1
|
Windener F, Grewing L, Thomas C, Dorion MF, Otteken M, Kular L, Jagodic M, Antel J, Albrecht S, Kuhlmann T. Physiological aging and inflammation-induced cellular senescence may contribute to oligodendroglial dysfunction in MS. Acta Neuropathol 2024; 147:82. [PMID: 38722375 PMCID: PMC11082024 DOI: 10.1007/s00401-024-02733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Aging affects all cell types in the CNS and plays an important role in CNS diseases. However, the underlying molecular mechanisms driving these age-associated changes and their contribution to diseases are only poorly understood. The white matter in the aging brain as well as in diseases, such as Multiple sclerosis is characterized by subtle abnormalities in myelin sheaths and paranodes, suggesting that oligodendrocytes, the myelin-maintaining cells of the CNS, lose the capacity to preserve a proper myelin structure and potentially function in age and certain diseases. Here, we made use of directly converted oligodendrocytes (dchiOL) from young, adult and old human donors to study age-associated changes. dchiOL from all three age groups differentiated in an comparable manner into O4 + immature oligodendrocytes, but the proportion of MBP + mature dchiOL decreased with increasing donor age. This was associated with an increased ROS production and upregulation of cellular senescence markers such as CDKN1A, CDKN2A in old dchiOL. Comparison of the transcriptomic profiles of dchiOL from adult and old donors revealed 1324 differentially regulated genes with limited overlap with transcriptomic profiles of the donors' fibroblasts or published data sets from directly converted human neurons or primary rodent oligodendroglial lineage cells. Methylome analyses of dchiOL and human white matter tissue samples demonstrate that chronological and epigenetic age correlate in CNS white matter as well as in dchiOL and resulted in the identification of an age-specific epigenetic signature. Furthermore, we observed an accelerated epigenetic aging of the myelinated, normal appearing white matter of multiple sclerosis (MS) patients compared to healthy individuals. Impaired differentiation and upregulation of cellular senescence markers could be induced in young dchiOL in vitro using supernatants from pro-inflammatory microglia. In summary, our data suggest that physiological aging as well as inflammation-induced cellular senescence contribute to oligodendroglial pathology in inflammatory demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Farina Windener
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Laureen Grewing
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Marie-France Dorion
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Marie Otteken
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany.
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Hahm JH, Nirmala FS, Ha TY, Ahn J. Nutritional approaches targeting mitochondria for the prevention of sarcopenia. Nutr Rev 2024; 82:676-694. [PMID: 37475189 DOI: 10.1093/nutrit/nuad084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Farida S Nirmala
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Tae Youl Ha
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| |
Collapse
|
3
|
Mendoza A, Karch J. Keeping the beat against time: Mitochondrial fitness in the aging heart. FRONTIERS IN AGING 2022; 3:951417. [PMID: 35958271 PMCID: PMC9360554 DOI: 10.3389/fragi.2022.951417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
The process of aging strongly correlates with maladaptive architectural, mechanical, and biochemical alterations that contribute to the decline in cardiac function. Consequently, aging is a major risk factor for the development of heart disease, the leading cause of death in the developed world. In this review, we will summarize the classic and recently uncovered pathological changes within the aged heart with an emphasis on the mitochondria. Specifically, we describe the metabolic changes that occur in the aging heart as well as the loss of mitochondrial fitness and function and how these factors contribute to the decline in cardiomyocyte number. In addition, we highlight recent pharmacological, genetic, or behavioral therapeutic intervention advancements that may alleviate age-related cardiac decline.
Collapse
Affiliation(s)
- Arielys Mendoza
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
4
|
Impact of exercise training on muscle mitochondria modifications in older adults: a systematic review of randomized controlled trials. Aging Clin Exp Res 2022; 34:1495-1510. [PMID: 35079977 DOI: 10.1007/s40520-021-02073-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous evidence showed that cellular aging is a multifactorial process that is associated with decline in mitochondrial function. Physical exercise has been proposed as an effective and safe therapeutical intervention to improve the mitochondria network in the adult myocytes. AIMS The aim of this systematic review of randomized controlled trials (RCTs) was to assess the exercise-induced muscle mitochondria modifications in older adults, underlining the differences related to different exercise modalities. METHODS On November 28th, 2021, five databases (PubMed, Scopus, Web of Science, Cochrane, and PEDro) were systematically searched for RCTs to include articles with: healthy older people as participants; physical exercise (endurance training (ET), resistance training (RT), and combined training (CT)) as intervention; other different exercise modalities or physical inactivity as comparator; mitochondrial modifications (quality, density and dynamics, oxidative, and antioxidant capacity) as outcomes. The quality assessment was performed according to the PEDro scale; the bias risk was evaluated by Cochrane risk-of-bias assessment tool. RESULTS Out of 2940 records, 6 studies were included (2 assessing ET, 2 RT, 1 CT, and 1 both ET and RT). Taken together, 164 elderly subjects were included in the present systematic review. Significant positive effects were reported in terms of mitochondrial quality, density, dynamics, oxidative and antioxidant capacity, even though with different degrees according to the exercise type. The quality assessment reported one good-quality study, whereas the other five studies had a fair quality. DISCUSSION The overall low quality of the studies on this topic indicate that further research is needed. CONCLUSION RT seems to be the most studied physical exercise modality improving mitochondrial density and dynamics, while ET have been related to mitochondrial antioxidant capacity improvements. However, these exercise-induced specific effects should be better explored in older people.
Collapse
|
5
|
Conte E, Imbrici P, Mantuano P, Coppola MA, Camerino GM, De Luca A, Liantonio A. Alteration of STIM1/Orai1-Mediated SOCE in Skeletal Muscle: Impact in Genetic Muscle Diseases and Beyond. Cells 2021; 10:2722. [PMID: 34685702 PMCID: PMC8534495 DOI: 10.3390/cells10102722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023] Open
Abstract
Intracellular Ca2+ ions represent a signaling mediator that plays a critical role in regulating different muscular cellular processes. Ca2+ homeostasis preservation is essential for maintaining skeletal muscle structure and function. Store-operated Ca2+ entry (SOCE), a Ca2+-entry process activated by depletion of intracellular stores contributing to the regulation of various function in many cell types, is pivotal to ensure a proper Ca2+ homeostasis in muscle fibers. It is coordinated by STIM1, the main Ca2+ sensor located in the sarcoplasmic reticulum, and ORAI1 protein, a Ca2+-permeable channel located on transverse tubules. It is commonly accepted that Ca2+ entry via SOCE has the crucial role in short- and long-term muscle function, regulating and adapting many cellular processes including muscle contractility, postnatal development, myofiber phenotype and plasticity. Lack or mutations of STIM1 and/or Orai1 and the consequent SOCE alteration have been associated with serious consequences for muscle function. Importantly, evidence suggests that SOCE alteration can trigger a change of intracellular Ca2+ signaling in skeletal muscle, participating in the pathogenesis of different progressive muscle diseases such as tubular aggregate myopathy, muscular dystrophy, cachexia, and sarcopenia. This review provides a brief overview of the molecular mechanisms underlying STIM1/Orai1-dependent SOCE in skeletal muscle, focusing on how SOCE alteration could contribute to skeletal muscle wasting disorders and on how SOCE components could represent pharmacological targets with high therapeutic potential.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| | | | | | | | | | | | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| |
Collapse
|
6
|
Lofaro FD, Cisterna B, Lacavalla MA, Boschi F, Malatesta M, Quaglino D, Zancanaro C, Boraldi F. Age-Related Changes in the Matrisome of the Mouse Skeletal Muscle. Int J Mol Sci 2021; 22:10564. [PMID: 34638903 PMCID: PMC8508832 DOI: 10.3390/ijms221910564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Aging is characterized by a progressive decline of skeletal muscle (SM) mass and strength which may lead to sarcopenia in older persons. To date, a limited number of studies have been performed in the old SM looking at the whole, complex network of the extracellular matrix (i.e., matrisome) and its aging-associated changes. In this study, skeletal muscle proteins were isolated from whole gastrocnemius muscles of adult (12 mo.) and old (24 mo.) mice using three sequential extractions, each one analyzed by liquid chromatography with tandem mass spectrometry. Muscle sections were investigated using fluorescence- and transmission electron microscopy. This study provided the first characterization of the matrisome in the old SM demonstrating several statistically significantly increased matrisome proteins in the old vs. adult SM. Several proteomic findings were confirmed and expanded by morphological data. The current findings shed new light on the mutually cooperative interplay between cells and the extracellular environment in the aging SM. These data open the door for a better understanding of the mechanisms modulating myocellular behavior in aging (e.g., by altering mechano-sensing stimuli as well as signaling pathways) and their contribution to age-dependent muscle dysfunction.
Collapse
Affiliation(s)
- Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, I-44100 Modena, Italy; (F.D.L.); (D.Q.)
| | - Barbara Cisterna
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Maria Assunta Lacavalla
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Federico Boschi
- Department of Computer Science, University of Verona, I-37100 Verona, Italy;
| | - Manuela Malatesta
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, I-44100 Modena, Italy; (F.D.L.); (D.Q.)
| | - Carlo Zancanaro
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, I-44100 Modena, Italy; (F.D.L.); (D.Q.)
| |
Collapse
|
7
|
Ni X, Wang Z, Gao D, Yuan H, Sun L, Zhu X, Zhou Q, Yang Z. A description of the relationship in healthy longevity and aging-related disease: from gene to protein. Immun Ageing 2021; 18:30. [PMID: 34172062 PMCID: PMC8229348 DOI: 10.1186/s12979-021-00241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
Human longevity is a complex phenotype influenced by both genetic and environmental factors. It is also known to be associated with various types of age-related diseases, such as Alzheimer's disease (AD) and cardiovascular disease (CVD). The central dogma of molecular biology demonstrates the conversion of DNA to RNA to the encoded protein. These proteins interact to form complex cell signaling pathways, which perform various biological functions. With prolonged exposure to the environment, the in vivo homeostasis adapts to the changes, and finally, humans adopt the phenotype of longevity or aging-related diseases. In this review, we focus on two different states: longevity and aging-related diseases, including CVD and AD, to discuss the relationship between genetic characteristics, including gene variation, the level of gene expression, regulation of gene expression, the level of protein expression, both genetic and environmental influences and homeostasis based on these phenotypes shown in organisms.
Collapse
Affiliation(s)
- Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
- Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100001, P.R. China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Danni Gao
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China.
- Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100001, P.R. China.
| |
Collapse
|
8
|
García-Casas P, Alvarez-Illera P, Gómez-Orte E, Cabello J, Fonteriz RI, Montero M, Alvarez J. The Mitochondrial Na +/Ca 2+ Exchanger Inhibitor CGP37157 Preserves Muscle Structure and Function to Increase Lifespan and Healthspan in Caenorhabditis elegans. Front Pharmacol 2021; 12:695687. [PMID: 34211399 PMCID: PMC8241105 DOI: 10.3389/fphar.2021.695687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
We have reported recently that the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157 extends lifespan in Caenorhabditis elegans by a mechanism involving mitochondria, the TOR pathway and the insulin/IGF1 pathway. Here we show that CGP37157 significantly improved the evolution with age of the sarcomeric regular structure, delaying development of sarcopenia in C. elegans body wall muscle and increasing the average and maximum speed of the worms. Similarly, CGP37157 favored the maintenance of a regular mitochondrial structure during aging. We have also investigated further the mechanism of the effect of CGP37157 by studying its effect in mutants of aak-1;aak-2/AMP-activated kinase, sir-2.1/sirtuin, rsks-1/S6 kinase and daf-16/FOXO. We found that this compound was still effective increasing lifespan in all these mutants, indicating that these pathways are not involved in the effect. We have then monitored pharynx cytosolic and mitochondrial Ca2+ signalling and our results suggest that CGP37157 is probably inhibiting not only the mitochondrial Na+/Ca2+ exchanger, but also Ca2+ entry through the plasma membrane. Finally, a transcriptomic study detected that CGP37157 induced changes in lipid metabolism enzymes and a four-fold increase in the expression of ncx-6, one of the C. elegans mitochondrial Na+/Ca2+ exchangers. In summary, CGP37157 increases both lifespan and healthspan by a mechanism involving changes in cytosolic and mitochondrial Ca2+ homeostasis. Thus, Ca2+ signalling could be a promising target to act on aging.
Collapse
Affiliation(s)
- Paloma García-Casas
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| | - Pilar Alvarez-Illera
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| | - Eva Gómez-Orte
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Rosalba I Fonteriz
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| | - Mayte Montero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| | - Javier Alvarez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and CSIC, Valladolid, Spain
| |
Collapse
|
9
|
Olive Leaf Extract Supplementation to Old Wistar Rats Attenuates Aging-Induced Sarcopenia and Increases Insulin Sensitivity in Adipose Tissue and Skeletal Muscle. Antioxidants (Basel) 2021; 10:antiox10050737. [PMID: 34067004 PMCID: PMC8151598 DOI: 10.3390/antiox10050737] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with increased visceral adiposity and a decrease in the amount of brown adipose tissue and muscle mass, known as sarcopenia, which results in the development of metabolic alterations such as insulin resistance. In this study, we aimed to analyze whether 3-week supplementation with a phenolic-rich olive leaf extract (OLE) to 24 months-old male Wistar rats orally (100 mg/kg) attenuated the aging-induced alterations in body composition and insulin resistance. OLE treatment increased brown adipose tissue and attenuated the aging-induced decrease in protein content and gastrocnemius weight. Treatment with OLE prevented the aging-induced increase in the expression of PPAR-γ in visceral and brown adipose tissues, while it significantly increased the expression of PPAR-α in the gastrocnemius of old rats and reduced various markers related to sarcopenia such as myostatin, HDAC-4, myogenin and MyoD. OLE supplementation increased insulin sensitivity in explants of gastrocnemius and epididymal visceral adipose tissue from aged rats through a greater activation of the PI3K/Akt pathway, probably through the attenuation of inflammation in both tissues. In conclusion, supplementation with OLE prevents the loss of muscle mass associated with aging and exerts anti-inflammatory and insulin-sensitizing effects on adipose tissue and skeletal muscle.
Collapse
|
10
|
Lee EJ, Neppl RL. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes (Basel) 2021; 12:genes12050688. [PMID: 34063658 PMCID: PMC8147613 DOI: 10.3390/genes12050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy in an inevitable occurrence with advancing age, and a consequence of disease including cancer. Muscle atrophy in the elderly is managed by a regimen of resistance exercise and increased protein intake. Understanding the signaling that regulates muscle mass may identify potential therapeutic targets for the prevention and reversal of muscle atrophy in metabolic and neuromuscular diseases. This review covers the major anabolic and catabolic pathways that regulate skeletal muscle mass, with a focus on recent progress and potential new players.
Collapse
|
11
|
Clemens Z, Sivakumar S, Pius A, Sahu A, Shinde S, Mamiya H, Luketich N, Cui J, Dixit P, Hoeck JD, Kreuz S, Franti M, Barchowsky A, Ambrosio F. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. eLife 2021; 10:e61138. [PMID: 33876724 PMCID: PMC8118657 DOI: 10.7554/elife.61138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is accompanied by disrupted information flow, resulting from accumulation of molecular mistakes. These mistakes ultimately give rise to debilitating disorders including skeletal muscle wasting, or sarcopenia. To derive a global metric of growing 'disorderliness' of aging muscle, we employed a statistical physics approach to estimate the state parameter, entropy, as a function of genes associated with hallmarks of aging. Escalating network entropy reached an inflection point at old age, while structural and functional alterations progressed into oldest-old age. To probe the potential for restoration of molecular 'order' and reversal of the sarcopenic phenotype, we systemically overexpressed the longevity protein, Klotho, via AAV. Klotho overexpression modulated genes representing all hallmarks of aging in old and oldest-old mice, but pathway enrichment revealed directions of changes were, for many genes, age-dependent. Functional improvements were also age-dependent. Klotho improved strength in old mice, but failed to induce benefits beyond the entropic tipping point.
Collapse
Affiliation(s)
- Zachary Clemens
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Sruthi Sivakumar
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Abish Pius
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Amrita Sahu
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Sunita Shinde
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
| | - Hikaru Mamiya
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Nathaniel Luketich
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - Jian Cui
- Department of Computational & Systems Biology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Purushottam Dixit
- Department of Physics, University of FloridaGainesvilleUnited States
| | - Joerg D Hoeck
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Sebastian Kreuz
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Michael Franti
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals, IncRheinGermany
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
| | - Fabrisia Ambrosio
- Department of Physical Medicine & Rehabilitation, University of PittsburghPittsburghUnited States
- Department of Environmental and Occupational Health, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
- McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUnited States
| |
Collapse
|
12
|
Gueugneau M, Coudy-Gandilhon C, Chambon C, Verney J, Taillandier D, Combaret L, Polge C, Walrand S, Roche F, Barthélémy JC, Féasson L, Béchet D. Muscle Proteomic and Transcriptomic Profiling of Healthy Aging and Metabolic Syndrome in Men. Int J Mol Sci 2021; 22:4205. [PMID: 33921590 PMCID: PMC8074053 DOI: 10.3390/ijms22084205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Aging is associated with a progressive decline in muscle mass and function. Aging is also a primary risk factor for metabolic syndrome, which further alters muscle metabolism. However, the molecular mechanisms involved remain to be clarified. Herein we performed omic profiling to decipher in muscle which dominating processes are associated with healthy aging and metabolic syndrome in old men. (2) Methods: This study included 15 healthy young, 15 healthy old, and 9 old men with metabolic syndrome. Old men were selected from a well-characterized cohort, and each vastus lateralis biopsy was used to combine global transcriptomic and proteomic analyses. (3) Results: Over-representation analysis of differentially expressed genes (ORA) and functional class scoring of pathways (FCS) indicated that healthy aging was mainly associated with upregulations of apoptosis and immune function and downregulations of glycolysis and protein catabolism. ORA and FCS indicated that with metabolic syndrome the dominating biological processes were upregulation of proteolysis and downregulation of oxidative phosphorylation. Proteomic profiling matched 586 muscle proteins between individuals. The proteome of healthy aging revealed modifications consistent with a fast-to-slow transition and downregulation of glycolysis. These transitions were reduced with metabolic syndrome, which was more associated with alterations in NADH/NAD+ shuttle and β-oxidation. Proteomic profiling further showed that all old muscles overexpressed protein chaperones to preserve proteostasis and myofiber integrity. There was also evidence of aging-related increases in reactive oxygen species but better detoxifications of cytotoxic aldehydes and membrane protection in healthy than in metabolic syndrome muscles. (4) Conclusions: Most candidate proteins and mRNAs identified herein constitute putative muscle biomarkers of healthy aging and metabolic syndrome in old men.
Collapse
Affiliation(s)
- Marine Gueugneau
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Cécile Coudy-Gandilhon
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Christophe Chambon
- Metabolomic and Proteomic Exploration Facility, Université Clermont Auvergne, INRAE, 63000 Clermont-Ferrand, France;
| | - Julien Verney
- Laboratoire AME2P, Université Clermont Auvergne, 3533 Clermont-Ferrand, France;
| | - Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Cécile Polge
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Stéphane Walrand
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Frédéric Roche
- Service de Physiologie Clinique et de l’Exercice, CHU Saint Etienne, 42055 Saint Etienne, France; (F.R.); (J.-C.B.)
- INSERM, SAINBIOSE, U1059, Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, 42055 Saint-Etienne, France
| | - Jean-Claude Barthélémy
- Service de Physiologie Clinique et de l’Exercice, CHU Saint Etienne, 42055 Saint Etienne, France; (F.R.); (J.-C.B.)
- INSERM, SAINBIOSE, U1059, Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, 42055 Saint-Etienne, France
| | - Léonard Féasson
- Unité de Myologie, Service de Physiologie Clinique et de l’Exercice, Centre Référent Maladies Neuromusculaires Euro-NmD, 42000 CHU de Saint-Etienne, France;
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet Saint-Etienne, 69000 Lyon, France
| | - Daniel Béchet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| |
Collapse
|
13
|
Guo S, Yang P, Liang B, Zhou F, Hou L, Kang L, Wang X. Aging features of the migratory locust at physiological and transcriptional levels. BMC Genomics 2021; 22:257. [PMID: 33838645 PMCID: PMC8037904 DOI: 10.1186/s12864-021-07585-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background Non-Drosophila insects provide diverse aging types and important complementary systems for studies of aging biology. However, little attention has been paid to the special roles of non-Drosophila insects in aging research. Here, the aging-related features of the migratory locust, Locusta migratoria, were determined at the physiological, cellular, and transcriptional levels. Results In physiological assessments, the flight performance and sperm state of locusts displayed clear aging-related decline in male adults. Transcriptional analyses demonstrated locusts have similar aging-related genes with model species. However, different from those of Drosophila and mammals, the organ-specific aging transcriptional features of locusts were characterized by intensive expression changes in flight muscle and fat body and little transcriptional changes in brain. The predominant transcriptional characteristics of flight muscle and fat body aging were changes in expression of mitochondrion-related genes and detoxification and phagocytosis genes, respectively. Cellular assessments revealed the incidence of mitochondrial abnormalities significantly increased in aged flight muscle, and apoptotic signals and nuclear abnormalities were enhanced in aged fat body but not in brain. In addition, some well-known aging genes and locust aging-related genes (i.e., IAP1, PGRP-SA, and LIPT1), whose roles in aging regulation were rarely reported, were demonstrated to affect lifespan, metabolism, and flight ability of locusts after RNAi. Conclusion This study revealed multi-level aging signatures of locust, thus laying a foundation for further investigation of aging mechanisms in this famous insect in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07585-3.
