1
|
Kennedy AE, Barczewski AH, Arnoldy CR, Pennington JP, Tiernan KA, Hidalgo MB, Reilly CC, Wongsri T, Ragusa MJ, Grigoryan G, Mierke DF, Pellegrini M. The structure of a NEMO construct engineered for screening reveals novel determinants of inhibition. Structure 2025; 33:691-704.e6. [PMID: 39909030 PMCID: PMC11972163 DOI: 10.1016/j.str.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
NEMO is an essential component in the activation of the canonical nuclear factor κB (NF-κB) pathway and exerts its function by recruiting the IκB kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NF-κB mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the design and characterization of novel engineered constructs of the IKK-binding domain of NEMO, programmed to render this difficult protein domain amenable to NMR measurements and crystallization, while preserving its biological function. ZipNEMO binds IKKβ with nanomolar affinity, is amenable to heteronuclear nuclear magnetic resonance (NMR) techniques and structure determination by X-ray crystallography. We show that NMR spectra of zipNEMO allow to detect inhibitor binding in solution and resonance assignment. The crystal structure of zipNEMO reveals a novel ligand binding motif and the adaptability of the binding pocket and inspired the design of new peptide inhibitors.
Collapse
Affiliation(s)
- Amy E Kennedy
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | - Kelly A Tiernan
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | - Tanyawan Wongsri
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Dale F Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
2
|
Ducharme JB, Carelock ME, Schonk MM, Al-Zaeed NM, Zhang W, Judge SM, Judge AR. Identification of a senescence-associated transcriptional program in skeletal muscle of cachectic pancreatic-tumor-bearing mice. Am J Physiol Cell Physiol 2025; 328:C1125-C1134. [PMID: 39993009 DOI: 10.1152/ajpcell.00816.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Cancer cachexia is the involuntary loss of body and skeletal muscle mass, which negatively impacts physical function, quality of life, treatment tolerance, and survival. Skeletal muscles of cachectic people and mice with pancreatic tumors also exhibit skeletal muscle damage, nonresolute immune cell infiltration, and impaired regeneration. These phenotypes may be influenced by the accumulation of senescent cells, which secrete factors detrimental to skeletal muscle health. However, there is currently no comprehensive research on the senescent cell accumulation in the skeletal muscle of tumor-bearing hosts, with or without chemotherapy. To address this gap, we cross-referenced the SenMayo panel of 125 senescence-related genes with our RNA-seq dataset in mouse skeletal muscle during the initiation and progression of cancer cachexia, which revealed a differential expression of 39 genes at precachexia, 64 genes at cachexia onset, and 72 genes when cachexia is severe. Since p16 is a canonical marker of senescence, we subsequently orthotopically injected p16-tdTomato reporter mice with murine KPC pancreatic cancer cells and treated a subset of mice with chemotherapy. At experimental endpoint, when KPC treatment-naïve mice were cachectic, we observed an increased accumulation of p16+ cells, along with increased mRNA levels of hallmark senescence markers (Cdkn1a/p21, Cdkn2a/p16, Glb1/senescent-associated-β-galactosidase), which were exacerbated by chemotherapy. Finally, we demonstrate an increase in CDKN1A/p21 in the muscle of cachectic patients with pancreatic cancer, which associated with cachexia severity. These findings suggest that senescent cells accumulate in skeletal muscle of cachectic pancreatic tumor-bearing hosts and that chemotherapy can exacerbate this accumulation.NEW & NOTEWORTHY To the best of our knowledge, this study is the first to investigate senescent cell accumulation in skeletal muscle of tumor-bearing hosts and its exacerbation by chemotherapy. Our findings identify an accumulation of senescent cells and reveal a senescence-related transcriptional program in skeletal muscle during the initiation and progression of cancer cachexia that is exacerbated by chemotherapy treatment. This highlights a novel potential therapeutic mechanism that can be targeted for the prevention of cancer-induced muscle pathologies.
Collapse
Affiliation(s)
- Jeremy B Ducharme
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
- University of Florida Health Cancer Center, Gainesville, Florida, United States
| | - Madison E Carelock
- University of Florida Health Cancer Center, Gainesville, Florida, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States
| | - Martin M Schonk
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Nour M Al-Zaeed
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Weizhou Zhang
- University of Florida Health Cancer Center, Gainesville, Florida, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, United States
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
- University of Florida Health Cancer Center, Gainesville, Florida, United States
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- Myology Institute, University of Florida, Gainesville, Florida, United States
- University of Florida Health Cancer Center, Gainesville, Florida, United States
| |
Collapse
|
3
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 PMCID: PMC11927922 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
4
|
Geng Y, Lou J, Wu J, Tao Z, Yang N, Kuang J, Wu Y, Zhang J, Xiang L, Shi J, Cai Y, Wang X, Chen J, Xiao J, Zhou K. NEMO-Binding Domain/IKKγ Inhibitory Peptide Alleviates Neuronal Pyroptosis in Spinal Cord Injury by Inhibiting ASMase-Induced Lysosome Membrane Permeabilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405759. [PMID: 39225315 PMCID: PMC11516130 DOI: 10.1002/advs.202405759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
A short peptide termed NEMO-binding domain (NBD) peptide has an inhibitory effect on nuclear factor kappa-B (NF-κB). Despite its efficacy in inhibiting inflammatory responses, the precise neuroprotective mechanisms of NBD peptide in spinal cord injury (SCI) remain unclear. This study aims to determine whether the pyroptosis-related aspects involved in the neuroprotective effects of NBD peptide post-SCI.Using RNA sequencing, the molecular mechanisms of NBD peptide in SCI are explored. The evaluation of functional recovery is performed using the Basso mouse scale, Nissl staining, footprint analysis, Masson's trichrome staining, and HE staining. Western blotting, enzyme-linked immunosorbent assays, and immunofluorescence assays are used to examine pyroptosis, autophagy, lysosomal membrane permeabilization (LMP), acid sphingomyelinase (ASMase), and the NF-κB/p38-MAPK related signaling pathway.NBD peptide mitigated glial scar formation, reduced motor neuron death, and enhanced functional recovery in SCI mice. Additionally, NBD peptide inhibits pyroptosis, ameliorate LMP-induced autophagy flux disorder in neuron post-SCI. Mechanistically, NBD peptide alleviates LMP and subsequently enhances autophagy by inhibiting ASMase through the NF-κB/p38-MAPK/Elk-1/Egr-1 signaling cascade, thereby mitigating neuronal death. NBD peptide contributes to functional restoration by suppressing ASMase-mediated LMP and autophagy depression, and inhibiting pyroptosis in neuron following SCI, which may have potential clinical application value.
Collapse
Affiliation(s)
- Yibo Geng
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Junsheng Lou
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Junnan Wu
- Department of PharmacyThe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhou324000China
| | - Zhichao Tao
- Renji College of Wenzhou Medical UniversityWenzhou325027China
| | - Ningning Yang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaxuan Kuang
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuzhe Wu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiacheng Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Linyi Xiang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jingwei Shi
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuepiao Cai
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Xiangyang Wang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaoxiang Chen
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jian Xiao
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Kailiang Zhou
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| |
Collapse
|
5
|
Li Y, Cui J, Liu L, Hambright WS, Gan Y, Zhang Y, Ren S, Yue X, Shao L, Cui Y, Huard J, Mu Y, Yao Q, Mu X. mtDNA release promotes cGAS-STING activation and accelerated aging of postmitotic muscle cells. Cell Death Dis 2024; 15:523. [PMID: 39039044 PMCID: PMC11263593 DOI: 10.1038/s41419-024-06863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The mechanism regulating cellular senescence of postmitotic muscle cells is still unknown. cGAS-STING innate immune signaling was found to mediate cellular senescence in various types of cells, including postmitotic neuron cells, which however has not been explored in postmitotic muscle cells. Here by studying the myofibers from Zmpste24-/- progeria aged mice [an established mice model for Hutchinson-Gilford progeria syndrome (HGPS)], we observed senescence-associated phenotypes in Zmpste24-/- myofibers, which is coupled with increased oxidative damage to mitochondrial DNA (mtDNA) and secretion of senescence-associated secretory phenotype (SASP) factors. Also, Zmpste24-/- myofibers feature increased release of mtDNA from damaged mitochondria, mitophagy dysfunction, and activation of cGAS-STING. Meanwhile, increased mtDNA release in Zmpste24-/- myofibers appeared to be related with increased VDAC1 oligomerization. Further, the inhibition of VDAC1 oligomerization in Zmpste24-/- myofibers with VBIT4 reduced mtDNA release, cGAS-STING activation, and the expression of SASP factors. Our results reveal a novel mechanism of innate immune activation-associated cellular senescence in postmitotic muscle cells in aged muscle, which may help identify novel sets of diagnostic markers and therapeutic targets for progeria aging and aging-associated muscle diseases.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Jie Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Lei Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - William S Hambright
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Yutai Gan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yajun Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Shifeng Ren
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Xianlin Yue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Liwei Shao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Yan Cui
- Department of Orthopaedic Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Yanling Mu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China.
