Science of China, Beijing 100038, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China (Y.G.)
| |
Collapse
|
17
|
Ma L, Hahn ME, Karchner SI, Nacci D, Clark BW, Apprill A. Environmental and population influences on mummichog ( Fundulus heteroclitus) gut microbiomes. Microbiol Spectr 2025; 13:e0094724. [PMID: 39868785 PMCID: PMC11878049 DOI: 10.1128/spectrum.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
The mummichog, Fundulus heteroclitus, an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds. To understand host population and PCB-126 exposure effects on mummichog gut microbiota, we sampled two populations of wild fish, one from a PCB-contaminated environment (New Bedford Harbor, MA, USA) and the other from a much less polluted location (Scorton Creek, MA, USA), as well as laboratory-reared F2 generation fish originating from each of these populations. We examined the microbes associated with the gut of these fish using amplicon sequencing of bacterial and archaeal small subunit ribosomal RNA genes. Fish living in the PCB-polluted site had high microbial alpha and beta diversity compared to fish from the low PCB site. These differences between wild fish were not present in laboratory-reared F2 fish that originated from the same populations. Microbial compositional differences existed between wild and lab-reared fish, with the wild fish dominated by Vibrionaceae and the lab-reared fish by Enterococceae. These results suggest that mummichog habitat and/or environmental conditions have a stronger influence on the mummichog gut microbiome compared to population or hereditary-based influences. Mummichog are important eco-evolutionary model organisms; this work reveals their importance for exploring host-environmental-microbiome dynamics. IMPORTANCE The mummichog fish, a common resident of North America's east coast estuaries, has evolved the ability to survive in waters contaminated with toxic chemicals that would typically be deadly. Our study investigates how living in and adapting to these toxic environments may affect their gut microbiomes. We compared mummichogs from a polluted area in Massachusetts with those from a non-polluted site and found significant differences in their gut microbes. Interestingly, when we raised the next generation of these fish in a lab, these differences disappeared, suggesting that the environment plays a more crucial role in shaping the gut microbiome than genetics. Understanding these changes helps shed light on how animals and their associated microbiomes adapt to pollution, which can inform conservation efforts and our broader understanding of environmental impacts on host-microbe dynamics.
Collapse
Affiliation(s)
- Lei Ma
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sibel I. Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Diane Nacci
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Bryan W. Clark
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Amy Apprill
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
18
|
Fields C, Levin M. Thoughts and thinkers: On the complementarity between objects and processes. Phys Life Rev 2025; 52:256-273. [PMID: 39874620 DOI: 10.1016/j.plrev.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
We argue that "processes versus objects" is not a useful dichotomy. There is, instead, substantial theoretical utility in viewing "objects" and "processes" as complementary ways of describing persistence through time, and hence the possibility of observation and manipulation. This way of thinking highlights the role of memory as an essential resource for observation, and makes it clear that "memory" and "time" are also mutually inter-defined, complementary concepts. We formulate our approach in terms of the Free Energy Principle (FEP) of Friston and colleagues and the fundamental idea from quantum theory that physical interactions can be represented by linear operators. Following Levin (2024) [30], we emphasize that memory is, first and foremost, an interpretative function, from which the idea of memory as a record, at some level of accuracy, of past events is derivative. We conclude that the distinction between objects and processes is always contrived, and always misleading, and that science would be better served by abandoning it entirely.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| |
Collapse
|
19
|
Jensen N, Weiland-Bräuer N, Chibani CM, Schmitz RA. Microbiota-derived β carotene is required for strobilation of Aurelia aurita by impacting host retinoic acid signaling. iScience 2025; 28:111729. [PMID: 39991550 PMCID: PMC11847142 DOI: 10.1016/j.isci.2024.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/04/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
The strobilation process, an asexual reproduction mechanism in Aurelia aurita, transitions from the sessile polyp to the pelagic medusa stage. This study explored the essential role of the microbiome in strobilation, particularly through bacterial beta carotene's impact on the host's retinoic acid signaling pathway. Experiments demonstrated that native polyps undergo normal strobilation while sterile polyps exhibit morphological defects. Supplementing sterile polyps with provitamin A beta carotene or the vitamin A metabolite 9-cis retinoic acid (RA) remedied these defects, underscoring their crucial role in strobilation. Transcriptional analysis revealed that beta carotene and 9-cis RA restored expression of strobilation genes in sterile polyps to native levels. Inhibition of key enzymes in the RA pathway disrupted strobilation, further confirming its importance. The expression of bacterial β-carotenoid synthesis genes in the native microbiome, contrasted with tremendously reduced expression in antibiotic-treated polyps, emphasizes the microbiome's pivotal role in beta carotene provision, facilitating A. aurita's strobilation through RA signaling.
Collapse
Affiliation(s)
- Nadin Jensen
- Institute of General Microbiology, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Nancy Weiland-Bräuer
- Institute of General Microbiology, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Cynthia Maria Chibani
- Institute of General Microbiology, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ruth Anne Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
20
|
Di Gloria L, Baldi S, Curini L, Bertorello S, Nannini G, Cei F, Niccolai E, Ramazzotti M, Amedei A. Experimental tests challenge the evidence of a healthy human blood microbiome. FEBS J 2025; 292:796-808. [PMID: 39690119 PMCID: PMC11839906 DOI: 10.1111/febs.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The advent of next-generation sequencing (NGS) technologies has made it possible to investigate microbial communities in various environments, including different sites within the human body. Therefore, the previously established belief of the sterile nature of several body sites, including human blood, has now been challenged. However, metagenomics investigation of areas with an anticipated low microbial biomass may be susceptible to misinterpretation. Here, we critically evaluate the results of 16S targeted amplicon sequencing performed on total DNA collected from healthy donors' blood samples while incorporating specific negative controls aimed at addressing potential bias to supplement and strengthen the research in this area. We prepared negative controls by increasing the initial DNA quantity through sequences that can be recognized and subsequently discarded. We found that only three organisms were sporadically present among the samples, and this was mostly attributable to bacteria ubiquitously present in laboratory reagents. Despite not fully confirming or denying the existence of healthy blood microbiota, our results suggest that living bacteria, or at least their residual DNA sequences, are not a common feature of human blood in healthy people. Finally, our study poses relevant questions on the design of controls in this research area that must be considered in order to avoid misinterpreted results that appear to contaminate current high-throughput research.
