1
|
Yong H, Tian Y, Li Z, Wang C, Zhou D, Liu J, Huang X, Li J. Highly Branched Poly(β-amino ester)s for Efficient mRNA Delivery and Nebulization Treatment of Silicosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414991. [PMID: 40167376 DOI: 10.1002/adma.202414991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
mRNA therapeutics hold tremendous promise for disease prevention and treatment. Development of high-performance mRNA delivery systems with enhanced transfection efficiency and a safety profile will further fulfill their therapeutic potential and expedite their translation. The synthesis of "four-in-one" highly branched poly(β-amino ester)s (O-LhPAEs) is reported by integrating the essential components of lipid nanoparticles (LNPs) for spleen-selective mRNA enrichment and nebulization treatment of silicosis. 60 O-LhPAEs with distinct branched structure and chemical composition, including tertiary/quaternary amines, cholesterol moieties, zwitterionic species, and hydrophobic alkyl tails, are synthesized using sequential Michael addition, ring-opening, and nucleophilic substitution reactions. The unique topological structure and chemical composition collectively enhanced O-LhPAEs/mRNA polyplex serum resistance, cellular uptake, and endosomal escape. The optimal O-LhPAE, 20%b-3C-2P12, exhibits up to 93.1% mRNA transfection across 11 different cell types, including epithelial cells, fibroblasts, cancer cells, stem cells, neurological cells, and astrocytes. Biodistribution study reveals that 20%b-3C-2P12/mRNA polyplexes are mainly enriched in the spleen following systemic administration. Through nebulization, 20%b-3C-2P12 mediated high Tbx2 mRNA expression in the lungs of silicosis mice, effectively restoring lung functions. This study not only establishes a strategy for development of LNP-like O-LhPAEs but also provides promising candidates for highly safe, efficient, and spleen-selective mRNA delivery and nebulization treatment of silicosis.
Collapse
Affiliation(s)
- Haiyang Yong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yunze Tian
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenfei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dezhong Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou, 571158, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Shaanxi Provincial Key Laboratory of Environmental Health Hazard Assessment and Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth military Medical University, Xi'an, 710032, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
2
|
Khalil A, Dinh T, Parks M, Obeng RC, Gryder B, Kresak A, Wang Y, Maltas J, Bedrock M, Wei X, Faber Z, Rahm M, Scott J, LaFramboise T, Wang Z, McFarland C. In Vivo Multiplexed Modeling Reveals Diverse Roles of the TBX2 Subfamily and Egr1 in Ras -Driven Lung Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.642187. [PMID: 40166332 PMCID: PMC11956923 DOI: 10.1101/2025.03.15.642187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The TBX2 subfamily of T-box transcription factors (including Tbx2 , Tbx3 , Tbx4 , Tbx5 ) plays an essential role in lung development. Downregulation of these genes in human Lung adenocarcinoma (LUAD) suggests that these genes may be tumor suppressive, however because downregulation appears to occur primarily via epigenetic change, it remains unclear if these changes causally drive tumor progression or are merely the consequence of upstream events. Herein, we developed the first multiplexed mouse model to study the impact of TBX2 subfamily loss, alongside associated signaling genes Egr1 , Chd2 , Tnfaip3a , and Atf3 , in Ras -driven lung cancer. Using TuBa-seq, a high-throughput tumor-barcoding system, we quantified the growth effects of these knockouts during early and late tumorigenesis. Chd2 loss consistently suppressed tumor progression, while Tbx2 loss exhibited stage-dependent effects. Notably, Egr1 emerged as a potent tumor suppressor, with its knockout increasing tumor size (∼5x) at 20 weeks, surpassing Rb1 loss. Transcriptomic analyses of Egr1 -deficient tumors suggested immune dysregulation, including heightened inflammation and potential markers of T cell exhaustion in the tumor microenvironment. These findings indicate that Egr1 may play a role in suppressing tumor growth through modulating immune dynamics, offering new insights into the interplay between tumor progression and immune regulation in LUAD.
Collapse
|
3
|
Bellis C, Mlaza MV, Ali A, Abrahams A, Prince S. Exploring the oncogenic roles of T-box transcription factor TBX2 and its potential as a therapeutic target. Biochem Soc Trans 2025; 53:BST20241069. [PMID: 39912718 DOI: 10.1042/bst20241069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
During embryonic development, the T-box transcription factor TBX2 regulates key processes such as cell fate decisions, migration and tissue morphogenesis, and mutations that lead to reduced TBX2 levels result in developmental abnormalities including congenital heart and skeletal defects. TBX2, on the other hand, is overexpressed in a plethora of cancers where it functions as a powerful oncogene contributing to processes ranging from the bypass of senescence and cell death pathways to the promotion of cell proliferation, and epithelial-to-mesenchymal transition to drive invasion and metastasis. Additionally, TBX2 has been implicated in conferring resistance to anti-cancer drugs resulting in poor therapeutic outcomes. To exert its oncogenic functions, TBX2 transcriptionally represses key tumour suppressor genes involved in controlling cell proliferation and epithelial-to-mesenchymal transition such as p21Cip1, p14/p19ARF PTEN, NDRG1, CST6 and E-cadherin. This repression has been shown to involve complex mechanisms by which TBX2 co-opts transcription factors and recruits co-repression complexes to the promoters of these tumour suppressor genes. While limited information is available on how TBX2 is regulated in cancers, there is evidence that the levels and oncogenic functions of TBX2 are induced by developmental signalling pathways that are hijacked by cancer cells such as the Wnt/β-catenin and PI3K/AKT pathways. Understanding the complex molecular networks that TBX2 is involved in to exert its oncogenic functions is important because it may reveal potential therapeutic strategies for targeting TBX2 in TBX2-dependent cancers. This minireview discusses TBX2's involvement in cancer signalling, its regulatory partners, and its impact on cancer progression and resistance to therapy.
Collapse
Affiliation(s)
- Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali V Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Abid Ali
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Amaal Abrahams
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
4
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Valdez RM, Rivera BN, Chang Y, Pennington JM, Fischer KA, Löhr CV, Tilton SC. Assessing susceptibility for polycyclic aromatic hydrocarbon toxicity in an in vitro 3D respiratory model for asthma. FRONTIERS IN TOXICOLOGY 2024; 6:1287863. [PMID: 38706568 PMCID: PMC11066177 DOI: 10.3389/ftox.2024.1287863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
There is increased emphasis on understanding cumulative risk from the combined effects of chemical and non-chemical stressors as it relates to public health. Recent animal studies have identified pulmonary inflammation as a possible modifier and risk factor for chemical toxicity in the lung after exposure to inhaled pollutants; however, little is known about specific interactions and potential mechanisms of action. In this study, primary human bronchial epithelial cells (HBEC) cultured in 3D at the air-liquid interface (ALI) are utilized as a physiologically relevant model to evaluate the effects of inflammation on toxicity of polycyclic aromatic hydrocarbons (PAHs), a class of contaminants generated from incomplete combustion of fossil fuels. Normal HBEC were differentiated in the presence of IL-13 for 14 days to induce a profibrotic phenotype similar to asthma. Fully differentiated normal and IL-13 phenotype HBEC were treated with benzo[a]pyrene (BAP; 1-40 μg/mL) or 1% DMSO/PBS vehicle at the ALI for 48 h. Cells were evaluated for cytotoxicity, barrier integrity, and transcriptional biomarkers of chemical metabolism and inflammation by quantitative PCR. Cells with the IL-13 phenotype treated with BAP result in significantly (p < 0.05) decreased barrier integrity, less than 50% compared to normal cells. The effect of BAP in the IL-13 phenotype was more apparent when evaluating transcriptional biomarkers of barrier integrity in addition to markers of mucus production, goblet cell hyperplasia, type 2 asthmatic inflammation and chemical metabolism, which all resulted in dose-dependent changes (p < 0.05) in the presence of BAP. Additionally, RNA sequencing data showed that the HBEC with the IL-13 phenotype may have increased potential for uncontrolled proliferation and decreased capacity for immune response after BAP exposure compared to normal phenotype HBEC. These data are the first to evaluate the role of combined environmental factors associated with inflammation from pre-existing disease and PAH exposure on pulmonary toxicity in a physiologically relevant human in vitro model.