| | - Qingqiang Yao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China.
| | - Xiaodong Mu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China.
| |
Collapse
|
6
|
Li S, Song S, Liu X, Zhang X, Liang X, Chang X, Zhou D, Han J, Nie Y, Guo C, Yao X, Chang M, Peng Y. Development of a Decafluorobiphenyl Cyclized Peptide Targeting the NEMO-IKKα/β Interaction that Enhances Cell Penetration and Attenuates Lipopolysaccharide-Induced Acute Lung Injury. Bioconjug Chem 2024; 35:638-652. [PMID: 38669628 DOI: 10.1021/acs.bioconjchem.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Aberrant canonical NF-κB signaling has been implicated in diseases, such as autoimmune disorders and cancer. Direct disruption of the interaction of NEMO and IKKα/β has been developed as a novel way to inhibit the overactivation of NF-κB. Peptides are a potential solution for disrupting protein-protein interactions (PPIs); however, they typically suffer from poor stability in vivo and limited tissue penetration permeability, hampering their widespread use as new chemical biology tools and potential therapeutics. In this work, decafluorobiphenyl-cysteine SNAr chemistry, molecular modeling, and biological validation allowed the development of peptide PPI inhibitors. The resulting cyclic peptide specifically inhibited canonical NF-κB signaling in vitro and in vivo, and presented positive metabolic stability, anti-inflammatory effects, and low cytotoxicity. Importantly, our results also revealed that cyclic peptides had huge potential in acute lung injury (ALI) treatment, and confirmed the role of the decafluorobiphenyl-based cyclization strategy in enhancing the biological activity of peptide NEMO-IKKα/β inhibitors. Moreover, it provided a promising method for the development of peptide-PPI inhibitors.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Shibo Song
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xueya Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Daijun Zhou
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianting Han
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yaoyan Nie
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Guo
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Pukhalskaia TV, Yurakova TR, Bogdanova DA, Demidov ON. Tumor-Associated Senescent Macrophages, Their Markers, and Their Role in Tumor Microenvironment. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:839-852. [PMID: 38880645 DOI: 10.1134/s0006297924050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/18/2024]
Abstract
Tumor-associated macrophages (TAMs) are an important component of the tumor microenvironment (TME) and the most abundant population of immune cells infiltrating a tumor. TAMs can largely determine direction of anti-tumor immune response by promoting it or, conversely, contribute to formation of an immunosuppressive TME that allows tumors to evade immune control. Through interactions with tumor cells or other cells in the microenvironment and, as a result of action of anti-cancer therapy, macrophages can enter senescence. In this review, we have attempted to summarize information available in the literature on the role of senescent macrophages in tumors. With the recent development of senolytic therapeutic strategies aimed at removing senescent cells from an organism, it seems important to discuss functions of the senescent macrophages and potential role of the senolytic drugs in reprogramming TAMs to enhance anti-tumor immune response and improve efficacy of cancer treatment.
Collapse
Affiliation(s)
- Tamara V Pukhalskaia
- Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daria A Bogdanova
- Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Oleg N Demidov
- Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia.
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
- INSERM UMR1231, Université de Bourgogne, Dijon, 21000, France
| |
Collapse
|
8
|
Englund DA, Jolliffe AM, Hanson GJ, Aversa Z, Zhang X, Jiang X, White TA, Zhang L, Monroe DG, Robbins PD, Niedernhofer LJ, Kamenecka TM, Khosla S, LeBrasseur NK. Senotherapeutic drug treatment ameliorates chemotherapy-induced cachexia. JCI Insight 2024; 9:e169512. [PMID: 38051584 PMCID: PMC10906225 DOI: 10.1172/jci.insight.169512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
Cachexia is a debilitating skeletal muscle wasting condition for which we currently lack effective treatments. In the context of cancer, certain chemotherapeutics cause DNA damage and cellular senescence. Senescent cells exhibit chronic activation of the transcription factor NF-κB, a known mediator of the proinflammatory senescence-associated secretory phenotype (SASP) and skeletal muscle atrophy. Thus, targeting NF-κB represents a logical therapeutic strategy to alleviate unintended consequences of genotoxic drugs. Herein, we show that treatment with the IKK/NF-κB inhibitor SR12343 during a course of chemotherapy reduces markers of cellular senescence and the SASP in liver, skeletal muscle, and circulation and, correspondingly, attenuates features of skeletal muscle pathology. Lastly, we demonstrate that SR12343 mitigates chemotherapy-induced reductions in body weight, lean mass, fat mass, and muscle strength. These findings support senescent cells as a promising druggable target to counteract the SASP and skeletal muscle wasting in the context of chemotherapy.
Collapse
Affiliation(s)
- Davis A. Englund
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa M. Jolliffe
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Gabriel J. Hanson
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Xinyi Jiang
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas A. White
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David G. Monroe
- Robert and Arlene Kogod Center on Aging, and
- Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, and
- Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging, and
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Paul F. Glenn Center for the Biology of Aging at Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Sun J, Li J, Li L, Yu H, Ma P, Wang Y, Zhu J, Feng Z, Tu C. Classical swine fever virus NS5A protein antagonizes innate immune response by inhibiting the NF-κB signaling. Virol Sin 2023; 38:900-910. [PMID: 37714433 PMCID: PMC10786662 DOI: 10.1016/j.virs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
The NS5A non-structural protein of classical swine fever virus (CSFV) is a multifunctional protein involved in viral genomic replication, protein translation, assembly of infectious virus particles, and regulation of cellular signaling pathways. Previous report showed that NS5A inhibited nuclear factor kappa B (NF-κB) signaling induced by poly(I:C); however, the mechanism involved has not been elucidated. Here, we reported that NS5A directly interacted with NF-κB essential modulator (NEMO), a regulatory subunit of the IκB kinase (IKK) complex, to inhibit the NF-κB signaling pathway. Further investigations showed that the zinc finger domain of NEMO and the aa 126-250 segment of NS5A are essential for the interaction between NEMO and NS5A. Mechanistic analysis revealed that NS5A mediated the proteasomal degradation of NEMO. Ubiquitination assay showed that NS5A induced the K27-linked but not the K48-linked polyubiquitination of NEMO for proteasomal degradation. In addition, NS5A blocked the K63-linked polyubiquitination of NEMO, thus inhibiting IKK phosphorylation, IκBα degradation, and NF-κB activation. These findings revealed a novel mechanism by which CSFV inhibits host innate immunity, which might guide the drug design against CSFV in the future.
Collapse
Affiliation(s)
- Jinfu Sun
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| | - Jiaying Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Liming Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Haixiao Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Ping Ma
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yingnan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Jinqi Zhu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Zezhong Feng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Chin T, Lee XE, Ng PY, Lee Y, Dreesen O. The role of cellular senescence in skin aging and age-related skin pathologies. Front Physiol 2023; 14:1297637. [PMID: 38074322 PMCID: PMC10703490 DOI: 10.3389/fphys.2023.1297637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2024] Open
Abstract
Aging is the result of a gradual functional decline at the cellular, and ultimately, organismal level, resulting in an increased risk of developing a variety of chronic illnesses, such as cardiovascular disease, stroke, cancer and diabetes. The skin is the largest organ of the human body, and the site where signs of aging are most visible. These signs include thin and dry skin, sagging, loss of elasticity, wrinkles, as well as aberrant pigmentation. The appearance of these features is accelerated by exposure to extrinsic factors such as ultraviolet (UV) radiation or pollution, as well as intrinsic factors including time, genetics, and hormonal changes. At the cellular level, aging is associated with impaired proteostasis and an accumulation of macromolecular damage, genomic instability, chromatin reorganization, telomere shortening, remodelling of the nuclear lamina, proliferation defects and premature senescence. Cellular senescence is a state of permanent growth arrest and a key hallmark of aging in many tissues. Due to their inability to proliferate, senescent cells no longer contribute to tissue repair or regeneration. Moreover, senescent cells impair tissue homeostasis, promote inflammation and extracellular matrix (ECM) degradation by secreting molecules collectively known as the "senescence-associated secretory phenotype" (SASP). Senescence can be triggered by a number of different stimuli such as telomere shortening, oncogene expression, or persistent activation of DNA damage checkpoints. As a result, these cells accumulate in aging tissues, including human skin. In this review, we focus on the role of cellular senescence during skin aging and the development of age-related skin pathologies, and discuss potential strategies to rejuvenate aged skin.
