1
|
Zhang Q, Zhou X, Feng T, Tong H, Wang J, Dai J. The immune function of thioester-containing proteins in typical invertebrate disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 176:104218. [PMID: 39579796 DOI: 10.1016/j.ibmb.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Disease vectors, such as arthropods, primarily rely on innate immunity to counteract pathogen invasions, typically through the recognition and binding of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). As a conserved immune effector gene family from insects to mammals, the complement system may play an essential role in combating pathogenic microorganisms. In arthropods, the complement proteins are often referred to as thioester-containing proteins (TEPs) because thioester motifs are one of the essential functional domains of the first proteins characterized within the C3 and A2M family. TEPs mainly function as specialized PRRs in sensing and binding to pathogens or their components. This paper presents a comprehensive review of the common domain and functions of TEPs in major disease vectors, in particular the specific decision-making ones expressed by Arthropoda (medical arthropods) and Mollusca (Biomphalaria glabrata) after pathogen infections. The relationship between the structure and antibacterial/antiviral activities of TEPs would further our understandings on the mechanisms governing the initiation of innate immune responses in typical disease vectors.
Collapse
Affiliation(s)
- Qianqian Zhang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xia Zhou
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tingting Feng
- Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tong
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Tsegaye A, Demissew A, Abossie A, Getachew H, Habtamu K, Degefa T, Wang X, Lee MC, Zhong D, Kazura JW, Yan G, Yewhalaw D. Genotype distribution and allele frequency of thioester-containing protein 1(Tep1) and its effect on development of Plasmodium oocyst in populations of Anopheles arabiensis in Ethiopia. PLoS One 2024; 19:e0311783. [PMID: 39383173 PMCID: PMC11463741 DOI: 10.1371/journal.pone.0311783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Thioester-containing protein 1 (TEP1) is a crucial component of mosquitoes' natural resistance to parasites. To effectively combat malaria, there is a need to better understand how TEP1 polymorphism affects phenotypic traits during infections. Therefore, the purpose of this study was to determine the Tep1 genotype frequency in malaria vector populations from south-western Ethiopia and investigate its effect on Plasmodium oocyst development in Anopheles arabiensis populations. METHODS Using standard dippers, Anopheles mosquito larvae were collected from aquatic habitats in Asendabo, Arjo Dedessa, and Gambella in 2019 and 2020. Collected larvae were reared to adults and identified morphologically. Female An. gambiae s.l. were allowed to feed on infected blood containing the same number of gametocytes obtained from P. falciparum and P. vivax gametocyte-positive individuals using indirect membrane feeding methods. Polymerase Chain Reaction (PCR) was used to identify An. gambiae s.l. sibling species. Three hundred thirty An. gambiae s.l. were genotyped using Restricted Fragment Length Polymorphism (RFLP) PCR and sub samples were sequenced to validate the TEP1 genotyping. RESULTS Among the 330 samples genotyped, two TEP1 alleles, TEP1*S1 (82% frequency) and TEP1*R1 (18% frequency), were identified. Three equivalent genotypes, TEP1*S1/S1, TEP1*R1/R1, and TEP1*S1/R1, had mean frequencies of 65.15%, 2.12%, and 32.73%, respectively. The nucleotide diversity was ranging from 0.36554 to 0. 46751 while haplotype diversity ranged from 0.48871 to 0.63161, across all loci. All sample sites had positive Tajima's D and Fu's Fs values. There was a significant difference in the TEP1 allele frequency and genotype frequency among mosquito populations (p < 0.05), except populations of Anopheles arabiensis from Asendabo and Gambella (p > 0.05). In addition, mosquitoes with the TEP1 *RR genotype were susceptible and produced fewer Plasmodium oocysts than mosquitoes with the TEP1 *SR and TEP1 *SS genotypes. CONCLUSION The alleles identified in populations of An. arabiensis were TEP1*R1 and TEP1*S1. There was no significant variation in TEP1*R1 allele frequency between the high and low transmission areas. Furthermore, An. arabiensis carrying the TEP1*R1 allele was susceptible to Plasmodium infection. Further studies on vector-parasite interactions, particularly on the TEP1 gene, are required for vector control techniques.
Collapse
Affiliation(s)
- Arega Tsegaye
- Department of Biology, College of Natural Science, Jimma University, Jimma, Ethiopia
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Assalif Demissew
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
- Aklilu Lemma Institute of Patho- Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Abossie
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arbaminch University, Arbaminch, Ethiopia
| | - Hallelujah Getachew
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, College of Health Sciences, Arbaminch, Ethiopia
| | - Kassahun Habtamu
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, Menelik II College of Medicine and Health Science, Kotebe University of Education, Addis Ababa, Ethiopia
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teshome Degefa
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, United States of America
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, United States of America
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, United States of America
| | - James W. Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, United States of America
| | - Delenasaw Yewhalaw
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| |
Collapse
|
3
|
Vitale M, Kranjc N, Leigh J, Kyrou K, Courty T, Marston L, Grilli S, Crisanti A, Bernardini F. Y chromosome shredding in Anopheles gambiae: Insight into the cellular dynamics of a novel synthetic sex ratio distorter. PLoS Genet 2024; 20:e1011303. [PMID: 38848445 PMCID: PMC11189259 DOI: 10.1371/journal.pgen.1011303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/20/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Despite efforts to explore the genome of the malaria vector Anopheles gambiae, the Y chromosome of this species remains enigmatic. The large number of repetitive and heterochromatic DNA sequences makes the Y chromosome exceptionally difficult to fully assemble, hampering the progress of gene editing techniques and functional studies for this chromosome. In this study, we made use of a bioinformatic platform to identify Y-specific repetitive DNA sequences that served as a target site for a CRISPR/Cas9 system. The activity of Cas9 in the reproductive organs of males caused damage to Y-bearing sperm without affecting their fertility, leading to a strong female bias in the progeny. Cytological investigation allowed us to identify meiotic defects and investigate sperm selection in this new synthetic sex ratio distorter system. In addition, alternative promoters enable us to target the Y chromosome in specific tissues and developmental stages of male mosquitoes, enabling studies that shed light on the role of this chromosome in male gametogenesis. This work paves the way for further insight into the poorly characterised Y chromosome of Anopheles gambiae. Moreover, the sex distorter strain we have generated promises to be a valuable tool for the advancement of studies in the field of developmental biology, with the potential to support the progress of genetic strategies aimed at controlling malaria mosquitoes and other pest species.
Collapse
Affiliation(s)
- Matteo Vitale
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nace Kranjc
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jessica Leigh
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kyrous Kyrou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Thomas Courty
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Louise Marston
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Silvia Grilli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Oludada OE, Costa G, Burn Aschner C, Obraztsova AS, Prieto K, Canetta C, Hoffman SL, Kremsner PG, Mordmüller B, Murugan R, Julien J, Levashina EA, Wardemann H. Molecular and functional properties of human Plasmodium falciparum CSP C-terminus antibodies. EMBO Mol Med 2023; 15:e17454. [PMID: 37082831 PMCID: PMC10245032 DOI: 10.15252/emmm.202317454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Human monoclonal antibodies (mAbs) against the central repeat and junction domain of Plasmodium falciparum circumsporozoite protein (PfCSP) have been studied extensively to guide malaria vaccine design compared to antibodies against the PfCSP C terminus. Here, we describe the molecular characteristics and protective potential of 73 germline and mutated human mAbs against the highly immunogenic PfCSP C-terminal domain. Two mAbs recognized linear epitopes in the C-terminal linker with sequence similarity to repeat and junction motifs, whereas all others targeted conformational epitopes in the α-thrombospondin repeat (α-TSR) domain. Specificity for the polymorphic Th2R/Th3R but not the conserved RII+/CS.T3 region in the α-TSR was associated with IGHV3-21/IGVL3-21 or IGLV3-1 gene usage. Although the C terminus specific mAbs showed signs of more efficient affinity maturation and class-switching compared to anti-repeat mAbs, live sporozoite binding and inhibitory activity was limited to a single C-linker reactive mAb with cross-reactivity to the central repeat and junction. The data provide novel insights in the human anti-C-linker and anti-α-TSR antibody response that support exclusion of the PfCSP C terminus from malaria vaccine designs.