Collapse
Affiliation(s)
- Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Liang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Senchuk MM, Van Raamsdonk JM, Moore DJ. Multiple genetic pathways regulating lifespan extension are neuroprotective in a G2019S LRRK2 nematode model of Parkinson's disease. Neurobiol Dis 2021; 151:105267. [PMID: 33450392 PMCID: PMC7925424 DOI: 10.1016/j.nbd.2021.105267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/17/2020] [Accepted: 01/10/2021] [Indexed: 01/02/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of late-onset, familial Parkinson's disease (PD), and LRRK2 variants are associated with increased risk for sporadic PD. While advanced age represents the strongest risk factor for disease development, it remains unclear how different age-related pathways interact to regulate LRRK2-driven late-onset PD. In this study, we employ a C. elegans model expressing PD-linked G2019S LRRK2 to examine the interplay between age-related pathways and LRRK2-induced dopaminergic neurodegeneration. We find that multiple genetic pathways that regulate lifespan extension can provide robust neuroprotection against mutant LRRK2. However, the level of neuroprotection does not strictly correlate with the magnitude of lifespan extension, suggesting that lifespan can be experimentally dissociated from neuroprotection. Using tissue-specific RNAi, we demonstrate that lifespan-regulating pathways, including insulin/insulin-like growth factor-1 (IGF-1) signaling, target of rapamycin (TOR), and mitochondrial respiration, can be directly manipulated in neurons to mediate neuroprotection. We extend this finding for AGE-1/PI3K, where pan-neuronal versus dopaminergic neuronal restoration of AGE-1 reveals both cell-autonomous and non-cell-autonomous neuroprotective mechanisms downstream of insulin signaling. Our data demonstrate the importance of distinct lifespan-regulating pathways in the pathogenesis of LRRK2-linked PD, and suggest that extended longevity is broadly neuroprotective via the actions of these pathways at least in part within neurons. This study further highlights the complex interplay that occurs between cells and tissues during organismal aging and disease manifestation.
Collapse
Affiliation(s)
- Megan M Senchuk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H4A 3J1, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Cambridge, MA 02115, USA.
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
15
|
Lee JR, Choe SH, Kim YH, Cho HM, Park HR, Lee HE, Jin YB, Kim JS, Jeong KJ, Park SJ, Huh JW. Longitudinal profiling of the blood transcriptome in an African green monkey aging model. Aging (Albany NY) 2020; 13:846-864. [PMID: 33290253 PMCID: PMC7834999 DOI: 10.18632/aging.202190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
African green monkeys (AGMs, Chlorocebus aethiops) are Old World monkeys which are used as experimental models in biomedical research. Recent technological advances in next generation sequencing are useful for unraveling the genetic mechanisms underlying senescence, aging, and age-related disease. To elucidate the normal aging mechanisms in older age, the blood transcriptomes of nine healthy, aged AGMs (15‒23 years old), were analyzed over two years. We identified 910‒1399 accumulated differentially expressed genes (DEGs) in each individual, which increased with age. Aging-related DEGs were sorted across the three time points. A major proportion of the aging-related DEGs belonged to gene ontology (GO) categories involved in translation and rRNA metabolic processes. Next, we sorted common aging-related DEGs across three time points over two years. Common aging-related DEGs belonged to GO categories involved in translation, cellular component biogenesis, rRNA metabolic processes, cellular component organization, biogenesis, and RNA metabolic processes. Furthermore, we identified 29 candidate aging genes that were upregulated across the time series analysis. These candidate aging genes were linked to protein synthesis. This study describes a changing gene expression pattern in AGMs during aging using longitudinal transcriptome sequencing. The candidate aging genes identified here may be potential targets for the treatment of aging.
Collapse
Affiliation(s)
- Ja-Rang Lee
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56216, Republic of Korea
| | - Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Hyeon-Mu Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hye-Ri Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee-Eun Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ji-Su Kim
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56216, Republic of Korea
| | - Kang Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
16
|
Dilated cardiomyopathy impairs mitochondrial biogenesis and promotes inflammation in an age- and sex-dependent manner. Aging (Albany NY) 2020; 12:24117-24133. [PMID: 33303703 PMCID: PMC7762497 DOI: 10.18632/aging.202283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathy (DCM) belongs to the myocardial diseases associated with a severe impairment of cardiac function, but the question of how sex and age affect this pathology has not been fully explored. Impaired energy homeostasis, mitochondrial dysfunction, and systemic inflammation are well-described phenomena associated with aging. In this study, we investigated if DCM affects these phenomena in a sex- and age-related manner. We analyzed the expression of mitochondrial and antioxidant proteins and the inflammatory state in DCM heart tissue from younger and older women and men. A significant downregulation of Sirt1 expression was detected in older DCM patients. Sex-related differences were observed in the phosphorylation of AMPK that only appeared in older males with DCM, possibly due to an alternative Sirt1 regulation mechanism. Furthermore, reduced expression of several mitochondrial proteins (TOM40, TIM23, Sirt3, and SOD2) and genes (cox1, nd4) was only detected in old DCM patients, suggesting that age has a greater effect than DCM on these alterations. Finally, an increased expression of inflammatory markers in older, failing hearts, with a stronger pro-inflammatory response in men, was observed. Together, these findings indicate that age- and sex-related increased inflammation and disturbance of mitochondrial homeostasis occurs in male individuals with DCM.
Collapse
|
17
|
Metformin alters skeletal muscle transcriptome adaptations to resistance training in older adults. Aging (Albany NY) 2020; 12:19852-19866. [PMID: 33071237 PMCID: PMC7655218 DOI: 10.18632/aging.104096] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Evidence from clinical trials and observational studies suggests that both progressive resistance exercise training (PRT) and metformin delay a variety of age-related morbidities. Previously, we completed a clinical trial testing the effects of 14 weeks of PRT + metformin (metPRT) compared to PRT with placebo (plaPRT) on muscle hypertrophy in older adults. We found that metformin blunted PRT-induced muscle hypertrophic response. To understand potential mechanisms underlying the inhibitory effect of metformin on PRT, we analyzed the muscle transcriptome in 23 metPRT and 24 plaPRT participants. PRT significantly increased expression of genes involved in extracellular matrix remodeling pathways, and downregulated RNA processing pathways in both groups, however, metformin attenuated the number of differentially expressed genes within these pathways compared to plaPRT. Pathway analysis showed that genes unique to metPRT modulated aging-relevant pathways, such as cellular senescence and autophagy. Differentially expressed genes from baseline biopsies in older adults compared to resting muscle from young volunteers were reduced following PRT in plaPRT and were further reduced in metPRT. We suggest that although metformin may blunt pathways induced by PRT to promote muscle hypertrophy, adjunctive metformin during PRT may have beneficial effects on aging-associated pathways in muscle from older adults.
Collapse
|
18
|
Webb M, Sideris DP. Intimate Relations-Mitochondria and Ageing. Int J Mol Sci 2020; 21:ijms21207580. [PMID: 33066461 PMCID: PMC7589147 DOI: 10.3390/ijms21207580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with ageing, but the detailed causal relationship between the two is still unclear. We review the major phenomenological manifestations of mitochondrial age-related dysfunction including biochemical, regulatory and energetic features. We conclude that the complexity of these processes and their inter-relationships are still not fully understood and at this point it seems unlikely that a single linear cause and effect relationship between any specific aspect of mitochondrial biology and ageing can be established in either direction.
Collapse
Affiliation(s)
- Michael Webb
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| | - Dionisia P Sideris
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| |
Collapse
|
19
|
Aoki K, Konno M, Honda K, Abe T, Nagata T, Takehara M, Sugasawa T, Takekoshi K, Ohmori H. Habitual Aerobic Exercise Diminishes the Effects of Sarcopenia in Senescence-Accelerated Mice Prone8 Model. Geriatrics (Basel) 2020; 5:E48. [PMID: 32916898 PMCID: PMC7555272 DOI: 10.3390/geriatrics5030048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 01/07/2023] Open
Abstract
Loss of muscle mass and strength are progressing with aging. Exercise is a beneficial method to prevent physical dysfunction, and habitual exercise can improve the muscle quality. Therefore, we evaluated the effects of long-term habitual exercise's impact on sarcopenia utilizing the senescence-accelerated mice prone8 (SAMP8) model. Notably, 27 w SAMP8 were used in this study. Mice were classified into 28 (28 w) and 44 weeks old. The 44-week group was divided into the sedentary group (44 w) and a group exercising for 16 weeks (44 w + Ex). The 44 w + Ex performed habitual exercise from 28 to 44 weeks. Additionally, grip strength tests were performed with mice aged 28 and 44 weeks. Muscles were harvested and measured muscle weight at 44 w. Gastrocnemius decreased in 44 w, but was unchanged in 44 w + Ex. There was a trend for lower muscle grip strength in the 44 w group, but there was no change in 44 w + Ex. The phosphorylation levels of Akt and p70S6K as a protein synthesis marker were decreased in 44 w. Cytochrome c oxidase subunit IV (CoxIV) mRNA and protein levels decreased in 44 w. These results suggested that long-term habitual exercise attenuates muscle mass and strength decline, possibly through maintenance of muscle protein synthesis and mitochondrial maintenance.
Collapse
Affiliation(s)
- Kai Aoki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 1-1-1, Tennodai 305-8577, Japan; (K.A.); (M.K.)
| | - Masaki Konno
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 1-1-1, Tennodai 305-8577, Japan; (K.A.); (M.K.)
| | - Katsunari Honda
- School of Physical Education, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan;
| | - Takuya Abe
- Zenyaku Hanbai Co., Ltd., Market and Product Development Department. 22-14, Higashiikebukuro 3-Chome, Toshima-Ku, Tokyo 170-0013, Japan;
| | - Takeshi Nagata
- Zenyaku Kogyo Co., Ltd., Healthcare Research Department of Drug Discovery, R&D Center. 33-7, Ohizumi-machi 2-Chome, Nerima-Ku, Tokyo 178-0062, Japan;
| | - Masaaki Takehara
- Zenyaku Kogyo Co., Ltd., Consumer Product Planning Department. 6-15, Otsuka 5-Chome, Bunkyo-Ku, Tokyo 112-8650, Japan;
| | - Takehito Sugasawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan; (T.S.); (K.T.)
| | - Kazuhiro Takekoshi
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan; (T.S.); (K.T.)
