1
|
Ayala I, Hebbale SK, Mononen J, Brearley-Sholto MC, Shannon CE, Valdez I, Fourcaudot M, Bakewell TM, Zagorska A, Romero G, Asmis M, Musa FA, Sily JT, Smelter AA, Hinostroza EA, Freitas Lima LC, de Aguiar Vallim TQ, Heikkinen S, Norton L. The Spatial Transcriptional Activity of Hepatic TCF7L2 Regulates Zonated Metabolic Pathways that Contribute to Liver Fibrosis. Nat Commun 2025; 16:3408. [PMID: 40210847 PMCID: PMC11986045 DOI: 10.1038/s41467-025-58714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/20/2025] [Indexed: 04/12/2025] Open
Abstract
The molecular mechanisms regulating the zonal distribution of metabolism in liver are incompletely understood. Here we use single nuclei genomics techniques to examine the spatial transcriptional function of transcription factor 7-like 2 (TCF7L2) in mouse liver, and determine the consequences of TCF7L2 transcriptional inactivation on the metabolic architecture of the liver and the function of zonated metabolic pathways. We report that while Tcf7l2 mRNA expression is ubiquitous across the liver lobule, accessibility of the consensus TCF/LEF DNA binding motif is restricted to pericentral (PC) hepatocytes in zone 3. In mice expressing functionally inactive TCF7L2 in liver, PC hepatocyte-specific gene expression is absent, which we demonstrate promotes hepatic cholesterol accumulation, impaired bile acid synthesis, disruption to glutamine/glutamate homeostasis and pronounced dietary-induced hepatic fibrosis. In summary, TCF7L2 is a key regulator of hepatic zonal gene expression and regulates several zonated metabolic pathways that may contribute to the development of fibrotic liver disease.
Collapse
Affiliation(s)
- Iriscilla Ayala
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Skanda K Hebbale
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Juho Mononen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Christopher E Shannon
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ivan Valdez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel Fourcaudot
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Terry M Bakewell
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Giovanna Romero
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mara Asmis
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Fatima A Musa
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jonah T Sily
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Annie A Smelter
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Edgar A Hinostroza
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Leandro C Freitas Lima
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Thomas Q de Aguiar Vallim
- Department of Cardiology, School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Luke Norton
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Krawczyk J, O'Connor W, Vendramini P, Schell M, Biddinger KJ, Pengo G, Fougeray T, Aragam KG, Haigis M, Lamers WH, Tsai LT, Biddinger SB. The Diabetes Gene Tcf7l2 Organizes Gene Expression in the Liver and Regulates Amino Acid Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647067. [PMID: 40291732 PMCID: PMC12026580 DOI: 10.1101/2025.04.03.647067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
TCF7L2 harbors the strongest genetic association with diabetes identified thus far. However, its function in liver has remained unclear. Here, we find using mice with liver-specific deletion, that Tcf7l2 plays a central role in maintaining hepatic zonation. That is, in the normal liver, many genes show gradients of expression across the liver lobule; in the absence of Tcf7l2 , these gradients collapse. One major consequence is the disorganization of glutamine metabolism, with a loss of the glutamine production program, ectopic expression of the glutamine consumption program, and a decrease in glutamine levels. In parallel, metabolomic profiling shows glutamine to be the most significantly decreased metabolite in individuals harboring the rs7903146 variant in TCF7L2 . Taken together, these data indicate that hepatic TCF7L2 has a secondary role in glycemic control, but a primary role in maintaining transcriptional architecture and glutamine homeostasis.
Collapse
|
3
|
Fang Q, Ye L, Han L, Yao S, Cheng Q, Wei X, Zhang Y, Huang J, Ning G, Wang J, Zhang Y, Zhang Z. LGR4 is a key regulator of hepatic gluconeogenesis. Free Radic Biol Med 2025; 229:183-194. [PMID: 39826817 DOI: 10.1016/j.freeradbiomed.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
AIMS/HYPOTHESIS Emerging evidence underscored the significance of leucine-rich repeat-containing G protein-coupled receptor (LGR) 4 in endocrine and metabolic disorders. Despite this, its role in LGR4 in hepatic glucose metabolism remains poorly understood. In this study we set out to test whether LGR4 regulates glucose production in liver through a specific signaling pathway. METHODS Hepatic glucose production and gluconeogenic gene expressions were detected after silence of LGR4 in three obese mice models. Then, whole-body LGR4-deficient (LGR4 KO) mice, liver-specific LGR4 knockout (LGR4LKO) mice, and liver-specific LGR4 overexpression (LGR4LOV) mice were generated, in which we analyzed the effects of LGR4 on hepatic glucose metabolism upon HFD feeding, among which live imaging and quantitative analysis of hepatic phosphoenolpyruvate carboxykinase (PEPCK)-luciferase activity were conducted. RESULTS LGR4 expression was significantly upregulated in the liver of three obese mouse models, and presented dynamic expression patterns in response to nutritional fluxes. We utilized global and liver-specific LGR4 knockouts (LGR4LKO), along with adenoviral-mediated LGR4 knockdown in mice, to show improved glucose tolerance and decreased hepatic gluconeogenesis. Specifically, the expression of rate-limiting gluconeogenic enzymes, PEPCK was significantly downregulated. Conversely, mouse model with adenovirus-mediated LGR4 overexpression (LGR4LOV) exhibited elevated gluconeogenesis and PEPCK expression and reversed the suppression observed in LGR4 knockout models. Notably, neither RANKL nor PKA signaling pathways, which were reported to take part in LGR4's function, were involved in the process of LGR4 regulating PEPCK. Instead, TopFlash reporter system and inhibitors application suggested that LGR4's influence on hepatic gluconeogenesis operates through the canonical Wnt/β-catenin/TCF7L2 signaling pathway. CONCLUSIONS/INTERPRETATION Overall, these findings underscore a novel mechanism by which LGR4 regulates hepatic gluconeogenesis, presenting a potential therapeutic target for diabetes management.
Collapse
Affiliation(s)
- Qianhua Fang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linmin Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuangshuang Yao
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Cheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juelin Huang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiguo Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Meng L, Sun L, Li M. Research Progress on the Influence of Novel Targeted Drugs for Osteoporosis on Glucose Metabolism. Biomolecules 2025; 15:331. [PMID: 40149867 PMCID: PMC11939858 DOI: 10.3390/biom15030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Both diabetes and osteoporosis are serious chronic conditions. Evidence is mounting that several bone-derived hormones play a role in glucose metabolism in patients with diabetes. Notably, novel biotargeted anti-osteoporotic agents have been recently found to reduce the risk of diabetes. This review explores the correlation of osteokines, including the receptor activator of nuclear factor-κB ligand (RANKL), sclerostin, and Dickkopf-1 (DKK1) with glycemic indicators in patients with diabetes, as well as the effects of their respective monoclonal antibodies on glucose metabolism and their possible mechanisms. Denosumab, the monoclonal antibody against RANKL, has been shown to reduce glycated hemoglobin (HbA1c) and the risk of diabetes, possibly by enhancing pancreatic β-cell survival and glucagon-like peptide-1 secretion. Sclerostin was positively correlated with HbA1c and may induce insulin resistance via endoplasmic reticulum stress. The association of DKK1 with fasting plasma glucose and HbA1c is still unclear, though decreasing DKK1 levels may correlate with β-cell survival. However, few studies have investigated the effects of antibodies against sclerostin or DKK1 on glucose metabolism. Further research is required to elucidate the influence of novel anti-osteoporotic biotargeted agents on glucose homeostasis in patients with diabetes and their underlying mechanisms.
Collapse
Affiliation(s)
| | | | - Mei Li
- Key Laboratory of Endocrinology of National Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (L.M.)
| |
Collapse
|
5
|
Shah A, Bush CO, Perry RJ. Genetic underpinnnings of type 2 diabetes. ADVANCES IN GENETICS 2025; 113:54-75. [PMID: 40409800 DOI: 10.1016/bs.adgen.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Genetics is a significant risk factor for developing type 2 diabetes, with a family history conferring a 1.5-3-fold increased risk. Intriguingly, this heritable risk is higher when the affected parent is the mother, suggesting a potential role of mitochondrial genetics -maternally inherited DNA - in diabetes pathogenesis, a hypothesis this chapter will explore. While obesity mediates some of the genetic risk of type 2 diabetes, the chapter and will focus on genetic influences on diabetes independent of obesity. Mechanistically, genetic variants directly or indirectly contribute to insulin resistance across key tissues, including liver, muscle and adipose tissue. This insulin resistance prevents the liver from efficiently suppressing glucose production in response to insulin and impairs glucose uptake in muscle during postprandial states. Insulin resistance is driven by complex interactions between the genome and environmental, which can, in turn, influence gene expression and contribute to worsening of metabolic dysfunction. This chapter examines how tissue-specific genetic changes drive insulin resistance in individual organs and how these localized dysfunctions contribute to the broader, multi-organ metabolic dysfunction that characterize type 2 diabetes.
Collapse
Affiliation(s)
- Aditya Shah
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Woodbridge Academy Magnet School, Middlesex County, NJ, United States
| | - Clancy O Bush
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Brain Cognition and Brain Diseases Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States.
| |
Collapse
|
6
|
Mononen J, Taipale M, Malinen M, Velidendla B, Niskanen E, Levonen AL, Ruotsalainen AK, Heikkinen S. Genetic variation is a key determinant of chromatin accessibility and drives differences in the regulatory landscape of C57BL/6J and 129S1/SvImJ mice. Nucleic Acids Res 2024; 52:2904-2923. [PMID: 38153160 PMCID: PMC11014276 DOI: 10.1093/nar/gkad1225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Most common genetic variants associated with disease are located in non-coding regions of the genome. One mechanism by which they function is through altering transcription factor (TF) binding. In this study, we explore how genetic variation is connected to differences in the regulatory landscape of livers from C57BL/6J and 129S1/SvImJ mice fed either chow or a high-fat diet. To identify sites where regulatory variation affects TF binding and nearby gene expression, we employed an integrative analysis of H3K27ac ChIP-seq (active enhancers), ATAC-seq (chromatin accessibility) and RNA-seq (gene expression). We show that, across all these assays, the genetically driven (i.e. strain-specific) differences in the regulatory landscape are more pronounced than those modified by diet. Most notably, our analysis revealed that differentially accessible regions (DARs, N = 29635, FDR < 0.01 and fold change > 50%) are almost always strain-specific and enriched with genetic variation. Moreover, proximal DARs are highly correlated with differentially expressed genes. We also show that TF binding is affected by genetic variation, which we validate experimentally using ChIP-seq for TCF7L2 and CTCF. This study provides detailed insights into how non-coding genetic variation alters the gene regulatory landscape, and demonstrates how this can be used to study the regulatory variation influencing TF binding.