Collapse
Affiliation(s)
- Leandro Di Gloria
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceItaly
| | - Simone Baldi
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Lavinia Curini
- Cardiovascular Tissue Engineering Research Unit – Centro Cardiologico MonzinoIRCCSItaly
| | - Sara Bertorello
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Giulia Nannini
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Francesco Cei
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Elena Niccolai
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceItaly
| | - Amedeo Amedei
- Department of Experimental and Clinical MedicineUniversity of FlorenceItaly
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)FlorenceItaly
| |
Collapse
|
21
|
Stothart MR, Lavergne S, McCaw L, Singh H, de Vega W, Amato K, Poissant J, Boonstra R. Population Dynamics and the Microbiome in a Wild Boreal Mammal: The Snowshoe Hare Cycle and Impacts of Diet, Season and Predation Risk. Mol Ecol 2025; 34:e17629. [PMID: 39698753 PMCID: PMC11754720 DOI: 10.1111/mec.17629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
The North American boreal forest is a massive ecosystem, and its keystone herbivore is the snowshoe hare (Lepus americanus). Hares are exposed to considerable environmental extremes in diet and weather, food availability, and predation risk. Gut microbiomes have been suggested to facilitate adaptive animal responses to environmental change, but severe environmental challenges to homeostasis can also disrupt host-microbiome relationships. To better understand gut microbiome contributions to animal acclimation, we studied the faecal bacterial microbiome of wild hares across two types of extreme environmental change that are integral to their natural history: (1) seasonal transitions between summer and winter, and (2) changes over the ~10 year 'boom-bust' population cycles that are characterised by shifting food resource availability and predation pressure. When compared to summer, hares in winter had lower bacterial richness and were depleted in 20 families (including Oxalobacteraceae and Christensenellaceae) but enriched for Ruminococcaceae (a family which contains plant fibre degrading bacteria) alongside nine other bacterial groups. Marked bacterial microbiome differences also occurred across phases of the population cycle. Bacterial microbiomes were lower in richness and compositionally distinct in the peak compared to the increase or decline phases of the population cycle. Direct measures of host physiology and diet quality (faecal fibre contents) most strongly supported food resource availability as a mechanism underlying phase-based differences in bacterial communities, but faecal fibre contents could not fully account for bacterial microbiome variation across phases.
Collapse
Affiliation(s)
- Mason R. Stothart
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of BiologyUniversity of OxfordOxfordUK
| | - Sophia Lavergne
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Laura McCaw
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Hardeep Singh
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Wilfred de Vega
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Katherine Amato
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Jocelyn Poissant
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Rudy Boonstra
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| |
Collapse
|
22
|
Plante M. A new symbiotic, holistic and gradualist model proposal for the concept of "living organism". Theory Biosci 2025; 144:45-65. [PMID: 39636364 DOI: 10.1007/s12064-024-00429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024]
Abstract
In biology, the concept of "living organism" has traditionally been based on the smallest level of organization comprising all the necessary and essential characteristics of life: the cell. Today, this concept is being challenged by the analysis of ambiguous biological entities, located both below and above the level of the living cell, which exhibit some of the characteristics of living organisms. This situation has given rise to an epistemological pluralism of the concepts of "organism", "individual" and "living", for which no clear and unanimous definition has yet been accepted. The aim of this manuscript is to explore new ideas and perspectives for defining the concept of "living organism", in order to eliminate a certain level of pluralism that could generate confusion, particularly in the pragmatic context of biological research. First, I expose the dualism of the concepts of "organism" and "individual" and suggest a fusion of these concepts in order to eliminate a certain level of pluralism. In doing so, I develop a symbiotic and holistic definition of the concept of "living organism", which includes different structural levels of the organism: molecular, cellular and ecosystems. Second, I present the epistemological problem of the concept of "living", which is closely related to the concepts of "organism" and "individual", by analyzing the list and gradational types of definition. In doing so, I propose a new symbiotic, holistic and gradualist model of the concept of "living organism", using a gradation of several properties of the living applied to the different structural levels of the organism developed previously (molecular, cellular, ecosystems).
Collapse
Affiliation(s)
- Mirco Plante
- Biology Department, Collège Montmorency, 475 Boulevard de l'Avenir, Laval, QC, H7N 5H9, Canada.
- Institut National de la Recherche Scientifique - Centre Armand-Frappier, Santé Biotechnologie, 531 Boul des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
23
|
DuBose JG, Crook TB, Matzkin LM, Haselkorn TS. The relative importance of host phylogeny and dietary convergence in shaping the bacterial communities hosted by several Sonoran Desert Drosophila species. J Evol Biol 2025; 38:180-189. [PMID: 39587684 DOI: 10.1093/jeb/voae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Complex eukaryotes vary greatly in the mode and extent that their evolutionary histories have been shaped by the microbial communities that they host. A general understanding of the evolutionary consequences of host-microbe symbioses requires that we understand the relative importance of host phylogenetic divergence and other ecological processes in shaping variation in host-associated microbial communities. To contribute to this understanding, we described the bacterial communities hosted by several Drosophila species native to the Sonoran Desert of North America. Our sampling consisted of four species that span multiple dietary shifts to cactophily, as well as the dietary generalist D. melanogaster, allowing us to partition the influences of host phylogeny and extant ecology. We found that bacterial communities were compositionally indistinguishable when considering incidence only but varied when considering the relative abundances of bacterial taxa. Variation in community composition was not explained by host phylogenetic divergence but could be partially explained by dietary variation. In support of the important role of diet as a source of ecological selection, we found that specialist cactophilic Drosophila deviated more from neutral predictions than dietary generalists. Overall, our findings provide insight into the evolutionary and ecological factors that shape host-associated microbial communities in a natural context.
Collapse
Affiliation(s)
- James G DuBose
- Department of Biology, University of Central Arkansas, Conway, AR, United States
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Thomas Blake Crook
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, United States
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| |
Collapse
|
24
|
Whiting‐Fawcett F, Blomberg AS, Troitsky T, Meierhofer MB, Field KA, Puechmaille SJ, Lilley TM. A Palearctic view of a bat fungal disease. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14265. [PMID: 38616727 PMCID: PMC11780211 DOI: 10.1111/cobi.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 04/16/2024]
Abstract
The fungal infection causing white-nose disease in hibernating bats in North America has resulted in dramatic population declines of affected species, since the introduction of the causative agent Pseudogymnoascus destructans. The fungus is native to the Palearctic, where it also infects several bat species, yet rarely causes severe pathology or the death of the host. Pseudogymnoascus destructans infects bats during hibernation by invading and digesting the skin tissue, resulting in the disruption of torpor patterns and consequent emaciation. Relations among pathogen, host, and environment are complex, and individuals, populations, and species respond to the fungal pathogen in different ways. For example, the Nearctic Myotis lucifugus responds to infection by mounting a robust immune response, leading to immunopathology often contributing to mortality. In contrast, the Palearctic M. myotis shows no significant immunological response to infection. This lack of a strong response, resulting from the long coevolution between the hosts and the pathogen in the pathogen's native range, likely contributes to survival in tolerant species. After more than 15 years since the initial introduction of the fungus to North America, some of the affected populations are showing signs of recovery, suggesting that the fungus, hosts, or both are undergoing processes that may eventually lead to coexistence. The suggested or implemented management methods of the disease in North America have encompassed, for example, the use of probiotics and fungicides, vaccinations, and modifying the environmental conditions of the hibernation sites to limit the growth of the pathogen, intensity of infection, or the hosts' responses to it. Based on current knowledge from Eurasia, policy makers and conservation managers should refrain from disrupting the ongoing evolutionary processes and adopt a holistic approach to managing the epizootic.