| | - Hajime Ohmori
- School of Physical Education, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan;
| |
Collapse
|
20
|
Salazar G, Cullen A, Huang J, Zhao Y, Serino A, Hilenski L, Patrushev N, Forouzandeh F, Hwang HS. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy 2020; 16:1092-1110. [PMID: 31441382 PMCID: PMC7469683 DOI: 10.1080/15548627.2019.1659612] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Defective macroautophagy/autophagy and mitochondrial dysfunction are known to stimulate senescence. The mitochondrial regulator PPARGC1A (peroxisome proliferator activated receptor gamma, coactivator 1 alpha) regulates mitochondrial biogenesis, reducing senescence of vascular smooth muscle cells (VSMCs); however, it is unknown whether autophagy mediates PPARGC1A-protective effects on senescence. Using ppargc1a-/- VSMCs, we identified the autophagy receptor SQSTM1/p62 (sequestosome 1) as a major regulator of autophagy and senescence of VSMCs. Abnormal autophagosomes were observed in VSMCs in aortas of ppargc1a-/- mice. ppargc1a-/- VSMCs in culture presented reductions in LC3-II levels; in autophagosome number; and in the expression of SQSTM1 (protein and mRNA), LAMP2 (lysosomal-associated membrane protein 2), CTSD (cathepsin D), and TFRC (transferrin receptor). Reduced SQSTM1 protein expression was also observed in aortas of ppargc1a-/- mice and was upregulated by PPARGC1A overexpression, suggesting that SQSTM1 is a direct target of PPARGC1A. Inhibition of autophagy by 3-MA (3 methyladenine), spautin-1 or Atg5 (autophagy related 5) siRNA stimulated senescence. Rapamycin rescued the effect of Atg5 siRNA in Ppargc1a+/+ , but not in ppargc1a-/- VSMCs, suggesting that other targets of MTOR (mechanistic target of rapamycin kinase), in addition to autophagy, also contribute to senescence. Sqstm1 siRNA increased senescence basally and in response to AGT II (angiotensin II) and zinc overload, two known inducers of senescence. Furthermore, Sqstm1 gene deficiency mimicked the phenotype of Ppargc1a depletion by presenting reduced autophagy and increased senescence in vitro and in vivo. Thus, PPARGC1A upregulates autophagy reducing senescence by a SQSTM1-dependent mechanism. We propose SQSTM1 as a novel target in therapeutic interventions reducing senescence. ABBREVIATIONS 3-MA: 3 methyladenine; ACTA2/SM-actin: actin, alpha 2, smooth muscle, aorta; ACTB/β-actin: actin beta; AGT II: angiotensin II; ATG5: autophagy related 5; BECN1: beclin 1; CAT: catalase; CDKN1A: cyclin-dependent kinase inhibitor 1A (P21); Chl: chloroquine; CTSD: cathepsin D; CYCS: cytochrome C, somatic; DHE: dihydroethidium; DPBS: Dulbecco's phosphate-buffered saline; EL: elastic lamina; EM: extracellular matrix; FDG: fluorescein-di-β-D-galactopyranoside; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; γH2AFX: phosphorylated H2A histone family, member X, H2DCFDA: 2',7'-dichlorodihydrofluorescein diacetate; LAMP2: lysosomal-associated membrane protein 2; MASMs: mouse vascular smooth muscle cells; MEF: mouse embryonic fibroblast; NBR1: NBR1, autophagy cargo receptor; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; MTOR: mechanistic target of rapamycin kinase; NFE2L2: nuclear factor, erythroid derived 2, like 2; NOX1: NADPH oxidase 1; OPTN: optineurin; PFA: paraformaldehyde; PFU: plaque-forming units; PPARGC1A/PGC-1α: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; Ptdln3K: phosphatidylinositol 3-kinase; RASMs: rat vascular smooth muscle cells; ROS: reactive oxygen species; SA-GLB1/β-gal: senescence-associated galactosidase, beta 1; SASP: senescence-associated secretory phenotype; SIRT1: sirtuin 1; Spautin 1: specific and potent autophagy inhibitor 1; SQSTM1/p62: sequestosome 1; SOD: superoxide dismutase; TEM: transmission electron microscopy; TFEB: transcription factor EB; TFRC: transferrin receptor; TRP53/p53: transformation related protein 53; TUBG1: tubulin gamma 1; VSMCs: vascular smooth muscle cells; WT: wild type.
Collapse
Affiliation(s)
- Gloria Salazar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL, USA
| | - Abigail Cullen
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Jingwen Huang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Yitong Zhao
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, CA, USA
| | - Alexa Serino
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Lula Hilenski
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
| | - Nikolay Patrushev
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
| | - Farshad Forouzandeh
- Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, Cleveland, OH, USA
| | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
21
|
Barcena de Arellano ML, Pozdniakova S, Kühl AA, Baczko I, Ladilov Y, Regitz-Zagrosek V. Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense. Aging (Albany NY) 2020; 11:1918-1933. [PMID: 30964749 PMCID: PMC6503880 DOI: 10.18632/aging.101881] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
Aging is associated with increased inflammation and alterations in mitochondrial biogenesis, which promote the development of cardiovascular diseases. Emerging evidence suggests a role for sirtuins, which are NAD+-dependent deacetylases, in the regulation of cardiovascular inflammation and mitochondrial biogenesis. Sirtuins are regulated by sex or sex hormones and are decreased during aging in animal models. We hypothesized that age-related alterations in cardiac Sirt1 and Sirt3 occur in the human heart and examined whether these changes are associated with a decrease in anti-oxidative defense, inflammatory state and mitochondrial biogenesis. Using human ventricular tissue from young (17-40 years old) and old (50-68 years old) individuals, we found significantly lower Sirt1 and Sirt3 expression in old female hearts than in young female hearts. Additionally, lower expression of the anti-oxidative protein SOD2 was observed in old female hearts than in young female hearts. Aging in female hearts was associated with a significant increase in the number of cardiac macrophages and pro-inflammatory cytokines, as well as NF-kB upregulation, indicating a pro-inflammatory shift. Aging-associated pathways in the male hearts were different, and no changes in Sirt1 and Sirt3 or cardiovascular inflammation were observed. In conclusion, the present study revealed a female sex-specific downregulation of Sirt1 and Sirt3 in aged hearts, as well as a decline in mitochondrial anti-oxidative defense and a pro-inflammatory shift in old female hearts but not in male hearts.
Collapse
Affiliation(s)
- Maria Luisa Barcena de Arellano
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Sofya Pozdniakova
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, iPATH.Berlin-Immunopathology for Experimental Models, Berlin, Germany
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Yury Ladilov
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charité University Hospital, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| |
Collapse
|
22
|
Senescence and Longevity of Sea Urchins. Genes (Basel) 2020; 11:genes11050573. [PMID: 32443861 PMCID: PMC7288282 DOI: 10.3390/genes11050573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022] Open
Abstract
Sea urchins are a minor class of marine invertebrates that share genetic similarities with humans. For example, the sea urchin species Strongylocentrotus purpuratus is estimated to have 23,300 genes in which the majority of vertebrate gene families are enveloped. Some of the sea urchin species can demonstrate extreme longevity, such as Mesocentrotus franciscanus, living for well over 100 years. Comparing human to sea urchin aging suggests that the latter do not fit within the classic understanding of biological aging, as both long- and short-lived sea urchin species demonstrate negligible senescence. Sea urchins are highly regenerative organisms. Adults can regenerate external appendages and can maintain their regenerative abilities throughout life. They grow indeterminately and reproduce throughout their entire adult life. Both long- and short-lived species do not exhibit age-associated telomere shortening and display telomerase activity in somatic tissues regardless of age. Aging S. purpuratus urchins show changes in expression patterns of protein coding genes that are involved in several fundamental cellular functions such as the ubiquitin-proteasome system, signaling pathways, translational regulation, and electron transport chain. Sea urchin longevity and senescence research is a new and promising field that holds promise for the understanding of aging in vertebrates and can increase our understanding of human longevity and of healthy aging.
Collapse
|
23
|
Saare M, Tserel L, Haljasmägi L, Taalberg E, Peet N, Eimre M, Vetik R, Kingo K, Saks K, Tamm R, Milani L, Kisand K, Peterson P. Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. Aging Cell 2020; 19:e13127. [PMID: 32107839 PMCID: PMC7189998 DOI: 10.1111/acel.13127] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
Age‐related changes at the cellular level include the dysregulation of metabolic and signaling pathways. Analyses of blood leukocytes have revealed a set of alterations that collectively lower their ability to fight infections and resolve inflammation later in life. We studied the transcriptomic, epigenetic, and metabolomic profiles of monocytes extracted from younger adults and individuals over the age of 65 years to map major age‐dependent changes in their cellular physiology. We found that the monocytes from older persons displayed a decrease in the expression of ribosomal and mitochondrial protein genes and exhibited hypomethylation at the HLA class I locus. Additionally, we found elevated gene expression associated with cell motility, including the CX3CR1 and ARID5B genes, which have been associated with the development of atherosclerosis. Furthermore, the downregulation of two genes, PLA2G4B and ALOX15B, which belong to the arachidonic acid metabolism pathway involved in phosphatidylcholine conversion to anti‐inflammatory lipoxins, correlated with increased phosphatidylcholine content in monocytes from older individuals. We found age‐related changes in monocyte metabolic fitness, including reduced mitochondrial function and increased glycose consumption without the capacity to upregulate it during increased metabolic needs, and signs of increased oxidative stress and DNA damage. In conclusion, our results complement existing findings and elucidate the metabolic alterations that occur in monocytes during aging.
Collapse
Affiliation(s)
- Mario Saare
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Liina Tserel
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Liis Haljasmägi
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Egon Taalberg
- Department of Biochemistry Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Nadežda Peet
- Department of Pathophysiology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Margus Eimre
- Department of Pathophysiology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Rait Vetik
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology Institute of Clinical Medicine University of Tartu Tartu Estonia
- Clinic of Dermatology Tartu University Hospital Tartu Estonia
| | - Kai Saks
- Department of Internal Medicine Institute of Clinical Medicine University of Tartu Tartu Estonia
| | - Riin Tamm
- Laboratory of Immune Analysis, United Laboratories Tartu University Hospital Tartu Estonia
| | - Lili Milani
- Estonian Genome Center Institute of Genomics University of Tartu Tartu Estonia
| | - Kai Kisand
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Pärt Peterson
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| |
Collapse
|
24
|
Rhoads TW, Clark JP, Gustafson GE, Miller KN, Conklin MW, DeMuth TM, Berres ME, Eliceiri KW, Vaughan LK, Lary CW, Beasley TM, Colman RJ, Anderson RM. Molecular and Functional Networks Linked to Sarcopenia Prevention by Caloric Restriction in Rhesus Monkeys. Cell Syst 2020; 10:156-168.e5. [PMID: 31982367 PMCID: PMC7047532 DOI: 10.1016/j.cels.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/03/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) improves survival in nonhuman primates and delays the onset of age-related morbidities including sarcopenia, which is characterized by the age-related loss of muscle mass and function. A shift in metabolism anticipates the onset of muscle-aging phenotypes in nonhuman primates, suggesting a potential role for metabolism in the protective effects of CR. Here, we show that CR induced profound changes in muscle composition and the cellular metabolic environment. Bioinformatic analysis linked these adaptations to proteostasis, RNA processing, and lipid synthetic pathways. At the tissue level, CR maintained contractile content and attenuated age-related metabolic shifts among individual fiber types with higher mitochondrial activity, altered redox metabolism, and smaller lipid droplet size. Biometric and metabolic rate data confirm preserved metabolic efficiency in CR animals that correlated with the attenuation of age-related muscle mass and physical activity. These data suggest that CR-induced reprogramming of metabolism plays a role in delayed aging of skeletal muscle in rhesus monkeys.