Collapse
Affiliation(s)
- Toby Chin
- Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xin Er Lee
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yi Ng
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| | - Oliver Dreesen
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| |
Collapse
|
11
|
Chun J, Mah SY, Kim YS. Anti-Inflammatory Effect of Ebractenoid F, a Major Active Compound of Euphorbia ebracteolata Hayata, through Inhibition of Nuclear Factor-κB Activation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2845. [PMID: 37570999 PMCID: PMC10421244 DOI: 10.3390/plants12152845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Euphorbia ebracteolata Hayata (Euphorbiaceae family) is a perennial plant that is widely distributed in Korea, Japan, and China. Its roots contain bioactive diterpenes that have anti-inflammatory properties. However, the anti-inflammatory mechanisms are not yet fully understood. This study aimed to identify the most active anti-inflammatory compound from the roots of E. ebracteolata Hayata, using bioassay-guided fractionation and a combinative method of high-speed countercurrent chromatography (HSCCC) and preparative high-performance liquid chromatography (HPLC). Then, we investigated its anti-inflammatory mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Ebractenoid F was identified as the most potent bioactive compound of E. ebracteolata Hayata. Ebractenoid F significantly decreased nitric oxide (NO) production and nuclear factor-κB (NF-κB) activation induced by LPS in RAW 264.7 macrophages. Moreover, ebractenoid F decreased the degradation of inhibitory κB-α, the nuclear translocation of the p65 and p50 subunits of NF-κB, and the expression of NF-κB downstream genes. Furthermore, ebractenoid F inhibited the phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and c-Jun NH2 terminal kinase (JNK), in LPS-stimulated RAW 264.7 cells. In conclusion, ebractenoid F exerts the most potent anti-inflammatory effect by suppressing NF-κB-mediated NO production in LPS-stimulated RAW 264.7 cells. Ebractenoid F may be a useful therapeutic compound for the prevention or treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sang Yeon Mah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J 2023; 290:1362-1383. [PMID: 35015337 DOI: 10.1111/febs.16350] [Citation(s) in RCA: 258] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
The concept of geroscience is that since ageing is the greatest risk factor for many diseases and conditions, targeting the ageing process itself will have the greatest impact on human health. Of the hallmarks of ageing, cellular senescence has emerged as a druggable therapeutic target for extending healthspan in model organisms. Cellular senescence is a cell state of irreversible proliferative arrest driven by different types of stress, including oncogene-induced stress. Many senescent cells (SnCs) develop a senescent-associated secretory phenotype (SASP) comprising pro-inflammatory cytokines, chemokines, proteases, bioactive lipids, inhibitory molecules, extracellular vesicles, metabolites, lipids and other factors, able to promote chronic inflammation and tissue dysfunction. SnCs up-regulate senescent cell anti-apoptotic pathways (SCAPs) that prevent them from dying despite the accumulation of damage to DNA and other organelles. These SCAPs and other pathways altered in SnCs represent therapeutic targets for the development of senotherapeutic drugs that induce selective cell death of SnCs, specifically termed senolytics or suppress markers of senescence, in particular the SASP, termed senomorphics. Here, we review the current state of the development of senolytics and senomorphics for the treatment of age-related diseases and disorders and extension of healthy longevity. In addition, the challenges of documenting senolytic and senomorphic activity in pre-clinical models and the current state of the clinical application of the different senotherapeutics will be discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Louise E Pitcher
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Vaishali Prahalad
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Riessland M, Orr ME. Translating the Biology of Aging into New Therapeutics for Alzheimer's Disease: Senolytics. J Prev Alzheimers Dis 2023; 10:633-646. [PMID: 37874084 PMCID: PMC11103249 DOI: 10.14283/jpad.2023.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The recent FDA-approval for amyloid lowering therapies reflects an unwavering commitment from the Alzheimer's disease (AD) research community to identify treatments for this leading cause of dementia. The clinical benefits achieved by reducing amyloid, though modest, provide evidence that disease modification is possible. Expanding the same tenacity to interventions targeting upstream drivers of AD pathogenesis could significantly impact the disease course. Advanced age is the greatest risk factor for developing AD. Interventions targeting biological aging offer the possibility of disrupting a foundational cause of AD. Senescent cells accumulate with age and contribute to inflammation and age-related diseases like AD. Senolytic drugs that clear senescent cells improve healthy aging, halt AD disease progression in animal models and are undergoing clinical testing. This review explores the biology of aging, the role of senescent cells in AD pathology, and various senotherapeutic approaches such as senolytics, dampening the SASP (senescence associated secretory phenotype), senescence pathway inhibition, vaccines, and prodrugs. We highlight ongoing clinical trials evaluating the safety and efficacy of the most advanced senolytic approach, dasatinib and quercetin (D+Q), including an ongoing Phase II senolytic trial supported by the Alzheimer's Drug Discovery Foundation (ADDF). Challenges in the field of senotherapy for AD, including target engagement and biomarker development, are addressed. Ultimately, this research pursuit may lead to an effective treatment for AD and provide the field with another disease-modifying therapy to be used, alone or in combination, with other emerging treatment options.
Collapse
Affiliation(s)
- M Riessland
- Miranda E. Orr, 575 Patterson Ave, Winston-Salem, NC 27101, Telephone Number: (336)716-7804,
| | | |
Collapse
|
14
|
Tian-Qi C, Yan-Fang D, Yan-Yan W, Yong-Hui Z. Butyrolactone I attenuates inflammation in murine NASH by inhibiting the NF-κB signaling pathway. Biochem Biophys Res Commun 2022; 626:167-174. [PMID: 35994826 DOI: 10.1016/j.bbrc.2022.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is the development of non-alcoholic fatty liver disease (NAFLD) and a key element in the exacerbation of NAFLD. Since there are currently no drugs approved by the U.S. Food and Drug Administration to treat this disease, the search for treatments that can be translated into clinical use is urgent. Butyrolactone I (BLI), isolated from Aspergillus terreus, is an active compound possessing multiple biological activities. However, the effects of BLI on NASH have never been reported. In this study, RAW264.7 cells stimulated by lipopolysaccharide (LPS) were applied to study the anti-inflammatory effect and the underlying mechanisms of BLI in vitro. Following this, mice fed with high-fat and -fructose diet (HFFD) were used to explore the alleviation of NASH by BLIin vivo. We found that BLI attenuated inflammation in LPS-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway and downregulating the expression of iNOS and COX-2. Moreover, results of experiments in vivo demonstrated that BLI reduced serum transaminase levels, decreased hepatic fat accumulation, inhibited inflammation, suppressed oxidative stress, and ameliorated liver fibrosis. For the first time, we investigated the role of BLI in the treatment of murine NASH. We found that BLI alleviates NASH partly by inhibiting the NF-κB pathway of signaling. Given its hepatoprotective effects and non-toxic properties, BLI can be a novel and effective drug for NASH patients.