Collapse
Affiliation(s)
- Reese M. Valdez
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Brianna N. Rivera
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Jamie M. Pennington
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
| | - Kay A. Fischer
- Oregon Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Christiane V. Löhr
- Oregon Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Susan C. Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
6
|
Mi R, Wang Q, Liu Q, Jiang F, Ji Y. Expression and prognosis analysis of TBX2 subfamily in human lung carcinoma. Discov Oncol 2024; 15:51. [PMID: 38413457 PMCID: PMC10899548 DOI: 10.1007/s12672-024-00900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
PURPOSE Lung cancer has a high morbidity and mortality rate of all cancers worldwide. Therefore, there is an urgent need for reliable cancer markers for diagnosis and prognosis of patients with lung cancer. METHODS In this study, we used the bioinformatics database to compare the expression of the TBX2 subfamily at the transcriptional and protein levels in non-small cell lung cancer. Then, to confirm our bioinformatics analysis above, we used western bloting to determine the expression of TBX2, TBX3, TBX4 and TBX5 in human lung squamous carcinoma cell lines. Besides, low expression of TBX2 subfamily predicted a poor prognosis of patients with lung cancer. Finally, The methylation database was used to explore the relationship between the low expression of TBX2 subfamily and methylation of gene promoter region. RESULTS Our data showed a significant decrease of TBX2 subfamily expression in lung cancer tissues of several histological subtypes. Finally, the methylation of TBX2 subfamily members in the promoter region of NSCLC was significantly higher than that in normal tissues. CONCLUSION Our research provided sufficient evidence that TBX2 subfamily might play an inhibitory role in malignancy progression of lung cancer, which is promising to shed light on discovering a novel reliable cancer marker for prognosis of lung cancer patients.
Collapse
Affiliation(s)
- Rui Mi
- Department of Clinical Laboratory, Wuxi 9Th People's Hospital Affiliated to Soochow University, No.999 Liang Xi Road, Binhu District, Wuxi, 214000, Jiangsu, China
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9Th People's Hospital Affiliated to Soochow University, No.999 Liang Xi Road, Binhu District, Wuxi, 214000, Jiangsu, China
| | - Qingyang Liu
- Department of Clinical Laboratory, Wuxi 9Th People's Hospital Affiliated to Soochow University, No.999 Liang Xi Road, Binhu District, Wuxi, 214000, Jiangsu, China
| | - Fengying Jiang
- Department of Clinical Laboratory, Wuxi 9Th People's Hospital Affiliated to Soochow University, No.999 Liang Xi Road, Binhu District, Wuxi, 214000, Jiangsu, China
| | - Yuan Ji
- School of Medicine, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Huang R, Zhang C, Zheng Y, Zhang W, Huang H, Qiu M, Li J, Li F. ISL1 regulates lung branching morphogenesis via Shh signaling pathway. J Biol Chem 2023; 299:105034. [PMID: 37442233 PMCID: PMC10406864 DOI: 10.1016/j.jbc.2023.105034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Lung branching morphogenesis relies on a complex coordination of multiple signaling pathways and transcription factors. Here, we found that ablation of the LIM homeodomain transcription factor Islet1 (Isl1) in lung epithelium resulted in defective branching morphogenesis and incomplete formation of five lobes. A reduction in mesenchymal cell proliferation was observed in Isl1ShhCre lungs. There was no difference in apoptosis between the wild-type (ShhCre) and Isl1ShhCre embryos. RNA-Seq and in situ hybridization analysis showed that Shh, Ptch1, Sox9, Irx1, Irx2, Tbx2, and Tbx3 were downregulated in the lungs of Isl1ShhCre embryos. ChIP assay implied the Shh gene served as a direct target of ISL1, since the transcription factor ISL1 could bind to the Shh epithelial enhancer sequence (MACS1). Also, activation of the Hedgehog pathway via ectopic gene expression rescued the defects caused by Isl1 ablation, confirming the genetic integration of Hedgehog signaling. In conclusion, our works suggest that epithelial Isl1 regulates lung branching morphogenesis through administrating the Shh signaling mediated epithelial-mesenchymal communications.
Collapse
Affiliation(s)
- Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Chujing Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Yuting Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Wei Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Huarong Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
| |
Collapse
|
8
|
Chen Y, Tang B, Jiang W, Sun M, Zhang H, Tao Y, Wang H, Xiang D, Bai H, Guo M, Zhao P, Yan W, Huang X, Chen T, Lian C, Zhang J. miR-486-5p Attenuates Steroid-Induced Adipogenesis and Osteonecrosis of the Femoral Head Via TBX2/P21 Axis. Stem Cells 2023; 41:711-723. [PMID: 37210668 DOI: 10.1093/stmcls/sxad038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Enhanced adipogenic differentiation of mesenchymal stem cells (MSCs) is considered as a major risk factor for steroid-induced osteonecrosis of the femoral head (SOFNH). The role of microRNAs during this process has sparked interest. miR-486-5p expression was down-regulated significantly in femoral head bone tissues of both SONFH patients and rat models. The purpose of this study was to reveal the role of miR-486-5p on MSCs adipogenesis and SONFH progression. The present study showed that miR-486-5p could significantly inhibit adipogenesis of 3T3-L1 cells by suppressing mitotic clonal expansion (MCE). And upregulated expression of P21, which was caused by miR-486-5p mediated TBX2 decrease, was responsible for inhibited MCE. Further, miR-486-5p was demonstrated to effectively inhibit steroid-induced fat formation in the femoral head and prevented SONFH progression in a rat model. Considering the potent effects of miR-486-5p on attenuating adipogenesis, it seems to be a promising target for the treatment of SONFH.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Boyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Weiqian Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingjie Sun
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongrui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuzhang Tao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongwei Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dulei Xiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haobo Bai
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingkang Guo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Pei Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenlong Yan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengjie Lian
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
9
|
de Almeida LC, Carlos JAEG, Rezende-Teixeira P, Machado-Neto JA, Costa-Lotufo LV. AD80, a multikinase inhibitor, as a potential drug candidate for colorectal cancer therapy. Life Sci 2022; 308:120911. [PMID: 36030982 DOI: 10.1016/j.lfs.2022.120911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
AIMS Colorectal cancer (CRC) is a very heterogeneous disease. One of its hallmarks is the dysregulation of protein kinases, which leads to molecular events related to carcinogenesis. Hence, kinase inhibitors have been developed and are a new strategy with promising potential for CRC therapy. This study aims to explore AD80, a multikinase inhibitor, as a drug option for CRC, with evaluation of the PI3K/AKT/mTOR and MAPK (ERK1/2) status of CRC cells' panel and the cytotoxicity of AD80 in those cells, as well as in normal colon cells. MAIN METHODS Cellular and molecular mechanisms, such as clonogenicity, cell cycle, morphology, protein, and mRNA expression, were investigated in CRC cells after AD80 exposure. KEY FINDINGS Results show that PI3K/AKT/mTOR and MAPK signaling pathways are upregulated in CRC cellular models, with increased phosphorylation of mTOR, P70S6K, S6RP, 4EBP1, and ERK1/2. Hence, AD80 selectively reduces cell viability of CRC cells. Therefore, the antitumor mechanisms of AD80, such as clonogenicity inhibition (reduction of colony number and size), G2/M arrest (increased G2/M population, and CDKN1B mRNA expression), DNA damage (increased H2AX and ERK1/2 phosphorylation, and CDKN1A, GADD45A mRNA expression), apoptosis (increased PARP1 cleavage, and BAX, PMAIP1, BBC3 mRNA expression) and inhibition of S6RP phosphorylation were validated in CRC model. SIGNIFICANCE Our findings reinforce kinases as promising cancer therapeutic targets for the treatment of colorectal cancer, suggesting AD80 as a drug candidate.