Collapse
Affiliation(s)
- F. Whiting‐Fawcett
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - A. S. Blomberg
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - T. Troitsky
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - M. B. Meierhofer
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - K. A. Field
- Department of BiologyBucknell UniversityLewisburgPennsylvaniaUSA
| | - S. J. Puechmaille
- Institut des Sciences de l’Évolution Montpellier (ISEM)University of Montpellier, CNRS, EPHE, IRDMontpellierFrance
- Institut Universitaire de FranceParisFrance
| | - T. M. Lilley
- BatLab Finland, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
25
|
Camper BT, Kanes AS, Laughlin ZT, Manuel RT, Bewick SA. Transgressive hybrids as hopeful holobionts. MICROBIOME 2025; 13:19. [PMID: 39844274 PMCID: PMC11752726 DOI: 10.1186/s40168-024-01994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Hybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations. Accordingly, hybridization is now recognized as a motor for macrobial evolution. By contrast, there has been substantially less progress made towards understanding the positive eco-evolutionary consequences of hybridization on holobionts. Rather, the emerging paradigm in holobiont literature is that hybridization disrupts symbiosis between a host lineage and its microbiome, leaving hybrids at a fitness deficit. These conclusions, however, have been drawn based on results from predominantly low-fitness hybrid organisms. Studying "dead-end" hybrids all but guarantees finding that hybridization is detrimental. This is the pitfall that Dobzhansky fell into over 80 years ago when he used hybrid sterility and inviability to conclude that hybridization hinders evolution. Goldschmidt, however, argued that rare saltational successes-so-called hopeful monsters-disproportionately drive positive evolutionary outcomes. Goldschmidt's view is now becoming a widely accepted explanation for the prevalence of historical hybridization in extant macrobial lineages. Aligning holobiont research with this broader evolutionary perspective requires recognizing the importance of similar patterns in host-microbiome systems. That is, rare and successful "hopeful holobionts" (i.e., hopeful monsters at the holobiont scale) might be disproportionately responsible for holobiont evolution. If true, then it is these successful systems that we should be studying to assess impacts of hybridization on the macroevolutionary trajectories of host-microbiome symbioses. RESULTS In this paper, we explore the effects of hybridization on the gut (cloacal) and skin microbiota in an ecologically successful hybrid lizard, Aspidoscelis neomexicanus. Specifically, we test the hypothesis that hybrid lizards have host-associated (HA) microbiota traits strongly differentiated from their progenitor species. Across numerous hybrid microbiota phenotypes, we find widespread evidence of transgressive segregation. Further, microbiota restructuring broadly correlates with niche restructuring during hybridization. This suggests a relationship between HA microbiota traits and ecological success. CONCLUSION Transgressive segregation of HA microbiota traits is not only limited to hybrids at a fitness deficit but also occurs in ecologically successful hybrids. This suggests that hybridization may be a mechanism for generating novel and potentially beneficial holobiont phenotypes. Supporting such a conclusion, the correlations that we find between hybrid microbiota and the hybrid niche indicate that hybridization might change host microbiota in ways that promote a shift or an expansion in host niche space. If true, hybrid microbiota restructuring may underly ecological release from progenitors. This, in turn, could drive evolutionary diversification. Using our system as an example, we elaborate on the evolutionary implications of host hybridization within the context of holobiont theory and then outline the next steps for understanding the role of hybridization in holobiont research. Video Abstract.
Collapse
Affiliation(s)
| | | | | | - Riley Tate Manuel
- Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sharon Anne Bewick
- Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA
| |
Collapse
|
26
|
Brown AL, Koskella B, Boots M. How host-microbiome/holobiont evolution depends on whether the microbiome affects host lifespan or fecundity. J Evol Biol 2025; 38:41-49. [PMID: 39513573 DOI: 10.1093/jeb/voae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
There is overwhelming evidence that the microbiome can be important to host physiology and fitness. As such, there is interest in and some theoretical work on understanding when hosts and microbiomes (co)evolve so that microbes benefit hosts and hosts favour beneficial microbes. However, the outcome of evolution likely depends on how microbes benefit hosts. Here, we use adaptive dynamics to investigate how host and symbiont evolution depend on whether symbionts increase host lifespan or host reproduction in a simple model of host and symbiont dynamics. In addition, we investigate 2 ways hosts release (and transmit) symbionts: by releasing symbionts steadily during their lifetime or by releasing them at reproduction, potentially increasing symbionts' chances of infecting the host's offspring. The former is strict horizontal transmission, whereas the latter is also a form of indirect or "pseudovertical" transmission. Our first key result is that the evolution of symbionts that benefit host fecundity requires pseudovertical transmission, while the evolution of symbionts that benefit host lifespan does not. Furthermore, our second key result is that when investing in host benefits is costly to the free-living symbiont stage, intermediate levels of pseudovertical transmission are needed for selection to favour beneficial symbionts. This is true regardless of fitness effects because release at reproduction increases the free-living symbiont population, which increases competition for hosts. Consequently, hosts could evolve away from traits that favour beneficial symbionts. Generally, our work emphasizes the importance of different forms of vertical transmission and fitness benefits in host, microbiome, and holobiont evolution as highlighted by our prediction that the evolution of fecundity-increasing symbionts requires parent-to-offspring transmission.
Collapse
Affiliation(s)
- Alexandra L Brown
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, CA, United States
- Department of Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
27
|
Adomako MO, Wu J, Yu FH. Ecological and evolutionary responses of earthworm holobionts to environmental changes. THE ISME JOURNAL 2025; 19:wraf044. [PMID: 40057975 PMCID: PMC11936110 DOI: 10.1093/ismejo/wraf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Global environmental change substantially affects soil detritivores, including earthworms, impacting host-microbiota interactions and altering key soil biogeochemical processes such as litter decomposition. As microbial communities are inherently capable of rapid evolution, responses of earthworms and associated microbiota (i.e. earthworm holobionts) to global environmental change may likely involve the interplay of ecological and evolutionary processes and feedback. Although species-level responses of earthworms to global environmental change are well studied, the potential ecological and evolutionary responses of earthworm holobionts to environmental change remain unexplored. Here, we provide a conceptual framework to elaborate on the complex network of earthworm host-microbiota interactions that modify their traits in response to global environmental change, jointly shaping their ecology and evolution. Based on the literature, we synthesize evidence of global environmental change impacts on earthworm host-microbiota and discuss evidence of their ecological and evolutionary responses to environmental change. Lastly, we highlight the agro- and eco-system-level consequences of environmental change-mediated shift in earthworm host-microbiota functions. Soil legacies of environmental change have cascading detrimental impacts on the abundance, diversity, and functional dynamics of earthworm host-microbiota interactions in agriculture and ecosystems. The primary mechanisms driving such responses of earthworm hosts and associated microbial communities to environmental change include altered litter quality and host dietary preferences, competitive interactions and exclusion, habitat homogenization, and a shift in soil physicochemical and biological processes. Therefore, advancing knowledge of the intricate animal-microorganism interactions is crucial for belowground biodiversity management in a changing global environment.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Fei-Hai Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| |
Collapse
|
28
|
Araujo G, Montoya JM, Thomas T, Webster NS, Lurgi M. A mechanistic framework for complex microbe-host symbioses. Trends Microbiol 2025; 33:96-111. [PMID: 39242229 DOI: 10.1016/j.tim.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.