Collapse
Affiliation(s)
- Juho Mononen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Mari Taipale
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Marjo Malinen
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, Joensuu FI- 80101, Finland
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Kouvola FI-45100, Finland
| | - Bharadwaja Velidendla
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Einari Niskanen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
7
|
Yadav R, Patel B. Insights on effects of Wnt pathway modulation on insulin signaling and glucose homeostasis for the treatment of type 2 diabetes mellitus: Wnt activation or Wnt inhibition? Int J Biol Macromol 2024; 261:129634. [PMID: 38272413 DOI: 10.1016/j.ijbiomac.2024.129634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a major worldwide chronic disease and can lead to serious diabetic complications. Despite the availability of many anti-diabetic agents in the market, they are unable to meet the long-term treatment goals. Also, they cause many side effects which justify the need for novel class of anti-diabetic drugs with newer mechanism of action. Wnt signaling is one of such novel target pathways which can be explored for metabolic disorders. Many key components of the Wnt signaling are involved in the regulation of glucose homeostasis. Polymorphism in the Transcription factor 7-like 2 (TCF7L2) gene, and mutations in the LRP5 (LDL Receptor Related Protein 5) gene lead to disturbed glucose metabolism and obesity. Despite of several years of research in this field, there is no concrete proof of concept available on whether Wnt activation or Wnt inhibition is the beneficial approach for the treatment of T2DM. Here, we have summarized the conclusions of relevant published research studies to give structured insights into possibilities to explore Wnt modulation as a novel target pathway for the treatment of T2DM. The review also highlights the present challenges and future opportunities towards the development of anti-diabetic small molecules targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
8
|
Kumar S, Prakash P, Kumari R, Kumar N. Genetic Association of Transcription Factor 7-Like-2 rs7903146 Polymorphism With Type 2 Diabetes Mellitus. Cureus 2024; 16:e52709. [PMID: 38384655 PMCID: PMC10880045 DOI: 10.7759/cureus.52709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) mainly results from the inability of muscle, fat, and liver cells to uptake glucose due to insulin resistance or deficiency of insulin production by the pancreas. Predisposition to T2DM may be due to environmental, hereditary, or both factors. Although there are many genes involved in causing T2DM, transcription factor 7-like-2 gene (TCF7L2) rs7903146 (C/T) single nucleotide polymorphism (SNP) found in genome-wide association studies (GWAS) is susceptible to T2DM. TCF7L2 is involved in pancreatic beta cell proliferation and differentiation via the Wnt signaling mechanism. OBJECTIVES To find the genetic association of TCF7L2 rs7903146 (C/T) gene polymorphism in patients with T2DM. METHODS A case-control study was conducted on 194 T2DM patients recruited from the endocrinology department at Indira Gandhi Institute of Medical Sciences, Patna, and 180 non-diabetic healthy controls that were age and sex-matched with the patients. All clinical examination and biochemical investigations like glycosylated hemoglobin (HbA1c), total cholesterol, triglycerides, high-density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol; and determination of TCF7L2 gene polymorphism by allele-specific polymerase chain reaction (AS-PCR) were carried out for each subject. RESULTS The T allele of the rs7903146 (C/T) SNP was associated with a two-fold higher risk of T2DM and the heterozygous genotype (CT) with a 1.96 times higher risk. CONCLUSION There is a high association of this SNP with the development of T2DM in the eastern Indian population. Serial monitoring of HbA1c should be done in an individual having this type of polymorphism for early detection of T2DM to prevent future complications.
Collapse
Affiliation(s)
- Santosh Kumar
- Biochemistry, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Pritam Prakash
- Biochemistry, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Rekha Kumari
- Biochemistry, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Naresh Kumar
- Medicine, Indira Gandhi Institute of Medical Sciences, Patna, IND
| |
Collapse
|
9
|
Lee DS, An TH, Kim H, Jung E, Kim G, Oh SY, Kim JS, Chun HJ, Jung J, Lee EW, Han BS, Han DH, Lee YH, Han TS, Hur K, Lee CH, Kim DS, Kim WK, Park JW, Koo SH, Seong JK, Lee SC, Kim H, Bae KH, Oh KJ. Tcf7l2 in hepatocytes regulates de novo lipogenesis in diet-induced non-alcoholic fatty liver disease in mice. Diabetologia 2023; 66:931-954. [PMID: 36759348 PMCID: PMC10036287 DOI: 10.1007/s00125-023-05878-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 02/11/2023]
Abstract
AIMS/HYPOTHESIS Non-alcoholic fatty liver disease (NAFLD) associated with type 2 diabetes may more easily progress towards severe forms of non-alcoholic steatohepatitis (NASH) and cirrhosis. Although the Wnt effector transcription factor 7-like 2 (TCF7L2) is closely associated with type 2 diabetes risk, the role of TCF7L2 in NAFLD development remains unclear. Here, we investigated how changes in TCF7L2 expression in the liver affects hepatic lipid metabolism based on the major risk factors of NAFLD development. METHODS Tcf7l2 was selectively ablated in the liver of C57BL/6N mice by inducing the albumin (Alb) promoter to recombine Tcf7l2 alleles floxed at exon 5 (liver-specific Tcf7l2-knockout [KO] mice: Alb-Cre;Tcf7l2f/f). Alb-Cre;Tcf7l2f/f and their wild-type (Tcf7l2f/f) littermates were fed a high-fat diet (HFD) or a high-carbohydrate diet (HCD) for 22 weeks to reproduce NAFLD/NASH. Mice were refed a standard chow diet or an HCD to stimulate de novo lipogenesis (DNL) or fed an HFD to provide exogenous fatty acids. We analysed glucose and insulin sensitivity, metabolic respiration, mRNA expression profiles, hepatic triglyceride (TG), hepatic DNL, selected hepatic metabolites, selected plasma metabolites and liver histology. RESULTS Alb-Cre;Tcf7l2f/f essentially exhibited increased lipogenic genes, but there were no changes in hepatic lipid content in mice fed a normal chow diet. However, following 22 weeks of diet-induced NAFLD/NASH conditions, liver steatosis was exacerbated owing to preferential metabolism of carbohydrate over fat. Indeed, hepatic Tcf7l2 deficiency enhanced liver lipid content in a manner that was dependent on the duration and amount of exposure to carbohydrates, owing to cell-autonomous increases in hepatic DNL. Mechanistically, TCF7L2 regulated the transcriptional activity of Mlxipl (also known as ChREBP) by modulating O-GlcNAcylation and protein content of carbohydrate response element binding protein (ChREBP), and targeted Srebf1 (also called SREBP1) via miRNA (miR)-33-5p in hepatocytes. Eventually, restoring TCF7L2 expression at the physiological level in the liver of Alb-Cre;Tcf7l2f/f mice alleviated liver steatosis without altering body composition under both acute and chronic HCD conditions. CONCLUSIONS/INTERPRETATION In mice, loss of hepatic Tcf7l2 contributes to liver steatosis by inducing preferential metabolism of carbohydrates via DNL activation. Therefore, TCF7L2 could be a promising regulator of the NAFLD associated with high-carbohydrate diets and diabetes since TCF7L2 deficiency may lead to development of NAFLD by promoting utilisation of excess glucose pools through activating DNL. DATA AVAILABILITY RNA-sequencing data have been deposited into the NCBI GEO under the accession number GSE162449 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162449 ).
Collapse
Affiliation(s)
- Da Som Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eunsun Jung
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Gyeonghun Kim
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Yeon Oh
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Jun Seok Kim
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hye Jin Chun
- Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea
| | - Jaeeun Jung
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ho Lee
- Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Su Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chul-Ho Lee
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon-si, Gangwon-do, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Peng G, Yan J, Chen L, Li L. Glycometabolism reprogramming: Implications for cardiovascular diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:26-37. [PMID: 36963725 DOI: 10.1016/j.pbiomolbio.2023.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023]
Abstract
Glycometabolism is well known for its roles as the main source of energy, which mainly includes three metabolic pathways: oxidative phosphorylation, glycolysis and pentose phosphate pathway. The orderly progress of glycometabolism is the basis for the maintenance of cardiovascular function. However, upon exposure to harmful stimuli, the intracellular glycometabolism changes or tends to shift toward another glycometabolism pathway more suitable for its own development and adaptation. This shift away from the normal glycometabolism is also known as glycometabolism reprogramming, which is commonly related to the occurrence and aggravation of cardiovascular diseases. In this review, we elucidate the physiological role of glycometabolism in the cardiovascular system and summarize the mechanisms by which glycometabolism drives cardiovascular diseases, including diabetes, cardiac hypertrophy, heart failure, atherosclerosis, and pulmonary hypertension. Collectively, directing GMR back to normal glycometabolism might provide a therapeutic strategy for the prevention and treatment of related cardiovascular diseases.
Collapse
Affiliation(s)
- Guolong Peng
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Jialong Yan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Wang Z, Ma J, Wu R, Kong Y, Sun C. Recent advances of long non-coding RNAs in control of hepatic gluconeogenesis. Front Endocrinol (Lausanne) 2023; 14:1167592. [PMID: 37065737 PMCID: PMC10102572 DOI: 10.3389/fendo.2023.1167592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Gluconeogenesis is the main process for endogenous glucose production during prolonged fasting, or certain pathological conditions, which occurs primarily in the liver. Hepatic gluconeogenesis is a biochemical process that is finely controlled by hormones such as insulin and glucagon, and it is of great importance for maintaining normal physiological blood glucose levels. Dysregulated gluconeogenesis induced by obesity is often associated with hyperglycemia, hyperinsulinemia, and type 2 diabetes (T2D). Long noncoding RNAs (lncRNAs) are involved in various cellular events, from gene transcription to protein translation, stability, and function. In recent years, a growing number of evidences has shown that lncRNAs play a key role in hepatic gluconeogenesis and thereby, affect the pathogenesis of T2D. Here we summarized the recent progress in lncRNAs and hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Runze Wu
- Department of Endocrinology, Changshu No.2 People’s Hospital, Changshu, Jiangsu, China
| | - Yinghong Kong
- Department of Endocrinology, Changshu No.2 People’s Hospital, Changshu, Jiangsu, China
- *Correspondence: Yinghong Kong, ; Cheng Sun,
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
- *Correspondence: Yinghong Kong, ; Cheng Sun,
| |
Collapse
|
12
|
Miola A, De Filippis E, Veldic M, Ho AMC, Winham SJ, Mendoza M, Romo-Nava F, Nunez NA, Gardea Resendez M, Prieto ML, McElroy SL, Biernacka JM, Frye MA, Cuellar-Barboza AB. The genetics of bipolar disorder with obesity and type 2 diabetes. J Affect Disord 2022; 313:222-231. [PMID: 35780966 PMCID: PMC9703971 DOI: 10.1016/j.jad.2022.06.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bipolar disorder (BD) presents with high obesity and type 2 diabetes (T2D) and pathophysiological and phenomenological abnormalities shared with cardiometabolic disorders. Genomic studies may help define if they share genetic liability. This selective review of BD with obesity and T2D will focus on genomic studies, stress their current limitations and guide future steps in developing the field. METHODS We searched electronic databases (PubMed, Scopus) until December 2021 to identify genome-wide association studies, polygenic risk score analyses, and functional genomics of BD accounting for body mass index (BMI), obesity, or T2D. RESULTS The first genome-wide association studies (GWAS) of BD accounting for obesity found a promising genome-wide association in an intronic gene variant of TCF7L2 that was further replicated. Polygenic risk scores of obesity and T2D have also been associated with BD, yet, no genetic correlations have been demonstrated. Finally, human-induced stem cell studies of the intronic variant in TCF7L2 show a potential biological impact of the products of this genetic variant in BD risk. LIMITATIONS The narrative nature of this review. CONCLUSIONS Findings from BD GWAS accounting for obesity and their functional testing, have prompted potential biological insights. Yet, BD, obesity, and T2D display high phenotypic, genetic, and population-related heterogeneity, limiting our ability to detect genetic associations. Further studies should refine cardiometabolic phenotypes, test gene-environmental interactions and add population diversity.