Collapse
Affiliation(s)
- Timothy W Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Josef P Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Grace E Gustafson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Karl N Miller
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew W Conklin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler M DeMuth
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark E Berres
- Biotechnolgoy Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura K Vaughan
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Christine W Lary
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - T Mark Beasley
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA; Geriatric Research Education and Clinical Center, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35297, USA
| | - Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
25
|
Flowers SA, Grant OC, Woods RJ, Rebeck GW. O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology 2020; 30:74-85. [PMID: 31616924 PMCID: PMC7335482 DOI: 10.1093/glycob/cwz084] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/25/2023] Open
Abstract
The O-glycoprotein apolipoprotein E (APOE), the strongest genetic risk factor for Alzheimer's disease, associates with lipoproteins. Cerebrospinal fluid (CSF) APOE binds only high-density lipoproteins (HDLs), while plasma APOE attaches to lipoproteins of diverse sizes with binding fine-tuned by the C-terminal loop. To better understand the O-glycosylation on this critical molecule and differences across tissues, we analyzed the O-glycosylation on APOE isolated from the plasma and CSF of aged individuals. Detailed LC-MS/MS analyses allowed the identification of the glycosite and the attached glycan and site occupancy for all detectable glycosites on APOE and further three-dimensional modeling of physiological glycoforms of APOE. APOE is O-glycosylated at several sites: Thr8, Thr18, Thr194, Ser197, Thr289, Ser290 and Ser296. Plasma APOE held more abundant (20.5%) N-terminal (Thr8) sialylated core 1 (Neu5Acα2-3Galβ1-3GalNAcα1-) glycosylation compared to CSF APOE (0.1%). APOE was hinge domain glycosylated (Thr194 and Ser197) in both CSF (27.3%) and plasma (10.3%). CSF APOE held almost 10-fold more abundant C-terminal (Thr289, Ser290 and Ser296) glycosylation (36.8% of CSF peptide283-299 was glycosylated, 3.8% of plasma peptide283-299), with sialylated and disialylated (Neu5Acα2-3Galβ1-3(Neu5Acα2-6) GalNAcα1-) core 1 structures. Modeling suggested that C-terminal glycosylation, particularly the branched disialylated structure, could interact across domains including the receptor-binding domain. These data, although limited by sample size, suggest that there are tissue-specific APOE glycoforms. Sialylated glycans, previously shown to improve HDL binding, are more abundant on the lipid-binding domain of CSF APOE and reduced in plasma APOE. This indicates that APOE glycosylation may be implicated in lipoprotein-binding flexibility.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| | - Oliver C Grant
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Robert J Woods
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| |
Collapse
|
26
|
Marttila S, Chatsirisupachai K, Palmer D, de Magalhães JP. Ageing-associated changes in the expression of lncRNAs in human tissues reflect a transcriptional modulation in ageing pathways. Mech Ageing Dev 2020; 185:111177. [PMID: 31706952 PMCID: PMC6961210 DOI: 10.1016/j.mad.2019.111177] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Ageing-associated changes in the protein coding transcriptome have been extensively characterised, but less attention has been paid to the non-coding portion of the human genome, especially to long non-coding RNAs (lncRNAs). Only a minority of known lncRNAs have been functionally characterised; however, a handful of these lncRNAs have already been linked to ageing-associated processes. To gain more information on the effects of ageing on lncRNAs, we identified from GTEx data lncRNAs that show ageing-associated expression patterns (age-lncRNAs) in 29 human tissues in 20-79-year-old individuals. The age-lncRNAs identified were highly tissue-specific, but the protein coding genes co-expressed with the age-lncRNAs and the functional categories associated with the age-lncRNAs showed significant overlap across tissues. Functions associated with the age-lncRNAs, including immune system processes and transcription, were similar to what has previously been reported for protein coding genes with ageing-associated expression pattern. As the tissue-specific age-lncRNAs were associated with shared functions across tissues, they may reflect the tissue-specific fine-tuning of the common ageing-associated processes. The present study can be utilised as a resource when selecting and prioritising lncRNAs for further functional analyses.
Collapse
Affiliation(s)
- Saara Marttila
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Daniel Palmer
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
27
|
Gaffney CJ, Pollard A, Barratt TF, Constantin-Teodosiu D, Greenhaff PL, Szewczyk NJ. Greater loss of mitochondrial function with ageing is associated with earlier onset of sarcopenia in C. elegans. Aging (Albany NY) 2019; 10:3382-3396. [PMID: 30455409 PMCID: PMC6286836 DOI: 10.18632/aging.101654] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/15/2018] [Indexed: 12/29/2022]
Abstract
Sarcopenia, the age-related decline of muscle, is a significant and growing public health burden. C. elegans, a model organism for investigating the mechanisms of ageing, also displays sarcopenia, but the underlying mechanism(s) remain elusive. Here, we use C. elegans natural scaling of lifespan in response to temperature to examine the relationship between mitochondrial content, mitochondrial function, and sarcopenia. Mitochondrial content and maximal mitochondrial ATP production rates (MAPR) display an inverse relationship to lifespan, while onset of MAPR decline displays a direct relationship. Muscle mitochondrial structure, sarcomere structure, and movement decline also display a direct relationship with longevity. Notably, the decline in mitochondrial network structure occurs earlier than sarcomere decline, and correlates more strongly with loss of movement, and scales with lifespan. These results suggest that mitochondrial function is critical in the ageing process and more robustly explains the onset and progression of sarcopenia than loss of sarcomere structure.
Collapse
Affiliation(s)
- Christopher J Gaffney
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK.,Lancaster University Medical School, Lancaster University, Lancaster, UK
| | - Amelia Pollard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Thomas F Barratt
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| |
Collapse
|
28
|
Barth E, Srivastava A, Stojiljkovic M, Frahm C, Axer H, Witte OW, Marz M. Conserved aging-related signatures of senescence and inflammation in different tissues and species. Aging (Albany NY) 2019; 11:8556-8572. [PMID: 31606727 PMCID: PMC6814591 DOI: 10.18632/aging.102345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Increasing evidence indicates that chronic inflammation and senescence are the cause of many severe age-related diseases, with both biological processes highly upregulated during aging. However, until now, it has remained unknown whether specific inflammation- or senescence-related genes exist that are common between different species or tissues. These potential markers of aging could help to identify possible targets for therapeutic interventions of aging-associated afflictions and might also deepen our understanding of the principal mechanisms of aging. With the objective of identifying such signatures of aging and tissue-specific aging markers, we analyzed a multitude of cross-sectional RNA-Seq data from four evolutionarily distinct species (human, mouse and two fish) and four different tissues (blood, brain, liver and skin). In at least three different species and three different tissues, we identified several genes that displayed similar expression patterns that might serve as potential aging markers. Additionally, we show that genes involved in aging-related processes tend to be tighter controlled in long-lived than in average-lived individuals. These observations hint at a general genetic level that affect an individual’s life span. Altogether, this descriptive study contributes to a better understanding of common aging signatures as well as tissue-specific aging patterns and supplies the basis for further investigative age-related studies.
Collapse
Affiliation(s)
- Emanuel Barth
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.,FLI Leibniz Institute for Age Research, Jena, Germany
| | - Akash Srivastava
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Milan Stojiljkovic
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hubertus Axer
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Manja Marz
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.,FLI Leibniz Institute for Age Research, Jena, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
29
|
Zhou J, So KK, Li Y, Li Y, Yuan J, Ding Y, Chen F, Huang Y, Liu J, Lee W, Li G, Ju Z, Sun H, Wang H. Elevated H3K27ac in aged skeletal muscle leads to increase in extracellular matrix and fibrogenic conversion of muscle satellite cells. Aging Cell 2019; 18:e12996. [PMID: 31325224 PMCID: PMC6718601 DOI: 10.1111/acel.12996] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023] Open
Abstract
Epigenetic alterations occur in various cells and tissues during aging, but it is not known if such alterations are also associated with aging in skeletal muscle. Here, we examined the changes of a panel of histone modifications and found H3K27ac (an active enhancer mark) is markedly increased in aged human skeletal muscle tissues. Further analyses uncovered that the H3K27ac increase and enhancer activation are associated with the up‐regulation of extracellular matrix (ECM) genes; this may result in alteration of the niche environment for skeletal muscle stem cells, also called satellite cells (SCs), which causes decreased myogenic potential and fibrogenic conversion of SCs. In mice, treatment of aging muscles with JQ1, an inhibitor of enhancer activation, inhibited the ECM up‐regulation and fibrogenic conversion of SCs and restored their myogenic differentiation potential. Altogether, our findings not only uncovered a novel aspect of skeletal muscle aging that is associated with enhancer remodeling but also implicated JQ1 as a potential treatment approach for restoring SC function in aging muscle.
Collapse
Affiliation(s)
- Jiajian Zhou
- Department of Chemical Pathology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Karl K. So
- Department of Chemical Pathology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Yuying Li
- Department of Chemical Pathology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Yang Li
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Department of Orthopaedics and Traumatology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Jie Yuan
- Department of Chemical Pathology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Yingzhe Ding
- Department of Chemical Pathology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Fengyuan Chen
- Department of Chemical Pathology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Yile Huang
- Department of Chemical Pathology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Jin Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education Institute of Aging and Regenerative MedicineJinan University Guangzhou China
| | - Wayne Lee
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Department of Orthopaedics and Traumatology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Gang Li
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Department of Orthopaedics and Traumatology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education Institute of Aging and Regenerative MedicineJinan University Guangzhou China
| | - Hao Sun
- Department of Chemical Pathology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
- Department of Orthopaedics and Traumatology The Chinese University of Hong Kong, Prince of Wales Hospital Shatin, New Territories Hong Kong SAR China
| |
Collapse
|
30
|
Miller KN, Clark JP, Martin SA, Howell PR, Burhans MS, Haws SA, Johnson NB, Rhoads TW, Pavelec DM, Eliceiri KW, Roopra AS, Ntambi JM, Denu JM, Parks BW, Anderson RM. PGC-1a integrates a metabolism and growth network linked to caloric restriction. Aging Cell 2019; 18:e12999. [PMID: 31267675 PMCID: PMC6718593 DOI: 10.1111/acel.12999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022] Open
Abstract
Deleterious changes in energy metabolism have been linked to aging and disease vulnerability, while activation of mitochondrial pathways has been linked to delayed aging by caloric restriction (CR). The basis for these associations is poorly understood, and the scope of impact of mitochondrial activation on cellular function has yet to be defined. Here, we show that mitochondrial regulator PGC-1a is induced by CR in multiple tissues, and at the cellular level, CR-like activation of PGC-1a impacts a network that integrates mitochondrial status with metabolism and growth parameters. Transcriptional profiling reveals that diverse functions, including immune pathways, growth, structure, and macromolecule homeostasis, are responsive to PGC-1a. Mechanistically, these changes in gene expression were linked to chromatin remodeling and RNA processing. Metabolic changes implicated in the transcriptional data were confirmed functionally including shifts in NAD metabolism, lipid metabolism, and membrane lipid composition. Delayed cellular proliferation, altered cytoskeleton, and attenuated growth signaling through post-transcriptional and post-translational mechanisms were also identified as outcomes of PGC-1a-directed mitochondrial activation. Furthermore, in vivo in tissues from a genetically heterogeneous mouse population, endogenous PGC-1a expression was correlated with this same metabolism and growth network. These data show that small changes in metabolism have broad consequences that arguably would profoundly alter cell function. We suggest that this PGC-1a sensitive network may be the basis for the association between mitochondrial function and aging where small deficiencies precipitate loss of function across a spectrum of cellular activities.