Collapse
Affiliation(s)
- Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Jia X, Huang J, Wu B, Yang M, Xu W. A Competitive Endogenous RNA Network Based on Differentially Expressed lncRNA in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Front Genet 2021; 12:745715. [PMID: 34917127 PMCID: PMC8669720 DOI: 10.3389/fgene.2021.745715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Non-coding RNAs have remarkable roles in acute lung injury (ALI) initiation. Nevertheless, the significance of long non-coding RNAs (lncRNAs) in ALI is still unknown. Herein, we purposed to identify potential key genes in ALI and create a competitive endogenous RNA (ceRNA) modulatory network to uncover possible molecular mechanisms that affect lung injury. We generated a lipopolysaccharide-triggered ALI mouse model, whose lung tissue was subjected to RNA sequencing, and then we conducted bioinformatics analysis to select genes showing differential expression (DE) and to build a lncRNA-miRNA (microRNA)- mRNA (messenger RNA) modulatory network. Besides, GO along with KEGG assessments were conducted to identify major biological processes and pathways, respectively, involved in ALI. Then, RT-qPCR assay was employed to verify levels of major RNAs. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and the hub genes were obtained with the Molecular Complex Detection plugin. Finally, a key ceRNA subnetwork was built from major genes and their docking sites. Overall, a total of 8,610 lncRNAs were identified in the normal and LPS groups. Based on the 308 DE lncRNAs [p-value < 0.05, |log2 (fold change) | > 1] and 3,357 DE mRNAs [p-value < 0.05, |log2 (fold change) | > 1], lncRNA-miRNA and miRNA-mRNA pairs were predicted using miRanda. The lncRNA-miRNA-mRNA network was created from 175 lncRNAs, 22 miRNAs, and 209 mRNAs in ALI. The RT-qPCR data keep in step with the RNA sequencing data. GO along with KEGG analyses illustrated that DE mRNAs in this network were mainly bound up with the inflammatory response, developmental process, cell differentiation, cell proliferation, apoptosis, and the NF-kappa B, PI3K-Akt, HIF-1, MAPK, Jak-STAT, and Notch signaling pathways. A PPI network on the basis of the 209 genes was established, and three hub genes (Nkx2-1, Tbx2, and Atf5) were obtained from the network. Additionally, a lncRNA-miRNA-hub gene subnetwork was built from 15 lncRNAs, 3 miRNAs, and 3 mRNAs. Herein, novel ideas are presented to expand our knowledge on the regulation mechanisms of lncRNA-related ceRNAs in the pathogenesis of ALI.
Collapse
Affiliation(s)
- Xianxian Jia
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinhui Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Karolak JA, Gambin T, Szafranski P, Maywald RL, Popek E, Heaney JD, Stankiewicz P. Perturbation of semaphorin and VEGF signaling in ACDMPV lungs due to FOXF1 deficiency. Respir Res 2021; 22:212. [PMID: 34315444 PMCID: PMC8314029 DOI: 10.1186/s12931-021-01797-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal congenital lung disorder in neonates characterized by severe progressive respiratory failure and refractory pulmonary hypertension, resulting from underdevelopment of the peripheral pulmonary tree. Causative heterozygous single nucleotide variants (SNVs) or copy-number variant (CNV) deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of ACDMPV patients. FOXF1 maps closely to and regulates the oppositely oriented FENDRR, with which it also shares regulatory elements. METHODS To better understand the transcriptional networks downstream of FOXF1 that are relevant for lung organogenesis, using RNA-seq, we have examined lung transcriptomes in 12 histopathologically verified ACDMPV patients with or without pathogenic variants in the FOXF1 locus and analyzed gene expression profile in FENDRR-depleted fetal lung fibroblasts, IMR-90. RESULTS RNA-seq analyses in ACDMPV neonates revealed changes in the expression of several genes, including semaphorins (SEMAs), neuropilin 1 (NRP1), and plexins (PLXNs), essential for both epithelial branching and vascular patterning. In addition, we have found deregulation of the vascular endothelial growth factor (VEGF) signaling that also controls pulmonary vasculogenesis and a lung-specific endothelial gene TMEM100 known to be essential in vascular morphogenesis. Interestingly, we have observed a substantial difference in gene expression profiles between the ACDMPV samples with different types of FOXF1 defect. Moreover, partial overlap between transcriptome profiles of ACDMPV lungs with FOXF1 SNVs and FENDRR-depleted IMR-90 cells suggests contribution of FENDRR to ACDMPV etiology. CONCLUSIONS Our transcriptomic data imply potential crosstalk between several lung developmental pathways, including interactions between FOXF1-SHH and SEMA-NRP or VEGF/VEGFR2 signaling, and provide further insight into complexity of lung organogenesis in humans.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznań, Poland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Rebecca L Maywald
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Martinez ME, Hernandez A. The Type 3 Deiodinase Is a Critical Modulator of Thyroid Hormone Sensitivity in the Fetal Brain. Front Neurosci 2021; 15:703730. [PMID: 34248495 PMCID: PMC8265566 DOI: 10.3389/fnins.2021.703730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones (TH) are critical for the development and function of the central nervous system (CNS). Although their effects on the rodent brain peak within 2-3 weeks postnatally, the fetal brain has been found largely insensitive to exogenously administrated TH. To address this issue, here we examined gene expression in brains from mouse fetuses deficient in the type 3 deiodinase (DIO3), the selenoenzyme responsible for clearing TH. At embryonic day E18.5 qPCR determinations indicated a marked increase in the mRNA expression of T3-responsive genes Klf9 and Nrgn. The increased expression of these genes was confirmed by in situ hydridization in multiple areas of the cortex and in the striatum. RNA sequencing revealed 246 genes differentially expressed (70% up-regulated) in the brain of E18.5 Dio3-/- male fetuses. Differential expression of 13 of these genes was confirmed in an extended set of samples that included females. Pathway analyses of differentially expressed genes indicated enrichment in glycolysis and signaling related to axonal guidance, synaptogenesis and hypoxia inducible factor alpha. Additional RNA sequencing identified 588 genes differentially expressed (35% up-regulated) in the brain of E13.5 Dio3-/- male fetuses. Differential expression of 13 of these genes, including Klf9, Hr, and Mgp, was confirmed in an extended set of samples including females. Although pathway analyses of differentially expressed genes at E13.5 also revealed significant enrichment in axonal guidance and synaptogenesis signaling, top enrichment was found for functions related to the cell cycle, aryl hydrocarbon receptor signaling, PCP and kinetochore metaphase signaling pathways and mitotic roles of polo-like kinase. Differential expression at E13.5 was confirmed by qPCR for additional genes related to collagen and extracellular matrix and for selected transcription factors. Overall, our results demonstrate that the rodent fetal brain is sensitive to TH as early as E13.5 of gestational age, and suggest that TH distinctly affects brain developmental programs in early and late gestation. We conclude that DIO3 function is critical to ensure an adequate timing for TH action in the developing brain and is probably the main factor underlying the lack of effects on the fetal brain observed in previous studies after TH administration.
Collapse
Affiliation(s)
- Maria Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, United States
| | - Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, United States.,Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME, United States.,Department of Medicine, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
13
|
Kaiser M, Wojahn I, Rudat C, Lüdtke TH, Christoffels VM, Moon A, Kispert A, Trowe MO. Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development 2021; 148:dev.195651. [PMID: 33795231 DOI: 10.1242/dev.195651] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
All epithelial components of the inner ear, including sensory hair cells and innervating afferent neurons, arise by patterning and differentiation of epithelial progenitors residing in a simple sphere, the otocyst. Here, we identify the transcriptional repressors TBX2 and TBX3 as novel regulators of these processes in the mouse. Ablation of Tbx2 from the otocyst led to cochlear hypoplasia, whereas loss of Tbx3 was associated with vestibular malformations. The loss of function of both genes (Tbx2/3cDKO) prevented inner ear morphogenesis at midgestation, resulting in indiscernible cochlear and vestibular structures at birth. Morphogenetic impairment occurred concomitantly with increased apoptosis in ventral and lateral regions of Tbx2/3cDKO otocysts around E10.5. Expression analyses revealed partly disturbed regionalisation, and a posterior-ventral expansion of the neurogenic domain in Tbx2/3cDKO otocysts at this stage. We provide evidence that repression of FGF signalling by TBX2 is important to restrict neurogenesis to the anterior-ventral otocyst and implicate another T-box factor, TBX1, as a crucial mediator in this regulatory network.