Collapse
Affiliation(s)
- Opeyemi Ernest Oludada
- B Cell Immunology, German Cancer Research CenterHeidelbergGermany
- Biosciences FacultyUniversity of HeidelbergGermany
| | - Giulia Costa
- Vector Biology UnitMax Planck Institute for Infection BiologyBerlinGermany
| | | | - Anna S Obraztsova
- B Cell Immunology, German Cancer Research CenterHeidelbergGermany
- Biosciences FacultyUniversity of HeidelbergGermany
| | - Katherine Prieto
- The Hospital for Sick Children Research InstituteTorontoONCanada
| | - Caterina Canetta
- B Cell Immunology, German Cancer Research CenterHeidelbergGermany
| | | | - Peter G Kremsner
- Institute of Tropical MedicineTübingenGermany
- Centre de Recherches de Lambaréné (CERMEL)LambarénéGabon
| | - Benjamin Mordmüller
- Institute of Tropical MedicineTübingenGermany
- Radboud University Medical CenterNijmegenThe Netherlands
| | | | - Jean‐Philippe Julien
- The Hospital for Sick Children Research InstituteTorontoONCanada
- Departments of Biochemistry and ImmunologyUniversity of TorontoTorontoONCanada
| | - Elena A Levashina
- Vector Biology UnitMax Planck Institute for Infection BiologyBerlinGermany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research CenterHeidelbergGermany
| |
Collapse
|
5
|
Ludwig J, Scally SW, Costa G, Hoffmann S, Murugan R, Lossin J, Prieto K, Obraztcova A, Lobeto N, Franke-Fayard B, Janse CJ, Lebas C, Collin N, Binter S, Kellam P, Levashina EA, Wardemann H, Julien JP. Glycosylated nanoparticle-based PfCSP vaccine confers long-lasting antibody responses and sterile protection in mouse malaria model. NPJ Vaccines 2023; 8:52. [PMID: 37029167 PMCID: PMC10080175 DOI: 10.1038/s41541-023-00653-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The development of an effective and durable vaccine remains a central goal in the fight against malaria. Circumsporozoite protein (CSP) is the major surface protein of sporozoites and the target of the only licensed Plasmodium falciparum (Pf) malaria vaccine, RTS,S/AS01. However, vaccine efficacy is low and short-lived, highlighting the need for a second-generation vaccine with superior efficacy and durability. Here, we report a Helicobacter pylori apoferritin-based nanoparticle immunogen that elicits strong B cell responses against PfCSP epitopes that are targeted by the most potent human monoclonal antibodies. Glycan engineering of the scaffold and fusion of an exogenous T cell epitope enhanced the anti-PfCSP B cell response eliciting strong, long-lived and protective humoral immunity in mice. Our study highlights the power of rational vaccine design to generate a highly efficacious second-generation anti-infective malaria vaccine candidate and provides the basis for its further development.
Collapse
Affiliation(s)
- Julia Ludwig
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sandro Hoffmann
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Lossin
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anna Obraztcova
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Lobeto
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Blandine Franke-Fayard
- Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia Lebas
- Vaccine Formulation Institute, Plan-les-Ouates, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Institute, Plan-les-Ouates, Switzerland
| | - Spela Binter
- Kymab a Sanofi Company, Babraham Research Campus, Cambridge, UK
| | - Paul Kellam
- Kymab a Sanofi Company, Babraham Research Campus, Cambridge, UK
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Bartilol B, Omuoyo D, Karisa J, Ominde K, Mbogo C, Mwangangi J, Maia M, Rono MK. Vectorial capacity and TEP1 genotypes of Anopheles gambiae sensu lato mosquitoes on the Kenyan coast. Parasit Vectors 2022; 15:448. [PMID: 36457004 PMCID: PMC9713959 DOI: 10.1186/s13071-022-05491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Malaria remains one of the most important infectious diseases in sub-Saharan Africa, responsible for approximately 228 million cases and 602,000 deaths in 2020. In this region, malaria transmission is driven mainly by mosquitoes of the Anopheles gambiae and, more recently, Anopheles funestus complex. The gains made in malaria control are threatened by insecticide resistance and behavioural plasticity among these vectors. This, therefore, calls for the development of alternative approaches such as malaria transmission-blocking vaccines or gene drive systems. The thioester-containing protein 1 (TEP1) gene, which mediates the killing of Plasmodium falciparum in the mosquito midgut, has recently been identified as a promising target for gene drive systems. Here we investigated the frequency and distribution of TEP1 alleles in wild-caught malaria vectors on the Kenyan coast. METHODS Mosquitoes were collected using CDC light traps both indoors and outdoors from 20 houses in Garithe village, along the Kenyan coast. The mosquitoes were dissected, and the different parts were used to determine their species, blood meal source, and sporozoite status. The data were analysed and visualised using the R (v 4.0.1) and STATA (v 17.0). RESULTS A total of 18,802 mosquitoes were collected, consisting of 77.8% (n = 14,631) Culex spp., 21.4% (n = 4026) An. gambiae sensu lato, 0.4% (n = 67) An. funestus, and 0.4% (n = 78) other Anopheles (An. coustani, An. pharoensis, and An. pretoriensis). Mosquitoes collected were predominantly exophilic, with the outdoor catches being higher across all the species: Culex spp. 93% (IRR = 11.6, 95% Cl [5.9-22.9] P < 0.001), An. gambiae s.l. 92% (IRR = 7.2, 95% Cl [3.6-14.5]; P < 0.001), An. funestus 91% (IRR = 10.3, 95% Cl [3.3-32.3]; P < 0.001). A subset of randomly selected An. gambiae s.l. (n = 518) was identified by polymerase chain reaction (PCR), among which 77.2% were An. merus, 22% were An. arabiensis, and the rest were not identified. We were also keen on identifying and describing the TEP1 genotypes of these mosquitoes, especially the *R3/R3 allele that was identified recently in the study area. We identified the following genotypes among An. merus: *R2/R2, *R3/R3, *R3/S2, *S1/S1, and *S2/S2. Among An. arabiensis, we identified *R2/R2, *S1/S1, and *S2/S2. Tests on haplotype diversity showed that the most diverse allele was TEP1*S1, followed by TEP1*R2. Tajima's D values were positive for TEP1*S1, indicating that there is a balancing selection, negative for TEP1*R2, indicating there is a recent selective sweep, and as for TEP1*R3, there was no evidence of selection. Phylogenetic analysis showed two distinct clades: refractory and susceptible alleles. CONCLUSIONS We find that the malaria vectors An. gambiae s.l. and An. funestus are predominantly exophilic. TEP1 genotyping for An. merus revealed five allelic combinations, namely *R2/R2, *R3/R3, *R3/S2, *S1/S1 and *S2/S2, while in An. arabiensis we only identified three allelic combinations: *R2/R2, *S1/S1, and *S2/S2. The TEP1*R3 allele was restricted to only An. merus among these sympatric mosquito species, and we find that there is no evidence of recombination or selection in this allele.
Collapse
Affiliation(s)
- Brian Bartilol
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya ,grid.449370.d0000 0004 1780 4347Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Donwilliams Omuoyo
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Jonathan Karisa
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kelly Ominde
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Charles Mbogo
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Joseph Mwangangi
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Marta Maia
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Martin Kibet Rono
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya ,grid.449370.d0000 0004 1780 4347Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| |
Collapse
|
7
|
Onyango SA, Ochwedo KO, Machani MG, Olumeh JO, Debrah I, Omondi CJ, Ogolla SO, Lee MC, Zhou G, Kokwaro E, Kazura JW, Afrane YA, Githeko AK, Zhong D, Yan G. Molecular characterization and genotype distribution of thioester-containing protein 1 gene in Anopheles gambiae mosquitoes in western Kenya. Malar J 2022; 21:235. [PMID: 35948910 PMCID: PMC9364548 DOI: 10.1186/s12936-022-04256-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary pressures lead to the selection of efficient malaria vectors either resistant or susceptible to Plasmodium parasites. These forces may favour the introduction of species genotypes that adapt to new breeding habitats, potentially having an impact on malaria transmission. Thioester-containing protein 1 (TEP1) of Anopheles gambiae complex plays an important role in innate immune defenses against parasites. This study aims to characterize the distribution pattern of TEP1 polymorphisms among populations of An. gambiae sensu lato (s.l.) in western Kenya. METHODS Anopheles gambiae adult and larvae were collected using pyrethrum spray catches (PSC) and plastic dippers respectively from Homa Bay, Kakamega, Bungoma, and Kisumu counties between 2017 and 2020. Collected adults and larvae reared to the adult stage were morphologically identified and then identified to sibling species by PCR. TEP1 alleles were determined in 627 anopheles mosquitoes using restriction fragment length polymorphisms-polymerase chain reaction (RFLP-PCR) and to validate the TEP1 genotyping results, a representative sample of the alleles was sequenced. RESULTS Two TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) were identified. TEP1*S1 and TEP1*R2 with their corresponding genotypes, homozygous *S1/S1 and heterozygous *R2/S1 were widely distributed across all sites with allele frequencies of approximately 80% and 20%, respectively both in Anopheles gambiae and Anopheles arabiensis. There was no significant difference detected among the populations and between the two mosquito species in TEP1 allele frequency and genotype frequency. The overall low levels in population structure (FST = 0.019) across all sites corresponded to an effective migration index (Nm = 12.571) and low Nei's genetic distance values (< 0.500) among the subpopulation. The comparative fixation index values revealed minimal genetic differentiation between species and high levels of gene flow among populations. CONCLUSION Genotyping TEP1 has identified two common TEP1 alleles (TEP1*S1 and TEP1*R2) and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2) in An. gambiae s.l. The TEP1 allele genetic diversity and population structure are low in western Kenya.