Collapse
Affiliation(s)
- Karl N. Miller
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Josef P. Clark
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Stephen A. Martin
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Porsha R. Howell
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Maggie S. Burhans
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Spencer A. Haws
- Department of Biomolecular Chemistry University of Wisconsin Madison Wisconsin USA
- Wisconsin Institute for Discovery University of Wisconsin Madison Wisconsin USA
| | - Nathan B. Johnson
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Timothy W Rhoads
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Derek M. Pavelec
- Biotechnology Center University of Wisconsin Madison Wisconsin USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation University of Wisconsin Madison Wisconsin USA
| | - Avtar S. Roopra
- Department of Neuroscience University of Wisconsin Madison Wisconsin USA
| | - James M. Ntambi
- Department of Biochemistry University of Wisconsin Madison Wisconsin USA
- Department of Nutritional Sciences University of Wisconsin Madison Wisconsin USA
| | - John M. Denu
- Department of Biomolecular Chemistry University of Wisconsin Madison Wisconsin USA
- Wisconsin Institute for Discovery University of Wisconsin Madison Wisconsin USA
- Morgridge Institute for Research Madison Wisconsin USA
| | - Brian W. Parks
- Department of Nutritional Sciences University of Wisconsin Madison Wisconsin USA
| | - Rozalyn M. Anderson
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
- Geriatric Research, Education, and Clinical Center William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
| |
Collapse
|
31
|
Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci 2019; 22:1696-1708. [PMID: 31551601 DOI: 10.1038/s41593-019-0491-3] [Citation(s) in RCA: 425] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 08/09/2019] [Indexed: 01/09/2023]
Abstract
The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.
Collapse
|
32
|
Identification and Application of Gene Expression Signatures Associated with Lifespan Extension. Cell Metab 2019; 30:573-593.e8. [PMID: 31353263 PMCID: PMC6907080 DOI: 10.1016/j.cmet.2019.06.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 04/14/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Several pharmacological, dietary, and genetic interventions that increase mammalian lifespan are known, but general principles of lifespan extension remain unclear. Here, we performed RNA sequencing (RNA-seq) analyses of mice subjected to 8 longevity interventions. We discovered a feminizing effect associated with growth hormone regulation and diminution of sex-related differences. Expanding this analysis to 17 interventions with public data, we observed that many interventions induced similar gene expression changes. We identified hepatic gene signatures associated with lifespan extension across interventions, including upregulation of oxidative phosphorylation and drug metabolism, and showed that perturbed pathways may be shared across tissues. We further applied the discovered longevity signatures to identify new lifespan-extending candidates, such as chronic hypoxia, KU-0063794, and ascorbyl-palmitate. Finally, we developed GENtervention, an app that visualizes associations between gene expression changes and longevity. Overall, this study describes general and specific transcriptomic programs of lifespan extension in mice and provides tools to discover new interventions.
Collapse
|
33
|
Gensous N, Bacalini MG, Franceschi C, Meskers CGM, Maier AB, Garagnani P. Age-Related DNA Methylation Changes: Potential Impact on Skeletal Muscle Aging in Humans. Front Physiol 2019; 10:996. [PMID: 31427991 PMCID: PMC6688482 DOI: 10.3389/fphys.2019.00996] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022] Open
Abstract
Human aging is accompanied by a decline in muscle mass and muscle function, which is commonly referred to as sarcopenia. Sarcopenia is associated with detrimental clinical outcomes, such as a reduced quality of life, frailty, an increased risk of falls, fractures, hospitalization, and mortality. The exact underlying mechanisms of sarcopenia are poorly delineated and the molecular mechanisms driving the development and progression of this disorder remain to be uncovered. Previous studies have described age-related differences in gene expression, with one study identifying an age-specific expression signature of sarcopenia, but little is known about the influence of epigenetics, and specially of DNA methylation, in its pathogenesis. In this review, we will focus on the available knowledge in literature on the characterization of DNA methylation profiles during skeletal muscle aging and the possible impact of physical activity and nutrition. We will consider the possible use of the recently developed DNA methylation-based biomarkers of aging called epigenetic clocks in the assessment of physical performance in older individuals. Finally, we will discuss limitations and future directions of this field.
Collapse
Affiliation(s)
- Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Carel G M Meskers
- Amsterdam UMC, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), Policlinico S.Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Turan ZG, Parvizi P, Dönertaş HM, Tung J, Khaitovich P, Somel M. Molecular footprint of Medawar's mutation accumulation process in mammalian aging. Aging Cell 2019; 18:e12965. [PMID: 31062469 PMCID: PMC6612638 DOI: 10.1111/acel.12965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/14/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Medawar's mutation accumulation hypothesis explains aging by the declining force of natural selection with age: Slightly deleterious germline mutations expressed in old age can drift to fixation and thereby lead to aging‐related phenotypes. Although widely cited, empirical evidence for this hypothesis has remained limited. Here, we test one of its predictions that genes relatively highly expressed in old adults should be under weaker purifying selection than genes relatively highly expressed in young adults. Combining 66 transcriptome datasets (including 16 tissues from five mammalian species) with sequence conservation estimates across mammals, here we report that the overall conservation level of expressed genes is lower at old age compared to young adulthood. This age‐related decrease in transcriptome conservation (ADICT) is systematically observed in diverse mammalian tissues, including the brain, liver, lung, and artery, but not in others, most notably in the muscle and heart. Where observed, ADICT is driven partly by poorly conserved genes being up‐regulated during aging. In general, the more often a gene is found up‐regulated with age among tissues and species, the lower its evolutionary conservation. Poorly conserved and up‐regulated genes have overlapping functional properties that include responses to age‐associated tissue damage, such as apoptosis and inflammation. Meanwhile, these genes do not appear to be under positive selection. Hence, genes contributing to old age phenotypes are found to harbor an excess of slightly deleterious alleles, at least in certain tissues. This supports the notion that genetic drift shapes aging in multicellular organisms, consistent with Medawar's mutation accumulation hypothesis.
Collapse
Affiliation(s)
- Zeliha Gözde Turan
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| | - Poorya Parvizi
- Department of Biological Sciences Middle East Technical University Ankara Turkey
- Usher Institute of Population Health Sciences and Informatics University of Edinburgh Edinburgh UK
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL‐EBI Wellcome Trust Genome Campus Cambridge UK
| | - Jenny Tung
- Department of Evolutionary Anthropology Duke University Durham North Carolina
- Department of Biology Duke University Durham North Carolina
- Duke Population Research Institute Duke University Durham North Carolina
| | - Philipp Khaitovich
- Center for Neurobiology and Brain Restoration Skolkovo Institute of Science and Technology Moscow Russia
- CAS Key Laboratory of Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
| | - Mehmet Somel
- Department of Biological Sciences Middle East Technical University Ankara Turkey
| |
Collapse
|
35
|
Komljenovic A, Li H, Sorrentino V, Kutalik Z, Auwerx J, Robinson-Rechavi M. Cross-species functional modules link proteostasis to human normal aging. PLoS Comput Biol 2019; 15:e1007162. [PMID: 31269015 PMCID: PMC6634426 DOI: 10.1371/journal.pcbi.1007162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/16/2019] [Accepted: 06/07/2019] [Indexed: 11/23/2022] Open
Abstract
The evolutionarily conserved nature of the few well-known anti-aging interventions that affect lifespan, such as caloric restriction, suggests that aging-related research in model organisms is directly relevant to human aging. Since human lifespan is a complex trait, a systems-level approach will contribute to a more comprehensive understanding of the underlying aging landscape. Here, we integrate evolutionary and functional information of normal aging across human and model organisms at three levels: gene-level, process-level, and network-level. We identify evolutionarily conserved modules of normal aging across diverse taxa, and notably show proteostasis to be conserved in normal aging. Additionally, we find that mechanisms related to protein quality control network are enriched for genes harboring genetic variants associated with 22 age-related human traits and associated to caloric restriction. These results demonstrate that a systems-level approach, combined with evolutionary conservation, allows the detection of candidate aging genes and pathways relevant to human normal aging.
Collapse
Affiliation(s)
- Andrea Komljenovic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, EPFL, Lausanne, Switzerland
| | | | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, EPFL, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
36
|
Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review. Int J Mol Sci 2019; 20:ijms20102446. [PMID: 31108916 PMCID: PMC6566291 DOI: 10.3390/ijms20102446] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) isoforms are cytokines involved in a variety of cellular processes, including myofiber repair and regulation of connective tissue formation. Activation of the TGF-β pathway contributes to pathologic fibrosis in most organs. Here, we have focused on examining the evidence demonstrating the involvement of TGF-β in the fibrosis of skeletal muscle particularly. The TGF-β pathway plays a role in different skeletal muscle myopathies, and TGF-β signaling is highly induced in these diseases. In this review, we discuss different molecular mechanisms of TGF-β-mediated skeletal muscle fibrosis and highlight different TGF-β-targeted treatments that target these relevant pathways.
Collapse
|
37
|
Mitochondrial Dysfunction in Parkinson's Disease-Cause or Consequence? BIOLOGY 2019; 8:biology8020038. [PMID: 31083583 PMCID: PMC6627981 DOI: 10.3390/biology8020038] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
James Parkinson first described the motor symptoms of the disease that took his name over 200 years ago. While our knowledge of many of the changes that occur in this condition has increased, it is still unknown what causes this neurodegeneration and why it only affects some individuals with advancing age. Here we review current literature to discuss whether the mitochondrial dysfunction we have detected in Parkinson’s disease is a pathogenic cause of neuronal loss or whether it is itself a consequence of dysfunction in other pathways. We examine research data from cases of idiopathic Parkinson’s with that from model systems and individuals with familial forms of the disease. Furthermore, we include data from healthy aged individuals to highlight that many of the changes described are also present with advancing age, though not normally in the presence of severe neurodegeneration. While a definitive answer to this question may still be just out of reach, it is clear that mitochondrial dysfunction sits prominently at the centre of the disease pathway that leads to catastrophic neuronal loss in those affected by this disease.