Collapse
Affiliation(s)
- Marina Kaiser
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Timo H Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| |
Collapse
|
14
|
Lüdtke TH, Wojahn I, Kleppa MJ, Schierstaedt J, Christoffels VM, Künzler P, Kispert A. Combined genomic and proteomic approaches reveal DNA binding sites and interaction partners of TBX2 in the developing lung. Respir Res 2021; 22:85. [PMID: 33731112 PMCID: PMC7968368 DOI: 10.1186/s12931-021-01679-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tbx2 encodes a transcriptional repressor implicated in the development of numerous organs in mouse. During lung development TBX2 maintains the proliferation of mesenchymal progenitors, and hence, epithelial proliferation and branching morphogenesis. The pro-proliferative function was traced to direct repression of the cell-cycle inhibitor genes Cdkn1a and Cdkn1b, as well as of genes encoding WNT antagonists, Frzb and Shisa3, to increase pro-proliferative WNT signaling. Despite these important molecular insights, we still lack knowledge of the DNA occupancy of TBX2 in the genome, and of the protein interaction partners involved in transcriptional repression of target genes. METHODS We used chromatin immunoprecipitation (ChIP)-sequencing and expression analyses to identify genomic DNA-binding sites and transcription units directly regulated by TBX2 in the developing lung. Moreover, we purified TBX2 containing protein complexes from embryonic lung tissue and identified potential interaction partners by subsequent liquid chromatography/mass spectrometry. The interaction with candidate proteins was validated by immunofluorescence, proximity ligation and individual co-immunoprecipitation analyses. RESULTS We identified Il33 and Ccn4 as additional direct target genes of TBX2 in the pulmonary mesenchyme. Analyzing TBX2 occupancy data unveiled the enrichment of five consensus sequences, three of which match T-box binding elements. The remaining two correspond to a high mobility group (HMG)-box and a homeobox consensus sequence motif. We found and validated binding of TBX2 to the HMG-box transcription factor HMGB2 and the homeobox transcription factor PBX1, to the heterochromatin protein CBX3, and to various members of the nucleosome remodeling and deacetylase (NuRD) chromatin remodeling complex including HDAC1, HDAC2 and CHD4. CONCLUSION Our data suggest that TBX2 interacts with homeobox and HMG-box transcription factors as well as with the NuRD chromatin remodeling complex to repress transcription of anti-proliferative genes in the pulmonary mesenchyme.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Irina Wojahn
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marc-Jens Kleppa
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jasper Schierstaedt
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Künzler
- Institut Für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut Für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
15
|
Improved detection of tumor suppressor events in single-cell RNA-Seq data. NPJ Genom Med 2020; 5:43. [PMID: 33083012 PMCID: PMC7541488 DOI: 10.1038/s41525-020-00151-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue-specific transcription factors are frequently inactivated in cancer. To fully dissect the heterogeneity of such tumor suppressor events requires single-cell resolution, yet this is challenging because of the high dropout rate. Here we propose a simple yet effective computational strategy called SCIRA to infer regulatory activity of tissue-specific transcription factors at single-cell resolution and use this tool to identify tumor suppressor events in single-cell RNA-Seq cancer studies. We demonstrate that tissue-specific transcription factors are preferentially inactivated in the corresponding cancer cells, suggesting that these are driver events. For many known or suspected tumor suppressors, SCIRA predicts inactivation in single cancer cells where differential expression does not, indicating that SCIRA improves the sensitivity to detect changes in regulatory activity. We identify NKX2-1 and TBX4 inactivation as early tumor suppressor events in normal non-ciliated lung epithelial cells from smokers. In summary, SCIRA can help chart the heterogeneity of tumor suppressor events at single-cell resolution.
Collapse
|
16
|
Multifunctional neuron-specific enolase: its role in lung diseases. Biosci Rep 2020; 39:220911. [PMID: 31642468 PMCID: PMC6859115 DOI: 10.1042/bsr20192732] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Neuron-specific enolase (NSE), also known as gamma (γ) enolase or enolase-2 (Eno2), is a form of glycolytic enolase isozyme and is considered a multifunctional protein. NSE is mainly expressed in the cytoplasm of neurons and neuroendocrine cells, especially in those of the amine precursor uptake and decarboxylation (APUD) lineage such as pituitary, thyroid, pancreas, intestine and lung. In addition to its well-established glycolysis function in the cytoplasm, changes in cell localization and differential expression of NSE are also associated with several pathologies such as infection, inflammation, autoimmune diseases and cancer. This article mainly discusses the role and diagnostic potential of NSE in some lung diseases.
Collapse
|
17
|
Kishimoto K, Furukawa KT, Luz-Madrigal A, Yamaoka A, Matsuoka C, Habu M, Alev C, Zorn AM, Morimoto M. Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells. Nat Commun 2020; 11:4159. [PMID: 32855415 PMCID: PMC7453000 DOI: 10.1038/s41467-020-17969-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
The periodic cartilage and smooth muscle structures in mammalian trachea are derived from tracheal mesoderm, and tracheal malformations result in serious respiratory defects in neonates. Here we show that canonical Wnt signaling in mesoderm is critical to confer trachea mesenchymal identity in human and mouse. At the initiation of tracheal development, endoderm begins to express Nkx2.1, and then mesoderm expresses the Tbx4 gene. Loss of β-catenin in fetal mouse mesoderm causes loss of Tbx4+ tracheal mesoderm and tracheal cartilage agenesis. The mesenchymal Tbx4 expression relies on endodermal Wnt activation and Wnt ligand secretion but is independent of known Nkx2.1-mediated respiratory development, suggesting that bidirectional Wnt signaling between endoderm and mesoderm promotes trachea development. Activating Wnt, Bmp signaling in mouse embryonic stem cell (ESC)-derived lateral plate mesoderm (LPM) generates tracheal mesoderm containing chondrocytes and smooth muscle cells. For human ESC-derived LPM, SHH activation is required along with WNT to generate proper tracheal mesoderm. Together, these findings may contribute to developing applications for human tracheal tissue repair.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kana T Furukawa
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Agustin Luz-Madrigal
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Akira Yamaoka
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Chisa Matsuoka
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Masanobu Habu
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Aaron M Zorn
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
18
|
Huang W, Li P, Qiu X. [A Literature Review on the Role of TBX5 in Expression and Progression of Lung Cancer: Current Perspectives]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:883-888. [PMID: 32810974 PMCID: PMC7583881 DOI: 10.3779/j.issn.1009-3419.2020.102.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
T-box转录因子(T-box transcription factor gene, TBX)基因涉及器官的发生,TBX5在人的正常心脏和肺组织中表达水平最高。TBX5的缺乏可能导致胸廓发育畸形和膈肌发育异常,其异位表达和过表达会诱导细胞凋亡和抑制细胞生长。既往研究发现了TBX5在食管腺癌、胃癌、结肠癌和乳腺癌的发生和发展中的潜在作用。我们对TBX2亚家族的基因表达和预后之间的关系进行了综述,同时探究TBX5在调控肺癌发生发展机制中的研究进展。虽然TBX5和肺癌发生之间的关系尚不明确,不过TBX5可以显著抑制人体内肿瘤生长,其表达水平和肺癌的进展呈现负相关。由此,TBX5的基因表达水平和甲基化程度是潜在的表证肺癌增殖和转移的生物标志物,具有作为肺癌治疗靶点的潜力。
Collapse
Affiliation(s)
- Weijia Huang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Peiwei Li
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoming Qiu
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
van Weerd JH, Mohan RA, van Duijvenboden K, Hooijkaas IB, Wakker V, Boukens BJ, Barnett P, Christoffels VM. Trait-associated noncoding variant regions affect TBX3 regulation and cardiac conduction. eLife 2020; 9:56697. [PMID: 32672536 PMCID: PMC7365664 DOI: 10.7554/elife.56697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/28/2020] [Indexed: 11/21/2022] Open
Abstract
Genome-wide association studies have implicated common genomic variants in the gene desert upstream of TBX3 in cardiac conduction velocity. Whether these noncoding variants affect expression of TBX3 or neighboring genes and how they affect cardiac conduction is not understood. Here, we use high-throughput STARR-seq to test the entire 1.3 Mb human and mouse TBX3 locus, including two cardiac conduction-associated variant regions, for regulatory function. We identified multiple accessible and functional regulatory DNA elements that harbor variants affecting their activity. Both variant regions drove gene expression in the cardiac conduction tissue in transgenic reporter mice. Genomic deletion from the mouse genome of one of the regions caused increased cardiac expression of only Tbx3, PR interval shortening and increased QRS duration. Combined, our findings address the mechanistic link between trait-associated variants in the gene desert, TBX3 regulation and cardiac conduction.