Collapse
Affiliation(s)
- Shirley A. Onyango
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
| | - Kevin O. Ochwedo
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Julius O. Olumeh
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
| | - Isaiah Debrah
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogen, University of Ghana, Accra, Ghana
| | - Collince J. Omondi
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Sidney O. Ogolla
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homa bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, Medical School, University of Ghana, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West Africa Centre for Cell Biology of Infectious Pathogen, University of Ghana, Accra, Ghana
- Center for Global Health and Diseases, Case Western Reserve University, LC 4983, Cleveland, OH 44106 USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Elizabeth Kokwaro
- Department of Zoological Sciences, School of Science and Technology, Kenyatta University, Nairobi, Kenya
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western Reserve University, LC 4983, Cleveland, OH 44106 USA
| | - Yaw A. Afrane
- Department of Medical Microbiology, Medical School, University of Ghana, University of Ghana, Accra, Ghana
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
8
|
Kumari S, Tevatiya S, Rani J, Das De T, Chauhan C, Sharma P, Sah R, Singh S, Pandey KC, Pande V, Dixit R. A testis-expressing heme peroxidase HPX12 regulates male fertility in the mosquito Anopheles stephensi. Sci Rep 2022; 12:2597. [PMID: 35173215 PMCID: PMC8850455 DOI: 10.1038/s41598-022-06531-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
In vertebrates dysregulation of the antioxidant defense system has a detrimental impact on male fertility and reproductive physiology. However, in insects, especially mosquitoes the importance of sperm quality has been poorly studied. Since long-term storage of healthy and viable sperm earmarks male reproductive competency, we tested whether the heme peroxidase, a member of antioxidant enzyme family proteins, and abundantly expressed in the testis, also influence male fertility in the mosquito An. stephensi. Here, we show that a heme peroxidase 12 (HPX12), is an important cellular factor to protect the sperms from oxidative stress, and maintains semen quality in the male mosquito reproductive organ. We demonstrate that knockdown of the HPX12 not only impairs the sperm parameters such as motility, viability but also causes a significant down-regulation of MAG expressing transcripts such as ASTEI02706, ASTEI00744, ASTEI10266, likely encoding putative Accessory gland proteins. Mating with HPX12 knockdown male mosquitoes, resulted in ~ 50% reduction in egg-laying, coupled with diminished larval hatchability of a gravid female mosquito. Our data further outlines that increased ROS in the HPX12 mRNA depleted mosquitoes is the ultimate cause of sperm disabilities both qualitatively as well as quantitatively. Our data provide evidence that testis expressing AsHPX12 is crucial for maintaining optimal homeostasis for storing and protecting healthy sperms in the male mosquito's reproductive organs. Since, high reproductive capacity directly influences the mosquito population, manipulating male mosquito reproductive physiology could be an attractive tool to combat vector-borne diseases.
Collapse
Affiliation(s)
- Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Rajkumar Sah
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
9
|
Amaro IA, Ahmed-Braimah YH, League GP, Pitcher SA, Avila FW, Cruz PC, Harrington LC, Wolfner MF. Seminal fluid proteins induce transcriptome changes in the Aedes aegypti female lower reproductive tract. BMC Genomics 2021; 22:896. [PMID: 34906087 PMCID: PMC8672594 DOI: 10.1186/s12864-021-08201-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mating induces behavioral and physiological changes in the arbovirus vector Aedes aegypti, including stimulation of egg development and oviposition, increased survival, and reluctance to re-mate with subsequent males. Transferred seminal fluid proteins and peptides derived from the male accessory glands induce these changes, though the mechanism by which they do this is not known. RESULTS To determine transcriptome changes induced by seminal proteins, we injected extract from male accessory glands and seminal vesicles (MAG extract) into females and examined female lower reproductive tract (LRT) transcriptomes 24 h later, relative to non-injected controls. MAG extract induced 87 transcript-level changes, 31 of which were also seen in a previous study of the LRT 24 h after a natural mating, including 15 genes with transcript-level changes similarly observed in the spermathecae of mated females. The differentially-regulated genes are involved in diverse molecular processes, including immunity, proteolysis, neuronal function, transcription control, or contain predicted small-molecule binding and transport domains. CONCLUSIONS Our results reveal that seminal fluid proteins, specifically, can induce gene expression responses after mating and identify gene targets to further investigate for roles in post-mating responses and potential use in vector control.
Collapse
Affiliation(s)
- I Alexandra Amaro
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Garrett P League
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Sylvie A Pitcher
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Priscilla C Cruz
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Knockout of Anopheles stephensi immune gene LRIM1 by CRISPR-Cas9 reveals its unexpected role in reproduction and vector competence. PLoS Pathog 2021; 17:e1009770. [PMID: 34784388 PMCID: PMC8631644 DOI: 10.1371/journal.ppat.1009770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ development (sporogony) in mosquitoes by supporting melanization and phagocytosis of ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome composition, including elimination of commensal acetic acid bacteria. The alterations in the microbiome caused increased mosquito mortality and unexpectedly, significantly reduced sporogony. The survival rate of Δaslrim1 mosquitoes and their ability to support PfSPZ development, were partially restored by antibiotic treatment of the mosquitoes, and fully restored to baseline when Δaslrim1 mosquitoes were produced aseptically. Deletion of LRIM1 also affected reproductive capacity: oviposition, fecundity and male fertility were significantly compromised. Attenuation in fecundity was not associated with the altered microbiome. This work demonstrates that LRIM1's regulation of the microbiome has a major impact on vector competence and longevity of A. stephensi. Additionally, LRIM1 deletion identified an unexpected role for this gene in fecundity and reduction of sperm transfer by males.
Collapse
|
11
|
Reitmayer CM, Pathak AK, Harrington LC, Brindley MA, Cator LJ, Murdock CC. Sex, age, and parental harmonic convergence behavior affect the immune performance of Aedes aegypti offspring. Commun Biol 2021; 4:723. [PMID: 34117363 PMCID: PMC8196008 DOI: 10.1038/s42003-021-02236-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Harmonic convergence is a potential cue, female mosquitoes use to choose male mates. However, very little is known about the benefits this choice confers to offspring performance. Using Aedes aegypti (an important vector of human disease), we investigated whether offspring of converging parental pairs showed differences in immune competence compared to offspring derived from non-converging parental pairs. Here we show that harmonic convergence, along with several other interacting factors (sex, age, reproductive, and physiological status), significantly shaped offspring immune responses (melanization and response to a bacterial challenge). Harmonic convergence had a stronger effect on the immune response of male offspring than on female offspring. Further, female offspring from converging parental pairs disseminated dengue virus more quickly than offspring derived from non-converging parental pairs. Our results provide insight into a wide range of selective pressures shaping mosquito immune function and could have important implications for disease transmission and control.
Collapse
Affiliation(s)
- Christine M Reitmayer
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, GA, USA
- The Pirbright Institute, Pirbright, Surrey, UK
| | - Ashutosh K Pathak
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, GA, USA
| | - Laura C Harrington
- Department of Entomology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
- Northeast Center for Excellence for Vector-borne Disease Research, Ithaca, NY, USA
| | - Melinda A Brindley
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lauren J Cator
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Courtney C Murdock
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, GA, USA.
- Department of Entomology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
- Northeast Center for Excellence for Vector-borne Disease Research, Ithaca, NY, USA.
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
- Odum School of Ecology, University of Georgia, Athens, GA, USA.
- Center for Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA.