Collapse
Affiliation(s)
- Gui Araujo
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, 4072, Australia; Australian Institute of Marine Science, Townsville, 4810, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
29
|
Hochart C, Rouzé H, Rivière B, Ruscheweyh HJ, Hédouin L, Pochon X, Steneck RS, Poulain J, Belser C, Nugues MM, Galand PE. High diversity of crustose coralline algae microbiomes across species and islands, and implications for coral recruits. ENVIRONMENTAL MICROBIOME 2024; 19:112. [PMID: 39710769 DOI: 10.1186/s40793-024-00640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Crustose Coralline Algae (CCA) play a crucial role in coral reef ecosystems, contributing significantly to reef formation and serving as substrates for coral recruitment. The microbiome associated with CCAs may promote coral recruitment, yet these microbial communities remain largely understudied. This study investigates the microbial communities associated with a large number of different CCA species across six different islands of French Polynesia, and assess their potential influence on the microbiome of coral recruits. RESULTS Our findings reveal that CCA harbor a large diversity of bacteria that had not been reported until now. The composition of these microbial communities was influenced by geographic location, and was also closely linked to the host species, identified at a fine taxonomic unit using the 16S rRNA gene of the CCA chloroplast. We demonstrate the usefulness of these ecologically meaningful units that we call CCA chlorotypes. Additionally, we observed a correlation between host phylogeny and microbiome composition (phylosymbiosis) in two CCA species. Contrary to expectations, the CCA microbiome did not act as a microbial reservoir for coral recruits. However, the microbial community of coral recruits varied according to the substrate on which they grew. CONCLUSIONS The study significantly expands the number of characterized CCA microbiomes, and provides new insight into the extensive diversity of these microbial communities. We show distinct microbiomes between and within CCA species, characterized by specific chloroplast 16S rRNA gene sequences. We term these distinct groups "chlorotypes", and demonstrate their utility to differentiate CCA. We also show that only few bacterial taxa were shared between CCA and coral recruits growing in contact with them. Nevertheless, we observed that the microbial community of coral recruits varied depending on the substrate they grew on. We conclude that CCA and their associated bacteria influence the microbiome composition of the coral recruits.
Collapse
Affiliation(s)
- Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, 66500, France
| | - Héloïse Rouzé
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Labex Corail, Université de Perpignan, Perpignan, France
- Marine Laboratory, University of Guam, Mangilao, 96923, Guam
| | - Béatrice Rivière
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, 66500, France
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH, Zürich, Switzerland
| | - Laetitia Hédouin
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Labex Corail, Université de Perpignan, Perpignan, France
| | - Xavier Pochon
- Molecular Surveillance, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Robert S Steneck
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Maggy M Nugues
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Labex Corail, Université de Perpignan, Perpignan, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Banyuls-sur-Mer, 66500, France.
| |
Collapse
|
30
|
Week B, Ralph PL, Tavalire HF, Cresko WA, Bohannan BJM. Quantitative Genetics of Microbiome Mediated Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628599. [PMID: 39763787 PMCID: PMC11702574 DOI: 10.1101/2024.12.16.628599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Multicellular organisms host a rich assemblage of associated microorganisms, collectively known as their "microbiomes". Microbiomes have the capacity to influence their hosts' fitnesses, but the conditions under which such influences contribute to evolution are not clear. This is due in part to a lack of a comprehensive theoretical framework for describing the combined effects of host and associated microbes on phenotypic variation. Here we begin to address this gap by extending the foundations of quantitative genetic theory to include host-associated microbes, as well as alleles of hosts, as factors that explain quantitative host trait variation. We introduce a way to partition host-associated microbiomes into componenents relevant for predicting a microbiome-mediated response to selection. We then apply our general framework to a simulation model of microbiome inheritance to illustrate principles for predicting host trait dynamics, and to generalize classical narrow and broad sense heritabilities to account for microbial effects. We demonstrate that microbiome-mediated responses to host selection can arise from various transmission modes, not solely vertical, with the contribution of non-vertical modes depending on host life history. Our work lays a foundation for integrating microbiome-mediated host variation and adaptation into our understanding of natural variation.
Collapse
|
31
|
Kortekaas Krohn I, Callewaert C, Belasri H, De Pessemier B, Diez Lopez C, Mortz CG, O'Mahony L, Pérez-Gordo M, Sokolowska M, Unger Z, Untersmayr E, Homey B, Gomez-Casado C. The influence of lifestyle and environmental factors on host resilience through a homeostatic skin microbiota: An EAACI Task Force Report. Allergy 2024; 79:3269-3284. [PMID: 39485000 DOI: 10.1111/all.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Human skin is colonized with skin microbiota that includes commensal bacteria, fungi, arthropods, archaea and viruses. The composition of the microbiota varies at different anatomical locations according to changes in body temperature, pH, humidity/hydration or sebum content. A homeostatic skin microbiota is crucial to maintain epithelial barrier functions, to protect from invading pathogens and to interact with the immune system. Therefore, maintaining homeostasis holds promise to be an achievable goal for microbiome-directed treatment strategies as well as a prophylactic strategy to prevent the development of skin diseases, as dysbiosis or disruption of homeostatic skin microbiota is associated with skin inflammation. A healthy skin microbiome is likely modulated by genetic as well as environmental and lifestyle factors. In this review, we aim to provide a complete overview of the lifestyle and environmental factors that can contribute to maintaining the skin microbiome healthy. Awareness of these factors could be the basis for a prophylactic strategy to prevent the development of skin diseases or to be used as a therapeutic approach.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Chris Callewaert
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Hafsa Belasri
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Britta De Pessemier
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Celia Diez Lopez
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Charlotte G Mortz
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Liam O'Mahony
- APC Microbiome Ireland, School of Microbiology, and Department of medicine, University College Cork, Cork, Ireland
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Zsofia Unger
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Homey
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| | - Cristina Gomez-Casado
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| |
Collapse
|
32
|