Collapse
Affiliation(s)
- Jan Hendrik van Weerd
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Rajiv A Mohan
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Ingeborg B Hooijkaas
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Reich S, Kayastha P, Teegala S, Weinstein DC. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling. BMC Mol Cell Biol 2020; 21:39. [PMID: 32466750 PMCID: PMC7257154 DOI: 10.1186/s12860-020-00282-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Members of the T-box family of DNA-binding proteins play a prominent role in the differentiation of the three primary germ layers. VegT, Brachyury, and Eomesodermin function as transcriptional activators and, in addition to directly activating the transcription of endoderm- and mesoderm-specific genes, serve as regulators of growth factor signaling during induction of these germ layers. In contrast, the T-box gene, tbx2, is expressed in the embryonic ectoderm, where Tbx2 functions as a transcriptional repressor and inhibits mesendodermal differentiation by the TGFβ ligand Activin. Tbx2 misexpression also promotes dorsal ectodermal fate via inhibition of the BMP branch of the TGFβ signaling network. RESULTS Here, we report a physical association between Tbx2 and both Smad1 and Smad2, mediators of BMP and Activin/Nodal signaling, respectively. We perform structure/function analysis of Tbx2 to elucidate the roles of both Tbx2-Smad interaction and Tbx2 DNA-binding in germ layer suppression. CONCLUSION Our studies demonstrate that Tbx2 associates with intracellular mediators of the Activin/Nodal and BMP/GDF pathways. We identify a novel repressor domain within Tbx2, and have determined that Tbx2 DNA-binding activity is required for repression of TGFβ signaling. Finally, our data also point to overlapping yet distinct mechanisms for Tbx2-mediated repression of Activin/Nodal and BMP/GDF signaling.
Collapse
Affiliation(s)
- Shoshana Reich
- The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Peter Kayastha
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Sushma Teegala
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Daniel C Weinstein
- The Graduate Center, The City University of New York, New York, NY, 10016, USA. .,Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA.
| |
Collapse
|
21
|
Vincent M, Karolak JA, Deutsch G, Gambin T, Popek E, Isidor B, Szafranski P, Le Caignec C, Stankiewicz P. Clinical, Histopathological, and Molecular Diagnostics in Lethal Lung Developmental Disorders. Am J Respir Crit Care Med 2020; 200:1093-1101. [PMID: 31189067 DOI: 10.1164/rccm.201903-0495tr] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lethal lung developmental disorders are a rare but important group of pediatric diffuse lung diseases presenting with neonatal respiratory failure. On the basis of histopathological appearance at lung biopsy or autopsy, they have been termed: alveolar capillary dysplasia with misalignment of the pulmonary veins, acinar dysplasia, congenital alveolar dysplasia, and other unspecified primary pulmonary hypoplasias. However, the histopathological continuum in these lethal developmental disorders has made accurate diagnosis challenging, which has implications for recurrence risk. Over the past decade, genetic studies in infants with alveolar capillary dysplasia with misalignment of the pulmonary veins have revealed the causative role of the dosage-sensitive FOXF1 gene and its noncoding regulatory variants in the distant lung-specific enhancer at chromosome 16q24.1. In contrast, the molecular bases of acinar dysplasia and congenital alveolar dysplasia have remained poorly understood. Most recently, disruption of the TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling pathway has been reported in patients with these lethal pulmonary dysplasias. Application of next-generation sequencing techniques, including exome sequencing and whole-genome sequencing, has demonstrated their complex compound inheritance. These data indicate that noncoding regulatory elements play a critical role in lung development in humans. We propose that for more precise lethal lung developmental disorder diagnosis, a diagnostic pathway including whole-genome sequencing should be implemented.
Collapse
Affiliation(s)
- Marie Vincent
- Service de Genetique Medicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, L'institut du Thorax, Nantes, France
| | - Justyna A Karolak
- Department of Molecular and Human Genetics and.,Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington
| | - Tomasz Gambin
- Department of Molecular and Human Genetics and.,Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; and.,Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Bertrand Isidor
- Service de Genetique Medicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, L'institut du Thorax, Nantes, France
| | | | - Cedric Le Caignec
- Service de Genetique Medicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | | |
Collapse
|
22
|
Wojahn I, Lüdtke TH, Christoffels VM, Trowe MO, Kispert A. TBX2-positive cells represent a multi-potent mesenchymal progenitor pool in the developing lung. Respir Res 2019; 20:292. [PMID: 31870435 PMCID: PMC6929292 DOI: 10.1186/s12931-019-1264-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background In the embryonic mammalian lung, mesenchymal cells act both as a signaling center for epithelial proliferation, differentiation and morphogenesis as well as a source for a multitude of differentiated cell types that support the structure of the developing and mature organ. Whether the embryonic pulmonary mesenchyme is a homogenous precursor pool and how it diversifies into different cell lineages is poorly understood. We have previously shown that the T-box transcription factor gene Tbx2 is expressed in the pulmonary mesenchyme of the developing murine lung and is required therein to maintain branching morphogenesis. Methods We determined Tbx2/TBX2 expression in the developing murine lung by in situ hybridization and immunofluorescence analyses. We used a genetic lineage tracing approach with a Cre line under the control of endogenous Tbx2 control elements (Tbx2cre), and the R26mTmG reporter line to trace TBX2-positive cells in the murine lung. We determined the fate of the TBX2 lineage by co-immunofluorescence analysis of the GFP reporter and differentiation markers in normal murine lungs and in lungs lacking or overexpressing TBX2 in the pulmonary mesenchyme. Results We show that TBX2 is strongly expressed in mesenchymal progenitors in the developing murine lung. In differentiated smooth muscle cells and in fibroblasts, expression of TBX2 is still widespread but strongly reduced. In mesothelial and endothelial cells expression is more variable and scattered. All fetal smooth muscle cells, endothelial cells and fibroblasts derive from TBX2+ progenitors, whereas half of the mesothelial cells have a different descent. The fate of TBX2-expressing cells is not changed in Tbx2-deficient and in TBX2-constitutively overexpressing mice but the distribution and abundance of endothelial and smooth muscle cells is changed in the overexpression condition. Conclusion The fate of pulmonary mesenchymal progenitors is largely independent of TBX2. Nevertheless, a successive and precisely timed downregulation of TBX2 is necessary to allow proper differentiation and functionality of bronchial smooth muscle cells and to limit endothelial differentiation. Our work suggests expression of TBX2 in an early pulmonary mesenchymal progenitor and supports a role of TBX2 in maintaining the precursor state of these cells.