- Riverbasin Center, Odum School of Ecology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
12
|
Cator LJ, Wyer CAS, Harrington LC. Mosquito Sexual Selection and Reproductive Control Programs. Trends Parasitol 2021; 37:330-339. [PMID: 33422425 DOI: 10.1016/j.pt.2020.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
The field of mosquito mating biology has experienced a considerable expansion in the past decade. Recent work has generated many key insights about specific aspects of mating behavior and physiology. Here, we synthesize these findings and classify swarming mosquito systems as polygynous. Male mating success is highly variable in swarms and evidence suggests that it is likely determined by both scramble competition between males and female choice. Incorporating this new understanding will improve both implementation and long-term stability of reproductive control tools.
Collapse
Affiliation(s)
- Lauren J Cator
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Claudia A S Wyer
- Department of Life Sciences, Imperial College London, Ascot, UK; Science and Solutions for a Changing Planet DTP, Kensington, London SW7 2AZ, UK
| | - Laura C Harrington
- Department of Entomology, Cornell University, Ithaca, New York, NY, USA.
| |
Collapse
|
13
|
Biwot JC, Zhang HB, Liu C, Qiao JX, Yu XQ, Wang YF. Wolbachia-induced expression of kenny gene in testes affects male fertility in Drosophila melanogaster. INSECT SCIENCE 2020; 27:869-882. [PMID: 31617302 DOI: 10.1111/1744-7917.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia are Gram-negative endosymbionts that are known to cause embryonic lethality when infected male insects mate with uninfected females or with females carrying a different strain of Wolbachia, a situation characterized as cytoplasmic incompatibility (CI). However, the mechanism of CI is not yet fully understood, although recent studies on Drosophila melanogaster have achieved great progress. Here, we found that Wolbachia infection caused changes in the expressions of several immunity-related genes, including significant upregulation of kenny (key), in the testes of D. melanogaster. Overexpression of key in fly testes led to a significant decrease in egg hatch rates when these flies mate with wild-type females. Wolbachia-infected females could rescue this embryonic lethality. Furthermore, in key overexpressing testes terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling signal was significantly stronger than in the control testes, and the level of reactive oxygen species was significantly increased. Overexpression of key also resulted in alterations of some other immunity-related gene expressions, including the downregulation of Zn72D. Knockdown of Zn72D in fly testes also led to a significant decrease in egg hatch rates. These results suggest that Wolbachia might induce the defect in male host fertility by immunity-related pathways and thus cause an oxidative damage and cell death in male testes.
Collapse
Affiliation(s)
- John C Biwot
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Hua-Bao Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Chen Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Jun-Xue Qiao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Xiao-Qiang Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
14
|
Volohonsky G, Paul-Gilloteaux P, Štáfková J, Soichot J, Salamero J, Levashina EA. Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes. PLoS Pathog 2020; 16:e1008739. [PMID: 32946522 PMCID: PMC7526910 DOI: 10.1371/journal.ppat.1008739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/30/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
Malaria-causing Plasmodium parasites traverse the mosquito midgut cells to establish infection at the basal side of the midgut. This dynamic process is a determinant of mosquito vector competence, yet the kinetics of the parasite migration is not well understood. Here we used transgenic mosquitoes of two Anopheles species and a Plasmodium berghei fluorescence reporter line to track parasite passage through the mosquito tissues at high spatial resolution. We provide new quantitative insight into malaria parasite invasion in African and Indian Anopheles species and propose that the mosquito complement-like system contributes to the species-specific dynamics of Plasmodium invasion. The traversal of the mosquito midgut cells is one of the critical stages in the life cycle of malaria parasites. Motile parasite forms, called ookinetes, traverse the midgut epithelium in a dynamic process which is not fully understood. Here, we harnessed transgenic reporters to track invasion of Plasmodium parasites in African and Indian mosquito species. We found important differences in parasite dynamics between the two Anopheles species and demonstrated a role of the mosquito complement-like system in regulation of parasite invasion of the midgut cells.
Collapse
Affiliation(s)
- Gloria Volohonsky
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Perrine Paul-Gilloteaux
- SERPICO Inria Team/CNRS UMR 144, Institut Curie, Paris, France.,National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France.,Cell and Tissue Imaging Facility, IBiSA, Institut Curie, Paris, France
| | - Jitka Štáfková
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Julien Soichot
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Jean Salamero
- SERPICO Inria Team/CNRS UMR 144, Institut Curie, Paris, France.,National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France.,Cell and Tissue Imaging Facility, IBiSA, Institut Curie, Paris, France
| | - Elena A Levashina
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France.,Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
15
|
Chowdhury A, Modahl CM, Tan ST, Wong Wei Xiang B, Missé D, Vial T, Kini RM, Pompon JF. JNK pathway restricts DENV2, ZIKV and CHIKV infection by activating complement and apoptosis in mosquito salivary glands. PLoS Pathog 2020; 16:e1008754. [PMID: 32776975 PMCID: PMC7444518 DOI: 10.1371/journal.ppat.1008754] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/20/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022] Open
Abstract
Arbovirus infection of Aedes aegypti salivary glands (SGs) determines transmission. However, there is a dearth of knowledge on SG immunity. Here, we characterized SG immune response to dengue, Zika and chikungunya viruses using high-throughput transcriptomics. We also describe a transcriptomic response associated to apoptosis, blood-feeding and lipid metabolism. The three viruses differentially regulate components of Toll, Immune deficiency (IMD) and c-Jun N- terminal Kinase (JNK) pathways. However, silencing of the Toll and IMD pathway components showed variable effects on SG infection by each virus. In contrast, regulation of the JNK pathway produced consistent responses in both SGs and midgut. Infection by the three viruses increased with depletion of the activator Kayak and decreased with depletion of the negative regulator Puckered. Virus-induced JNK pathway regulates the complement factor, Thioester containing protein-20 (TEP20), and the apoptosis activator, Dronc, in SGs. Individual and co-silencing of these genes demonstrate their antiviral effects and that both may function together. Co-silencing either TEP20 or Dronc with Puckered annihilates JNK pathway antiviral effect. Upon infection in SGs, TEP20 induces antimicrobial peptides (AMPs), while Dronc is required for apoptosis independently of TEP20. In conclusion, we revealed the broad antiviral function of JNK pathway in SGs and showed that it is mediated by a TEP20 complement and Dronc-induced apoptosis response. These results expand our understanding of the immune arsenal that blocks arbovirus transmission. Arboviral diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses are responsible for large number of death and debilitation around the world. These viruses are transmitted to humans by the mosquito vector, Aedes aegypti. During the bites, infected salivary glands (SGs) release saliva containing viruses, which initiate human infection. As the tissue where transmitted viruses are produced, SG infection is a key determinant of transmission. To bridge the knowledge gap in vector-virus molecular interactions in SGs, we describe the transcriptome after DENV, ZIKV and CHIKV infection using RNA-sequencing and characterized the immune response in this tissue. Our study reveals the broad antiviral function of c-Jun N-terminal kinase (JNK) pathway against DENV, ZIKV and CHIKV in SGs. We further show that it is mediated by the complement system and apoptosis, identifying the mechanism. Our study adds the JNK pathway to the immune arsenal that can be harnessed to engineer refractory vectors.
Collapse
Affiliation(s)
- Avisha Chowdhury
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Cassandra M. Modahl
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Siok Thing Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Dorothée Missé
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | - Thomas Vial
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - R. Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail: (RMK); (JFP)
| | - Julien Francis Pompon
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
- * E-mail: (RMK); (JFP)
| |
Collapse
|
16
|
Evolution of protective human antibodies against Plasmodium falciparum circumsporozoite protein repeat motifs. Nat Med 2020; 26:1135-1145. [DOI: 10.1038/s41591-020-0881-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
|
17
|
A New Assessment of Thioester-Containing Proteins Diversity of the Freshwater Snail Biomphalaria glabrata. Genes (Basel) 2020; 11:genes11010069. [PMID: 31936127 PMCID: PMC7016707 DOI: 10.3390/genes11010069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Thioester-containing proteins (TEPs) superfamily is known to play important innate immune functions in a wide range of animal phyla. TEPs are involved in recognition, and in the direct or mediated killing of several invading organisms or pathogens. While several TEPs have been identified in many invertebrates, only one TEP (named BgTEP) has been previously characterized in the freshwater snail, Biomphalaria glabrata. As the presence of a single member of that family is particularly intriguing, transcriptomic data and the recently published genome were used to explore the presence of other BgTEP related genes in B. glabrata. Ten other TEP members have been reported and classified into different subfamilies: Three complement-like factors (BgC3-1 to BgC3-3), one α-2-macroblobulin (BgA2M), two macroglobulin complement-related proteins (BgMCR1, BgMCR2), one CD109 (BgCD109), and three insect TEP (BgTEP2 to BgTEP4) in addition to the previously characterized BgTEP that we renamed BgTEP1. This is the first report on such a level of TEP diversity and of the presence of macroglobulin complement-related proteins (MCR) in mollusks. Gene structure analysis revealed alternative splicing in the highly variable region of three members (BgA2M, BgCD109, and BgTEP2) with a particularly unexpected diversity for BgTEP2. Finally, different gene expression profiles tend to indicate specific functions for such novel family members.