Collapse
Affiliation(s)
- Alessandro Miola
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | | | - Marin Veldic
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Ada Man-Choi Ho
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Mariana Mendoza
- Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Francisco Romo-Nava
- Lindner Center of HOPE, Mason, OH, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nicolas A Nunez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel L Prieto
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Facultad de Medicina, Universidad de los Andes, Santiago, Chile; Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile; Center for Biomedical Research and Innovation, Universidad de los Andes, Santiago, Chile
| | - Susan L McElroy
- Lindner Center of HOPE, Mason, OH, USA; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico.
| |
Collapse
|
13
|
Gao X, Shi X, Zhou S, Chen C, Hu C, Xia Q, Li X, Gao W, Ding Y, Zuo Q, Zhang Y, Li B. DNA hypomethylation activation Wnt/TCF7L2/TDRD1 pathway promotes spermatogonial stem cell formation. J Cell Physiol 2022; 237:3640-3650. [DOI: 10.1002/jcp.30822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaomin Gao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Xiang Shi
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Shujian Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Chen Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Cai Hu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Qian Xia
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Xinlin Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Wen Gao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Ying Ding
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology Yangzhou University Yangzhou China
- College of Animal Science and Technology, Institutes of Agricultural Science and Technology Development Yangzhou University Yangzhou China
- College of Animal Science and Technology, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| |
Collapse
|
14
|
Liu D, Nguyen TTL, Gao H, Huang H, Kim DC, Sharp B, Ye Z, Lee JH, Coombes BJ, Ordog T, Wang L, Biernacka JM, Frye MA, Weinshilboum RM. TCF7L2 lncRNA: a link between bipolar disorder and body mass index through glucocorticoid signaling. Mol Psychiatry 2021; 26:7454-7464. [PMID: 34535768 PMCID: PMC8872993 DOI: 10.1038/s41380-021-01274-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/21/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Bipolar disorder (BD) and obesity are highly comorbid. We previously performed a genome-wide association study (GWAS) for BD risk accounting for the effect of body mass index (BMI), which identified a genome-wide significant single-nucleotide polymorphism (SNP) in the gene encoding the transcription factor 7 like 2 (TCF7L2). However, the molecular function of TCF7L2 in the central nervous system (CNS) and its possible role in the BD and BMI interaction remained unclear. In the present study, we demonstrated by studying human induced pluripotent stem cell (hiPSC)-derived astrocytes, cells that highly express TCF7L2 in the CNS, that the BD-BMI GWAS risk SNP is associated with glucocorticoid-dependent repression of the expression of a previously uncharacterized TCF7L2 transcript variant. That transcript is a long non-coding RNA (lncRNA-TCF7L2) that is highly expressed in the CNS but not in peripheral tissues such as the liver and pancreas that are involved in metabolism. In astrocytes, knockdown of the lncRNA-TCF7L2 resulted in decreased expression of the parent gene, TCF7L2, as well as alterations in the expression of a series of genes involved in insulin signaling and diabetes. We also studied the function of TCF7L2 in hiPSC-derived astrocytes by integrating RNA sequencing data after TCF7L2 knockdown with TCF7L2 chromatin-immunoprecipitation sequencing (ChIP-seq) data. Those studies showed that TCF7L2 directly regulated a series of BD risk genes. In summary, these results support the existence of a CNS-based mechanism underlying BD-BMI genetic risk, a mechanism based on a glucocorticoid-dependent expression quantitative trait locus that regulates the expression of a novel TCF7L2 non-coding transcript.
Collapse
Affiliation(s)
- Duan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Thanh Thanh Le Nguyen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Huaizhi Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Daniel C Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Brenna Sharp
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Zhenqing Ye
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jeong-Heon Lee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Brandon J Coombes
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Joanna M Biernacka
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Del Bosque-Plata L, Hernández-Cortés EP, Gragnoli C. The broad pathogenetic role of TCF7L2 in human diseases beyond type 2 diabetes. J Cell Physiol 2021; 237:301-312. [PMID: 34612510 PMCID: PMC9292842 DOI: 10.1002/jcp.30581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
The TCF7L2 protein is a key transcriptional effector of the Wnt/β‐catenin signaling pathway, regulating gene expression. It was initially identified in cancer research and embryologic developmental studies. Later, the TCF7L2 gene was linked to type 2 diabetes (T2D), implicating TCF7L2 and Wnt‐signaling in metabolic disorders and homeostasis. In fact, TCF7L2‐T2D variants confer the greatest relative risk for T2D, unquestionably predicting conversion to T2D in individuals with impaired glucose tolerance. We aim to describe the relevance of TCF7L2 in other human disorders. The TCF7L2‐single nucleotide polymorphisms (SNPs) and T2D‐risk association have been replicated in numerous follow‐up studies, and research has now been performed in several other diseases. In this article, we discuss common TCF7L2‐T2D variants within the framework of their association with human diseases. The TCF7L2 functional regions need to be further investigated because the molecular and cellular mechanisms through which TCF7L2 contributes to risk associations with different diseases are still not fully elucidated. In this review, we show the association of common TCF7L2‐T2D variants with many types of diseases. However, the role of rare genetic variations in the TCF7L2 gene in distinct diseases and ethnic groups has not been explored, and understanding their impact on specific phenotypes will be of clinical relevance. This offers an excellent opportunity to gain a clearer picture of the role that the TCF7L2 gene plays in the pathophysiology of human diseases. The potential pleiotropic role of TCF7L2 may underlie a possible pathway for comorbidity in human disorders.
Collapse
Affiliation(s)
- Laura Del Bosque-Plata
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Claudia Gragnoli
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.,Division of Endocrinology, Creighton University School of Medicine, Omaha, Nebraska, USA.,Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA.,Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
16
|
Ke W, Reed JN, Yang C, Higgason N, Rayyan L, Wählby C, Carpenter AE, Civelek M, O’Rourke EJ. Genes in human obesity loci are causal obesity genes in C. elegans. PLoS Genet 2021; 17:e1009736. [PMID: 34492009 PMCID: PMC8462697 DOI: 10.1371/journal.pgen.1009736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its associated metabolic syndrome are a leading cause of morbidity and mortality. Given the disease's heavy burden on patients and the healthcare system, there has been increased interest in identifying pharmacological targets for the treatment and prevention of obesity. Towards this end, genome-wide association studies (GWAS) have identified hundreds of human genetic variants associated with obesity. The next challenge is to experimentally define which of these variants are causally linked to obesity, and could therefore become targets for the treatment or prevention of obesity. Here we employ high-throughput in vivo RNAi screening to test for causality 293 C. elegans orthologs of human obesity-candidate genes reported in GWAS. We RNAi screened these 293 genes in C. elegans subject to two different feeding regimens: (1) regular diet, and (2) high-fructose diet, which we developed and present here as an invertebrate model of diet-induced obesity (DIO). We report 14 genes that promote obesity and 3 genes that prevent DIO when silenced in C. elegans. Further, we show that knock-down of the 3 DIO genes not only prevents excessive fat accumulation in primary and ectopic fat depots but also improves the health and extends the lifespan of C. elegans overconsuming fructose. Importantly, the direction of the association between expression variants in these loci and obesity in mice and humans matches the phenotypic outcome of the loss-of-function of the C. elegans ortholog genes, supporting the notion that some of these genes would be causally linked to obesity across phylogeny. Therefore, in addition to defining causality for several genes so far merely correlated with obesity, this study demonstrates the value of model systems compatible with in vivo high-throughput genetic screening to causally link GWAS gene candidates to human diseases.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jordan N. Reed
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Chenyu Yang
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Noel Higgason
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Leila Rayyan
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mete Civelek
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Untangling the genetic link between type 1 and type 2 diabetes using functional genomics. Sci Rep 2021; 11:13871. [PMID: 34230558 PMCID: PMC8260770 DOI: 10.1038/s41598-021-93346-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
There is evidence pointing towards shared etiological features between type 1 diabetes (T1D) and type 2 diabetes (T2D) despite both phenotypes being considered genetically distinct. However, the existence of shared genetic features for T1D and T2D remains complex and poorly defined. To better understand the link between T1D and T2D, we employed an integrated functional genomics approach involving extensive chromatin interaction data (Hi-C) and expression quantitative trait loci (eQTL) data to characterize the tissue-specific impacts of single nucleotide polymorphisms associated with T1D and T2D. We identified 195 pleiotropic genes that are modulated by tissue-specific spatial eQTLs associated with both T1D and T2D. The pleiotropic genes are enriched in inflammatory and metabolic pathways that include mitogen-activated protein kinase activity, pertussis toxin signaling, and the Parkinson's disease pathway. We identified 8 regulatory elements within the TCF7L2 locus that modulate transcript levels of genes involved in immune regulation as well as genes important in the etiology of T2D. Despite the observed gene and pathway overlaps, there was no significant genetic correlation between variant effects on T1D and T2D risk using European ancestral summary data. Collectively, our findings support the hypothesis that T1D and T2D specific genetic variants act through genetic regulatory mechanisms to alter the regulation of common genes, and genes that co-locate in biological pathways, to mediate pleiotropic effects on disease development. Crucially, a high risk genetic profile for T1D alters biological pathways that increase the risk of developing both T1D and T2D. The same is not true for genetic profiles that increase the risk of developing T2D. The conversion of information on genetic susceptibility to the protein pathways that are altered provides an important resource for repurposing or designing novel therapies for the management of diabetes.
Collapse
|
18
|
Zhang Z, Xu L, Xu X. The role of transcription factor 7-like 2 in metabolic disorders. Obes Rev 2021; 22:e13166. [PMID: 33615650 DOI: 10.1111/obr.13166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Transcription factor 7-like 2 (TCF7L2), a member of the T cell factor/lymphoid enhancer factor family, generally forms a complex with β-catenin to regulate the downstream target genes as an effector of the canonical Wnt signalling pathway. TCF7L2 plays a vital role in various biological processes and functions in many organs and tissues, including the liver, islet and adipose tissues. Further, TCF7L2 down-regulates hepatic gluconeogenesis and promotes lipid accumulation. In islets, TCF7L2 not only affects the insulin secretion of the β-cells but also has an impact on other cells. In addition, TCF7L2 influences adipogenesis in adipose tissues. Thus, an out-of-control TCF7L2 expression can result in metabolic disorders. The TCF7L2 gene is composed of 17 exons, generating 13 different transcripts, and has many single-nucleotide polymorphisms (SNPs). The discovery that these SNPs have an impact on the risk of type 2 diabetes (T2D) has attracted thorough investigations in the study of TCF7L2. Apart from T2D, TCF7L2 SNPs are also associated with type 1, posttransplant and other types of diabetes. Furthermore, TCF7L2 variants affect the progression of other disorders, such as obesity, cancers, metabolic syndrome and heart diseases. Finally, the interaction between TCF7L2 variants and diet also needs to be investigated.