Collapse
|
38
|
Li D, Li F, Jiang K, Zhang M, Han R, Jiang R, Li Z, Tian Y, Yan F, Kang X, Sun G. Integrative analysis of long noncoding RNA and mRNA reveals candidate lncRNAs responsible for meat quality at different physiological stages in Gushi chicken. PLoS One 2019; 14:e0215006. [PMID: 30964907 PMCID: PMC6456248 DOI: 10.1371/journal.pone.0215006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in transcriptional and posttranscriptional regulation. However, the effects of lncRNAs on the meat quality of chicken hasn’t been elucidated clearly yet. Gushi chickens are popular in China because of their superior meat quality, particularly the tender flesh, and unique flavor. Gushi chickens are popular in China because of their superior meat quality, delicate flesh, and unique flavor. We performed RNA-Seq analysis of breast muscle from Gushi chicken at two physiological stages, including juvenile (G20W) and laying (G55W). In total, 186 lncRNAs and 881 mRNAs were differentially expressed between G20W and G55W (fold change ≥ 2.0, P < 0.05). Among them, 131 lncRNAs presented upregulated and 55 were downregulated. We identified the cis and trans target genes of the differentially expressed lncRNAs, and constructed lncRNA-mRNA interaction networks. The results showed that differentially expressed mRNAs and lncRNAs were mainly involved in ECM-receptor interaction, glycerophospholipid metabolism, ubiquitin-mediated proteolysis, and the biosynthesis of amino acids. In summary, our study utilized RNA-seq analysis to predict the functions of lncRNA on chicken meat quality. Furthermore, comprehensive analysis identified lncRNAs and their target genes, which may contribute to a better understanding of the molecular mechanisms underlying in poultry meat quality and provide a theoretical basis for further research.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Keren Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
- * E-mail: (GRS); (XTK)
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
- * E-mail: (GRS); (XTK)
| |
Collapse
|
39
|
Benayoun BA, Pollina EA, Singh PP, Mahmoudi S, Harel I, Casey KM, Dulken BW, Kundaje A, Brunet A. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res 2019; 29:697-709. [PMID: 30858345 PMCID: PMC6442391 DOI: 10.1101/gr.240093.118] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Aging is accompanied by the functional decline of tissues. However, a systematic study of epigenomic and transcriptomic changes across tissues during aging is missing. Here, we generated chromatin maps and transcriptomes from four tissues and one cell type from young, middle-aged, and old mice—yielding 143 high-quality data sets. We focused on chromatin marks linked to gene expression regulation and cell identity: histone H3 trimethylation at lysine 4 (H3K4me3), a mark enriched at promoters, and histone H3 acetylation at lysine 27 (H3K27ac), a mark enriched at active enhancers. Epigenomic and transcriptomic landscapes could easily distinguish between ages, and machine-learning analysis showed that specific epigenomic states could predict transcriptional changes during aging. Analysis of data sets from all tissues identified recurrent age-related chromatin and transcriptional changes in key processes, including the up-regulation of immune system response pathways such as the interferon response. The up-regulation of the interferon response pathway with age was accompanied by increased transcription and chromatin remodeling at specific endogenous retroviral sequences. Pathways misregulated during mouse aging across tissues, notably innate immune pathways, were also misregulated with aging in other vertebrate species—African turquoise killifish, rat, and humans—indicating common signatures of age across species. To date, our data set represents the largest multitissue epigenomic and transcriptomic data set for vertebrate aging. This resource identifies chromatin and transcriptional states that are characteristic of young tissues, which could be leveraged to restore aspects of youthful functionality to old tissues.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elizabeth A Pollina
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Salah Mahmoudi
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Itamar Harel
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ben W Dulken
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
40
|
Cho CH, Lee KJ, Lee EH. With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing. BMB Rep 2018; 51:378-387. [PMID: 29898810 PMCID: PMC6130827 DOI: 10.5483/bmbrep.2018.51.8.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, Ca2+ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic Ca2+ level in skeletal muscle fibers is governed mainly by movements of Ca2+ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated Ca2+ entry (SOCE), a Ca2+ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.
Collapse
Affiliation(s)
- Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
41
|
Shafiee G, Asgari Y, Soltani A, Larijani B, Heshmat R. Identification of candidate genes and proteins in aging skeletal muscle (sarcopenia) using gene expression and structural analysis. PeerJ 2018; 6:e5239. [PMID: 30202641 PMCID: PMC6129146 DOI: 10.7717/peerj.5239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/24/2018] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia is an age-related disease characterized by the loss of muscle mass and muscle function. A proper understanding of its pathogenesis and mechanisms may lead to new strategies for diagnosis and treatment of the disease. This study aims to discover the underlying genes, proteins, and pathways associated with sarcopenia in both genders. Integrated analysis of microarray datasets has been performed to identify differentially expressed genes (DEGs) between old and young skeletal muscles. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed to uncover the functions of the DEGs. Moreover, a protein-protein interaction (PPI) network was constructed based on the DEGs. We have identified 41,715 DEGs, including 19 downregulated and 41,696 upregulated ones, in men. Among women, 3,015 DEGs have been found, with 2,874 of them being upregulated and 141 downregulated genes. Among the top up-regulated and downregulated genes, the ribosome biogenesis genes and genes involved in lipid storage may be closely related to aging muscles in men and women respectively. Also, the DEGs were enriched in the pathways including those of ribosome and Peroxisome proliferator-activated receptor (PPAR) in men and women, respectively. In the PPI network, Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1), Cullin 3 (CUL3) and P53 have been identified as significant hub proteins in both genders. Using the integrated analysis of multiple gene expression profiles, we propose that the ribosome biogenesis genes and those involved in lipid storage would be promising markers for sarcopenia in men and women, respectively. In the reconstructed PPI network, neurotrophic factors expressed in skeletal muscle are essential for motoneuron survival and muscle fiber innervation during development. Cullin E3 ubiquitin ligase (Cul3) is an important component of the ubiquitin-proteasome system-it regulates the proteolysis. P53 is recognized as a central regulator of the cell cycle and apoptosis. These proteins, which have been identified as the most significant hubs, may be involved in aging muscle and sarcopenia.
Collapse
Affiliation(s)
- Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Soltani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Muhammad MH, Allam MM. Resveratrol and/or exercise training counteract aging-associated decline of physical endurance in aged mice; targeting mitochondrial biogenesis and function. J Physiol Sci 2018; 68:681-688. [PMID: 29230719 PMCID: PMC10717285 DOI: 10.1007/s12576-017-0582-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023]
Abstract
Mitochondrial dysfunction and decreased mitochondrial content are hallmarks of aging that leads to decreased physical endurance. Our aim was to explore the anti-aging effect of resveratrol (RSVT) supplementation, a polyphenol, and/or exercise training, started at an older age, on improving physical activity, therefore, help in frailty avoidance and promotion of healthy aging in elderly. Eighteen-month-old aged mice received RSVT (15 mg/kg/day) and/or exercise trained for 4 weeks showed significant longer time to exhaustion with decreased blood lactate and free fatty acids levels associated with improved oxidative stress evidenced by decreased gastrocnemius muscle lipid peroxidation and increased antioxidant enzymes activities, catalase and superoxide dismutase, when compared to aged mice control group. These changes were accompanied by over-expression of skeletal muscle peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) mRNA, the master regulator of mitochondrial biogenesis, and increased muscle citrate synthase activity, a marker for mitochondrial function. These findings may provide evidence for improved physical endurance by RSVT supplementation or exercise training with better results of their combination, even at an older age, through increasing mitochondrial biogenesis and function. Increased muscle PGC-1α mRNA expression and citrate synthase enzyme activity in addition to improved aging-associated oxidative damage were among the mechanisms involved in this protection.
Collapse
Affiliation(s)
- Marwa Hassan Muhammad
- Department of Medical Physiology, Benha Faculty of Medicine, Benha University, Benha, Qalubyia, Egypt.
| | - Mona Maher Allam
- Department of Medical Physiology, Benha Faculty of Medicine, Benha University, Benha, Qalubyia, Egypt
| |
Collapse
|
43
|
Mamoshina P, Volosnikova M, Ozerov IV, Putin E, Skibina E, Cortese F, Zhavoronkov A. Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification. Front Genet 2018; 9:242. [PMID: 30050560 PMCID: PMC6052089 DOI: 10.3389/fgene.2018.00242] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
For the past several decades, research in understanding the molecular basis of human muscle aging has progressed significantly. However, the development of accessible tissue-specific biomarkers of human muscle aging that may be measured to evaluate the effectiveness of therapeutic interventions is still a major challenge. Here we present a method for tracking age-related changes of human skeletal muscle. We analyzed publicly available gene expression profiles of young and old tissue from healthy donors. Differential gene expression and pathway analysis were performed to compare signatures of young and old muscle tissue and to preprocess the resulting data for a set of machine learning algorithms. Our study confirms the established mechanisms of human skeletal muscle aging, including dysregulation of cytosolic Ca2+ homeostasis, PPAR signaling and neurotransmitter recycling along with IGFR and PI3K-Akt-mTOR signaling. Applying several supervised machine learning techniques, including neural networks, we built a panel of tissue-specific biomarkers of aging. Our predictive model achieved 0.91 Pearson correlation with respect to the actual age values of the muscle tissue samples, and a mean absolute error of 6.19 years on the test set. The performance of models was also evaluated on gene expression samples of the skeletal muscles from the Gene expression Genotype-Tissue Expression (GTEx) project. The best model achieved the accuracy of 0.80 with respect to the actual age bin prediction on the external validation set. Furthermore, we demonstrated that aging biomarkers can be used to identify new molecular targets for tissue-specific anti-aging therapies.
Collapse
Affiliation(s)
- Polina Mamoshina
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States.,Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Marina Volosnikova
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States
| | - Ivan V Ozerov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States
| | - Evgeny Putin
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States.,Computer Technologies Lab, Saint Petersburg State University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia
| | - Ekaterina Skibina
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States
| | - Franco Cortese
- Biogerontology Research Foundation, London, United Kingdom
| | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States.,Biogerontology Research Foundation, London, United Kingdom.,Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
44
|
Parca L, Beck M, Bork P, Ori A. Quantifying compartment-associated variations of protein abundance in proteomics data. Mol Syst Biol 2018; 14:e8131. [PMID: 29967062 PMCID: PMC6056770 DOI: 10.15252/msb.20178131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
Quantitative mass spectrometry enables to monitor the abundance of thousands of proteins across biological conditions. Currently, most data analysis approaches rely on the assumption that the majority of the observed proteins remain unchanged across compared samples. Thus, gross morphological differences between cell states, deriving from, e.g., differences in size or number of organelles, are often not taken into account. Here, we analyzed multiple published datasets and frequently observed that proteins associated with a particular cellular compartment collectively increase or decrease in their abundance between conditions tested. We show that such effects, arising from underlying morphological differences, can skew the outcome of differential expression analysis. We propose a method to detect and normalize morphological effects underlying proteomics data. We demonstrate the applicability of our method to different datasets and biological questions including the analysis of sub-cellular proteomes in the context of Caenorhabditis elegans aging. Our method provides a complementary perspective to classical differential expression analysis and enables to uncouple overall abundance changes from stoichiometric variations within defined group of proteins.