Collapse
Affiliation(s)
- Chen Tian-Qi
- Medical College, China Three Gorges University and Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443003, China
| | - Deng Yan-Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wang Yan-Yan
- Medical College, China Three Gorges University and Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443003, China.
| | - Zhang Yong-Hui
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Involvement of NF-κB/NLRP3 axis in the progression of aseptic loosening of total joint arthroplasties: a review of molecular mechanisms. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:757-767. [PMID: 35377011 DOI: 10.1007/s00210-022-02232-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Particulate wear debris can trigger pro-inflammatory bone resorption and result in aseptic loosening. This complication remains major postoperative discomforts and complications for patients who underwent total joint arthroplasty. Recent studies have indicated that wear debris-induced aseptic loosening is associated with the overproduction of pro-inflammatory cytokines. The activation of osteoclasts as a result of inflammatory responses is associated with osteolysis. Moreover, stimulation of inflammatory signaling pathways such as the NF-κB/NLRP3 axis results in the production of pro-inflammatory cytokines. In this review, we first summarized the potential inflammatory mechanisms of wear particle-induced peri-implant osteolysis. Then, the therapeutic approaches, e.g., biological inhibitors, herbal products, and stem cells or their derivatives, with the ability to suppress the inflammatory responses, mainly NF-κB/NLRP3 signaling pathways, were discussed. Based on the results, activation of macrophages following inflammatory stimuli, overproduction of pro-inflammatory cytokines, and subsequent differentiation of osteoclasts in the presence of wear particles lead to bone resorption. The activation of NF-κB/NLRP3 signaling pathways within the macrophages stimulates the production of pro-inflammatory cytokines, e.g., IL-1β, IL-6, and TNF-α. According to in vitro and in vivo studies, novel therapeutics significantly promoted osteogenesis, suppressed osteoclastogenesis, and diminished particle-mediated bone resorption. Conclusively, these findings offer that suppressing pro-inflammatory cytokines by regulating both NF-κB and NLRP3 inflammasome represents a novel approach to attenuate wear-particle-related osteolytic diseases.
Collapse
|
16
|
Wagdy RA, Chen PJ, Hamed MM, Darwish SS, Chen SH, Abadi AH, Abdel-Halim M, Hwan TL, Engel M. From EGFR kinase inhibitors to anti-inflammatory drugs: Optimization and biological evaluation of (4-(phenylamino)quinazolinyl)-phenylthiourea derivatives as novel NF-κB inhibitors. Bioorg Chem 2022; 127:105977. [DOI: 10.1016/j.bioorg.2022.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
17
|
Wu WJ, Xia CL, Ou SJ, Yang Y, Zhou XZ, Ma YF, Hou YL, Wang FZ, Yang QP, Qi Y, Xu CP. Prophylactic Effects of NFκB Essential Modulator–Binding Domain Peptides on Bone Infection: An Experimental Study in a Rabbit Model. J Inflamm Res 2022; 15:2745-2759. [PMID: 35509324 PMCID: PMC9059993 DOI: 10.2147/jir.s346627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Wen-Jiao Wu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Chang-Liang Xia
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Shuan-Ji Ou
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Yang Yang
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Xiao-Zhong Zhou
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Yun-Fei Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yi-Long Hou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Fa-Zheng Wang
- Department of Orthopaedics, First People’s Hospital of Kashgar Prefecture, Kashgar, Xinjiang, People’s Republic of China
| | - Qing-Po Yang
- Department of Orthopaedics, First People’s Hospital of Kashgar Prefecture, Kashgar, Xinjiang, People’s Republic of China
| | - Yong Qi
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Correspondence: Yong Qi; Chang-Peng Xu, Tel +86-20-8916-8085, Email ;
| | - Chang-Peng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Correspondence: Yong Qi; Chang-Peng Xu, Tel +86-20-8916-8085, Email ;
| |
Collapse
|
18
|
Yu Z, Gao J, Zhang X, Peng Y, Wei W, Xu J, Li Z, Wang C, Zhou M, Tian X, Feng L, Huo X, Liu M, Ye M, Guo DA, Ma X. Characterization of a small-molecule inhibitor targeting NEMO/IKKβ to suppress colorectal cancer growth. Signal Transduct Target Ther 2022; 7:71. [PMID: 35260565 PMCID: PMC8904520 DOI: 10.1038/s41392-022-00888-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
NEMO/IKKβ complex is a central regulator of NF-κB signaling pathway, its dissociation has been considered to be an attractive therapeutic target. Herein, using a combined strategy of molecular pharmacological phenotyping, proteomics and bioinformatics analysis, Shikonin (SHK) is identified as a potential inhibitor of the IKKβ/NEMO complex. It destabilizes IKKβ/NEMO complex with IC50 of 174 nM, thereby significantly impairing the proliferation of colorectal cancer cells by suppressing the NF-κB pathway in vitro and in vivo. In addition, we also elucidated the potential target sites of SHK in the NEMO/IKKβ complex. Our study provides some new insights for the development of potent small-molecule PPI inhibitors.
Collapse
Affiliation(s)
- Zhenlong Yu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaolei Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yulin Peng
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenwei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chao Wang
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Meirong Zhou
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Lei Feng
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China
| | - Min Liu
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116000, China.
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
19
|
Hamsanathan S, Anthonymuthu T, Han S, Shinglot H, Siefken E, Sims A, Sen P, Pepper HL, Snyder NW, Bayir H, Kagan V, Gurkar AU. Integrated -omics approach reveals persistent DNA damage rewires lipid metabolism and histone hyperacetylation via MYS-1/Tip60. SCIENCE ADVANCES 2022; 8:eabl6083. [PMID: 35171671 PMCID: PMC8849393 DOI: 10.1126/sciadv.abl6083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Although DNA damage is intricately linked to metabolism, the metabolic alterations that occur in response to DNA damage are not well understood. We use a DNA repair-deficient model of ERCC1-XPF in Caenorhabditis elegans to gain insights on how genotoxic stress drives aging. Using multi-omic approach, we discover that nuclear DNA damage promotes mitochondrial β-oxidation and drives a global loss of fat depots. This metabolic shift to β-oxidation generates acetyl-coenzyme A to promote histone hyperacetylation and an associated change in expression of immune-effector and cytochrome genes. We identify the histone acetyltransferase MYS-1, as a critical regulator of this metabolic-epigenetic axis. We show that in response to DNA damage, polyunsaturated fatty acids, especially arachidonic acid (AA) and AA-related lipid mediators, are elevated and this is dependent on mys-1. Together, these findings reveal that DNA damage alters the metabolic-epigenetic axis to drive an immune-like response that can promote age-associated decline.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Tamil Anthonymuthu
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Adeptrix Corp., Beverly, MA 01915, USA
| | - Suhao Han
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Himaly Shinglot
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Ella Siefken
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Austin Sims
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hannah L. Pepper
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hulya Bayir
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Environmental Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Valerian Kagan
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Environmental Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aditi U. Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
20
|
IKK β mediates homeostatic function in inflammation via competitively phosphorylating AMPK and I κB α. Acta Pharm Sin B 2022; 12:651-664. [PMID: 35256937 PMCID: PMC8897026 DOI: 10.1016/j.apsb.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) is one of important kinases in inflammation to phosphorylate inhibitor of nuclear factor kappa-B (IκBα) and then activate nuclear factor kappa-B (NF-κB). Inhibition of IKKβ has been a therapeutic strategy for inflammatory and autoimmune diseases. Here we report that IKKβ is constitutively activated in healthy donors and healthy IkkβC46A (cysteine 46 mutated to alanine) knock-in mice although they possess intensive IKKβ–IκBα–NF-κB signaling activation. These indicate that IKKβ activation probably plays homeostatic role instead of causing inflammation. Compared to IkkβWT littermates, lipopolysaccharides (LPS) could induce high mortality rate in IkkβC46A mice which is correlated to breaking the homeostasis by intensively activating p-IκBα–NF-κB signaling and inhibiting phosphorylation of 5ʹ adenosine monophosphate-activated protein kinase (p-AMPK) expression. We then demonstrated that IKKβ kinase domain (KD) phosphorylates AMPKα1 via interacting with residues Thr183, Ser184, and Thr388, while IKKβ helix–loop–helix motifs is essential to phosphorylate IκBα according to the previous reports. Kinase assay further demonstrated that IKKβ simultaneously catalyzes phosphorylation of AMPK and IκBα to mediate homeostasis. Accordingly, activation of AMPK rather than inhibition of IKKβ could substantially rescue LPS-induced mortality in IkkβC46A mice by rebuilding the homeostasis. We conclude that IKKβ activates AMPK to restrict inflammation and IKKβ mediates homeostatic function in inflammation via competitively phosphorylating AMPK and IκBα.