Collapse
|
18
|
Biwot JC, Zhang HB, Chen MY, Wang YF. A new function of immunity-related gene Zn72D in male fertility of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21612. [PMID: 31482645 DOI: 10.1002/arch.21612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Zn72D encodes the Drosophila zinc finger protein Zn72D. It was first identified to be involved in phagocytosis and indicated to have a role in immunity. Then it was demonstrated to have a function in RNA splicing and dosage compensation in Drosophila melanogaster. In this study, we discovered a new function of Zn72D in male fertility. We showed that knockdown of Zn72D in fly testes caused an extremely low egg hatch rate. Immunofluorescence staining of Zn72D knockdown testes exhibited scattered spermatid nuclei and no actin cones or individualization complexes (ICs) during spermiogenesis, whereas the early-stage germ cells and the spermatocytes were observed clearly. There were no mature sperms in the seminal vesicles of Zn72D knockdown fly testes, although a few sperms could be found close to the seminal vesicle. We further showed that many cytoskeleton-related genes were significantly downregulated in fly testes due to Zn72D knockdown. Taken together these findings suggest that Zn72D may have an important function in spermatogenesis by sustaining the cytoskeleton-based morphogenesis and individualization thus ensuring the proper formation of sperm in D. melanogaster.
Collapse
Affiliation(s)
- John C Biwot
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hua-Bao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Meng-Yan Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
19
|
Lee AS, Rusch J, Lima AC, Usmani A, Huang N, Lepamets M, Vigh-Conrad KA, Worthington RE, Mägi R, Wu X, Aston KI, Atkinson JP, Carrell DT, Hess RA, O'Bryan MK, Conrad DF. Rare mutations in the complement regulatory gene CSMD1 are associated with male and female infertility. Nat Commun 2019; 10:4626. [PMID: 31604923 PMCID: PMC6789153 DOI: 10.1038/s41467-019-12522-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Infertility in men and women is a complex genetic trait with shared biological bases between the sexes. Here, we perform a series of rare variant analyses across 73,185 women and men to identify genes that contribute to primary gonadal dysfunction. We report CSMD1, a complement regulatory protein on chromosome 8p23, as a strong candidate locus in both sexes. We show that CSMD1 is enriched at the germ-cell/somatic-cell interface in both male and female gonads. Csmd1-knockout males show increased rates of infertility with significantly increased complement C3 protein deposition in the testes, accompanied by severe histological degeneration. Knockout females show significant reduction in ovarian quality and breeding success, as well as mammary branching impairment. Double knockout of Csmd1 and C3 causes non-additive reduction in breeding success, suggesting that CSMD1 and the complement pathway play an important role in the normal postnatal development of the gonads in both sexes.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jannette Rusch
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ana C Lima
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abul Usmani
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ni Huang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maarja Lepamets
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Katinka A Vigh-Conrad
- Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Ronald E Worthington
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL, 62025, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kenneth I Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas T Carrell
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Rex A Hess
- College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, 61802, USA
| | - Moira K O'Bryan
- The School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, 97239, USA.
| |
Collapse
|
20
|
Tibúrcio M, Yang ASP, Yahata K, Suárez-Cortés P, Belda H, Baumgarten S, van de Vegte-Bolmer M, van Gemert GJ, van Waardenburg Y, Levashina EA, Sauerwein RW, Treeck M. A Novel Tool for the Generation of Conditional Knockouts To Study Gene Function across the Plasmodium falciparum Life Cycle. mBio 2019; 10:e01170-19. [PMID: 31530668 PMCID: PMC6751054 DOI: 10.1128/mbio.01170-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023] Open
Abstract
Plasmodium falciparum has a complex life cycle that involves interaction with multiple tissues inside the human and mosquito hosts. Identification of essential genes at all different stages of the P. falciparum life cycle is urgently required for clinical development of tools for malaria control and eradication. However, the study of P. falciparum is limited by the inability to genetically modify the parasite throughout its life cycle with the currently available genetic tools. Here, we describe the detailed characterization of a new marker-free P. falciparum parasite line that expresses rapamycin-inducible Cre recombinase across the full life cycle. Using this parasite line, we were able to conditionally delete the essential invasion ligand AMA1 in three different developmental stages for the first time. We further confirm efficient gene deletion by targeting the nonessential kinase FIKK7.1.IMPORTANCE One of the major limitations in studying P. falciparum is that so far only asexual stages are amenable to rapid conditional genetic modification. The most promising drug targets and vaccine candidates, however, have been refractory to genetic modification because they are essential during the blood stage or for transmission in the mosquito vector. This leaves a major gap in our understanding of parasite proteins in most life cycle stages and hinders genetic validation of drug and vaccine targets. Here, we describe a method that supports conditional gene deletion across the P. falciparum life cycle for the first time. We demonstrate its potential by deleting essential and nonessential genes at different parasite stages, which opens up completely new avenues for the study of malaria and drug development. It may also allow the realization of novel vaccination strategies using attenuated parasites.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Annie S P Yang
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Kazuhide Yahata
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Pablo Suárez-Cortés
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | | | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Youri van Waardenburg
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
21
|
Mumford JD, Long CA, Weaver SC, Miura K, Wang E, Rotenberry R, Dotson EM, Benedict MQ. Plasmodium falciparum (Haemosporodia: Plasmodiidae) and O'nyong-nyong Virus Development in a Transgenic Anopheles gambiae (Diptera: Culicidae) Strain. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:936-941. [PMID: 30924861 PMCID: PMC6595505 DOI: 10.1093/jme/tjz032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Transgenic Anopheles gambiae Giles (Diptera: Culicidae) mosquitoes have been developed that confer sexual sterility on males that carry a transgene encoding a protein which cuts ribosomal DNA. A relevant risk concern with transgenic mosquitoes is that their capacity to transmit known pathogens could be greater than the unmodified form. In this study, the ability to develop two human pathogens in these transgenic mosquitoes carrying a homing endonuclease which is expressed in the testes was compared with its nontransgenic siblings. Infections were performed with Plasmodium falciparum (Welch) and o'nyong-nyong virus (ONNV) and the results between the transgenic and nontransgenic sibling females were compared. There was no difference observed with ONNV isolate SG650 in intrathoracic infections or the 50% oral infectious dose measured at 14 d postinfection or in mean body titers. Some significant differences were observed for leg titers at the medium and highest doses for those individuals in which virus titer could be detected. No consistent difference was observed between the transgenic and nontransgenic comparator females in their ability to develop P. falciparum NF54 strain parasites. This particular transgene caused no significant effect in the ability of mosquitoes to become infected by these two pathogens in this genetic background. These results are discussed in the context of risk to human health if these transgenic individuals were present in the environment.
Collapse
Affiliation(s)
- John D Mumford
- Imperial College London, Centre for Environmental Policy, Silwood Park Campus, Ascot, Berkshire, UK
| | - Carole A Long
- NIH, NIAID, Laboratory of Malaria and Vector Research, Malaria Immunology Section, Twinbrook Pkwy, Rockville, MD
| | - Scott C Weaver
- Institute for Human Infections and Immunity and Department of Microbiology & Immunology, University of Texas Medical Branch (UTMB), Galveston, TX
| | - Katzutoyo Miura
- NIH, NIAID, Laboratory of Malaria and Vector Research, Malaria Immunology Section, Twinbrook Pkwy, Rockville, MD
| | - Eryu Wang
- Institute for Human Infections and Immunity and Department of Microbiology & Immunology, University of Texas Medical Branch (UTMB), Galveston, TX
| | - Rachel Rotenberry
- Centers for Disease Control and Prevention, DPDM/Entomology Branch, Atlanta, GA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention, DPDM/Entomology Branch, Atlanta, GA
| | - Mark Q Benedict
- Centers for Disease Control and Prevention, DPDM/Entomology Branch, Atlanta, GA
| |
Collapse
|
22
|
Abstract
The moment of the fertilization of an egg by a spermatozoon-the point of "sperm success"-is a key milestone in the biology of sexually reproducing species and is a fundamental requirement for offspring production. Fertilization also represents the culmination of a suite of sexually selected processes in both sexes and is commonly used as a landmark to measure reproductive success. Sperm success is heavily dependent upon interactions with other key aspects of male and female biology, with the immune system among the most important. The immune system is vital to maintaining health in both sexes; however, immune reactions can also have antagonistic effects on sperm success. The effects of immunity on sperm success are diverse, and may include trade-offs in the male between investment in the production or protection of sperm, as well as more direct, hostile, immune responses to sperm within the female, and potentially the male, reproductive tract. Here, we review current understanding of where the biology of immunity and sperm meet, and identify the gaps in our knowledge.