Collapse
Affiliation(s)
- Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
19
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Kim H, Lee DS, An TH, Park TJ, Lee EW, Han BS, Kim WK, Lee CH, Lee SC, Oh KJ, Bae KH. GADD45β Regulates Hepatic Gluconeogenesis via Modulating the Protein Stability of FoxO1. Biomedicines 2021; 9:biomedicines9010050. [PMID: 33435535 PMCID: PMC7827134 DOI: 10.3390/biomedicines9010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Increased hepatic gluconeogenesis is one of the main contributors to the development of type 2 diabetes. Recently, it has been reported that growth arrest and DNA damage-inducible 45 beta (GADD45β) is induced under both fasting and high-fat diet (HFD) conditions that stimulate hepatic gluconeogenesis. Here, this study aimed to establish the molecular mechanisms underlying the novel role of GADD45β in hepatic gluconeogenesis. Both whole-body knockout (KO) mice and adenovirus-mediated knockdown (KD) mice of GADD45β exhibited decreased hepatic gluconeogenic gene expression concomitant with reduced blood glucose levels under fasting and HFD conditions, but showed a more pronounced effect in GADD45β KD mice. Further, in primary hepatocytes, GADD45β KD reduced glucose output, whereas GADD45β overexpression increased it. Mechanistically, GADD45β did not affect Akt-mediated forkhead box protein O1 (FoxO1) phosphorylation and forskolin-induced cAMP response element-binding protein (CREB) phosphorylation. Rather it increased FoxO1 transcriptional activity via enhanced protein stability of FoxO1. Further, GADD45β colocalized and physically interacted with FoxO1. Additionally, GADD45β deficiency potentiated insulin-mediated suppression of hepatic gluconeogenic genes, and it were impeded by the restoration of GADD45β expression. Our finding demonstrates GADD45β as a novel and essential regulator of hepatic gluconeogenesis. It will provide a deeper understanding of the FoxO1-mediated gluconeogenesis.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Tae-Jun Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
- Correspondence: (K.-J.O.); (K.-H.B.)
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (T.-J.P.); (E.-W.L.); (B.S.H.); (W.K.K.); (S.C.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
- Correspondence: (K.-J.O.); (K.-H.B.)
| |
Collapse
|
21
|
Nguyen-Tu MS, Martinez-Sanchez A, Leclerc I, Rutter GA, da Silva Xavier G. Adipocyte-specific deletion of Tcf7l2 induces dysregulated lipid metabolism and impairs glucose tolerance in mice. Diabetologia 2021; 64:129-141. [PMID: 33068125 PMCID: PMC7567653 DOI: 10.1007/s00125-020-05292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Transcription factor 7-like 2 (TCF7L2) is a downstream effector of the Wnt/β-catenin signalling pathway implicated in type 2 diabetes risk through genome-wide association studies. Although its expression is critical for adipocyte development, the potential roles of changes in adipose tissue TCF7L2 levels in diabetes risk are poorly defined. Here, we investigated whether forced changes in Tcf7l2 expression in adipocytes affect whole body glucose or lipid metabolism and crosstalk between disease-relevant tissues. METHODS Tcf7l2 was selectively ablated in mature adipocytes in C57BL/6J mice using Cre recombinase under Adipoq promoter control to recombine Tcf7l2 alleles floxed at exon 1 (referred to as aTCF7L2 mice). aTCF7L2 mice were fed normal chow or a high-fat diet for 12 weeks. Glucose and insulin sensitivity, as well as beta cell function, were assessed in vivo and in vitro. Levels of circulating NEFA, selected hormones and adipokines were measured using standard assays. RESULTS Reduced TCF7L2 expression in adipocytes altered glucose tolerance and insulin secretion in male but not in female mice. Thus, on a normal chow diet, male heterozygote knockout mice (aTCF7L2het) exhibited impaired glucose tolerance at 16 weeks (p = 0.03) and increased fat mass (1.4 ± 0.1-fold, p = 0.007) but no changes in insulin secretion. In contrast, male homozygote knockout (aTCF7L2hom) mice displayed normal body weight but impaired oral glucose tolerance at 16 weeks (p = 0.0001). These changes were mechanistically associated with impaired in vitro glucose-stimulated insulin secretion (decreased 0.5 ± 0.1-fold vs control mice, p = 0.02) and decreased levels of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide (0.6 ± 0.1-fold and 0.4 ± 0.1-fold vs control mice, p = 0.04 and p < 0.0001, respectively). Circulating levels of plasma NEFA and fatty acid binding protein 4 were increased by 1.3 ± 0.1-fold and 1.8 ± 0.3-fold vs control mice (p = 0.03 and p = 0.05, respectively). Following exposure to a high-fat diet for 12 weeks, male aTCF7L2hom mice exhibited reduced in vivo glucose-stimulated insulin secretion (0.5 ± 0.1-fold vs control mice, p = 0.02). CONCLUSIONS/INTERPRETATION Loss of Tcf7l2 gene expression selectively in adipocytes leads to a sexually dimorphic phenotype, with impairments not only in adipocytes, but also in pancreatic islet and enteroendocrine cells in male mice only. Our findings suggest novel roles for adipokines and incretins in the effects of diabetes-associated variants in TCF7L2, and further illuminate the roles of TCF7L2 in glucose homeostasis and diabetes risk. Graphical abstract.
Collapse
Affiliation(s)
- Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital, Imperial College Centre for Translational and Experimental Medicine, London, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital, Imperial College Centre for Translational and Experimental Medicine, London, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital, Imperial College Centre for Translational and Experimental Medicine, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital, Imperial College Centre for Translational and Experimental Medicine, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Gabriela da Silva Xavier
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital, Imperial College Centre for Translational and Experimental Medicine, London, UK.
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
22
|
Zhang X, Ye P, Huang H, Wang B, Dong F, Ling Q. TCF7L2 rs290487 C allele aberrantly enhances hepatic gluconeogenesis through allele-specific changes in transcription and chromatin binding. Aging (Albany NY) 2020; 12:13365-13387. [PMID: 32651957 PMCID: PMC7377900 DOI: 10.18632/aging.103442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the mechanisms underlying the altered hepatic glucose metabolism and enhanced diabetes risk in individuals with the TCF7L2 rs290487 C allele. Analysis of 195 cirrhotic patients revealed a higher insulin resistance index and incidence of hepatogenous diabetes in patients with the rs290487 C/C genotype compared to those with the C/T or T/T genotype. The in vitro experiments using targeted mutant PLC-PRF-5 cell line showed that cells with the rs290487 C/C genotype (C/C cells) had higher glucose production, lower glucose uptake, and lower TCF7L2 mRNA and protein levels than those with the C/T genotype (C/T cells). Integrated multi-omics analysis of ChIP-seq, ATAC-seq, RNA-seq, and metabolomics data showed genome-wide alterations in the DNA binding affinity of TCF7L2 in the C/C cells, including gain (e.g., PFKP and PPARGC1A) and loss (e.g., PGK1 and PGM1) of binding sites in several glucose metabolism-related genes. These allele-specific changes in transcriptional regulation lead to increased expression of gluconeogenesis-related genes (PCK1, G6PC and PPARGC1A) and their downstream metabolites (oxaloacetate and β-D-fructose 2,6-bisphosphate). These findings demonstrate that the TCF7L2 rs290487 C allele enhances gluconeogenesis through allele-specific changes in transcription and chromatin binding.
Collapse
Affiliation(s)
- Xueyou Zhang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panpan Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengqin Dong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Ling
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
23
|
Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights. Int J Mol Sci 2020; 21:ijms21134725. [PMID: 32630698 PMCID: PMC7369709 DOI: 10.3390/ijms21134725] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Statins are the gold-standard treatment for the prevention of primary and secondary cardiovascular disease, which is the leading cause of mortality worldwide. Despite the safety and relative tolerability of statins, observational studies, clinical trials and meta-analyses indicate an increased risk of developing new-onset type 2 diabetes mellitus (T2DM) after long-term statin treatment. It has been shown that statins can impair insulin sensitivity and secretion by pancreatic β-cells and increase insulin resistance in peripheral tissues. The mechanisms involved in these processes include, among others, impaired Ca2+ signaling in pancreatic β-cells, down-regulation of GLUT-4 in adipocytes and compromised insulin signaling. In addition, it has also been described that statins’ impact on epigenetics may also contribute to statin-induced T2DM via differential expression of microRNAs. This review focuses on the evidence and mechanisms by which statin therapy is associated with the development of T2DM. This review describes the multifactorial combination of effects that most likely contributes to the diabetogenic effects of statins. Clinically, these findings should encourage clinicians to consider diabetes monitoring in patients receiving statin therapy in order to ensure early diagnosis and appropriate management.
Collapse
|
24
|
Tian L, Shao W, Ip W, Song Z, Badakhshi Y, Jin T. The developmental Wnt signaling pathway effector β-catenin/TCF mediates hepatic functions of the sex hormone estradiol in regulating lipid metabolism. PLoS Biol 2019; 17:e3000444. [PMID: 31589598 PMCID: PMC6797220 DOI: 10.1371/journal.pbio.3000444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/17/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
The bipartite transcription factor β-catenin (β-cat)/T cell factor (TCF), formed by free β-cat and a given TCF family member, serves as the effector of the developmental Wnt signaling cascade. β-cat/TCFs also serve as effectors of certain peptide hormones or growth factors during adulthood. We reported that liver-specific expression of dominant-negative Transcription factor 7 like 2 (TCF7L2DN) led to impaired glucose disposal. Here we show that, in this LTCFDN transgenic mouse model, serum and hepatic lipid contents were elevated in male but not in female mice. In hepatocytes, TCF7L2DN adenovirus infection led to stimulated expression of genes that encode lipogenic transcription factors and lipogenic enzymes, while estradiol (E2) treatment attenuated the stimulation, associated with Wnt-target gene activation. Mechanistically, this E2-mediated activation can be attributed to elevated β-cat Ser675 phosphorylation and TCF expression. In wild-type female mice, ovariectomy (OVX) plus high-fat diet (HFD) challenge impaired glucose disposal and insulin tolerance, associated with increased hepatic lipogenic transcription factor sterol regulatory element-binding protein 1-c (SREBP-1c) expression. In wild-type mice with OVX, E2 reconstitution attenuated HFD-induced metabolic defects. Some of the attenuation effects, including insulin intolerance, elevated liver-weight gain, and hepatic SREBP-1c expression, were not affected by E2 reconstitution in HFD-fed LTCFDN mice with OVX. Finally, the effects of E2 in hepatocytes on β-cat/TCF activation can be attenuated by the G-protein-coupled estrogen receptor (GPER) antagonist G15. Our study thus expanded the scope of functions of the Wnt pathway effector β-cat/TCF, as it can also mediate hepatic functions of E2 during adulthood. This study also enriches our mechanistic understanding of gender differences in the risk and pathophysiology of metabolic diseases.