Collapse
|
21
|
Zhang L, Zhao J, Mu X, McGowan SJ, Angelini L, O'Kelly RD, Yousefzadeh MJ, Sakamoto A, Aversa Z, LeBrasseur NK, Suh Y, Huard J, Kamenecka TM, Niedernhofer LJ, Robbins PD. Novel small molecule inhibition of IKK/NF-κB activation reduces markers of senescence and improves healthspan in mouse models of aging. Aging Cell 2021; 20:e13486. [PMID: 34734460 PMCID: PMC8672781 DOI: 10.1111/acel.13486] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Constitutive NF-κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF-κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF-κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic effects of SR12343 on senescence and aging in three different mouse models. SR12343 reduced senescence-associated beta-galactosidase (SA-β-gal) activity in oxidative stress-induced senescent mouse embryonic fibroblasts as well as in etoposide-induced senescent human IMR90 cells. Chronic administration of SR12343 to the Ercc1-/∆ and Zmpste24-/- mouse models of accelerated aging reduced markers of cellular senescence and SASP and improved multiple parameters of aging. SR12343 also reduced markers of senescence and increased muscle fiber size in 2-year-old WT mice. Taken together, these results demonstrate that IKK/NF-κB signaling pathway represents a promising target for reducing markers of cellular senescence, extending healthspan and treating age-related diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jing Zhao
- Department of Molecular MedicineScripps ResearchJupiterFloridaUSA
| | - Xiaodong Mu
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
- Shandong First Medical University (Shandong Academy of Medical Sciences)JinanChina
| | - Sara J. McGowan
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Luise Angelini
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ryan D. O'Kelly
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Matthew J. Yousefzadeh
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ayumi Sakamoto
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Zaira Aversa
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Nathan K. LeBrasseur
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Yousin Suh
- Department of Genetics and DevelopmentColumbia UniversityNew YorkNew YorkUSA
| | - Johnny Huard
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | | | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
22
|
Chou IC, Chang AC, Chen CJ, Liang WM, Chiou JS, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Li TM, Lin YJ. Effect of Chinese herbal medicines on the overall survival of patients with muscular dystrophies in Taiwan. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114359. [PMID: 34174374 DOI: 10.1016/j.jep.2021.114359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Muscular dystrophies are a rare, severe, and genetically inherited group of disorders characterized by progressive loss of muscle fibers, leading to muscle weakness. The current treatment plan for muscular dystrophies includes the use of steroids to slow muscle deterioration by dampening the inflammatory response. AIM OF THE STUDY Chinese herbal medicine (CHM) has been offered as an adjunctive therapy in Taiwan's medical healthcare plan, making it possible to track CHM usage in patients with muscular dystrophic disease. Therefore, we explored the long-term effects of CHM use on the overall mortality of patients with muscular dystrophies. MATERIALS AND METHODS A total of 581 patients with muscular dystrophies were identified from the database of Registry for Catastrophic Illness Patients in Taiwan. Among them, 80 and 201 patients were CHM users and non-CHM users, respectively. Student's t-test, chi-squared test, Cox proportional hazard model, and Kaplan-Meier curve (log-rank test) were used for evaluation. Association rules and network analyses were performed to explore the combination of CHMs used in muscular dystrophies. RESULTS Compared to non-CHM users, there were more female patients, more comorbidities, including chronic pulmonary disease and peptic ulcer disease in the CHM user group. Patients with prednisolone usage exhibited a lower risk of overall mortality than those who did not, after adjusting for age, sex, use of CHM, and comorbidities. CHM users showed a lower risk of overall mortality after adjusting for age, sex, prednisolone use, and comorbidities. The cumulative incidence of the overall survival was significantly higher in CHM users. Association rule and network analysis showed that one main CHM cluster was commonly used to treat patients with muscular dystrophies in Taiwan. The cluster includes Yin-Qiao-San, Ban-Xia-Bai-Zhu-Tian-Ma-Tang, Zhi-Ke (Citrus aurantium L.), Yu-Xing-Cao (Houttuynia cordata Thunb.), Che-Qian-Zi (Plantago asiatica L.), and Da-Huang (Rheum palmatum L.). CONCLUSIONS Our data suggest that adjunctive therapy with CHM may help to reduce the overall mortality among patients with muscular dystrophies. The identification of the CHM cluster allows us to narrow down the key active compounds and may enable future therapeutic developments and clinical trial designs to improve overall survival in these patients.
Collapse
Affiliation(s)
- I-Ching Chou
- Department of Pediatrics, Children's Hospital of China Medical University, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| | - Alex Cy Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.
| | - Fuu-Jen Tsai
- Department of Pediatrics, Children's Hospital of China Medical University, Taichung, Taiwan; Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Ying-Ju Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
Huang J, Wei Q, Liang B, Shen T, Wu Y, Chen Z, Yang J, Gu L. Association of CHUK gene polymorphism and ischemic stroke in the Han Chinese population. J Clin Neurosci 2021; 88:271-276. [PMID: 33992196 DOI: 10.1016/j.jocn.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Recently, the pivotal role of component of inhibitor of nuclear factor kappa B kinase complex (CHUK) in lipid levels and blood pressure has been reported, and hypertension and hyperlipidemia are common risk factors of ischemic stroke (IS). However, the association between CHUK and IS has not yet been explored. This study aims at evaluating the relationship of CHUK polymorphisms (rs3808916, rs2230804 and rs3808917) and IS risk as well as IS-related risk factors. METHODS CHUK mRNA expression was detected between 53 IS patients and 53 healthy controls using quantitative real-time polymerase chain reaction (qRT-PCR). A total of 816 IS patients and 816 age- and sex-matched healthy controls were genotyped using the Sequenom MassARRAY iPLEX platform. RESULTS CHUK mRNA was highly expressed in IS patients compared with healthy subjects (P<0.001). No significant associations were observed between rs3808916, rs2230804, rs3808917 and IS susceptibility (P>0.05). Moreover, haplotype analysis showed that no haplotype of CHUK polymorphisms was associated with IS (P > 0.05). However, rs2230804 was related to diastolic blood pressure (DBP) of IS patients (P = 0.035), while rs3808917 was associated with triglyceride (TG) levels (P = 0.046). CONCLUSIONS The CHUK expression is involved in the development of IS. CHUK variants rs2230804, and rs3808917 may affect blood pressure and lipid levels of IS patients. However, CHUK rs3808916, rs2230804 and rs3808917 polymorphisms are not associated with IS risk.
Collapse
Affiliation(s)
- Jingyan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120 Guangzhou, Guangdong, China; Guangzhou University of Chinese Medicine, 510405 Guangzhou, Guangdong, China; University at Buffalo, The State University of New York, 14228 Buffalo, NY, USA; Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China
| | - Qiugui Wei
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Baoyun Liang
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Tingting Shen
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Yanli Wu
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Ziwen Chen
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Junwei Yang
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China
| | - Lian Gu
- Guangxi University of Chinese Medicine, 530299 Nanning, Guangxi, China; The First Affiliated Hospital of Guangxi University of Chinese Medicine, 530023 Nanning, Guangxi, China.