Koellsch C, Poulin R, Salloum PM. What shapes a microbiome? Differences in bacterial communities associated with helminth-amphipod interactions. Int J Parasitol 2024; 54:733-742. [PMID: 39209213 DOI: 10.1016/j.ijpara.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The fast technological advances of molecular tools have enabled us to uncover a new dimension hidden within parasites and their hosts: their microbiomes. Increasingly, parasitologists characterise host microbiome changes in the face of parasitic infections, revealing the potential of these microscopic fast-evolving entities to influence host-parasite interactions. However, most of the changes in host microbiomes seem to depend on the host and parasite species in question. Furthermore, we should understand the relative role of parasitic infections as microbiome modulators when compared with other microbiome-impacting factors (e.g., host size, age, sex). Here, we characterised the microbiome of a single intermediate host species infected by two parasites belonging to different phyla: the acanthocephalan Plagiorhynchus allisonae and a dilepidid cestode, both infecting Transorchestia serrulata amphipods collected simultaneously from the same locality. We used the v4 hypervariable region of the 16S rRNA prokaryotic gene to identify the hemolymph bacterial community of uninfected, acanthocephalan-infected, and cestode-infected amphipods, as well as the bacteria in the amphipods' immediate environment and in the parasites infecting them. Our results show that parasitic infections were more strongly associated with differences in host bacterial community richness than amphipod size, presence of amphipod eggs in female amphipods, and even parasite load. Amphipods infected by acanthocephalans had the most divergent bacterial community, with a marked decrease in alpha diversity compared with cestode-infected and uninfected hosts. In accordance with the species-specific nature of microbiome changes in parasitic infections, we found unique microbial taxa associating with hosts infected by each parasite species, as well as taxa only shared between a parasite species and their infected hosts. However, there were some bacterial taxa detected in all parasitised amphipods (regardless of the parasite species), but not in uninfected amphipods or the environment. We propose that shared bacteria associated with all hosts parasitised by distantly related helminths may be important either in helping host defences or parasites' success, and could thus interact with host-parasite evolution.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
33
|
Bourrat P, Takacs P, Doulcier G, Nitschke MC, Black AJ, Hammerschmidt K, Rainey PB. Individuality Through Ecology: Rethinking the Evolution of Complex Life From an Externalist Perspective. Ecol Evol 2024; 14:e70661. [PMID: 39650545 PMCID: PMC11622154 DOI: 10.1002/ece3.70661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
The evolution of complex life forms, exemplified by multicellular organisms, can be traced through a series of evolutionary transitions in individuality, beginning with the origin of life, followed by the emergence of the eukaryotic cell, and, among other transitions, culminating in the shift from unicellularity to multicellularity. Several attempts have been made to explain the origins of such transitions, many of which have been internalist (i.e., based largely on internal properties of ancestral entities). Here, we show how externalist perspectives can shed new light on questions pertaining to evolutionary transitions in individuality. We do this by presenting the ecological scaffolding framework in which properties of complex life forms arise from an external scaffold. Ultimately, we anticipate that progress will come from recognition of the importance of both the internalist and externalist modes of explanation. We illustrate this by considering an extension of the ecological scaffolding model in which cells modify the environment that later becomes the scaffold giving rise to multicellular individuality.
Collapse
Affiliation(s)
- Pierrick Bourrat
- Department of PhilosophyMacquarie UniversityNorth RydeNew South WalesAustralia
- Department of Philosophy & Charles Perkins CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Peter Takacs
- Department of PhilosophyMacquarie UniversityNorth RydeNew South WalesAustralia
- Department of Philosophy & Charles Perkins CenterUniversity of SydneySydneyNew South WalesAustralia
| | - Guilhem Doulcier
- Department of PhilosophyMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Matthew C. Nitschke
- Global Ecology LaboratoryPartuyarta Ngadluku Wardli Kuu, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Andrew J. Black
- School of Computer and Mathematical SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Paul B. Rainey
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire Biophysique et Évolution, CBI, ESPCI ParisUniversité PSL, CNRSParisFrance
| |
Collapse
|
34
|
Scheelings TF, Van TTH, Moore RJ, Skerratt LF. Location Matters: Variations in Cloacal Microbiota Composition of Spatially Separated Freshwater Turtles. MICROBIAL ECOLOGY 2024; 87:140. [PMID: 39545996 PMCID: PMC11568018 DOI: 10.1007/s00248-024-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
The gut microbiota of vertebrates is malleable and may be shaped by both intrinsic and extrinsic factors. Here, the effect that geography has on the cloacal microbiota of two species of Australian freshwater chelonians, eastern longneck turtle (Chelodina longicollis) and Macquarie River turtle (Emydura macquarii), captured from waterbodies with different levels of anthropogenic pressure was investigated. We analysed the microbiota composition, structure and diversity through 16S rRNA gene amplicon sequencing. It was hypothesised that animals from less disturbed environments would harbour a more diverse cloacal microbial population. The cloacal microbiotas from 93 turtles (C. longicollis n = 78; E. macquarii n = 15), from five locations, were analysed. For both species, the most predominant phylum was Proteobacteria. Cloacal microbiota alpha diversity varied significantly between the C. longicollis from all locations, but no differences were found for E. macquarii. In C. longicollis, turtles from wetlands within the centre of Melbourne had the lowest alpha diversity metrics, while the highest alpha diversity values were seen in turtles captured from an undisturbed rural waterbody. Beta diversity, obtained by weighted UniFrac distance, showed significant differences between locations of capture for both species of turtles in this investigation. For C. longicollis, 87 biomarkers were identified responsible for explaining differences between locations, and in E. macquarii, 42 biomarkers were found. This is the first study to explore the cloacal microbiota composition of the eastern longneck turtle and gives greater insight into microbial community structures in Macquarie River turtles. Our study demonstrated that cloacal microbiota composition of freshwater turtles was significantly influenced by locality and that disrupted environments may reduce microbial diversity in C. longicollis. Interestingly, we discovered that the effects of location contrasted significantly between species for alpha diversity with differences discovered for C. longicollis but not E. macquarii. However, for both species, beta diversity was notably influenced by habitat type. These results highlight the need to interpret chelonian microbiota data in the context of geography and human disturbance of the environment.
Collapse
Affiliation(s)
- T Franciscus Scheelings
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, 3030, Australia.