Collapse
Affiliation(s)
- Lili Tian
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Wilfred Ip
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Zhuolun Song
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
25
|
Malakar P, Stein I, Saragovi A, Winkler R, Stern-Ginossar N, Berger M, Pikarsky E, Karni R. Long Noncoding RNA MALAT1 Regulates Cancer Glucose Metabolism by Enhancing mTOR-Mediated Translation of TCF7L2. Cancer Res 2019; 79:2480-2493. [PMID: 30914432 DOI: 10.1158/0008-5472.can-18-1432] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/10/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022]
Abstract
Reprogrammed glucose metabolism of enhanced aerobic glycolysis (or the Warburg effect) is known as a hallmark of cancer. The roles of long noncoding RNAs (lncRNA) in regulating cancer metabolism at the level of both glycolysis and gluconeogenesis are mostly unknown. We previously showed that lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) acts as a proto-oncogene in hepatocellular carcinoma (HCC). Here, we investigated the role of MALAT1 in regulating cancer glucose metabolism. MALAT1 upregulated the expression of glycolytic genes and downregulated gluconeogenic enzymes by enhancing the translation of the metabolic transcription factor TCF7L2. MALAT1-enhanced TCF7L2 translation was mediated by upregulation of SRSF1 and activation of the mTORC1-4EBP1 axis. Pharmacological or genetic inhibition of mTOR and Raptor or expression of a hypophosphorylated mutant version of eIF4E-binding protein (4EBP1) resulted in decreased expression of TCF7L2. MALAT1 expression regulated TCF7L2 mRNA association with heavy polysomes, probably through the TCF7L2 5'-untranslated region (UTR), as determined by polysome fractionation and 5'UTR-reporter assays. Knockdown of TCF7L2 in MALAT1-overexpressing cells and HCC cell lines affected their metabolism and abolished their tumorigenic potential, suggesting that the effects of MALAT1 on glucose metabolism are essential for its oncogenic activity. Taken together, our findings suggest that MALAT1 contributes to HCC development and tumor progression by reprogramming tumor glucose metabolism. SIGNIFICANCE: These findings show that lncRNA MALAT1 contributes to HCC development by regulating cancer glucose metabolism, enhancing glycolysis, and inhibiting gluconeogenesis via elevated translation of the transcription factor TCF7L2.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ilan Stein
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amijai Saragovi
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Roni Winkler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Berger
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Jerusalem, Israel
- Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
26
|
Zhang X, Yang S, Chen J, Su Z. Unraveling the Regulation of Hepatic Gluconeogenesis. Front Endocrinol (Lausanne) 2019; 9:802. [PMID: 30733709 PMCID: PMC6353800 DOI: 10.3389/fendo.2018.00802] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Hepatic gluconeogenesis, de novo glucose synthesis from available precursors, plays a crucial role in maintaining glucose homeostasis to meet energy demands during prolonged starvation in animals. The abnormally increased rate of hepatic gluconeogenesis contributes to hyperglycemia in diabetes. Gluconeogenesis is regulated on multiple levels, such as hormonal secretion, gene transcription, and posttranslational modification. We review here the molecular mechanisms underlying the transcriptional regulation of gluconeogenesis in response to nutritional and hormonal changes. The nutrient state determines the hormone release, which instigates the signaling cascades in the liver to modulate the activities of various transcriptional factors through various post-translational modifications like phosphorylation, methylation, and acetylation. AMP-activated protein kinase (AMPK) can mediate the activities of some transcription factors, however its role in the regulation of gluconeogenesis remains uncertain. Metformin, a primary hypoglycemic agent of type 2 diabetes, ameliorates hyperglycemia predominantly through suppression of hepatic gluconeogenesis. Several molecular mechanisms have been proposed to be metformin's mode of action.
Collapse
Affiliation(s)
| | | | | | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Dlamini Z, Hull R, Makhafola TJ, Mbele M. Regulation of alternative splicing in obesity-induced hypertension. Diabetes Metab Syndr Obes 2019; 12:1597-1615. [PMID: 31695458 PMCID: PMC6718130 DOI: 10.2147/dmso.s188680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Obesity is the result of genetics which predisposes an individual to obesity and environmental factors, resulting in excessive weight gain. A well-established linear relationship exists between hypertension and obesity. The combined burden of hypertension and obesity poses significant health and economic challenges. Many environmental factors and genetic traits interact to contribute to obesity-linked hypertension. These include excess sodium re-absorption or secretion by the kidneys, a hypertensive shift of renal-pressure and activation of the sympathetic nervous system. Most individuals suffering from hypertension need drugs in order to treat their raised blood pressure, and while a number of antihypertensive therapeutic agents are currently available, 50% of cases remain uncontrolled. In order to develop new and effective therapeutic agents combating obesity-induced hypertension, a thorough understanding of the molecular events leading to adipogenesis is critical. With the advent of whole genome and exome sequencing techniques, new genes and variants which can be used as markers for obesity and hypertension are being identified. This review examines the role played by alternative splicing (AS) as a contributing factor to the metabolic regulation of obesity-induced hypertension. Splicing mutations constitute at least 14% of the disease-causing mutations, thus implicating polymorphisms that effect splicing as indicators of disease susceptibility. The unique transcripts resulting from the alternate splicing of mRNA encoding proteins that play a key role in contributing to obesity would be vital to gain a proper understanding of the genetic causes of obesity. A greater knowledge of the genetic basis for obesity-linked hypertension will assist in the development of appropriate diagnostic tests as well as the identification of new personalized therapeutic targets against obesity-induced hypertension.
Collapse
Affiliation(s)
- Zodwa Dlamini
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
- Correspondence: Zodwa Dlamini South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, South AfricaTel +27 3 18 199 334/5Email
| | - Rodney Hull
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| | - Tshepiso J Makhafola
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| | - Mzwandile Mbele
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| |
Collapse
|
28
|
Huang ZQ, Liao YQ, Huang RZ, Chen JP, Sun HL. Possible role of TCF7L2 in the pathogenesis of type 2 diabetes mellitus. BIOTECHNOL BIOTEC EQ 2018; 32:830-834. [DOI: 10.1080/13102818.2018.1438211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 02/05/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Zhi-qiu Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yao-qi Liao
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Run-ze Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Jin-peng Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Hui-lin Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
29
|
Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, Heikkinen S, Norton L. The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Development and Function. Diabetes 2018; 67:554-568. [PMID: 29317436 PMCID: PMC5860863 DOI: 10.2337/db17-0318] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
The gene encoding for transcription factor 7-like 2 (TCF7L2) is the strongest type 2 diabetes mellitus (T2DM) candidate gene discovered to date. The TCF7L2 protein is a key transcriptional effector of the Wnt/β-catenin signaling pathway, which is an important developmental pathway that negatively regulates adipogenesis. However, the precise role that TCF7L2 plays in the development and function of adipocytes remains largely unknown. Using a combination of in vitro approaches, we first show that TCF7L2 protein is increased during adipogenesis in 3T3-L1 cells and primary adipocyte stem cells and that TCF7L2 expression is required for the regulation of Wnt signaling during adipogenesis. Inactivation of TCF7L2 protein by removing the high-mobility group (HMG)-box DNA binding domain in mature adipocytes in vivo leads to whole-body glucose intolerance and hepatic insulin resistance. This phenotype is associated with increased subcutaneous adipose tissue mass, adipocyte hypertrophy, and inflammation. Finally, we demonstrate that TCF7L2 mRNA expression is downregulated in humans with impaired glucose tolerance and adipocyte insulin resistance, highlighting the translational potential of these findings. In summary, our data indicate that TCF7L2 has key roles in adipose tissue development and function that may reveal, at least in part, how TCF7L2 contributes to the pathophysiology of T2DM.
Collapse
Affiliation(s)
- Xi Chen
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Iriscilla Ayala
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Chris Shannon
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Marcel Fourcaudot
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| | - Nikhil K Acharya
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| | - Christopher P Jenkinson
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Harlingen, TX
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Luke Norton
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
30
|
Kang T, Jensen P, Solovyeva V, Brewer JR, Larsen MR. Dynamic Changes in the Protein Localization in the Nuclear Environment in Pancreatic β-Cell after Brief Glucose Stimulation. J Proteome Res 2018. [PMID: 29518335 DOI: 10.1021/acs.jproteome.7b00930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Characterization of molecular mechanisms underlying pancreatic β-cell function in relation to glucose-stimulated insulin secretion is incomplete, especially with respect to global response in the nuclear environment. We focus on the characterization of proteins in the nuclear environment of β-cells after brief, high glucose stimulation. We compared purified nuclei derived from β-cells stimulated with 17 mM glucose for 0, 2, and 5 min using quantitative proteomics, a time frame that most likely does not result in translation of new protein in the cell. Among the differentially regulated proteins, we identified 20 components of the nuclear organization processes, including nuclear pore organization, ribonucleoprotein complex, and pre-mRNA transcription. We found alteration of the nuclear pore complex, together with calcium/calmodulin-binding chaperones that facilitate protein and RNA import or export to/from the nucleus to the cytoplasm. Putative insulin mRNA transcription-associated factors were identified among the regulated proteins, and they were cross-validated by Western blotting and confocal immunofluorescence imaging. Collectively, our data suggest that protein translocation between the nucleus and the cytoplasm is an important process, highly involved in the initial molecular mechanism underlying glucose-stimulated insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Taewook Kang
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Pia Jensen
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Vita Solovyeva
- MEMPHYS-Centre for Biomembrane Physics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Jonathan R Brewer
- MEMPHYS-Centre for Biomembrane Physics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Martin R Larsen
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| |
Collapse
|
31
|
Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study. Sci Rep 2018. [PMID: 29520055 PMCID: PMC5843582 DOI: 10.1038/s41598-018-22613-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spaceflight introduces a combination of environmental stressors, including microgravity, ionizing radiation, changes in diet and altered atmospheric gas composition. In order to understand the impact of each environmental component on astronauts it is important to investigate potential influences in isolation. Rodent spaceflight experiments involve both standard vivarium cages and animal enclosure modules (AEMs), which are cages used to house rodents in spaceflight. Ground control AEMs are engineered to match the spaceflight environment. There are limited studies examining the biological response invariably due to the configuration of AEM and vivarium housing. To investigate the innate global transcriptomic patterns of rodents housed in spaceflight-matched AEM compared to standard vivarium cages we utilized publicly available data from the NASA GeneLab repository. Using a systems biology approach, we observed that AEM housing was associated with significant transcriptomic differences, including reduced metabolism, altered immune responses, and activation of possible tumorigenic pathways. Although we did not perform any functional studies, our findings revealed a mild hypoxic phenotype in AEM, possibly due to atmospheric carbon dioxide that was increased to match conditions in spaceflight. Our investigation illustrates the process of generating new hypotheses and informing future experimental research by repurposing multiple space-flown datasets.