| |
Collapse
|
24
|
Dolatshahi M, Ranjbar Hameghavandi MH, Sabahi M, Rostamkhani S. Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: Diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci 2021; 54:4101-4123. [PMID: 33884689 DOI: 10.1111/ejn.15242] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD), the most common movement disorder, comprises several pathophysiologic mechanisms including misfolded alpha-synuclein aggregation, inflammation, mitochondrial dysfunction, and synaptic loss. Nuclear Factor-Kappa B (NF-κB), as a key regulator of a myriad of cellular reactions, is shown to be involved in such mechanisms associated with PD, and the changes in NF-κB expression is implicated in PD. Alpha-synuclein accumulation, the characteristic feature of PD pathology, is known to trigger NF-κB activation in neurons, thereby propagating apoptosis through several mechanisms. Furthermore, misfolded alpha-synuclein released from degenerated neurons, activates several signaling pathways in glial cells which culminate in activation of NF-κB and production of pro-inflammatory cytokines, thereby aggravating neurodegenerative processes. On the other hand, NF-κB activation, acting as a double-edged sword, can be necessary for survival of neurons. For instance, NF-κB activation is necessary for competent mitochondrial function and deficiency in c-Rel, one of the NF-κB proteins, is known to propagate DA neuron loss via several mechanisms. Despite the dual role of NF-κB in PD, several agents by selectively modifying the mechanisms and pathways associated with NF-κB, can be effective in attenuating DA neuron loss and PD, as reviewed in this paper.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sabra Rostamkhani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Mkrtchyan GV, Abdelmohsen K, Andreux P, Bagdonaite I, Barzilai N, Brunak S, Cabreiro F, de Cabo R, Campisi J, Cuervo AM, Demaria M, Ewald CY, Fang EF, Faragher R, Ferrucci L, Freund A, Silva-García CG, Georgievskaya A, Gladyshev VN, Glass DJ, Gorbunova V, de Grey A, He WW, Hoeijmakers J, Hoffmann E, Horvath S, Houtkooper RH, Jensen MK, Jensen MB, Kane A, Kassem M, de Keizer P, Kennedy B, Karsenty G, Lamming DW, Lee KF, MacAulay N, Mamoshina P, Mellon J, Molenaars M, Moskalev A, Mund A, Niedernhofer L, Osborne B, Pak HH, Parkhitko A, Raimundo N, Rando TA, Rasmussen LJ, Reis C, Riedel CG, Franco-Romero A, Schumacher B, Sinclair DA, Suh Y, Taub PR, Toiber D, Treebak JT, Valenzano DR, Verdin E, Vijg J, Young S, Zhang L, Bakula D, Zhavoronkov A, Scheibye-Knudsen M. ARDD 2020: from aging mechanisms to interventions. Aging (Albany NY) 2020; 12:24484-24503. [PMID: 33378272 PMCID: PMC7803558 DOI: 10.18632/aging.202454] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Aging is emerging as a druggable target with growing interest from academia, industry and investors. New technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence from the industry sector may lead to novel discoveries to treat age-related diseases. The present review summarizes presentations from the 7th Annual Aging Research and Drug Discovery (ARDD) meeting, held online on the 1st to 4th of September 2020. The meeting covered topics related to new methodologies to study aging, knowledge about basic mechanisms of longevity, latest interventional strategies to target the aging process as well as discussions about the impact of aging research on society and economy. More than 2000 participants and 65 speakers joined the meeting and we already look forward to an even larger meeting next year. Please mark your calendars for the 8th ARDD meeting that is scheduled for the 31st of August to 3rd of September, 2021, at Columbia University, USA.
Collapse
Affiliation(s)
- Garik V. Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Pénélope Andreux
- Amazentis SA, EPFL Innovation Park, Bâtiment C, Lausanne, Switzerland
| | - Ieva Bagdonaite
- Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Filipe Cabreiro
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Collin Y. Ewald
- Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute for Technology Zürich, Switzerland
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Richard Faragher
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Adam Freund
- Calico Life Sciences, LLC, South San Francisco, CA 94080, USA
| | - Carlos G. Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J. Glass
- Regeneron Pharmaceuticals, Inc. Tarrytown, NY 10591, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | | | - Wei-Wu He
- Human Longevity Inc., San Diego, CA 92121, USA
| | - Jan Hoeijmakers
- Department of Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eva Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Majken K. Jensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Alice Kane
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA 94107, USA
| | - Moustapha Kassem
- Molecular Endocrinology Unit, Department of Endocrinology, University Hospital of Odense and University of Southern Denmark, Odense, Denmark
| | - Peter de Keizer
- Department of Molecular Cancer Research, Center for Molecular Medicine, Division of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Brian Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Centre for Healthy Ageing, National University Healthy System, Singapore
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital, Madison, WI 53792, USA
| | - Kai-Fu Lee
- Sinovation Ventures and Sinovation AI Institute, Beijing, China
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Denmark
| | - Polina Mamoshina
- Deep Longevity Inc., Hong Kong Science and Technology Park, Hong Kong
| | - Jim Mellon
- Juvenescence Limited, Douglas, Isle of Man, UK
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexey Moskalev
- Institute of Biology of FRC Komi Science Center of Ural Division of RAS, Syktyvkar, Russia
| | - Andreas Mund
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brenna Osborne
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital, Madison, WI 53792, USA
| | | | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas A. Rando
- Department of Neurology and Neurological Sciences and Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Christian G. Riedel
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | | | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
| | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA 94107, USA
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Yousin Suh
- Departments of Obstetrics and Gynecology, Genetics and Development, Columbia University, New York, NY 10027, USA
| | - Pam R. Taub
- Division of Cardiovascular Medicine, University of California, San Diego, CA 92093, USA
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jonas T. Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alex Zhavoronkov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Shi X, Zhang H, Hu Y, Li X, Yin S, Xing R, Zhang N, Mao J, Wang P. Mechanism of Salviae Miltiorrhizae Radix et Rhizoma in the Treatment of Knee Osteoarthritis Based on Network Pharmacology. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20983130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective The molecular mechanism of Salviae Miltiorrhizae Radix et Rhizoma (SMRR) in the treatment of knee osteoarthritis (KOA) was analyzed based on network pharmacology. Methods Active components and potential targets of SMRR were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. KOA targets were obtained from the OMIM, DisGeNET, DrugBank, PharmGKB, and GeneCards Databases. The potential targets of SMRR in the treatment of KOA were identified by the Venn diagram. A protein-protein interaction network was generated with the STRING database. Visualization of the interactions in a potential pharmacodynamic component-target network was accomplished with Cytoscape software. The Database for Annotation, Visualization, and Integrated Discovery database and R software were used for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation analyses of common targets. Molecular docking of the potential leading components, as determined by efficacy with the core target molecules, was performed with Discovery Studio. Results Fifty-seven potential pharmacodynamic components and 58 potential targets of SMRR in the treatment of KOA were found. Bioinformatics analyses showed that the interleukin (IL)-17, hypoxia-inducible factor-1 (HIF-1), and tumor necrosis factor (TNF) signaling pathways, as well as the advanced glycation end product-receptor for advanced glycation end product signaling pathway in cases of diabetic complications, are related to the molecular mechanism of SMRR in the treatment of KOA. Molecular docking results showed that luteolin, tanshinone IIA, cryptotanshinone, and other components of SMRR had a strong affinity for MYC, signal transducer and activator of transcription 3, caspase-3 (CASP3), JUN, cyclin D1, prostaglandin endoperoxide synthase 2 (PTGS2), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), protein kinase B, vascular endothelial growth factor A, and other targets. Conclusion SMRR indirectly regulates IL-17, HIF-1, TNF, and other signal transduction pathways by regulating the expression of proteins, including PTGS2, MAPK1, EGFR, and CASP3, thus playing a role in promoting chondrocyte proliferation, improving microcirculation, eliminating free radicals, and inhibiting inflammatory factors.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Haosheng Zhang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Yue Hu
- Department of Integrated Traditional Chinese and Western Medicine, Jinling Hospital, Nanjing, P. R. China
| | - Xiaochen Li
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Songjiang Yin
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Runlin Xing
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Nongshan Zhang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Jun Mao
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| | - Peimin Wang
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
27
|
Zaghloul N, Kurepa D, Bader MY, Nagy N, Ahmed MN. Prophylactic inhibition of NF-κB expression in microglia leads to attenuation of hypoxic ischemic injury of the immature brain. J Neuroinflammation 2020; 17:365. [PMID: 33261624 PMCID: PMC7709340 DOI: 10.1186/s12974-020-02031-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
Background Periventricular leukomalacia (PVL), a devastating brain injury affecting premature infants, is the most common cause of cerebral palsy. PVL is caused by hypoxia ischemia (HI) and is characterized by white matter necrotic lesions, microglial activation, upregulation of NF-κB, and neuronal death. The microglia is the main cell involved in PVL pathogenesis. The goal of this study was to investigate the role of microglial NF-κB activity and its prophylactic inhibition in a neonate mouse model of HI. Methods Transgenic mice with specific knockout NF-κB in microglia and colony stimulating factor 1 receptor Cre with floxed IKKβ (CSF-1R Cre + IKKβflox/wt ) were used. Postnatal day 5 (P5) mice underwent sham or bilateral temporary carotid artery ligation followed by hypoxia. After HI insult, inflammatory cytokines, volumetric MRI, histopathology, and immunohistochemistry for oligodendroglia and microglial activation markers were analyzed. Long-term neurobehavioral assessment, including grip strength, rotarod, and open field testing, was performed at P60. Results We demonstrate that selective inhibition of NF-κB in microglia decreases HI-induced brain injury by decreasing microglial activation, proinflammatory cytokines, and nitrative stress. Rescue of oligodendroglia is evidenced by immunohistochemistry, decreased ventriculomegaly on MRI, and histopathology. This selective inhibition leads to attenuation of paresis, incoordination, and improved grip strength, gait, and locomotion. Conclusion We conclude that NF-κb activation in microglia plays a major role in the pathogenesis of hypoxic ischemic injury of the immature brain, and its prophylactic inhibition offers significant neuroprotection. Using a specific inhibitor of microglial NF-κB may offer a new prophylactic or therapeutic alternative in preterm infants affected by HI and possibly other neurological diseases in which microglial activation plays a role.