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, 3083, Australia
| | - Lee F Skerratt
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, VIC, 3030, Australia
| |
Collapse
|
35
|
Lamminpää I, Boem F, Amedei A. Health-promoting worms? Prospects and pitfalls of helminth therapy. Bioessays 2024; 46:e2400080. [PMID: 39263744 DOI: 10.1002/bies.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In this manuscript, we explore the potential therapeutic use of helminths. After analyzing helminths' role in connection with human health from the perspective of their symbiotic and evolutionary relationship, we critically examine some studies on their therapeutic applications. In doing so, we focus on some prominent mechanisms of action and potential benefits, but also on the exaggerations and theoretical and methodological difficulties of such proposals. We conclude that further studies are needed to fully explore the potential benefits of this perspective, and we encourage the scientific community in doing so.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Boem
- Institut für Philosophie I, Ruhr-Universität Bochum, Bochum, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
36
|
Stupak A, Kwiatek M, Gęca T, Kwaśniewska A, Mlak R, Nawrot R, Goździcka-Józefiak A, Kwaśniewski W. A Virome and Proteomic Analysis of Placental Microbiota in Pregnancies with and without Fetal Growth Restriction. Cells 2024; 13:1753. [PMID: 39513860 PMCID: PMC11544783 DOI: 10.3390/cells13211753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Metagenomic research has allowed the identification of numerous viruses present in the human body. Viruses may significantly increase the likelihood of developing intrauterine fetal growth restriction (FGR). The goal of this study was to examine and compare the virome of normal and FGR placentas using proteomic techniques. METHODS The study group of 18 women with late FGR was compared with 18 control patients with physiological pregnancy and eutrophic fetus. Proteins from the collected afterbirth placentas were isolated and examined using liquid chromatography linked to a mass spectrometer. RESULTS In this study, a group of 107 viral proteins were detected compared to 346 in the controls. In total, 41 proteins were common in both groups. In total, 64 proteins occurred only in the study group and indicated the presence of bacterial phages: E. coli, Bacillus, Mediterranenean, Edwardsiella, Propionibacterium, Salmonella, Paenibaciilus and amoebae Mimiviridae, Acanthamoeba polyphaga, Mimivivirus, Pandoravirdae, Miroviridae, Pepper plant virus golden mosaic virus, pol proteins of HIV-1 virus, and proteins of Pandoravirdae, Microviridae, and heat shock proteins of the virus Faustoviridae. Out of 297 proteins found only in the control group, only 2 viral proteins occurred statistically significantly more frequently: 1/hypothetical protein [uncultured Mediterranean phage uvMED] and VP4 [Gokushovirus WZ-2015a]. DISCUSSION The detection of certain viral proteins exclusively in the control group suggests that they may play a protective role. Likewise, the proteins identified only in the study group could indicate a potentially pathogenic function. A virome study may be used to identify an early infection, evaluate its progress, and possible association with fetal growth restriction. Utilizing this technology, an individualized patient therapy is forthcoming, e.g., vaccines.
Collapse
Affiliation(s)
- Aleksandra Stupak
- Chair and Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (T.G.); (A.K.)
| | - Maciej Kwiatek
- Chair and Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (T.G.); (A.K.)
| | - Tomasz Gęca
- Chair and Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (T.G.); (A.K.)
| | - Anna Kwaśniewska
- Chair and Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (M.K.); (T.G.); (A.K.)
| | - Radosław Mlak
- Body Composition Research Laboratory, Department of Preclinical Science, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, 61-712 Poznań, Poland; (R.N.); (A.G.-J.)
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, 61-712 Poznań, Poland; (R.N.); (A.G.-J.)
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology of the Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
37
|
Han CJ, Huang JP, Chiang MR, Jean OSM, Nand N, Etebari K, Shelomi M. The hindgut microbiota of coconut rhinoceros beetles ( Oryctes rhinoceros) in relation to their geographical populations. Appl Environ Microbiol 2024; 90:e0098724. [PMID: 39311575 PMCID: PMC11497824 DOI: 10.1128/aem.00987-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
The coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is a palm tree pest capable of rapidly expanding its population in new territories. Previous studies identified a digestive symbiosis between CRB and its gut microbes. However, no research compared the genetic variation of CRBs with their hindgut microbiota on a global scale. This study aims to investigate the genetic divergence of CRB and the compositional variation of CRB's microbiota across different geographical locations, and explore the association between them and their predicted functional profiles and environmental data. The research reveals a distinct and consistent microbial community within local populations, but it varies across different geographical populations. The microbial functional profiles linked to the production of digestive enzymes, including cellulases and ligninases, are nonetheless globally conserved. This suggests that CRBs employ specific mechanisms to select and maintain microbes with functional benefits, contributing to host adaptability, stress tolerance, and fitness. The CRB microbial communities did not appear to recapitulate the genetic variation of their hosts. Rather than depend on obligate symbionts, CRBs seem to establish similar digestive associations with whatever environmentally acquired microbes are available wherever they are, aiding them in successfully establishing after invading a new location.IMPORTANCECoconut rhinoceros beetles (CRBs) are notorious pests on Arecaceae plants, posing destructive threats to countries highly reliant on coconut, oil palm, and date palm as economic crops. In the last century, CRBs have rapidly expanded their presence to territories that were once free of these beetles. The United States, for instance, has officially designated CRBs as invasive and alien pests. Given their remarkable ability to swiftly adapt to new environments, their gut microbes may play a crucial role in this process. While the microbiota of CRBs vary depending on geographical location, these beetles consistently exhibit a functionally identical digestive association with locally acquired microbes. This underscores the significance of CRB-microbe association in shaping the adaptive strategies of this agricultural pest.
Collapse
Affiliation(s)
- Chiao-Jung Han
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Min-Rou Chiang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | | | - Nitesh Nand
- Plant Health Laboratory, The Pacific Community, Suva, Fiji
| | - Kayvan Etebari
- Faculty of Science, School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Chung SSW, Cheung K, Arromrak BS, Li Z, Tse CM, Gaitán-Espitia JD. The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution. ENVIRONMENTAL MICROBIOME 2024; 19:74. [PMID: 39397007 PMCID: PMC11479550 DOI: 10.1186/s40793-024-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.
Collapse
Affiliation(s)
- Sheena Suet-Wah Chung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Bovern Suchart Arromrak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Cham Man Tse
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
39
|
Gordon JI, Barratt MJ, Hibberd MC, Rahman M, Ahmed T. Establishing human microbial observatory programs in low- and middle-income countries. Ann N Y Acad Sci 2024; 1540:13-20. [PMID: 39298326 DOI: 10.1111/nyas.15224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Studies of the human microbiome are progressing rapidly but have largely focused on populations living in high-income countries. With increasing evidence that the microbiome contributes to the pathogenesis of diseases that affect infants, children, and adults in low- and middle-income countries (LMICs), and with profound and rapid ongoing changes occurring in our lifestyles and biosphere, understanding the origins of and developing microbiome-directed therapeutics for treating a number of global health challenges requires the development of programs for studying human microbial ecology in LMICs. Here, we discuss how the establishment of long-term human microbial observatory programs in selected LMICs could provide one timely approach.
Collapse
Affiliation(s)
- Jeffrey I Gordon
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Barratt
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew C Hibberd
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
40
|
Wang Y, Gao P, Qin W, Li H, Zheng J, Meng L, Li B. Gut microbiota variation across generations regarding the diet and life stage in Harmonia axyridis (Coleoptera: Coccinellidae). INSECT SCIENCE 2024; 31:1365-1377. [PMID: 38183402 DOI: 10.1111/1744-7917.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/08/2024]
Abstract
We attempt to determine the effect of the dietary switch from a native to non-native prey on the gut microbiota in the predaceous ladybird Harmonia axyridis larvae and adults and examine how the dietary effect may vary across generations. We fed H. axyridis with different diets, native aphid Megoura japonica (Matsumura) versus non-native mealybug Phenacoccus solenopsis (Tinsley), for 5 generations and sequenced microbes in the gut of the 3rd instar larvae and adults of the 1st, 3rd, and 5th generations. In addition, we identified microbes in M. japonica and P. solenopsis. The 2 prey species differed in microbial community as measured by abundances of prevalent microbial genera and diversity. In H. axyridis, abundances of some prevalent microbial genera differed between the 2 diets in the 1st and 3rd generations, but the difference disappeared in the 5th generation; this tendency is more obvious in adults than in larvae. Overall, gut microbial assemblages became gradually cohesive over generations. Microbial diversity differed between diets in the 1st and 3rd generations but became similar in the 5th generation. Major prevalent gut microbial genera are predicted to be associated with metabolic functions of H. axyridis and associated genera are more abundant for consuming the mealybug than the aphid. Our findings from this study suggest that the gut microbiota in H. axyridis is flexible in response to the dietary switch, but tends toward homogeneity in microbial composition over generations.