Collapse
|
32
|
Sakhneny L, Rachi E, Epshtein A, Guez HC, Wald-Altman S, Lisnyansky M, Khalifa-Malka L, Hazan A, Baer D, Priel A, Weil M, Landsman L. Pancreatic Pericytes Support β-Cell Function in a Tcf7l2-Dependent Manner. Diabetes 2018; 67:437-447. [PMID: 29246974 DOI: 10.2337/db17-0697] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/06/2017] [Indexed: 01/13/2023]
Abstract
Polymorphism in TCF7L2, a component of the canonical Wnt signaling pathway, has a strong association with β-cell dysfunction and type 2 diabetes through a mechanism that has yet to be defined. β-Cells rely on cells in their microenvironment, including pericytes, for their proper function. Here, we show that Tcf7l2 activity in pancreatic pericytes is required for β-cell function. Transgenic mice in which Tcf7l2 was selectively inactivated in their pancreatic pericytes exhibited impaired glucose tolerance due to compromised β-cell function and glucose-stimulated insulin secretion. Inactivation of pericytic Tcf7l2 was associated with impaired expression of genes required for β-cell function and maturity in isolated islets. In addition, we identified Tcf7l2-dependent pericytic expression of secreted factors shown to promote β-cell function, including bone morphogenetic protein 4 (BMP4). Finally, we show that exogenous BMP4 is sufficient to rescue the impaired glucose-stimulated insulin secretion of transgenic mice, pointing to a potential mechanism through which pericytic Tcf7l2 activity affects β-cells. To conclude, we suggest that pancreatic pericytes produce secreted factors, including BMP4, in a Tcf7l2-dependent manner to support β-cell function. Our findings thus propose a potential cellular mechanism through which abnormal TCF7L2 activity predisposes individuals to diabetes and implicates abnormalities in the islet microenvironment in this disease.
Collapse
Affiliation(s)
- Lina Sakhneny
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eleonor Rachi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alona Epshtein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Helen C Guez
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shane Wald-Altman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Lisnyansky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laura Khalifa-Malka
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adina Hazan
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daria Baer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Priel
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miguel Weil
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Piao X, Yahagi N, Takeuchi Y, Aita Y, Murayama Y, Sawada Y, Shikama A, Masuda Y, Nishi-Tatsumi M, Kubota M, Izumida Y, Sekiya M, Matsuzaka T, Nakagawa Y, Sugano Y, Iwasaki H, Kobayashi K, Yatoh S, Suzuki H, Yagyu H, Kawakami Y, Shimano H. A candidate functional SNP rs7074440 in TCF7L2 alters gene expression through C-FOS in hepatocytes. FEBS Lett 2018; 592:422-433. [PMID: 29331016 DOI: 10.1002/1873-3468.12975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
Abstract
The SNP rs7903146 at the transcription factor 7-like 2 (TCF7L2) locus is established as the strongest known genetic marker for type 2 diabetes via genome-wide association studies. However, the functional SNPs regulating TCF7L2 expression remain unclear. Here, we show that the SNP rs7074440 is a candidate functional SNP highly linked with rs7903146. A reporter plasmid with rs7074440 normal allele sequence exhibited 15-fold higher luciferase activity compared with risk allele sequence in hepatocytes, demonstrating a strong enhancer activity at rs7074440. Additionally, we identified C-FOS as an activator binding to the rs7074440 enhancer using a TFEL genome-wide screen method. Consistently, knockdown of C-FOS significantly reduced TCF7L2 expression in hepatocytes. Collectively, a novel enhancer regulating TCF7L2 expression was revealed through searching for functional SNPs.
Collapse
Affiliation(s)
- Xianying Piao
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshikazu Sawada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Makiko Nishi-Tatsumi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Midori Kubota
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoko Sugano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuto Kobayashi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroaki Yagyu
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
34
|
Goldstein I, Hager GL. The Three Ds of Transcription Activation by Glucagon: Direct, Delayed, and Dynamic. Endocrinology 2018; 159:206-216. [PMID: 29077799 PMCID: PMC6283435 DOI: 10.1210/en.2017-00521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Upon lowered blood glucose occurring during fasting, glucagon is secreted from pancreatic islets, exerting various metabolic effects to normalize glucose levels. A considerable portion of these effects is mediated by glucagon-activated transcription factors (TFs) in liver. Glucagon directly activates several TFs via immediate cyclic adenosine monophosphate (cAMP)- and calcium-dependent signaling events. Among these TFs, cAMP response element-binding protein (CREB) is a major factor. CREB recruits histone-modifying enzymes and cooperates with other TFs on the chromatin template to increase the rate of gene transcription. In addition to direct signal transduction, the transcriptional effects of glucagon are also influenced by dynamic TF cross talk. Specifically, assisted loading of one TF by a companion TF leads to increased binding and activity. Lastly, transcriptional regulation by glucagon is also exerted by TF cascades by which a primary TF induces the gene expression of secondary TFs that bring about their activity a few hours after the initial glucagon signal. This mechanism of a delayed response may be instrumental in establishing the temporal organization of the fasting response by which distinct metabolic events separate early from prolonged fasting. In this mini-review, we summarize recent advances and critical discoveries in glucagon-dependent gene regulation with a focus on direct TF activation, dynamic TF cross talk, and TF cascades.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Correspondence: Gordon L. Hager, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B602, Bethesda, Maryland 20892. E-mail: ; or Ido Goldstein, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B307, Bethesda, Maryland 20892. E-mail:
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Correspondence: Gordon L. Hager, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B602, Bethesda, Maryland 20892. E-mail: ; or Ido Goldstein, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B307, Bethesda, Maryland 20892. E-mail:
| |
Collapse
|
35
|
Byun SK, An TH, Son MJ, Lee DS, Kang HS, Lee EW, Han BS, Kim WK, Bae KH, Oh KJ, Lee SC. HDAC11 Inhibits Myoblast Differentiation through Repression of MyoD-Dependent Transcription. Mol Cells 2017; 40:667-676. [PMID: 28927261 PMCID: PMC5638774 DOI: 10.14348/molcells.2017.0116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Abnormal differentiation of muscle is closely associated with aging (sarcopenia) and diseases such as cancer and type II diabetes. Thus, understanding the mechanisms that regulate muscle differentiation will be useful in the treatment and prevention of these conditions. Protein lysine acetylation and methylation are major post-translational modification mechanisms that regulate key cellular processes. In this study, to elucidate the relationship between myogenic differentiation and protein lysine acetylation/methylation, we performed a PCR array of enzymes related to protein lysine acetylation/methylation during C2C12 myoblast differentiation. Our results indicated that the expression pattern of HDAC11 was substantially increased during myoblast differentiation. Furthermore, ectopic expression of HDAC11 completely inhibited myoblast differentiation, concomitant with reduced expression of key myogenic transcription factors. However, the catalytically inactive mutant of HDAC11 (H142/143A) did not impede myoblast differentiation. In addition, wild-type HDAC11, but not the inactive HDAC11 mutant, suppressed MyoD-induced promoter activities of MEF2C and MYOG (Myogenin), and reduced histone acetylation near the E-boxes, the MyoD binding site, of the MEF2C and MYOG promoters. Collectively, our results indicate that HDAC11 would suppress myoblast differentiation via regulation of MyoD-dependent transcription. These findings suggest that HDAC11 is a novel critical target for controlling myoblast differentiation.
Collapse
Affiliation(s)
- Sang Kyung Byun
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141,
Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141,
Korea
| | - Min Jeong Son
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
| | - Hyun Sup Kang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141,
Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141,
Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141,
Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141,
Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141,
Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141,
Korea
| |
Collapse
|
36
|
Liška F, Landa V, Zídek V, Mlejnek P, Šilhavý J, Šimáková M, Strnad H, Trnovská J, Škop V, Kazdová L, Starker CG, Voytas DF, Izsvák Z, Mancini M, Šeda O, Křen V, Pravenec M. Downregulation of
Plzf
Gene Ameliorates Metabolic and Cardiac Traits in the Spontaneously Hypertensive Rat. Hypertension 2017; 69:1084-1091. [DOI: 10.1161/hypertensionaha.116.08798] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/06/2016] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
The spontaneously hypertensive rat (SHR), one of the most widely used model of essential hypertension, is predisposed to left ventricular hypertrophy, myocardial fibrosis, and metabolic disturbances. Recently, quantitative trait loci influencing blood pressure, left ventricular mass, and heart interstitial fibrosis were genetically isolated within a minimal congenic subline that contains only 7 genes, including mutant
Plzf
(promyelocytic leukemia zinc finger) candidate gene. To identify
Plzf
as a quantitative trait gene, we targeted
Plzf
in the SHR using the transcription activator-like effector nuclease technique and obtained SHR line harboring targeted
Plzf
gene with a premature stop codon. Because the
Plzf
targeted allele is semilethal, morphologically normal heterozygous rats were used for metabolic and hemodynamic analyses. SHR-
Plzf
+/−
heterozygotes versus SHR wild-type controls exhibited reduced body weight and relative weight of epididymal fat, lower serum and liver triglycerides and cholesterol, and better glucose tolerance. In addition, SHR-
Plzf
+/−
rats exhibited significantly increased sensitivity of adipose and muscle tissue to insulin action when compared with wild-type controls. Blood pressure was comparable in SHR versus SHR-
Plzf
+/−
; however, there was significant amelioration of cardiomyocyte hypertrophy and cardiac fibrosis in SHR-
Plzf
+/−
rats. Gene expression profiles in the liver and expression of selected genes in the heart revealed differentially expressed genes that play a role in metabolic pathways, PPAR (peroxisome proliferator-activated receptor) signaling, and cell cycle regulation. These results provide evidence for an important role of
Plzf
in regulation of metabolic and cardiac traits in the rat and suggest a cross talk between cell cycle regulators, metabolism, cardiac hypertrophy, and fibrosis.