Collapse
Affiliation(s)
- Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
23
|
Galambos C, Mullen MP, Shieh JT, Schwerk N, Kielt MJ, Ullmann N, Boldrini R, Stucin-Gantar I, Haass C, Bansal M, Agrawal PB, Johnson J, Peca D, Surace C, Cutrera R, Pauciulo MW, Nichols WC, Griese M, Ivy D, Abman SH, Austin ED, Danhaive O. Phenotype characterisation of TBX4 mutation and deletion carriers with neonatal and paediatric pulmonary hypertension. Eur Respir J 2019; 54:13993003.01965-2018. [PMID: 31151956 DOI: 10.1183/13993003.01965-2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/19/2019] [Indexed: 11/05/2022]
Abstract
Rare variants in the T-box transcription factor 4 gene (TBX4) have recently been recognised as an emerging cause of paediatric pulmonary hypertension (PH). Their pathophysiology and contribution to persistent pulmonary hypertension in neonates (PPHN) are unknown. We sought to define the spectrum of clinical manifestations and histopathology associated with TBX4 variants in neonates and children with PH.We assessed clinical data and lung tissue in 19 children with PH, including PPHN, carrying TBX4 rare variants identified by next-generation sequencing and copy number variation arrays.Variants included six 17q23 deletions encompassing the entire TBX4 locus and neighbouring genes, and 12 likely damaging mutations. 10 infants presented with neonatal hypoxic respiratory failure and PPHN, and were subsequently discharged home. PH was diagnosed later in infancy or childhood. Three children died and two required lung transplantation. Associated anomalies included patent ductus arteriosus, septal defects, foot anomalies and developmental disability, the latter with a higher prevalence in deletion carriers. Histology in seven infants showed abnormal distal lung development and pulmonary hypertensive remodelling.TBX4 mutations and 17q23 deletions underlie a new form of developmental lung disease manifesting with severe, often biphasic PH at birth and/or later in infancy and childhood, often associated with skeletal anomalies, cardiac defects, neurodevelopmental disability and other anomalies.
Collapse
Affiliation(s)
- Csaba Galambos
- Dept of Pathology and Laboratory Services, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.,Contributed equally to this work as joint first authors
| | - Mary P Mullen
- Dept of Cardiology, Boston Children's Hospital and Pediatrics Harvard Medical School, Boston, MA, USA.,Contributed equally to this work as joint first authors
| | - Joseph T Shieh
- Institute for Human Genetics, Medical Genetics, University of California San Francisco, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Nicolaus Schwerk
- Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Matthew J Kielt
- Division of Pediatric Pulmonology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Ullmann
- Division of Pediatric Pulmonology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Renata Boldrini
- Dept of Laboratory Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Cristina Haass
- Division of Neonatology, San Pietro-Fatebenefratelli Hospital, Rome, Italy
| | - Manish Bansal
- Division of Pediatric Cardiology, University of Iowa Children's Hospital, Iowa City, IA, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine and Genetics and Genomics, Harvard School of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Joyce Johnson
- Dept of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Donatella Peca
- Dept of Laboratory Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Cecilia Surace
- Dept of Laboratory Medicine, Bambino Gesù Children's Hospital, Rome, Italy
| | - Renato Cutrera
- Division of Pediatric Pulmonology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Dept of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Dept of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthias Griese
- Division of Pediatric Pulmonology, Ludwig-Maximilians-University, Munich, Germany
| | - Dunbar Ivy
- Division of Pediatric Cardiology, Dept of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Steven H Abman
- Division of Pulmonary Medicine, Dept of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Eric D Austin
- Division of Pediatric Pulmonology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olivier Danhaive
- Division of Neonatology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA .,Division of Neonatology, Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|
24
|
Tsay HC, Yuan Q, Balakrishnan A, Kaiser M, Möbus S, Kozdrowska E, Farid M, Tegtmeyer PK, Borst K, Vondran FWR, Kalinke U, Kispert A, Manns MP, Ott M, Sharma AD. Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis. J Hepatol 2019; 70:722-734. [PMID: 30582979 DOI: 10.1016/j.jhep.2018.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Fibrosis, a cardinal feature of a dysfunctional liver, significantly contributes to the ever-increasing mortality due to end-stage chronic liver diseases. The crosstalk between hepatocytes and hepatic stellate cells (HSCs) plays a key role in the progression of fibrosis. Although ample efforts have been devoted to elucidate the functions of HSCs during liver fibrosis, the regulatory functions of hepatocytes remain elusive. METHODS Using an unbiased functional microRNA (miRNA) screening, we investigated the ability of hepatocytes to regulate fibrosis by fine-tuning gene expression via miRNA modulation. The in vivo functional analyses were performed by inhibiting miRNA in hepatocytes using adeno-associated virus in carbon-tetrachloride- and 3,5-di-diethoxycarbonyl-1,4-dihydrocollidine-induced liver fibrosis. RESULTS Blocking miRNA-221-3p function in hepatocytes during chronic liver injury facilitated recovery of the liver and faster resolution of the deposited extracellular matrix. Furthermore, we demonstrate that reduced secretion of C-C motif chemokine ligand 2, as a result of post-transcriptional regulation of GNAI2 (G protein alpha inhibiting activity polypeptide 2) by miRNA-221-3p, mitigates liver fibrosis. CONCLUSIONS Collectively, miRNA modulation in hepatocytes, an easy-to-target cell type in the liver, may serve as a potential therapeutic approach for liver fibrosis. LAY SUMMARY Liver fibrosis majorly contributes to mortality resulting from various liver diseases. We discovered a small RNA known as miRNA-221-3p, whose downregulation in hepatocytes results in reduced liver fibrosis. Thus, inhibition of miRNA-221-3p may serve as one of the therapeutic approaches for treatment of liver fibrosis.
Collapse
Affiliation(s)
- Hsin-Chieh Tsay
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Marina Kaiser
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Selina Möbus
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Emilia Kozdrowska
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Marwa Farid
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Pia-Katharina Tegtmeyer
- TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Katharina Borst
- TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Regenerative Medicine and Experimental Surgery (RedMediES), Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
| | - Amar Deep Sharma
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
25
|
Epigenetic Suppression of the T-box Subfamily 2 ( TBX2) in Human Non-Small Cell Lung Cancer. Int J Mol Sci 2019; 20:ijms20051159. [PMID: 30866410 PMCID: PMC6429281 DOI: 10.3390/ijms20051159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022] Open
Abstract
(1) The TBX2 subfamily of transcription factors (TBXs 2, 3, 4 and 5) are markedly down-regulated in human non-small cell lung cancer (NSCLC) and exert tumor suppressor effects in lung malignancy. Yet, mechanisms underlying suppressed expression of the TBX2 subfamily in NSCLC are elusive. Here, we interrogated probable epigenetic mechanisms in suppressed expression of the TBX2 subfamily in human NSCLC. (2) TBX2 subfamily gene expression and methylation levels in NSCLC and normal lung tissues were surveyed using publicly available RNA-sequence and genome-wide methylation datasets. Methylation β-values of the four genes were statistically compared between NSCLCs and normal lung tissues, correlated with gene expression levels, and interrogated with clinicopathological variables. Expression and methylation levels of TBXs were quantified in NSCLC cells using real-time PCR and methylation-specific PCR assays, respectively. Effects of the DNA methyltransferase inhibitor 5-azacytidine (Aza) on TBX2 subfamily expression were assessed in NSCLC cells. Impact of TBX2 subfamily expression on Aza-treated cells was evaluated by RNA interference. (3) All four TBXs were significantly hypermethylated in NSCLCs relative to normal lung tissues (p < 0.05). Methylation β-values of the genes, with exception of TBX2, were significantly inversely correlated with corresponding mRNA expression levels (p < 0.05). We found no statistically significant differences in hypermethylation levels of the TBX2 subfamily by clinicopathological features including stage and tobacco history. Expression levels of the TBX genes were overall suppressed in NSCLC cells relative to normal alveolar cells. Members of the subfamily were significantly hypermethylated in all tested NSCLC cell lines relative to normal alveolar cells. Treatment with Aza induced the expression of the TBX2 subfamily concomitant with NSCLC cell growth inhibition. Further, simultaneous knockdown of the four TBX genes markedly reduced anti-growth effects of Aza in NSCLC cells. (4) Our study sheds light on new epigenetic profiles in the molecular pathogenesis of human NSCLC.