Collapse
Affiliation(s)
- Nahla Zaghloul
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA.
| | - Dalibor Kurepa
- Department of Pediatrics, Division of Neonatology, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mohammad Y Bader
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA
| | - Nadia Nagy
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA
| | - Mohamed N Ahmed
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA
| |
Collapse
|
28
|
Anti-Inflammatory and General Glucocorticoid Physiology in Skeletal Muscles Affected by Duchenne Muscular Dystrophy: Exploration of Steroid-Sparing Agents. Int J Mol Sci 2020; 21:ijms21134596. [PMID: 32605223 PMCID: PMC7369834 DOI: 10.3390/ijms21134596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the activation of proinflammatory and metabolic cellular pathways in skeletal muscle cells is an inherent characteristic. Synthetic glucocorticoid intake counteracts the majority of these mechanisms. However, glucocorticoids induce burdensome secondary effects, including hypertension, arrhythmias, hyperglycemia, osteoporosis, weight gain, growth delay, skin thinning, cushingoid appearance, and tissue-specific glucocorticoid resistance. Hence, lowering the glucocorticoid dosage could be beneficial for DMD patients. A more profound insight into the major cellular pathways that are stabilized after synthetic glucocorticoid administration in DMD is needed when searching for the molecules able to achieve similar pathway stabilization. This review provides a concise overview of the major anti-inflammatory pathways, as well as the metabolic effects of glucocorticoids in the skeletal muscle affected in DMD. The known drugs able to stabilize these pathways, and which could potentially be combined with glucocorticoid therapy as steroid-sparing agents, are described. This could create new opportunities for testing in DMD animal models and/or clinical trials, possibly leading to smaller glucocorticoids dosage regimens for DMD patients.
Collapse
|
29
|
Opazo-Ríos L, Plaza A, Sánchez Matus Y, Bernal S, Lopez-Sanz L, Jimenez-Castilla L, Carpio D, Droguett A, Mezzano S, Egido J, Gomez-Guerrero C. Targeting NF-κB by the Cell-Permeable NEMO-Binding Domain Peptide Improves Albuminuria and Renal Lesions in an Experimental Model of Type 2 Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21124225. [PMID: 32545818 PMCID: PMC7352510 DOI: 10.3390/ijms21124225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is a multifactorial disease characterized by hyperglycemia and close interaction of hemodynamic, metabolic and inflammatory factors. Nuclear factor-κB (NF-κB) is a principal matchmaker linking hyperglycemia and inflammation. The present work investigates the cell-permeable peptide containing the inhibitor of kappa B kinase γ (IKKγ)/NF-κB essential modulator (NEMO)-binding domain (NBD) as therapeutic option to modulate inflammation in a preclinical model of type 2 diabetes (T2D) with DN. Black and tan, brachyuric obese/obese mice were randomized into 4 interventions groups: Active NBD peptide (10 and 6 µg/g body weight); Inactive mutant peptide (10 µg/g); and vehicle control. In vivo/ex vivo fluorescence imaging revealed efficient delivery of NBD peptide, systemic biodistribution and selective renal metabolization. In vivo administration of active NBD peptide improved albuminuria (>40% reduction on average) and kidney damage, decreased podocyte loss and basement membrane thickness, and modulated the expression of proinflammatory and oxidative stress markers. In vitro, NBD blocked IKK-mediated NF-κB induction and target gene expression in mesangial cells exposed to diabetic-like milieu. These results constitute the first nephroprotective effect of NBD peptide in a T2D mouse model that recapitulates the kidney lesions observed in DN patients. Targeting IKK-dependent NF-κB activation could be a therapeutic strategy to combat kidney inflammation in DN.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Anita Plaza
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Yenniffer Sánchez Matus
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Susana Bernal
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Laura Lopez-Sanz
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Daniel Carpio
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Alejandra Droguett
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile; (L.O.-R.); (A.P.) (Y.S.M.); (D.C.); (A.D.); (S.M.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (S.B.); (L.L.-S.); (L.J.-C.); (J.E.)
- Correspondence: or
| |
Collapse
|
30
|
Barczewski AH, Ragusa MJ, Mierke DF, Pellegrini M. Production, Crystallization, and Structure Determination of the IKK-binding Domain of NEMO. J Vis Exp 2019. [PMID: 31929506 DOI: 10.3791/60339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
NEMO is a scaffolding protein which plays an essential role in the NF-κB pathway by assembling the IKK-complex with the kinases IKKα and IKKβ. Upon activation, the IKK complex phosphorylates the IκB molecules leading to NF-κB nuclear translocation and activation of target genes. Inhibition of the NEMO/IKK interaction is an attractive therapeutic paradigm for the modulation of NF-κB pathway activity, making NEMO a target for inhibitors design and discovery. To facilitate the process of discovery and optimization of NEMO inhibitors, we engineered an improved construct of the IKK-binding domain of NEMO that would allow for structure determination of the protein in the apo form and while bound to small molecular weight inhibitors. Here, we present the strategy utilized for the design, expression and structural characterization of the IKK-binding domain of NEMO. The protein is expressed in E. coli cells, solubilized under denaturing conditions and purified through three chromatographic steps. We discuss the protocols for obtaining crystals for structure determination and describe data acquisition and analysis strategies. The protocols will find wide applicability to the structure determination of complexes of NEMO and small molecule inhibitors.
Collapse
|
31
|
Su Y, Yuan J, Zhang F, Lei Q, Zhang T, Li K, Guo J, Hong Y, Bu G, Lv X, Liang S, Ou J, Zhou J, Luo B, Shang J. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis 2019; 10:365. [PMID: 31064980 PMCID: PMC6504957 DOI: 10.1038/s41419-019-1599-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
MicroRNAs have emerged as important post-transcriptional regulators of gene expression and are involved in diverse diseases and cellular process. Decreased expression of miR-181a has been observed in the patients with coronary artery disease, but its function and mechanism in atherogenesis is not clear. This study was designed to determine the roles of miR-181a-5p, as well as its passenger strand, miR-181a-3p, in vascular inflammation and atherogenesis. We found that the levels of both miR-181a-5p and miR-181a-3p are decreased in the aorta plaque and plasma of apoE−/− mice in response to hyperlipidemia and in the plasma of patients with coronary artery disease. Rescue of miR-181a-5p and miR-181a-3p significantly retards atherosclerotic plaque formation in apoE−/− mice. MiR-181a-5p and miR-181a-3p have no effect on lipid metabolism but decrease proinflammatory gene expression and the infiltration of macrophage, leukocyte and T cell into the lesions. In addition, gain-of-function and loss-of-function experiments show that miR-181a-5p and miR-181a-3p inhibit adhesion molecule expression in HUVECs and monocytes-endothelial cell interaction. MiR-181a-5p and miR-181a-3p cooperatively receded endothelium inflammation compared with single miRNA strand. Mechanistically, miR-181a-5p and miR-181a-3p prevent endothelial cell activation through blockade of NF-κB signaling pathway by targeting TAB2 and NEMO, respectively. In conclusion, these findings suggest that miR-181a-5p and miR-181a-3p are both antiatherogenic miRNAs. MiR-181a-5p and miR-181a-3p mimetics retard atherosclerosis progression through blocking NF-κB activation and vascular inflammation by targeting TAB2 and NEMO, respectively. Therefore, restoration of miR-181a-5p and miR-181a-3p may represent a novel therapeutic approach to manage atherosclerosis.