Collapse
Affiliation(s)
- František Liška
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Vladimír Landa
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Václav Zídek
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Petr Mlejnek
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Jan Šilhavý
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Miroslava Šimáková
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Hynek Strnad
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Jaroslava Trnovská
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Vojtěch Škop
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Ludmila Kazdová
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Colby G. Starker
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Daniel F. Voytas
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Zsuzsanna Izsvák
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Massimiliano Mancini
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Ondřej Šeda
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Vladimír Křen
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| | - Michal Pravenec
- From the Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic (F.L., O.Š., V.K., M.P.); Institute of Physiology (V.L., V.Z., P.M., J.Š., M.Š., M.P.) and Institute of Molecular Genetics (H.S.), Czech Academy of Sciences, Prague, Czech Republic; Institute for Experimental Medicine, Prague, Czech Republic (J.T., V.Š., L.K.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota,
| |
Collapse
|
37
|
Li Y, Wang L, Zhou L, Song Y, Ma S, Yu C, Zhao J, Xu C, Gao L. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2. Mol Cell Endocrinol 2017; 446:70-80. [PMID: 28212844 DOI: 10.1016/j.mce.2017.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
Epidemiological evidence indicates that thyroid stimulating hormone (TSH) is positively correlated with abnormal glucose levels. We previously reported that TSH has direct effects on gluconeogenesis. However, the underlying molecular mechanism remains unclear. In this study, we observed increased fasting blood glucose and glucose production in a mouse model of subclinical hypothyroidism (only elevated TSH levels). TSH acts via the classical cAMP/PKA pathway and CRTC2 regulates glucose homeostasis. Thus, we explore whether CRTC2 is involved in the process of TSH-induced gluconeogenesis. We show that TSH increases CRTC2 expression via the TSHR/cAMP/PKA pathway, which in turn upregulates hepatic gluconeogenic genes. Furthermore, TSH stimulates CRTC2 dephosphorylation and upregulates p-CREB (Ser133) in HepG2 cells. Silencing CRTC2 and CREB decreases the effect of TSH on PEPCK-luciferase, the rate-limiting enzyme of gluconeogenesis. Finally, the deletion of TSHR reduces the levels of the CRTC2:CREB complex in mouse livers. This study demonstrates that TSH activates CRTC2 via the TSHR/cAMP/PKA pathway, leading to the formation of a CRTC2:CREB complex and increases hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Yujie Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Laicheng Wang
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 544 Jing 4 Rd Jinan, Shangdong 250021, PR China
| | - Lingyan Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China
| | - Chao Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, 324 Jing 5 Rd Jinan, Shandong 250021, PR China.
| | - Ling Gao
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 544 Jing 4 Rd Jinan, Shangdong 250021, PR China.
| |
Collapse
|
38
|
The oncoprotein HBXIP suppresses gluconeogenesis through modulating PCK1 to enhance the growth of hepatoma cells. Cancer Lett 2016; 382:147-156. [PMID: 27609066 DOI: 10.1016/j.canlet.2016.08.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/05/2023]
Abstract
Hepatitis B X-interacting protein (HBXIP) as an oncoprotein plays crucial roles in the development of cancer, involving glucose metabolism reprogramming. In this study, we are interested in whether the oncoprotein HBXIP is involved in the modulation of gluconeogenesis in liver cancer. Here, we showed that the expression level of phosphoenolpyruvate carboxykinase (PCK1), a key enzyme of gluconeogenesis, was lower in clinical hepatocellular carcinoma (HCC) tissues than that in normal tissues. Mechanistically, HBXIP inhibited the expression of PCK1 through down-regulating transcription factor FOXO1 in hepatoma cells, and up-regulated miR-135a targeting the 3'UTR of FOXO1 mRNA in the cells. In addition, HBXIP increased the phosphorylation levels of FOXO1 protein by activating PI3K/Akt pathway, leading to the export of FOXO1 from nucleus to cytoplasm. Strikingly, over-expression of PCK1 could abolish the HBXIP-promoted growth of hepatoma cells in vitro and in vivo. Thus, we conclude that the oncoprotein HBXIP is able to depress the gluconeogenesis through suppressing PCK1 to promote hepatocarcinogenesis, involving miR-135a/FOXO1 axis and PI3K/Akt/p-FOXO1 pathway. Our finding provides new insights into the mechanism by which oncoprotein HBXIP modulates glucose metabolism reprogramming in HCC.
Collapse
|
39
|
Jin T, Weng J. Hepatic functions of GLP-1 and its based drugs: current disputes and perspectives. Am J Physiol Endocrinol Metab 2016; 311:E620-7. [PMID: 27507553 DOI: 10.1152/ajpendo.00069.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
GLP-1 and its based drugs possess extrapancreatic metabolic functions, including that in the liver. These direct hepatic metabolic functions explain their therapeutic efficiency for subjects with insulin resistance. The direct hepatic functions could be mediated by previously assumed "degradation" products of GLP-1 without involving canonic GLP-1R. Although GLP-1 analogs were created as therapeutic incretins, extrapancreatic functions of these drugs, as well as native GLP-1, have been broadly recognized. Among them, the hepatic functions are particularly important. Postprandial GLP-1 release contributes to insulin secretion, which represses hepatic glucose production. This indirect effect of GLP-1 is known as the gut-pancreas-liver axis. Great efforts have been made to determine whether GLP-1 and its analogs possess direct metabolic effects on the liver, as the determination of the existence of direct hepatic effects may advance the therapeutic theory and clinical practice on subjects with insulin resistance. Furthermore, recent investigations on the metabolic beneficial effects of previously assumed "degradation" products of GLP-1 in the liver and elsewhere, including GLP-128-36 and GLP-132-36, have drawn intensive attention. Such investigations may further improve the development and the usage of GLP-1-based drugs. Here, we have reviewed the current advancement and the existing controversies on the exploration of direct hepatic functions of GLP-1 and presented our perspectives that the direct hepatic metabolic effects of GLP-1 could be a GLP-1 receptor-independent event involving Wnt signaling pathway activation.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| |
Collapse
|
40
|
Rines AK, Sharabi K, Tavares CDJ, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 2016; 15:786-804. [PMID: 27516169 DOI: 10.1038/nrd.2016.151] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycaemia. Although current diabetes treatments have exhibited some success in lowering blood glucose levels, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycaemia. Novel antidiabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes.
Collapse
Affiliation(s)
- Amy K Rines
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Ye D, Fei Y, Ling Q, Xu W, Zhang Z, Shu J, Li C, Dong F. Polymorphisms in TCF7L2 gene are associated with gestational diabetes mellitus in Chinese Han population. Sci Rep 2016; 6:30686. [PMID: 27465520 PMCID: PMC4964615 DOI: 10.1038/srep30686] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/07/2016] [Indexed: 01/25/2023] Open
Abstract
This study aimed to investigate the possible association between diabetes susceptibility gene transcription factor 7-like 2 (TCF7L2) and gestational diabetes mellitus (GDM) in a Chinese Han population. A total of 556 GDM patients and 500 Non-GDM were included. Eighteen single nucleotide polymorphisms (SNPs) were evaluated. Fifteen tag SNPs were selected from HapMap CHB database with a minor allele frequency of >0.2 and r(2) of >0.8. Three additional SNPs were also chosen because these SNPs are associated with type 2 diabetes in East Asians. TCF7L2 rs290487, rs6585194, and rs7094463 polymorphisms were found to be significantly associated with GDM. In multivariate analysis, rs290487 genetic variation (OR = 2.686 per each C allele, P = 0.002), pre-BMI > 24 kg/m(2) (OR = 1.592, P = 0.018), age > 25 years (OR = 1.780, P = 0.012) and LDL-C > 3.6 mmol/L (OR = 2.034, P = 0.009) were identified as independent risk factors of GDM, rs7094463 genetic variation (OR = 0.429 per each G allele, P = 0.005) was identified as independent protect factor of GDM. This finding suggests that TCF7L2 rs290487, and rs7094463 were a potential clinical value for the prediction of GDM.
Collapse
Affiliation(s)
- Dan Ye
- Department of Endocrinology and Metabolism, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Yang Fei
- Department of Metabolism and Endocrinology, People’s Hospital of Fuyang City, Zhejiang Province, China
| | - Qi Ling
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Weiwei Xu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Zhe Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Jing Shu
- Department of Reproductive Endocrinology, People’s Hospital, Zhejiang Province, China
| | - Chengjiang Li
- Department of Endocrinology and Metabolism, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Fengqin Dong
- Department of Endocrinology and Metabolism, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
42
|
Zhou Y, Oskolkov N, Shcherbina L, Ratti J, Kock KH, Su J, Martin B, Oskolkova MZ, Göransson O, Bacon J, Li W, Bucciarelli S, Cilio C, Brazma A, Thatcher B, Rung J, Wierup N, Renström E, Groop L, Hansson O. HMGB1 binds to the rs7903146 locus in TCF7L2 in human pancreatic islets. Mol Cell Endocrinol 2016; 430:138-45. [PMID: 26845344 DOI: 10.1016/j.mce.2016.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 02/03/2023]
Abstract
The intronic SNP rs7903146 in the T-cell factor 7-like 2 gene (TCF7L2) is the common genetic variant most highly associated with Type 2 diabetes known to date. The risk T-allele is located in an open chromatin region specific to human pancreatic islets of Langerhans, thereby accessible for binding of regulatory proteins. The risk T-allele locus exhibits stronger enhancer activity compared to the non-risk C-allele. The aim of this study was to identify transcriptional regulators that bind the open chromatin region in the rs7903146 locus and thereby potentially regulate TCF7L2 expression and activity. Using affinity chromatography followed by Edman sequencing, we identified one candidate regulatory protein, i.e. high-mobility group protein B1 (HMGB1). The binding of HMGB1 to the rs7903146 locus was confirmed in pancreatic islets from human deceased donors, in HCT116 and in HEK293 cell lines using: (i) protein purification on affinity columns followed by Western blot, (ii) chromatin immunoprecipitation followed by qPCR and (iii) electrophoretic mobility shift assay. The results also suggested that HMGB1 might have higher binding affinity to the C-allele of rs7903146 compared to the T-allele, which was supported in vitro using Dynamic Light Scattering, possibly in a tissue-specific manner. The functional consequence of HMGB1 depletion in HCT116 and INS1 cells was reduced insulin and TCF7L2 mRNA expression, TCF7L2 transcriptional activity and glucose stimulated insulin secretion. These findings suggest that the rs7903146 locus might exert its enhancer function by interacting with HMGB1 in an allele dependent manner.