Collapse
|
26
|
Karolak JA, Vincent M, Deutsch G, Gambin T, Cogné B, Pichon O, Vetrini F, Mefford HC, Dines JN, Golden-Grant K, Dipple K, Freed AS, Leppig KA, Dishop M, Mowat D, Bennetts B, Gifford AJ, Weber MA, Lee AF, Boerkoel CF, Bartell TM, Ward-Melver C, Besnard T, Petit F, Bache I, Tümer Z, Denis-Musquer M, Joubert M, Martinovic J, Bénéteau C, Molin A, Carles D, André G, Bieth E, Chassaing N, Devisme L, Chalabreysse L, Pasquier L, Secq V, Don M, Orsaria M, Missirian C, Mortreux J, Sanlaville D, Pons L, Küry S, Bézieau S, Liet JM, Joram N, Bihouée T, Scott DA, Brown CW, Scaglia F, Tsai ACH, Grange DK, Phillips JA, Pfotenhauer JP, Jhangiani SN, Gonzaga-Jauregui CG, Chung WK, Schauer GM, Lipson MH, Mercer CL, van Haeringen A, Liu Q, Popek E, Coban Akdemir ZH, Lupski JR, Szafranski P, Isidor B, Le Caignec C, Stankiewicz P. Complex Compound Inheritance of Lethal Lung Developmental Disorders Due to Disruption of the TBX-FGF Pathway. Am J Hum Genet 2019; 104:213-228. [PMID: 30639323 DOI: 10.1016/j.ajhg.2018.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.
Collapse
MESH Headings
- DNA Copy Number Variations/genetics
- Female
- Fibroblast Growth Factor 10/genetics
- Fibroblast Growth Factor 10/metabolism
- Gene Expression Regulation
- Gestational Age
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/metabolism
- Infant, Newborn, Diseases/mortality
- Infant, Newborn, Diseases/pathology
- Lung/embryology
- Lung/growth & development
- Lung Diseases/genetics
- Lung Diseases/metabolism
- Lung Diseases/mortality
- Lung Diseases/pathology
- Male
- Maternal Inheritance
- Organogenesis
- Paternal Inheritance
- Pedigree
- Polymorphism, Single Nucleotide/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction/genetics
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marie Vincent
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Tomasz Gambin
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland; Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Olivier Pichon
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | | | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer N Dines
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Katie Golden-Grant
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Katrina Dipple
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Amanda S Freed
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Kathleen A Leppig
- Genetic Services Kaiser Permanente of Washington, Seattle, WA 98112, USA
| | - Megan Dishop
- Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick Sydney, NSW 2031 Australia; School of Women's and Children's Health, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Bruce Bennetts
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Molecular Genetics Department, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J Gifford
- School of Women's and Children's Health, The University of New South Wales, Sydney, NSW 2052, Australia; Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Martin A Weber
- Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna F Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Cornelius F Boerkoel
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Tina M Bartell
- Department of Genetics, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95815, USA
| | | | - Thomas Besnard
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Florence Petit
- Service de Génétique Clinique, CHU Lille, 59000 Lille, France
| | - Iben Bache
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 N Copenhagen, Denmark; Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Ø Copenhagen, Denmark
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Copenhagen, Denmark; Deparment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N, Copenhagen, Denmark
| | | | | | - Jelena Martinovic
- Unit of Fetal Pathology, AP-HP, Antoine Beclere Hospital, 75000 Paris, France
| | - Claire Bénéteau
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Arnaud Molin
- Service de Génétique Médicale, CHU Caen, 14000 Caen, France
| | - Dominique Carles
- Service d'anatomo-pathologie, CHU Bordeaux, 33000 Bordeaux, France
| | - Gwenaelle André
- Service d'anatomo-pathologie, CHU Bordeaux, 33000 Bordeaux, France
| | - Eric Bieth
- Service de génétique médicale, CHU Toulouse, France and UDEAR, UMR 1056 Inserm - Université de Toulouse, 31000 Toulouse, France
| | - Nicolas Chassaing
- Service de génétique médicale, CHU Toulouse, France and UDEAR, UMR 1056 Inserm - Université de Toulouse, 31000 Toulouse, France
| | | | | | | | - Véronique Secq
- Aix Marseille Univ, APHM, Hôpital Nord, Service d'anatomo-pathologie, 13000 Marseille, France
| | - Massimiliano Don
- Sant'Antonio General Hospital, Pediatric Care Unit, San Daniele del Friuli, 33100 Udine, Italy
| | - Maria Orsaria
- Department of Medical and Biological Sciences, Pathology Unit, University of Udine, Udine, Italy
| | - Chantal Missirian
- Aix Marseille Univ, APHM, INSERM, MMG, Marseille, Timone Hospital, 13000 Marseille, France
| | - Jérémie Mortreux
- Aix Marseille Univ, APHM, INSERM, MMG, Marseille, Timone Hospital, 13000 Marseille, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, GHE, Genetics department, and Lyon University, 69000 Lyon, France
| | - Linda Pons
- Hospices Civils de Lyon, GHE, Genetics department, and Lyon University, 69000 Lyon, France
| | - Sébastien Küry
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Jean-Michel Liet
- Service de réanimation pédiatrique, CHU Nantes, 44000 Nantes, France
| | - Nicolas Joram
- Service de réanimation pédiatrique, CHU Nantes, 44000 Nantes, France
| | | | - Daryl A Scott
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chester W Brown
- Department of Pediatrics, Genetics Division, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fernando Scaglia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, New Territories, Hong Kong SAR
| | - Anne Chun-Hui Tsai
- Department of Pediatrics, The Children's Hospital, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dorothy K Grange
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - John A Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jean P Pfotenhauer
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - Galen M Schauer
- Department of Pathology, Kaiser Permanente Oakland Medical Center, Oakland, CA 94611, USA
| | - Mark H Lipson
- Department of Genetics, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95815, USA
| | - Catherine L Mercer
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Princess Anne Hospital, Southampton SO16 5YA, UK
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Qian Liu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | | | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA; Institute of Mother and Child, 01-211 Warsaw, Poland.