Collapse
Affiliation(s)
- Yansong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ping Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenquan Qin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Limborg MT, Winther-Have CS, Morueta-Holme N, Gilbert MTP, Rasmussen JA. The overlooked biodiversity loss. Trends Ecol Evol 2024; 39:889-891. [PMID: 39209587 DOI: 10.1016/j.tree.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
As most life-forms exist as holobionts, reduction of host-level biodiversity drives parallel habitat losses to their host-adapted microorganisms. The holobiont concept helps us to understand how species are habitats for - often ignored - coevolved microorganisms also worthy of conservation. Indeed, loss of host-associated microbial biodiversity may accelerate the extinction risks of their host.
Collapse
Affiliation(s)
- Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Caroline S Winther-Have
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Naia Morueta-Holme
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Nweze JE, Gupta S, Salcher MM, Šustr V, Horváthová T, Angel R. Disruption of millipede-gut microbiota in E. pulchripes and G. connexa highlights the limited role of litter fermentation and the importance of litter-associated microbes for nutrition. Commun Biol 2024; 7:1204. [PMID: 39342029 PMCID: PMC11438867 DOI: 10.1038/s42003-024-06821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Millipedes are thought to depend on their gut microbiome for processing plant-litter-cellulose through fermentation, similar to many other arthropods. However, this hypothesis lacks sufficient evidence. To investigate this, we used inhibitors to disrupt the gut microbiota of juvenile Epibolus pulchripes (tropical, CH4-emitting) and Glomeris connexa (temperate, non-CH4-emitting) and isotopic labelling. Feeding the millipedes sterile or antibiotics-treated litter reduced faecal production and microbial load without major impacts on survival or weight. Bacterial diversity remained similar, with Bacteroidota dominant in E. pulchripes and Pseudomonadota in G. connexa. Sodium-2-bromoethanesulfonate treatment halted CH4 emissions in E. pulchripes, but it resumed after returning to normal feeding. Employing 13C-labeled leaf litter and RNA-SIP revealed a slow and gradual prokaryote labelling, indicating a significant density shift only by day 21. Surprisingly, labelling of the fungal biomass was somewhat quicker. Our findings suggest that fermentation by the gut microbiota is likely not essential for the millipede's nutrition.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Shruti Gupta
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Vladimír Šustr
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Terézia Horváthová
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia.
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.
| |
Collapse
|
43
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
44
|
Fields C. The free energy principle induces intracellular compartmentalization. Biochem Biophys Res Commun 2024; 723:150070. [PMID: 38896995 DOI: 10.1016/j.bbrc.2024.150070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Living systems at all scales are compartmentalized into interacting subsystems. This paper reviews a mechanism that drives compartmentalization in generic systems at any scale. It first discusses three symmetries of generic physical interactions in a quantum-theoretic description. It then shows that if one of these, a permutation symmetry on the inter-system boundary, is spontaneously broken, the symmetry breaking is amplified by the Free Energy Principle (FEP). It thus shows how compartmentalization generically results from permutation symmetry breaking under the FEP. It finally notes that the FEP asymptotically restores the broken symmetry, showing that the FEP can be regarded as a theory of fluctuations away from a permutation-symmetric boundary, and hence from an entangled joint state of the interacting systems.
Collapse
Affiliation(s)
- Chris Fields
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
45
|
Lipowska MM, Sadowska ET, Kohl KD, Koteja P. Experimental Evolution of a Mammalian Holobiont? Genetic and Maternal Effects on the Cecal Microbiome in Bank Voles Selectively Bred for Herbivorous Capability. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:274-291. [PMID: 39680902 DOI: 10.1086/732781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractMammalian herbivory represents a complex adaptation requiring evolutionary changes across all levels of biological organization, from molecules to morphology to behavior. Explaining the evolution of such complex traits represents a major challenge in biology, as it is simultaneously muddled and enlightened by a growing awareness of the crucial role of symbiotic associations in shaping organismal adaptations. The concept of hologenomic evolution includes the partnered unit of the holobiont, the host with its microbiome, as a selection unit that may undergo adaptation. Here, we test some of the assumptions underlying the concept of hologenomic evolution using a unique experimental evolution model: lines of the bank vole (Myodes [=Clethrionomys] glareolus) selected for increased ability to cope with a low-quality herbivorous diet and unselected control lines. Results from a complex nature-nurture design, in which we combined cross-fostering between the selected and control lines with dietary treatment, showed that the herbivorous voles harbored a cecal microbiome with altered membership and structure and changed abundances of several phyla and genera regardless of the origin of their foster mothers. Although the differences were small, they were statistically significant and partially robust to changes in diet and housing conditions. Microbial characteristics also correlated with selection-related traits at the level of individual variation. Thus, the results support the hypothesis that selection on a host performance trait leads to genetic changes in the host that promote the maintenance of a beneficial microbiome. Such a result is consistent with some of the assumptions underlying the concept of hologenomic evolution.
Collapse
|
46
|
Chatterjee S, Leach ST, Lui K, Mishra A. Symbiotic symphony: Understanding host-microbiota dialogues in a spatial context. Semin Cell Dev Biol 2024; 161-162:22-30. [PMID: 38564842 DOI: 10.1016/j.semcdb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Modern precision sequencing techniques have established humans as a holobiont that live in symbiosis with the microbiome. Microbes play an active role throughout the life of a human ranging from metabolism and immunity to disease tolerance. Hence, it is of utmost significance to study the eukaryotic host in conjunction with the microbial antigens to obtain a complete picture of the host-microbiome crosstalk. Previous attempts at profiling host-microbiome interactions have been either superficial or been attempted to catalogue eukaryotic transcriptomic profile and microbial communities in isolation. Additionally, the nature of such immune-microbial interactions is not random but spatially organised. Hence, for a holistic clinical understanding of the interplay between hosts and microbiota, it's imperative to concurrently analyze both microbial and host genetic information, ensuring the preservation of their spatial integrity. Capturing these interactions as a snapshot in time at their site of action has the potential to transform our understanding of how microbes impact human health. In examining early-life microbial impacts, the limited presence of communities compels analysis within reduced biomass frameworks. However, with the advent of spatial transcriptomics we can address this challenge and expand our horizons of understanding these interactions in detail. In the long run, simultaneous spatial profiling of host-microbiome dialogues can have enormous clinical implications especially in gaining mechanistic insights into the disease prognosis of localised infections and inflammation. This review addresses the lacunae in host-microbiome research and highlights the importance of profiling them together to map their interactions while preserving their spatial context.