Collapse
Affiliation(s)
- Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - Susan S Suarez
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| | - Brian P Lazzaro
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mariana F Wolfner
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| |
Collapse
|
23
|
Mosquito microevolution drives Plasmodium falciparum dynamics. Nat Microbiol 2019; 4:941-947. [PMID: 30911126 DOI: 10.1038/s41564-019-0414-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Abstract
Malaria, a major cause of child mortality in Africa, is engendered by Plasmodium parasites that are transmitted by anopheline mosquitoes. Fitness of Plasmodium parasites is closely linked to the ecology and evolution of its anopheline vector. However, whether the genetic structure of vector populations impacts malaria transmission remains unknown. Here, we describe a partitioning of the African malaria vectors into generalists and specialists that evolve along ecological boundaries. We next identify the contribution of mosquito species to Plasmodium abundance using Granger causality tests for time-series data collected over two rainy seasons in Mali. We find that mosquito microevolution, defined by changes in the genetic structure of a population over short ecological timescales, drives Plasmodium dynamics in nature, whereas vector abundance, infection prevalence, temperature and rain have low predictive values. Our study demonstrates the power of time-series approaches in vector biology and highlights the importance of focusing local vector control strategies on mosquito species that drive malaria dynamics.
Collapse
|
24
|
Costa G, Gildenhard M, Eldering M, Lindquist RL, Hauser AE, Sauerwein R, Goosmann C, Brinkmann V, Carrillo-Bustamante P, Levashina EA. Non-competitive resource exploitation within mosquito shapes within-host malaria infectivity and virulence. Nat Commun 2018; 9:3474. [PMID: 30150763 PMCID: PMC6110728 DOI: 10.1038/s41467-018-05893-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
Abstract
Malaria is a fatal human parasitic disease transmitted by a mosquito vector. Although the evolution of within-host malaria virulence has been the focus of many theoretical and empirical studies, the vector’s contribution to this process is not well understood. Here, we explore how within-vector resource exploitation would impact the evolution of within-host Plasmodium virulence. By combining within-vector dynamics and malaria epidemiology, we develop a mathematical model, which predicts that non-competitive parasitic resource exploitation within-vector restricts within-host parasite virulence. To validate our model, we experimentally manipulate mosquito lipid trafficking and gauge within-vector parasite development and within-host infectivity and virulence. We find that mosquito-derived lipids determine within-host parasite virulence by shaping development (quantity) and metabolic activity (quality) of transmissible sporozoites. Our findings uncover the potential impact of within-vector environment and vector control strategies on the evolution of malaria virulence. The evolution of within-host malaria virulence has been studied, but the vector’s contribution isn’t well understood. Here, Costa et al. show that non-competitive parasitic resource exploitation within-vector, in particular lipid trafficking, restricts within-host infectivity and virulence of the parasite.
Collapse
Affiliation(s)
- G Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - M Gildenhard
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - M Eldering
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany.,Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - R L Lindquist
- Immunodynamics, German Rheumatism Research Centre (DRFZ), 10117, Berlin, Germany
| | - A E Hauser
- Immunodynamics, German Rheumatism Research Centre (DRFZ), 10117, Berlin, Germany.,Immune Dynamics and Intravital Microscopy, Charité-Universitätsmedizin, 10117, Berlin, Germany
| | - R Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - C Goosmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - V Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - P Carrillo-Bustamante
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - E A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany.
| |
Collapse
|
25
|
Matetovici I, Van Den Abbeele J. Thioester-containing proteins in the tsetse fly (Glossina) and their response to trypanosome infection. INSECT MOLECULAR BIOLOGY 2018; 27. [PMID: 29528164 PMCID: PMC5969219 DOI: 10.1111/imb.12382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Thioester-containing proteins (TEPs) are conserved proteins with a role in innate immune immunity. In the current study, we characterized the TEP family in the genome of six tsetse fly species (Glossina spp.). Tsetse flies are the biological vectors of several African trypanosomes, which cause sleeping sickness in humans or nagana in livestock. The analysis of the tsetse TEP sequences revealed information about their structure, evolutionary relationships and expression profiles under both normal and trypanosome infection conditions. Phylogenetic analysis of the family showed that tsetse flies harbour a genomic expansion of specific TEPs that are not found in other dipterans. We found a general expression of all TEP genes in the alimentary tract, mouthparts and salivary glands. Glossina morsitans and Glossina palpalis TEP genes display a tissue-specific expression pattern with some that are markedly up-regulated when the fly is infected with the trypanosome parasite. A different TEP response was observed to infection with Trypanosoma brucei compared to Trypanosoma congolense, indicating that the tsetse TEP response is trypanosome-specific. These findings are suggestive for the involvement of the TEP family in tsetse innate immunity, with a possible role in the control of the trypanosome parasite.
Collapse
Affiliation(s)
- I. Matetovici
- Unit of Veterinary Protozoology, Department of Biomedical SciencesInstitute of Tropical Medicine Antwerp (ITM)AntwerpBelgium
| | - J. Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical SciencesInstitute of Tropical Medicine Antwerp (ITM)AntwerpBelgium
| |
Collapse
|
26
|
Portet A, Galinier R, Pinaud S, Portela J, Nowacki F, Gourbal B, Duval D. BgTEP: An Antiprotease Involved in Innate Immune Sensing in Biomphalaria glabrata. Front Immunol 2018; 9:1206. [PMID: 29899746 PMCID: PMC5989330 DOI: 10.3389/fimmu.2018.01206] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Insect thioester-containing protein (iTEP) is the most recently defined group among the thioester-containing protein (TEP) superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations. In the freshwater snail Biomphalaria glabrata, a vector of the schistosomiasis disease, the presence of a TEP protein (BgTEP) was previously described in a well-defined immune complex involving snail lectins (fibrinogen-related proteins) and schistosome parasite mucins (SmPoMuc). To investigate the potential role of BgTEP in the immune response of the snail, we first characterized its genomic organization and its predicted protein structure. A phylogenetic analysis clustered BgTEP in a well-conserved subgroup of mollusk TEP. We then investigated the BgTEP expression profile in different snail tissues and followed immune challenges using different kinds of intruders during infection kinetics. Results revealed that BgTEP is particularly expressed in hemocytes, the immune-specialized cells in invertebrates, and is secreted into the hemolymph. Transcriptomic results further evidenced an intruder-dependent differential expression pattern of BgTEP, while interactome experiments showed that BgTEP is capable of binding to the surface of different microbes and parasite either in its full length form or in processed forms. An immunolocalization approach during snail infection by the Schistosoma mansoni parasite revealed that BgTEP is solely expressed by a subtype of hemocytes, the blast-like cells. This hemocyte subtype is present in the hemocytic capsule surrounding the parasite, suggesting a potential role in the parasite clearance by encapsulation. Through this work, we report the first characterization of a snail TEP. Our study also reveals that BgTEP may display an unexpected functional dual role. In addition to its previously characterized anti-protease activity, we demonstrate that BgTEP can bind to the intruder surface membrane, which supports a likely opsonin role.
Collapse
Affiliation(s)
- Anaïs Portet
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Richard Galinier
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Silvain Pinaud
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Julien Portela
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Fanny Nowacki
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - David Duval
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| |
Collapse
|
27
|
Benedict MQ, Burt A, Capurro ML, De Barro P, Handler AM, Hayes KR, Marshall JM, Tabachnick WJ, Adelman ZN. Recommendations for Laboratory Containment and Management of Gene Drive Systems in Arthropods. Vector Borne Zoonotic Dis 2018; 18:2-13. [PMID: 29040058 PMCID: PMC5846571 DOI: 10.1089/vbz.2017.2121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Versatile molecular tools for creating driving transgenes and other invasive genetic factors present regulatory, ethical, and environmental challenges that should be addressed to ensure their safe use. In this article, we discuss driving transgenes and invasive genetic factors that can potentially spread after their introduction into a small proportion of individuals in a population. The potential of invasive genetic factors to increase their number in natural populations presents challenges that require additional safety measures not provided by previous recommendations regarding accidental release of arthropods. In addition to providing physical containment, invasive genetic factors require greater attention to strain management, including their distribution and identity confirmation. In this study, we focus on insects containing such factors with recommendations for investigators who are creating them, institutional biosafety committees charged with ensuring safety, funding agencies providing support, those managing insectaries handling these materials who are responsible for containment, and other persons who will be receiving insects-transgenic or not-from these facilities. We give specific examples of efforts to modify mosquitoes for mosquito-borne disease control, but similar considerations are relevant to other arthropods that are important to human health, the environment, and agriculture.