Collapse
Affiliation(s)
- Yingxue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.,Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jiani Yuan
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Feiran Zhang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Qingqing Lei
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Tingting Zhang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Kai Li
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jiawei Guo
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Guolong Bu
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Xiaofei Lv
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Sijia Liang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jingsong Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, 510080, Guangzhou, China
| | - Jiaguo Zhou
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, 510080, Guangzhou, China.,Program of Kidney and Cardiovascular Disease, The Fifth Affiliated Hospital, 510080, Guangzhou, China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, 510080, Guangzhou, China
| | - Bin Luo
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, 510080, Guangzhou, China.
| | - Jinyan Shang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China.
| |
Collapse
|
32
|
Luo Q, Li D, Bao B, Wan X, Pan B, Tu J, Wang H, Ouyang Y, Chen Z, Yin X. NEMO-binding domain peptides alleviate perihematomal inflammation injury after experimental intracerebral hemorrhage. Neuroscience 2019; 409:43-57. [PMID: 31047976 DOI: 10.1016/j.neuroscience.2019.04.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
Inflammation aggravates the lethal consequences of intracerebral hemorrhage. Recently, many studies have found that nuclear factor-κB (NF-κB) is a crucial transcription factor that initiates inflammation in the perihematomal region of ICH. NF-κB essential modulator (NEMO)-binding domain (NBD) peptide, a cell-permeable peptide spanning the NBD of IKKα or IKKβ, functions as a highly specific inhibitor of NF-κB. This peptide can negatively regulate the NF-κB pathway. The present study aimed to explore the effects and underlying pathomechanisms of NBD peptides after ICH. Striatum infusion of whole blood or saline was performed on C57BL/6 mice (n = 198). Experimental animals were administered NBD or control (mutated) peptides 2 h before or after ICH by intracerebroventricular injection (icv.). NBD peptides significantly inhibited edema formation, ameliorated the neurological deficits, markedly reduced IκBα and p65 phosphorylation, blocked nuclear translocation of p65, and upregulated IκBα expression by NF-κB after ICH induction. Using an in vitro hemin toxicity model, we investigated the effects of NBD peptides on microglial inflammation. We found that NBD peptides suppressed microglia inflammation and lowered the expression of TNF-α and IL-1β in both in vivo and in vitro experiments. Further experiments were performed in mice and cultured microglia, which treated with NBD peptides in the presence of p65 siRNA confirmed that the specificity of NBD peptides inhibit ICH-induced NF-κB activation. This study demonstrated that NBD peptides exert a neuroprotective role after ICH and might be a potential candidate for a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Qinghua Luo
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang 330006, Jiangxi Province, China
| | - Dongling Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang 330006, Jiangxi Province, China
| | - Bing Bao
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No. 57, Xiangyang East Road, Jiujiang 332000, Jiangxi Province, China
| | - Xiaolin Wan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang 330006, Jiangxi Province, China
| | - Bingxing Pan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang 330006, Jiangxi Province, China; Laboratory of Fear and Anxiety Disorders, Institute of Life Science and School of Life Science, Nanchang University, No. 999, Xuefu Avenue, Nanchang 330031, Jiangxi Province, , China
| | - Jianglong Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang 330006, Jiangxi Province, China
| | - Han Wang
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No. 57, Xiangyang East Road, Jiujiang 332000, Jiangxi Province, China; Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang 330006, Jiangxi Province, China
| | - Yetong Ouyang
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No. 57, Xiangyang East Road, Jiujiang 332000, Jiangxi Province, China; Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang 330006, Jiangxi Province, China
| | - Zhiying Chen
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No. 57, Xiangyang East Road, Jiujiang 332000, Jiangxi Province, China.
| | - Xiaoping Yin
- Department of Neurology, The Affiliated Hospital of Jiujiang University, No. 57, Xiangyang East Road, Jiujiang 332000, Jiangxi Province, China.
| |
Collapse
|
33
|
Zhao Y, Li Y, Qu R, Chen X, Wang W, Qiu C, Liu B, Pan X, Liu L, Vasilev K, Hayball J, Dong S, Li W. Cortistatin binds to TNF-α receptors and protects against osteoarthritis. EBioMedicine 2019; 41:556-570. [PMID: 30826358 PMCID: PMC6443028 DOI: 10.1016/j.ebiom.2019.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Osteoarthritis (OA) is a common degenerative disease, and tumor necrosis factor (TNF-α) is known to play a critical role in OA. Cortistatin (CST) is a neuropeptide discovered over 20 years ago, which plays a vital role in inflammatory reactions. However, it is unknown whether CST is involved in cartilage degeneration and OA development. Methods The interaction between CST and TNF-α receptors was investigated through Coimmunoprecipitation and Biotin-based solid-phase binding assay. Western blot, Real-time PCR, ELISA, immunofluorescence staining, nitrite production assay and DMMB assay of GAG were performed for the primary chondrocyte experiments. Surgically induced and spontaneous OA models were established and western blot, flow cytometry, Real-time PCR, ELISA, immunohistochemistry and fluorescence in vivo imaging were performed for in vivo experiments. Findings CST competitively bound to TNFR1 as well as TNFR2. CST suppressed proinflammatory function of TNF-α. Both spontaneous and surgically induced OA models indicated that deficiency of CST led to an accelerated OA-like phenotype, while exogenous CST attenuated OA development in vivo. Additionally, TNFR1- and TNFR2-knockout mice were used for analysis and indicated that TNFRs might be involved in the protective role of CST in OA. CST inhibited activation of the NF-κB signaling pathway in OA. Interpretation This study provides new insight into the pathogenesis and therapeutic strategy of cartilage degenerative diseases, including OA. Fund The National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province, Key Research and Development Projects of Shandong Province and the Cross-disciplinary Fund of Shandong University.
Collapse
Affiliation(s)
- Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuhua Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Ruize Qu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Xiaomin Chen
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Wenhan Wang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Cheng Qiu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012. PR China
| | - Ben Liu
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xin Pan
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - John Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Shuli Dong
- College of Chemistry, Shandong University, Jinan, Shandong 250101, PR China
| | - Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
34
|
The IKK-binding domain of NEMO is an irregular coiled coil with a dynamic binding interface. Sci Rep 2019; 9:2950. [PMID: 30814588 PMCID: PMC6393490 DOI: 10.1038/s41598-019-39588-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
NEMO is an essential component in the activation of the canonical NF-κB pathway and exerts its function by recruiting the IκB kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NF-κB mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the high-resolution structure of the unbound IKKβ-binding domain of NEMO that will greatly facilitate the design of NEMO/IKK inhibitors. The structures of unbound NEMO show a closed conformation that partially occludes the three binding hot-spots and suggest a facile transition to an open state that can accommodate ligand binding. By fusing coiled-coil adaptors to the IKKβ-binding domain of NEMO, we succeeded in creating a protein with improved solution behavior, IKKβ-binding affinity and crystallization compatibility, which will enable the structural characterization of new NEMO/inhibitor complexes.
Collapse
|
35
|
Rhodes CA, Dougherty PG, Cooper JK, Qian Z, Lindert S, Wang QE, Pei D. Cell-Permeable Bicyclic Peptidyl Inhibitors against NEMO-IκB Kinase Interaction Directly from a Combinatorial Library. J Am Chem Soc 2018; 140:12102-12110. [PMID: 30176143 PMCID: PMC6231237 DOI: 10.1021/jacs.8b06738] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Macrocyclic peptides are capable of binding to flat protein surfaces such as the interfaces of protein-protein interactions with antibody-like affinity and specificity, but generally lack cell permeability in order to access intracellular targets. In this work, we designed and synthesized a large combinatorial library of cell-permeable bicyclic peptides, in which the first ring consisted of randomized peptide sequences for potential binding to a target of interest, while the second ring featured a family of different cell-penetrating motifs, for both cell penetration and target binding. The library was screened against the IκB kinase α/β (IKKα/β)-binding domain of NF-κB essential modulator (NEMO), resulting in the discovery of several cell-permeable bicyclic peptides, which inhibited the NEMO-IKKβ interaction with low μM IC50 values. Further optimization of one of the hits led to a relatively potent and cell-permeable NEMO inhibitor (IC50 = 1.0 μM), which selectively inhibited canonical NF-κB signaling in mammalian cells and the proliferation of cisplatin-resistant ovarian cancer cells. The inhibitor provides a useful tool for investigating the biological functions of NEMO/NF-κB and a potential lead for further development of a novel class of anti-inflammatory and anticancer drugs.
Collapse
Affiliation(s)
- Curran A. Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jahan K. Cooper
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Qi-En Wang
- Department of Radiology, James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|