Collapse
Affiliation(s)
- Soumi Chatterjee
- Telethon Kids Institute, Perth Children Hospital, Perth, Western Australia 6009, Australia; Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia
| | - Steven T Leach
- Discipline Paediatrics, School of Clinical Medicine, University of New South Wales, Sydney 2052, Australia
| | - Kei Lui
- Department of Newborn Care, Royal Hospital for Women and Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Archita Mishra
- Telethon Kids Institute, Perth Children Hospital, Perth, Western Australia 6009, Australia; Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
47
|
Koellsch C, Poulin R, Salloum PM. Microbial artists: the role of parasite microbiomes in explaining colour polymorphism among amphipods and potential link to host manipulation. J Evol Biol 2024; 37:1009-1022. [PMID: 38989853 DOI: 10.1093/jeb/voae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Parasite infections are increasingly reported to change the microbiome of the parasitized hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites. Using colour quantification methods applied to digital images, we investigated colour variation among uninfected Transorchestia serrulata amphipods, as well as amphipods infected with Plagiorhynchus allisonae acanthocephalans and with a dilepidid cestode. We then characterized the bacteriota of amphipod hosts and of their parasites, looking for correlations between host phenotype and the bacterial taxa associated with hosts and parasites. We found large variation in amphipod colours, and weak support for a direct impact of parasites on the colour of their hosts. Conversely, and most interestingly, the parasite's bacteriota was more strongly correlated with colour variation among their amphipod hosts, with potential impact of amphipod-associated bacteria as well. Some bacterial taxa found associated with amphipods and parasites may have the ability to synthesize pigments, and we propose they may interact with colour determination in the amphipods. This study provides correlational support for an association between the parasite's microbiome and the evolution of host manipulation by parasites and host-parasite interactions more generally.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
48
|
Grève P, Moumen B, Bouchon D. Three feminizing Wolbachia strains in a single host species: comparative genomics paves the way for identifying sex reversal factors. Front Microbiol 2024; 15:1416057. [PMID: 39238888 PMCID: PMC11376236 DOI: 10.3389/fmicb.2024.1416057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Endosymbiotic bacteria in the genus Wolbachia have evolved numerous strategies for manipulating host reproduction in order to promote their own transmission. This includes the feminization of males into functional females, a well-studied phenotype in the isopod Armadillidium vulgare. Despite an early description of this phenotype in isopods and the development of an evolutionary model of host sex determination in the presence of Wolbachia, the underlying genetic mechanisms remain elusive. Methods Here we present the first complete genomes of the three feminizing Wolbachia (wVulC, wVulP, and wVulM) known to date in A. vulgare. These genomes, belonging to Wolbachia B supergroup, contain a large number of mobile elements such as WO prophages with eukaryotic association modules. Taking advantage of these data and those of another Wolbachia-derived feminizing factor integrated into the host genome (f element), we used a comparative genomics approach to identify putative feminizing factors. Results This strategy has enabled us to identify three prophage-associated genes secreted by the Type IV Secretion System: one ankyrin repeat domain-containing protein, one helix-turn-helix transcriptional regulator and one hypothetical protein. In addition, a latrotoxin-related protein, associated with phage relic genes, was shared by all three genomes and the f element. Conclusion These putative feminization-inducing proteins shared canonical interaction features with eukaryotic proteins. These results pave the way for further research into the underlying functional interactions.
Collapse
Affiliation(s)
- Pierre Grève
- Université de Poitiers, Ecologie et Biologie des Interactions, UMR CNRS 7267, Poitiers, France
| | - Bouziane Moumen
- Université de Poitiers, Ecologie et Biologie des Interactions, UMR CNRS 7267, Poitiers, France
| | - Didier Bouchon
- Université de Poitiers, Ecologie et Biologie des Interactions, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
49
|
Kristensen TN, Schönherz AA, Rohde PD, Sørensen JG, Loeschcke V. Selection for stress tolerance and longevity in Drosophila melanogaster have strong impacts on microbiome profiles. Sci Rep 2024; 14:17789. [PMID: 39090347 PMCID: PMC11294339 DOI: 10.1038/s41598-024-68753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
There is experimental evidence that microbiomes have a strong influence on a range of host traits. Understanding the basis and importance of symbiosis between host and associated microorganisms is a rapidly developing research field, and we still lack a mechanistic understanding of ecological and genetic pressures affecting host-microbiome associations. Here Drosophila melanogaster lines from a large-scale artificial selection experiment were used to investigate whether the microbiota differ in lines selected for different stress resistance traits and longevity. Following multiple generations of artificial selection all selection regimes and corresponding controls had their microbiomes assessed. The microbiome was interrogated based on 16S rRNA sequencing. We found that the microbiome of flies from the different selection regimes differed markedly from that of the unselected control regime, and microbial diversity was consistently higher in selected relative to control regimes. Several common Drosophila bacterial species showed differentially abundance in the different selection regimes despite flies being exposed to similar environmental conditions for two generations prior to assessment. Our findings provide strong evidence for symbiosis between host and microbiomes but we cannot reveal whether the interactions are adaptive, nor whether they are caused by genetic or ecological factors.
Collapse
Affiliation(s)
- Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - Anna A Schönherz
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
50
|
Poupin MJ, González B. Embracing complexity in plant-microbiome systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70000. [PMID: 39189551 PMCID: PMC11348195 DOI: 10.1111/1758-2229.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024]
Abstract
Despite recent advances in understanding the role of microorganisms in plant holobiont metabolism, physiology, and fitness, several relevant questions are yet to be answered, with implications for ecology, evolution, and sustainable agriculture. This article explores some of these questions and discusses emerging research areas in plant microbiomes. Firstly, it emphasizes the need to move beyond taxonomic characterization towards understanding microbial functions within plant ecosystems. Secondly, controlling methodological biases and enhancing OMICS technologies' standardization is imperative for a deeper comprehension of plant-microbiota interactions. Furthermore, while plant microbiota research has primarily centred on bacteria and fungi, other microbial players such as archaea, viruses, and microeukaryotes have been largely overlooked. Emerging evidence highlights their presence and potential roles, underscoring the need for thorough assessments. Future research should aim to elucidate the ecological microbial interactions, their impact on plant performance, and how the plant context shapes microbial community dynamics. Finally, a discussion is provided on how the multiple layers of abiotic and biotic factors influencing the spatiotemporal dynamics of plant-microbiome systems require in-depth attention. Examples illustrate how synthetic communities and computational methods such as machine learning and artificial intelligence provide alternatives to tackle these challenges and analyse the plant holobiont as a complex system.
Collapse
Affiliation(s)
- María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
- Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN‐SAP)SantiagoChile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
- Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN‐SAP)SantiagoChile
| |
Collapse
|