Collapse
Affiliation(s)
- Luca Parca
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
45
|
Age-related gene expression in luminal epithelial cells is driven by a microenvironment made from myoepithelial cells. Aging (Albany NY) 2018; 9:2026-2051. [PMID: 29016359 PMCID: PMC5680554 DOI: 10.18632/aging.101298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/28/2017] [Indexed: 12/24/2022]
Abstract
Luminal epithelial cells in the breast gradually alter gene and protein expression with age, appearing to lose lineage-specificity by acquiring myoepithelial-like characteristics. We hypothesize that the luminal lineage is particularly sensitive to microenvironment changes, and age-related microenvironment changes cause altered luminal cell phenotypes. To evaluate the effects of different microenvironments on the fidelity of epigenetically regulated luminal and myoepithelial gene expression, we generated a set of lineage-specific probes for genes that are controlled through DNA methylation. Culturing primary luminal cells under conditions that favor myoepithelial propogation led to their reprogramming at the level of gene methylation, and to a more myoepithelial-like expression profile. Primary luminal cells' lineage-specific gene expression could be maintained when they were cultured as bilayers with primary myoepithelial cells. Isogenic stromal fibroblast co-cultures were unable to maintain the luminal phenotype. Mixed-age luminal-myoepithelial bilayers revealed that luminal cells adopt transcription and methylation patterns consistent with the chronological age of the myoepithelial cells. We provide evidence that the luminal epithelial phenotype is exquisitely sensitive to microenvironment conditions, and that states of aging are cell non-autonomously communicated through microenvironment cues over at least one cell diameter.
Collapse
|
46
|
Pu M, Wang M, Wang W, Velayudhan SS, Lee SS. Unique patterns of trimethylation of histone H3 lysine 4 are prone to changes during aging in Caenorhabditis elegans somatic cells. PLoS Genet 2018; 14:e1007466. [PMID: 29912876 PMCID: PMC6023244 DOI: 10.1371/journal.pgen.1007466] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/28/2018] [Accepted: 06/02/2018] [Indexed: 11/18/2022] Open
Abstract
Tri-methylation on histone H3 lysine 4 (H3K4me3) is associated with active gene expression but its regulatory role in transcriptional activation is unclear. Here we used Caenorhabditis elegans to investigate the connection between H3K4me3 and gene expression regulation during aging. We uncovered around 30% of H3K4me3 enriched regions to show significant and reproducible changes with age. We further showed that these age-dynamic H3K4me3 regions largely mark gene-bodies and are acquired during adult stages. We found that these adult-specific age-dynamic H3K4me3 regions are correlated with gene expression changes with age. In contrast, H3K4me3 marking established during developmental stages remained largely stable with age, even when the H3K4me3 associated genes exhibited RNA expression changes during aging. Importantly, the genes associated with changes in H3K4me3 and RNA levels with age are enriched for functional groups commonly implicated in aging biology. Therefore, our findings suggested divergent roles of H3K4me3 in gene expression regulation during aging, with important implications on aging-dependent pathophysiologies. Histone modifications, the specific chemical modifications on histone proteins, are key for regulating the packing of DNA, and thus have important influence on diverse biological processes. An intensely studied function of histone modifications is their contribution to regulating gene expression. Recent studies in diverse model organisms demonstrated that the global alterations of particular histone modifications, for instance H3K4me3, extend the lifespan of the organism. However, the underlying molecular mechanisms remain largely unclear. In this study, we monitored whether and how the genome-wide pattern of the histone modification H3K4me3 changes during aging in the somatic cells of the model organism C. elegans. We identified interesting and non-conventional patterns of H3K4me3, which span gene-bodies and are acquired during adulthood, that are particularly prone to changes with aging. This is contrasted to the well-studied H3K4me3 patterns that span transcriptional start sites and 5’ promoter regions and are established early during development, which remain stable with age. Consistent with the close association between H3K4me3 marking and active transcription, we observed that the age-dynamic H3K4me3 markings are highly correlated with corresponding RNA expression changes. Importantly, the genes that are associated with both H3K4me3 and RNA expression changes with age are over-represented for functional groups commonly implicated in aging biology. In summary, our findings revealed a lesser known pattern of H3K4me3 modification that can have important biological roles in aging.
Collapse
Affiliation(s)
- Mintie Pu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York City, United States of America
- * E-mail: (MP); (SSL)
| | - Minghui Wang
- Computational Biology Service Unit, Cornell University, Ithaca, New York City, United States of America
| | - Wenke Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York City, United States of America
| | - Satheeja Santhi Velayudhan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York City, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York City, United States of America
- * E-mail: (MP); (SSL)
| |
Collapse
|
47
|
Rebelo-Marques A, De Sousa Lages A, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, Espregueira-Mendes J. Aging Hallmarks: The Benefits of Physical Exercise. Front Endocrinol (Lausanne) 2018; 9:258. [PMID: 29887832 PMCID: PMC5980968 DOI: 10.3389/fendo.2018.00258] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
World population has been continuously increasing and progressively aging. Aging is characterized by a complex and intraindividual process associated with nine major cellular and molecular hallmarks, namely, genomic instability, telomere attrition, epigenetic alterations, a loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. This review exposes the positive antiaging impact of physical exercise at the cellular level, highlighting its specific role in attenuating the aging effects of each hallmark. Exercise should be seen as a polypill, which improves the health-related quality of life and functional capabilities while mitigating physiological changes and comorbidities associated with aging. To achieve a framework of effective physical exercise interventions on aging, further research on its benefits and the most effective strategies is encouraged.
Collapse
Affiliation(s)
- Alexandre Rebelo-Marques
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
| | - Adriana De Sousa Lages
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Endocrinology, Diabetes and Metabolism Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Faculty of Sports, University of Porto, Porto, Portugal
| | | | | | - Francisco Carrilho
- Endocrinology, Diabetes and Metabolism Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- 3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Guimarães, Braga, Portugal
- Orthopaedics Department of Minho University, Minho, Portugal
| |
Collapse
|
48
|
Abstract
Ageing leads to dramatic changes in the physiology of many different tissues resulting in a spectrum of pathology. Nonetheless, many lines of evidence suggest that ageing is driven by highly conserved cell intrinsic processes, and a set of unifying hallmarks of ageing has been defined. Here, we survey reports of age-linked changes in basal gene expression across eukaryotes from yeast to human and identify six gene expression hallmarks of cellular ageing: downregulation of genes encoding mitochondrial proteins; downregulation of the protein synthesis machinery; dysregulation of immune system genes; reduced growth factor signalling; constitutive responses to stress and DNA damage; dysregulation of gene expression and mRNA processing. These encompass widely reported features of ageing such as increased senescence and inflammation, reduced electron transport chain activity and reduced ribosome synthesis, but also reveal a surprising lack of gene expression responses to known age-linked cellular stresses. We discuss how the existence of conserved transcriptomic hallmarks relates to genome-wide epigenetic differences underlying ageing clocks, and how the changing transcriptome results in proteomic alterations where data is available and to variations in cell physiology characteristic of ageing. Identification of gene expression events that occur during ageing across distant organisms should be informative as to conserved underlying mechanisms of ageing, and provide additional biomarkers to assess the effects of diet and other environmental factors on the rate of ageing.
Collapse
Affiliation(s)
- Stephen Frenk
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | | |
Collapse
|
49
|
Jasiulionis MG. Abnormal Epigenetic Regulation of Immune System during Aging. Front Immunol 2018; 9:197. [PMID: 29483913 PMCID: PMC5816044 DOI: 10.3389/fimmu.2018.00197] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Epigenetics refers to the study of mechanisms controlling the chromatin structure, which has fundamental role in the regulation of gene expression and genome stability. Epigenetic marks, such as DNA methylation and histone modifications, are established during embryonic development and epigenetic profiles are stably inherited during mitosis, ensuring cell differentiation and fate. Under the effect of intrinsic and extrinsic factors, such as metabolic profile, hormones, nutrition, drugs, smoke, and stress, epigenetic marks are actively modulated. In this sense, the lifestyle may affect significantly the epigenome, and as a result, the gene expression profile and cell function. Epigenetic alterations are a hallmark of aging and diseases, such as cancer. Among biological systems compromised with aging is the decline of immune response. Different regulators of immune response have their promoters and enhancers susceptible to the modulation by epigenetic marks, which is fundamental to the differentiation and function of immune cells. Consistent evidence has showed the regulation of innate immune cells, and T and B lymphocytes by epigenetic mechanisms. Therefore, age-dependent alterations in epigenetic marks may result in the decline of immune function and this might contribute to the increased incidence of diseases in old people. In order to maintain health, we need to better understand how to avoid epigenetic alterations related to immune aging. In this review, the contribution of epigenetic mechanisms to the loss of immune function during aging will be discussed, and the promise of new means of disease prevention and management will be pointed.
Collapse
Affiliation(s)
- Miriam G Jasiulionis
- Laboratory of Ontogeny and Epigenetics, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Rowland J, Akbarov A, Maan A, Eales J, Dormer J, Tomaszewski M. Tick-Tock Chimes the Kidney Clock - from Biology of Renal Ageing to Clinical Applications. Kidney Blood Press Res 2018; 43:55-67. [PMID: 29402805 DOI: 10.1159/000486907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
Ageing of the kidney is a multi-dimensional process that occurs simultaneously at the molecular, cellular, histological, anatomical and physiological level. Nephron number and renal cortical volume decline, renal tubules become atrophic and glomeruli become sclerotic with age. These structural changes are accompanied by a decline in glomerular filtration rate, decreased sodium reabsorption and potassium excretion, reduced urinary concentrating capacity and alterations in the endocrine activity of the kidney. However, the pace of progression of these changes is not identical in everyone - individuals of the same age and seemingly similar clinical profile often exhibit stark differences in the age-related decline in renal health. Thus, chronological age poorly reflects the time-dependent changes that occur in the kidney. An ideal measure of renal vitality is biological kidney age - a measure of the age-related changes in physiological function. Replacing chronological age with biological age could provide numerous clinical benefits including improved prognostic accuracy in renal transplantation, better stratification of risk and identification of those who are on a fast trajectory to an age-related drop in kidney health.
Collapse
Affiliation(s)
- Joshua Rowland
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
| | - James Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom
| | - John Dormer
- University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, United Kingdom.,Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|