Collapse
Affiliation(s)
- Mark Q Benedict
- 1 Entomology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Austin Burt
- 2 Life Sciences, Imperial College London , Ascot, United Kingdom
| | - Margareth L Capurro
- 3 Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo, Brazil
- 4 National Institute of Science and Technology in Molecular Entomology , National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | | | - Alfred M Handler
- 6 USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology , Gainesville, Florida
| | | | - John M Marshall
- 8 Divisions of Biostatistics and Epidemiology, School of Public Health, University of California , Berkeley, California
| | - Walter J Tabachnick
- 9 Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida , Vero Beach, Florida
| | - Zach N Adelman
- 10 Department of Entomology, Texas A&M University , College Station, Texas
| |
Collapse
|
28
|
Natural Parasite Exposure Induces Protective Human Anti-Malarial Antibodies. Immunity 2017; 47:1197-1209.e10. [PMID: 29195810 DOI: 10.1016/j.immuni.2017.11.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/22/2017] [Accepted: 11/04/2017] [Indexed: 12/21/2022]
Abstract
Antibodies against the NANP repeat of circumsporozoite protein (CSP), the major surface antigen of Plasmodium falciparum (Pf) sporozoites, can protect from malaria in animal models but protective humoral immunity is difficult to induce in humans. Here we cloned and characterized rare affinity-matured human NANP-reactive memory B cell antibodies elicited by natural Pf exposure that potently inhibited parasite transmission and development in vivo. We unveiled the molecular details of antibody binding to two distinct protective epitopes within the NANP repeat. NANP repeat recognition was largely mediated by germline encoded and immunoglobulin (Ig) heavy-chain complementarity determining region 3 (HCDR3) residues, whereas affinity maturation contributed predominantly to stabilizing the antigen-binding site conformation. Combined, our findings illustrate the power of exploring human anti-CSP antibody responses to develop tools for malaria control in the mammalian and the mosquito vector and provide a molecular basis for the structure-based design of next-generation CSP malaria vaccines.
Collapse
|
29
|
Scally SW, Murugan R, Bosch A, Triller G, Costa G, Mordmüller B, Kremsner PG, Sim BKL, Hoffman SL, Levashina EA, Wardemann H, Julien JP. Rare PfCSP C-terminal antibodies induced by live sporozoite vaccination are ineffective against malaria infection. J Exp Med 2017; 215:63-75. [PMID: 29167197 PMCID: PMC5748854 DOI: 10.1084/jem.20170869] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/30/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022] Open
Abstract
Scally et al. show the molecular, structural, and functional characterization of human antibodies against the C-terminal domain of Plasmodium falciparum (Pf) circumsporozoite (CSP [C-PfCSP]) and reveal that its arrangement on the Pf sporozoite surface and epitope polymorphism contribute to poor C-PfCSP immunogenicity and ineffective humoral responses in volunteers protected against Pf malaria. Antibodies against the central repeat of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) inhibit parasite activity and correlate with protection from malaria. However, the humoral response to the PfCSP C terminus (C-PfCSP) is less well characterized. Here, we describe B cell responses to C-PfCSP from European donors who underwent immunization with live Pf sporozoites (PfSPZ Challenge) under chloroquine prophylaxis (PfSPZ-CVac), and were protected against controlled human malaria infection. Out of 215 PfCSP-reactive monoclonal antibodies, only two unique antibodies were specific for C-PfCSP, highlighting the rare occurrence of C-PfCSP–reactive B cells in PfSPZ-CVac–induced protective immunity. These two antibodies showed poor sporozoite binding and weak inhibition of parasite traversal and development, and did not protect mice from infection with PfCSP transgenic Plasmodium berghei sporozoites. Structural analyses demonstrated that one antibody interacts with a polymorphic region overlapping two T cell epitopes, suggesting that variability in C-PfCSP may benefit parasite escape from humoral and cellular immunity. Our data identify important features underlying C-PfCSP shortcomings as a vaccine target.
Collapse
Affiliation(s)
- Stephen W Scally
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Alexandre Bosch
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Gianna Triller
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany
| | | | | | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Dostálová A, Rommelaere S, Poidevin M, Lemaitre B. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. BMC Biol 2017; 15:79. [PMID: 28874153 PMCID: PMC5584532 DOI: 10.1186/s12915-017-0408-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/25/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Members of the thioester-containing protein (TEP) family contribute to host defence in both insects and mammals. However, their role in the immune response of Drosophila is elusive. In this study, we address the role of TEPs in Drosophila immunity by generating a mutant fly line, referred to as TEPq Δ , lacking the four immune-inducible TEPs, TEP1, 2, 3 and 4. RESULTS Survival analyses with TEPq Δ flies reveal the importance of these proteins in defence against entomopathogenic fungi, Gram-positive bacteria and parasitoid wasps. Our results confirm that TEPs are required for efficient phagocytosis of bacteria, notably for the two Gram-positive species tested, Staphylococcus aureus and Enterococcus faecalis. Furthermore, we show that TEPq Δ flies have reduced Toll pathway activation upon microbial infection, resulting in lower expression of antimicrobial peptide genes. Epistatic analyses suggest that TEPs function upstream or independently of the serine protease ModSP at an initial stage of Toll pathway activation. CONCLUSIONS Collectively, our study brings new insights into the role of TEPs in insect immunity. It reveals that TEPs participate in both humoral and cellular arms of immune response in Drosophila. In particular, it shows the importance of TEPs in defence against Gram-positive bacteria and entomopathogenic fungi, notably by promoting Toll pathway activation.
Collapse
Affiliation(s)
- Anna Dostálová
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Samuel Rommelaere
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Lin L, Rodrigues FSLM, Kary C, Contet A, Logan M, Baxter RHG, Wood W, Baehrecke EH. Complement-Related Regulates Autophagy in Neighboring Cells. Cell 2017; 170:158-171.e8. [PMID: 28666117 DOI: 10.1016/j.cell.2017.06.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/07/2017] [Accepted: 06/13/2017] [Indexed: 11/25/2022]
Abstract
Autophagy degrades cytoplasmic components and is important for development and human health. Although autophagy is known to be influenced by systemic intercellular signals, the proteins that control autophagy are largely thought to function within individual cells. Here, we report that Drosophila macroglobulin complement-related (Mcr), a complement ortholog, plays an essential role during developmental cell death and inflammation by influencing autophagy in neighboring cells. This function of Mcr involves the immune receptor Draper, suggesting a relationship between autophagy and the control of inflammation. Interestingly, Mcr function in epithelial cells is required for macrophage autophagy and migration to epithelial wounds, a Draper-dependent process. This study reveals, unexpectedly, that complement-related from one cell regulates autophagy in neighboring cells via an ancient immune signaling program.
Collapse
Affiliation(s)
- Lin Lin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Frederico S L M Rodrigues
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christina Kary
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alicia Contet
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mary Logan
- Junger's Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Richard H G Baxter
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
League GP, Estévez-Lao TY, Yan Y, Garcia-Lopez VA, Hillyer JF. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: evidence of adaptive decoupling in mosquitoes. Parasit Vectors 2017; 10:367. [PMID: 28764812 PMCID: PMC5539753 DOI: 10.1186/s13071-017-2302-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/20/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The immune system of adult mosquitoes has received significant attention because of the ability of females to vector disease-causing pathogens while ingesting blood meals. However, few studies have focused on the immune system of larvae, which, we hypothesize, is highly robust due to the high density and diversity of microorganisms that larvae encounter in their aquatic environments and the strong selection pressures at work in the larval stage to ensure survival to reproductive maturity. Here, we surveyed a broad range of cellular and humoral immune parameters in larvae of the malaria mosquito, Anopheles gambiae, and compared their potency to that of newly-emerged adults and older adults. RESULTS We found that larvae kill bacteria in their hemocoel with equal or greater efficiency compared to newly-emerged adults, and that antibacterial ability declines further with adult age, indicative of senescence. This phenotype correlates with more circulating hemocytes and a differing spatial arrangement of sessile hemocytes in larvae relative to adults, as well as with the individual hemocytes of adults carrying a greater phagocytic burden. The hemolymph of larvae also possesses markedly stronger antibacterial lytic and melanization activity than the hemolymph of adults. Finally, infection induces a stronger transcriptional upregulation of immunity genes in larvae than in adults, including differences in the immunity genes that are regulated. CONCLUSIONS These results demonstrate that immunity is strongest in larvae and declines after metamorphosis and with adult age, and suggest that adaptive decoupling, or the independent evolution of larval and adult traits made possible by metamorphosis, has occurred in the mosquito lineage.