Collapse
Affiliation(s)
- Yuedan Zhou
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Nikolay Oskolkov
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Liliya Shcherbina
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Joyce Ratti
- Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
| | - Kian-Hong Kock
- Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
| | - Jing Su
- European Bioinformatics Institute, Functional Genomics, Hinxton, Cambridge CB10 1SD, UK
| | - Brian Martin
- National Institute of Mental Health NIMH, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Olga Göransson
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Julie Bacon
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Weimin Li
- Department of Physical Chemistry, Lund University, Lund, 22100, Sweden
| | | | - Corrado Cilio
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Alvis Brazma
- European Bioinformatics Institute, Functional Genomics, Hinxton, Cambridge CB10 1SD, UK
| | - Bradley Thatcher
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Johan Rung
- European Bioinformatics Institute, Functional Genomics, Hinxton, Cambridge CB10 1SD, UK
| | - Nils Wierup
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Erik Renström
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Leif Groop
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden
| | - Ola Hansson
- Department of Clinical Sciences, CRC, Lund University, Malmö, 20502, Sweden.
| |
Collapse
|
43
|
Jin T. Current Understanding on Role of the Wnt Signaling Pathway Effector TCF7L2 in Glucose Homeostasis. Endocr Rev 2016; 37:254-77. [PMID: 27159876 DOI: 10.1210/er.2015-1146] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of the Wnt signaling pathway in metabolic homeostasis has drawn our intensive attention, especially after the genome-wide association study discovery that certain polymorphisms of its key effector TCF7L2 are strongly associated with the susceptibility to type 2 diabetes. For a decade, great efforts have been made in determining the function of TCF7L2 in various metabolic organs, which have generated both considerable achievements and disputes. In this review, I will briefly introduce the canonical Wnt signaling pathway, focusing on its effector β-catenin/TCF, including emphasizing the bidirectional feature of TCFs and β-catenin post-translational modifications. I will then summarize the observations on the association between TCF7L2 polymorphisms and type 2 diabetes risk. The main content, however, is on the intensive functional exploration of the metabolic role of TCF7L2, including the disputes generated on determining its role in the pancreas and liver with various transgenic mouse lines. Finally, I will discuss those achievements and disputes and present my future perspectives.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
44
|
Dong F, Ling Q, Ye D, Zhang Z, Shu J, Chen G, Fei Y, Li C. TCF7L2 involvement in estradiol- and progesterone-modulated islet and hepatic glucose homeostasis. Sci Rep 2016; 6:24859. [PMID: 27108846 PMCID: PMC4876840 DOI: 10.1038/srep24859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
To evaluate the role of TCF7L2, a key regulator of glucose homeostasis, in estradiol (E2) and progesterone (P4)-modulated glucose metabolism, mouse insulinoma cells (MIN6) and human liver cancer cells (hepG2 and HUH7) were treated with physiological concentrations of E2 or P4 in the up- and down-regulation of TCF7L2. Insulin/proinsulin secretion was measured in MIN6 cells, while glucose uptake and production were evaluated in liver cancer cells. E2 increased insulin/proinsulin secretion under both basal and stimulated conditions, whereas P4 increased insulin/proinsulin secretion only under glucose-stimulated conditions. An antagonistic effect, possibly concentration-dependent, of E2 and P4 on the regulation of islet glucose metabolism was observed. After E2 or P4 treatment, secretion of insulin/proinsulin was positively correlated with TCF7L2 protein expression. When TCF7L2 was silenced, E2- or P4-promoted insulin/proinsulin secretion was significantly weakened. Under glucotoxicity conditions, overexpression of TCF7L2 increased insulin secretion and processing. In liver cancer cells, E2 or P4 exposure elevated TCF7L2 expression, enhanced the activity of insulin signaling (pAKT/pGSK), reduced PEPCK expression, subsequently increased insulin-stimulated glucose uptake, and decreased glucose production. Silencing TCF7L2 eliminated effects of E2 or P4. In conclusion, TCF7L2 regulates E2- or P4-modulated islet and hepatic glucose metabolism. The results have implications for glucose homeostasis in pregnancy.
Collapse
Affiliation(s)
- Fengqin Dong
- Department of Endocrinology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Ling
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Ye
- Department of Endocrinology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Zhang
- Department of Endocrinology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shu
- Department of Reproductive Endocrinology, Zhejiang Province People’s Hospital, Hangzhou, China
| | - Guoping Chen
- Department of Endocrinology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Fei
- Department of Metabolism and Endocrinology, People’s Hospital of Fuyang City, Hangzhou, China
| | - Chengjiang Li
- Department of Endocrinology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Current understanding and dispute on the function of the Wnt signaling pathway effector TCF7L2 in hepatic gluconeogenesis. Genes Dis 2015; 3:48-55. [PMID: 30258876 PMCID: PMC6147171 DOI: 10.1016/j.gendis.2015.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Approximately 10 years ago, the Wnt signaling pathway effector TCF7L2 (=TCF-4) was recognized as a type 2 diabetes (T2D) risk gene through a genome wide association study (GWAS). As the correlation between TCF7L2 polymorphisms and T2D susceptibility has been reproducibly observed by numerous follow-up investigations among different ethnic groups, great efforts have been made to explore the function of TCF7L2 in metabolic organs including the pancreas, liver and adipose tissues. Although these explorations have enriched our general knowledge on the Wnt signaling cascade in metabolic homeostasis, studies conducted to date have also generated controversial suggestions. Here I will provide a brief review on the Wnt signaling pathway as well as the milestone GWAS discovery and the follow-up studies. I will then discuss the two different opinions on the correlation between TCF7L2 variants and T2D risk, a gain-of-function event versus a loss-of-function event. This will be followed by summarizing the relevant investigations on the metabolic function of hepatic TCF7L2 and presenting our view on the discrepancy and perspectives.
Collapse
|
46
|
Kaur K, Vig S, Srivastava R, Mishra A, Singh VP, Srivastava AK, Datta M. Elevated Hepatic miR-22-3p Expression Impairs Gluconeogenesis by Silencing the Wnt-Responsive Transcription Factor Tcf7. Diabetes 2015; 64:3659-69. [PMID: 26193896 DOI: 10.2337/db14-1924] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/29/2015] [Indexed: 11/13/2022]
Abstract
Levels of miR-22-3p, a highly abundant hepatic microRNA, are abnormally increased in mouse models of insulin resistance and type 2 diabetes, yet its contribution to deregulated hepatic metabolism under diseased states is not well understood. Here, we unravel a novel link between elevated hepatic miR-22-3p expression and impaired gluconeogenesis in diabetic db/db mice via the regulation of Tcf7 (transcription factor 7). Our data demonstrate that miR-22-3p binds to the 3' untranslated region of TCF7 and downregulates it, and this microRNA-mediated regulation of TCF7 increases the expression of enzymes of the gluconeogenic pathway in HepG2 cells. Small interfering RNA-mediated knockdown of TCF7 in HepG2 cells also causes similar upregulation of gluconeogenic genes. Furthermore, in vivo silencing of miR-22-3p by antagomiR administration lowered random as well as fasting glucose levels in diabetic mice. miR-22-3p antagonism improved glucose tolerance and insulin sensitivity. Importantly, the hepatic Tcf7 levels were restored along with reduced hepatic glucose output, which was also reflected by the decreased expression of gluconeogenic genes. Our results support a critical role for miR-22-3p and its target, Tcf7, in the pathogenesis of diabetes by upregulating gluconeogenesis. Moreover, targeting the miR-22/Tcf7/Wnt axis might hold therapeutic potential for the treatment of altered hepatic physiology during insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Saurabh Vig
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India Academy of Scientific and Innovative Research, Training and Development Complex, Council of Scientific and Industrial Research Campus, Taramani, Chennai, India
| | - Rohit Srivastava
- Council of Scientific and Industrial Research-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Akansha Mishra
- Council of Scientific and Industrial Research-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Vijay Pal Singh
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Arvind K Srivastava
- Council of Scientific and Industrial Research-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Malabika Datta
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India Academy of Scientific and Innovative Research, Training and Development Complex, Council of Scientific and Industrial Research Campus, Taramani, Chennai, India
| |
Collapse
|
47
|
Ip W, Shao W, Song Z, Chen Z, Wheeler MB, Jin T. Liver-specific expression of dominant-negative transcription factor 7-like 2 causes progressive impairment in glucose homeostasis. Diabetes 2015; 64:1923-32. [PMID: 25576056 DOI: 10.2337/db14-1329] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/01/2015] [Indexed: 11/13/2022]
Abstract
Investigations on the metabolic role of the Wnt signaling pathway and hepatic transcription factor 7-like 2 (TCF7L2) have generated opposing views. While some studies demonstrated a repressive effect of TCF7L2 on hepatic gluconeogenesis, a recent study using liver-specific Tcf7l2(-/-) mice suggested the opposite. As a consequence of redundant and bidirectional actions of transcription factor (TCF) molecules and other complexities of the Wnt pathway, knockout of a single Wnt pathway component may not effectively reveal a complete metabolic picture of this pathway. To address this, we generated the liver-specific dominant-negative (DN) TCF7L2 (TCF7L2DN) transgenic mouse model LTCFDN. These mice exhibited progressive impairment in response to pyruvate challenge. Importantly, LTCFDN hepatocytes displayed elevated gluconeogenic gene expression, gluconeogenesis, and loss of Wnt-3a-mediated repression of gluconeogenesis. In C57BL/6 hepatocytes, adenovirus-mediated expression of TCF7L2DN, but not wild-type TCF7L2, increased gluconeogenesis and gluconeogenic gene expression. Our further mechanistic exploration suggests that TCF7L2DN-mediated inhibition of Wnt signaling causes preferential interaction of β-catenin (β-cat) with FoxO1 and increased binding of β-cat/FoxO1 to the Pck1 FoxO binding site, resulting in the stimulation of Pck1 expression and increased gluconeogenesis. Together, our results using TCF7L2DN as a unique tool revealed that the Wnt signaling pathway and its effector β-cat/TCF serve a beneficial role in suppressing hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Wilfred Ip
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zhuolun Song
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zonglan Chen
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tianru Jin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS. Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev 2015; 115:4719-43. [PMID: 25918949 DOI: 10.1021/cr5002832] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ganesh R Kokil
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rakesh N Veedu
- §Center for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.,∥Western Australian Neuroscience Research Institute, Perth, WA 6150, Australia.,‡School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Grant A Ramm
- ⊥The Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.,#Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Johannes B Prins
- ∇Mater Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Harendra S Parekh
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
49
|
Shin MK, Shin SW, Jung M, Park H, Park HE, Yoo HS. Host gene expression for Mycobacterium avium subsp. paratuberculosis infection in human THP-1 macrophages. Pathog Dis 2015; 73:ftv031. [PMID: 25877879 DOI: 10.1093/femspd/ftv031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease, which causes considerable economic loss in the dairy industry and has a possible relationship to Crohn's disease (CD) in humans. As MAP has been detected in retail pasteurized milk samples, its transmission via milk is of concern. Despite its possible role in the etiology of CD, there have been few studies examining the interactions between MAP and human cells. In the current study, we applied Ingenuity Pathway Analysis to the transcription profiles generated from a murine model with MAP infection as part of a previously conducted study. Twenty-one genes were selected as potential host immune responses, compared with the transcriptional profiles in naturally MAP-infected cattle, and validated in MAP-infected human monocyte-derived macrophage THP-1 cells. Of these, the potential host responses included up-regulation of genes related to immune response (CD14, S100A8, S100A9, LTF, HP and CHCIL3), up-regulation of Th1-polarizing factor (CCL4, CCL5, CXCL9 and CXCL10), down-regulation of genes related to metabolism (ELANE, IGF1, TCF7L2 and MPO) and no significant response of other genes (GADD45a, GPNMB, HMOX1, IFNG and NQO1) in THP-1 cells infected with MAP.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 1Z3, Canada
| | - Seung Won Shin
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea
| | - Myunghwan Jung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea
| | - Hongtae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea
| | - Hyun-Eui Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742 Korea Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 232-916, Korea
| |
Collapse
|
50
|
Acute Wnt pathway activation positively regulates leptin gene expression in mature adipocytes. Cell Signal 2015; 27:587-97. [DOI: 10.1016/j.cellsig.2014.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 01/11/2023]
|