Collapse
Affiliation(s)
- Garrett P. League
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Yan Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
33
|
Li C, Li H, Xiao B, Chen Y, Wang S, Lǚ K, Yin B, Li S, He J. Identification and functional analysis of a TEP gene from a crustacean reveals its transcriptional regulation mediated by NF-κB and JNK pathways and its broad protective roles against multiple pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:45-58. [PMID: 28069434 DOI: 10.1016/j.dci.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Thioester-containing proteins (TEPs) are present in a wide range of species from deuterostomes to protostomes and are thought to be involved in innate immunity. In the current study, a TEP gene homologous to insect TEPs (iTEP) from the crustacean Litopenaeus vannamei, named LvTEP1, is cloned and functionally characterized. The open reading frame (ORF) of LvTEP1 is 4383 bp in length, encoding a polypeptide of 1460 amino acids with a calculated molecular weight of 161.1 kDa LvTEP1, which is most similar to other TEPs from insects, contains some conserved sequence features, including a N-terminal signal peptide, a canonical thioester (TE) motif, and a C-terminal distinctive cysteine signature. LvTEP1 is expressed in most immune-related tissues, such as intestine, epithelium, and hemocytes, and the mRNA level of LvTEP1 is upregulated in hemocytes after bacterial and viral challenges, indicating its involvement in the shrimp innate immune response. An expression assay in Drosophila S2 cells shows LvTEP1 to be a full-length secretory protein, and processed forms are present in the supernatant. Of note, only the processed form of LvTEP1 protein can bind to both the gram-negative bacterium Vibrio parahaemolyticus and the gram-positive bacterium Staphylococcus aureus in vitro, and its abundance can be induced after bacterial treatment. Moreover, knockdown of LvTEP1 renders shrimps more susceptible to both V. parahaemolyticus and S. aureus, as well as white spot syndrome virus (WSSV) infection, suggesting its essential defensive role against these invading microbes. We also observe that the expression of LvTEP1 is regulated in a manner dependent on both NF-κB and AP-1 transcription factors in naive shrimps and in vitro, suggesting that LvTEP1 could be poised in the body cavity prior to infection and thus play an important role in basal immunity. Taken together, our findings provide some in vitro and in vivo evidence for the involvement of LvTEP1 in shrimp innate immunity and provide some insight into its expression regulation mediated by multiple transcription factors or signaling pathways.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Haoyang Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bang Xiao
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Yonggui Chen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Sedong Li
- Fisheries Research Institute of Zhanjiang, Zhanjiang, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
34
|
Baxter RHG, Contet A, Krueger K. Arthropod Innate Immune Systems and Vector-Borne Diseases. Biochemistry 2017; 56:907-918. [PMID: 28072517 DOI: 10.1021/acs.biochem.6b00870] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.
Collapse
Affiliation(s)
- Richard H G Baxter
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| | - Alicia Contet
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| | - Kathryn Krueger
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| |
Collapse
|
35
|
Love RR, Steele AM, Coulibaly MB, Traore SF, Emrich SJ, Fontaine MC, Besansky NJ. Chromosomal inversions and ecotypic differentiation in Anopheles gambiae: the perspective from whole-genome sequencing. Mol Ecol 2016; 25:5889-5906. [PMID: 27759895 DOI: 10.1111/mec.13888] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/13/2016] [Accepted: 10/03/2016] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms and genetic architecture that facilitate adaptive radiation of lineages remain elusive. Polymorphic chromosomal inversions, due to their recombination-reducing effect, are proposed instruments of ecotypic differentiation. Here, we study an ecologically diversifying lineage of Anopheles gambiae, known as the Bamako chromosomal form based on its unique complement of three chromosomal inversions, to explore the impact of these inversions on ecotypic differentiation. We used pooled and individual genome sequencing of Bamako, typical (non-Bamako) An. gambiae and the sister species Anopheles coluzzii to investigate evolutionary relationships and genomewide patterns of nucleotide diversity and differentiation among lineages. Despite extensive shared polymorphism and limited differentiation from the other taxa, Bamako clusters apart from the other taxa, and forms a maximally supported clade in neighbour-joining trees based on whole-genome data (including inversions) or solely on collinear regions. Nevertheless, FST outlier analysis reveals that the majority of differentiated regions between Bamako and typical An. gambiae are located inside chromosomal inversions, consistent with their role in the ecological isolation of Bamako. Exceptionally differentiated genomic regions were enriched for genes implicated in nervous system development and signalling. Candidate genes associated with a selective sweep unique to Bamako contain substitutions not observed in sympatric samples of the other taxa, and several insecticide resistance gene alleles shared between Bamako and other taxa segregate at sharply different frequencies in these samples. Bamako represents a useful window into the initial stages of ecological and genomic differentiation from sympatric populations in this important group of malaria vectors.
Collapse
Affiliation(s)
- R Rebecca Love
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame, IN, 46556, USA
| | - Aaron M Steele
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mamadou B Coulibaly
- Malaria Research and Training Centre, Faculty of Medicine Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sékou F Traore
- Malaria Research and Training Centre, Faculty of Medicine Pharmacy and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Scott J Emrich
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael C Fontaine
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame, IN, 46556, USA.,Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Nora J Besansky
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame, IN, 46556, USA
| |
Collapse
|
36
|
Tao L, Hoang KM, Hunter MD, de Roode JC. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. J Anim Ecol 2016; 85:1246-54. [PMID: 27286503 DOI: 10.1111/1365-2656.12558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/25/2016] [Indexed: 12/01/2022]
Abstract
The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies. Overall, our results suggest that the use of antiparasitic compounds carries substantial costs, which could constrain host investment in medication behaviours.
Collapse
Affiliation(s)
- Leiling Tao
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Kevin M Hoang
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 N University Avenue, Ann Arbor, MI, 48109, USA
| | - Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
37
|
Kamareddine L, Nakhleh J, Osta MA. Functional Interaction between Apolipophorins and Complement Regulate the Mosquito Immune Response to Systemic Infections. J Innate Immun 2016; 8:314-26. [PMID: 26950600 DOI: 10.1159/000443883] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/09/2016] [Indexed: 01/14/2023] Open
Abstract
The complement-like protein thioester-containing protein 1 (TEP1) is the hallmark effector molecule against Plasmodium ookinetes in the malaria vector Anopheles gambiae. We have previously shown that the knockdown of the noncatalytic clip domain serine protease CLIPA2 increased TEP1-mediated killing rendering mosquitoes more resistant to Plasmodium, bacterial and fungal infections. Here, CLIPA2 coimmunoprecipitation from the hemolymph of Beauveria bassiana-infected mosquitoes followed by mass spectrometry and functional genetic analysis led to the identification of the Apolipophorin-II/I gene, encoding the two lipid carrier proteins Apo-I and II, as a novel negative regulator of TEP1-mediated immune response during mosquito systemic infections. Apo-II/I exhibits a similar RNAi phenotype as CLIPA2 in mosquito bioassays characterized by increased resistance to B. bassiana and Escherichia coli infections. We provide evidence that this enhanced resistance to systemic infections is TEP1 dependent. Interestingly, silencing Apo-II/I but not CLIPA2 upregulated the expression of TEP1 following systemic infections with E. coli and B. bassiana in a c-Jun N-terminal kinase pathway-dependent manner. Our results suggest that mosquito Apo-II/I plays an important immune regulatory role during systemic infections and provide novel insight into the functional interplay between lipid metabolism and immune gene regulation.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | | | | |
Collapse
|
38
|
Abstract
A study of Anopheles gambiae mosquitoes shows that a molecule involved in defense against the malaria parasite also plays a role in male fertility, identifying a potential evolutionary trade-off between immunity and reproductive fitness. Read the Research Article.
Collapse
Affiliation(s)
- Caitlin Sedwick
- Freelance Science Writer, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|