| |
Collapse
|
27
|
Lüdtke TH, Rudat C, Kurz J, Häfner R, Greulich F, Wojahn I, Aydoğdu N, Mamo TM, Kleppa MJ, Trowe MO, Bohnenpoll T, Taketo MM, Kispert A. Mesothelial mobilization in the developing lung and heart differs in timing, quantity, and pathway dependency. Am J Physiol Lung Cell Mol Physiol 2019; 316:L767-L783. [PMID: 30702346 DOI: 10.1152/ajplung.00212.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mesothelial lining of the lung, the visceral pleura, and of the heart, the epicardium, derive from a common multipotent precursor tissue, the mesothelium of the embryonic thoracic cavity that also contributes to organ-specific mesenchymal cell types. Insight into mesothelial mobilization and differentiation has prevailedin the developing heart while the mesenchymal transition and fate of the visceral pleura are poorly understood. Here, we use the fact that the early mesothelium of both the lung and the heart expresses the transcription factor gene Wt1, to comparatively analyze mesothelial mobilization in the two organs by a genetic cre-loxP-based conditional approach. We show that epicardial cells are mobilized in a large number between E12.5 and E14.5, whereas pleural mobilization occurs only sporadically and variably in few regions of the lung in a temporally highly confined manner shortly after E12.5. Mesothelium-specific inactivation of unique pathway components using a Wt1creERT2 line excluded a requirement for canonical WNT, NOTCH, HH, TGFB, PDGFRA, and FGFR1/FGFR2 signaling in the mesenchymal transition of the visceral pleura but indicated a deleterious effect of activated WNT, NOTCH, and HH signaling on lung development. Epicardial mobilization was negatively impacted on by loss of HH, PDGFRA, FGFR1/2 signaling. Epicardial overactivation of WNT, NOTCH, and HH disturbed epicardial and myocardial integrity. We conclude that mesothelial mobilization in the developing lung and heart differs in timing, quantity and pathway dependency, indicating the organ specificity of the program.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Regine Häfner
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Franziska Greulich
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Nurullah Aydoğdu
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Tamrat M Mamo
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Tobias Bohnenpoll
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University , Kyoto , Japan
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover , Germany
| |
Collapse
|
28
|
Liu X, Miao Z, Wang Z, Zhao T, Xu Y, Song Y, Huang J, Zhang J, Xu H, Wu J, Xu H. TBX2 overexpression promotes proliferation and invasion through epithelial-mesenchymal transition and ERK signaling pathway. Exp Ther Med 2018; 17:723-729. [PMID: 30651856 PMCID: PMC6307397 DOI: 10.3892/etm.2018.7028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to clarify the clinical significance and biological effects of T-box (TBX)2 and its potential mechanism in gastric cancer (GC). TBX2 protein expression levels in human GC tissues were investigated using immunohistochemistry, and it was demonstrated that TBX2 was overexpressed in 55.9% (90/161) GC samples. TBX2 overexpression correlated with tumor invasion, advanced tumor node metastasis stage and presence of lymph node metastasis. In addition, TBX2 correlated with poor patient survival. To investigate the effect of TBX2 on biological behaviors, TBX2 plasmid transfection was performed in SGC-7901 cells and TBX2 small interfering RNA knockdown was carried out in BGC-823 cells. MTT and matrigel invasion assays demonstrated that TBX2 overexpression promoted proliferation and invasion, whereas TBX2 depletion inhibited proliferation and invasion. TBX2 overexpression also promoted epithelial-mesenchymal transition by downregulating E-cadherin and upregulating N-cadherin. TBX2 overexpression also upregulated matrix metalloproteinase (MMP)2, MMP9, cyclin E and phosphorylated-extracellular signal regulated kinase levels, however downregulated p21. In conclusion, TBX2 may serve as an effective predictor and therapeutic target in human GC.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhifeng Miao
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhenning Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yongxi Song
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jinyu Huang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Junyan Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hao Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jianhua Wu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huimian Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
29
|
Aydoğdu N, Rudat C, Trowe MO, Kaiser M, Lüdtke TH, Taketo MM, Christoffels VM, Moon A, Kispert A. TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development 2018; 145:145/23/dev171827. [PMID: 30478225 DOI: 10.1242/dev.171827] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
The organized array of smooth muscle cells (SMCs) and fibroblasts in the walls of visceral tubular organs arises by patterning and differentiation of mesenchymal progenitors surrounding the epithelial lumen. Here, we show that the TBX2 and TBX3 transcription factors have novel and required roles in regulating these processes in the murine ureter. Co-expression of TBX2 and TBX3 in the inner mesenchymal region of the developing ureter requires canonical WNT signaling. Loss of TBX2/TBX3 in this region disrupts activity of two crucial drivers of the SMC program, Foxf1 and BMP4 signaling, resulting in decreased SMC differentiation and increased extracellular matrix. Transcriptional profiling and chromatin immunoprecipitation experiments revealed that TBX2/TBX3 directly repress expression of the WNT antagonists Dkk2 and Shisa2, the BMP antagonist Bmper and the chemokine Cxcl12 These findings suggest that TBX2/TBX3 are effectors of canonical WNT signaling in the ureteric mesenchyme that promote SMC differentiation by maintaining BMP4 and WNT signaling in the inner region, while restricting CXCL12 signaling to the outer layer of fibroblast-fated mesenchyme.
Collapse
Affiliation(s)
- Nurullah Aydoğdu
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Marina Kaiser
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville PA 17822, USA.,Departments of Pediatrics and Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| |
Collapse
|
30
|
Khalil A, Dekmak B, Boulos F, Kantrowitz J, Spira A, Fujimoto J, Kadara H, El-Hachem N, Nemer G. Transcriptomic Alterations in Lung Adenocarcinoma Unveil New Mechanisms Targeted by the TBX2 Subfamily of Tumor Suppressor Genes. Front Oncol 2018; 8:482. [PMID: 30425966 PMCID: PMC6218583 DOI: 10.3389/fonc.2018.00482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
T-box (TBX) transcription factors are evolutionary conserved genes and master transcriptional regulators. In mammals, TBX2 subfamily (TBX2, TBX3, TBX4, and TBX5) genes are expressed in the developing lung bud and tracheae. Our group previously showed that the expression of TBX2 subfamily was significantly high in human normal lungs, but markedly suppressed in lung adenocarcinoma (LUAD). To further elucidate their role in LUAD pathogenesis, we first confirmed abundant expression of protein products of the four members by immunostaining in adult human normal lung tissues. We also found overall suppressed expression of these genes and their corresponding proteins in a panel of human LUAD cell lines. Transient over-expression of each of the genes in human (NCI-H1299), and mouse (MDA-F471) derived lung cancer cells was found to significantly inhibit growth and proliferation as well as induce apoptosis. Genome-wide transcriptomic analyses on NCI-H1299 cells, overexpressing TBX2 gene subfamily, unraveled novel regulatory pathways. These included, among others, inhibition of cell cycle progression but more importantly activation of the histone demethylase pathway. When using a pattern-matching algorithm, we showed that TBX's overexpression mimic molecular signatures from azacitidine treated NCI-H1299 cells which in turn are inversely correlated to expression profiles of both human and murine lung tumors relative to matched normal lung. In conclusion, we showed that the TBX2 subfamily genes play a critical tumor suppressor role in lung cancer pathogenesis through regulating its methylating pattern, making them putative candidates for epigenetic therapy in LUAD.
Collapse
Affiliation(s)
- Athar Khalil
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Batoul Dekmak
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fouad Boulos
- Department of Pathology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jake Kantrowitz
- Section of Computational Biomedicine, Boston University, Boston, MA, United States
| | - Avrum Spira
- Section of Computational Biomedicine, Boston University, Boston, MA, United States
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Humam Kadara
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Division of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nehme El-Hachem
- Faculty of Medicine and Genome Innovation Centre, McGill University, Montreal, QC, Canada
| | - Georges Nemer
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
31
|
Chen Y, Widschwendter M, Teschendorff AE. Systems-epigenomics inference of transcription factor activity implicates aryl-hydrocarbon-receptor inactivation as a key event in lung cancer development. Genome Biol 2017; 18:236. [PMID: 29262847 PMCID: PMC5738803 DOI: 10.1186/s13059-017-1366-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022] Open
Abstract
Background Diverse molecular alterations associated with smoking in normal and precursor lung cancer cells have been reported, yet their role in lung cancer etiology remains unclear. A prominent example is hypomethylation of the aryl hydrocarbon-receptor repressor (AHRR) locus, which is observed in blood and squamous epithelial cells of smokers, but not in lung cancer. Results Using a novel systems-epigenomics algorithm, called SEPIRA, which leverages the power of a large RNA-sequencing expression compendium to infer regulatory activity from messenger RNA expression or DNA methylation (DNAm) profiles, we infer the landscape of binding activity of lung-specific transcription factors (TFs) in lung carcinogenesis. We show that lung-specific TFs become preferentially inactivated in lung cancer and precursor lung cancer lesions and further demonstrate that these results can be derived using only DNAm data. We identify subsets of TFs which become inactivated in precursor cells. Among these regulatory factors, we identify AHR, the aryl hydrocarbon-receptor which controls a healthy immune response in the lung epithelium and whose repressor, AHRR, has recently been implicated in smoking-mediated lung cancer. In addition, we identify FOXJ1, a TF which promotes growth of airway cilia and effective clearance of the lung airway epithelium from carcinogens. Conclusions We identify TFs, such as AHR, which become inactivated in the earliest stages of lung cancer and which, unlike AHRR hypomethylation, are also inactivated in lung cancer itself. The novel systems-epigenomics algorithm SEPIRA will be useful to the wider epigenome-wide association study community as a means of inferring regulatory activity. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1366-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuting Chen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China. .,Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK. .,UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
32
|
Horie M, Miyashita N, Mikami Y, Noguchi S, Yamauchi Y, Suzukawa M, Fukami T, Ohta K, Asano Y, Sato S, Yamaguchi Y, Ohshima M, Suzuki HI, Saito A, Nagase T. TBX4 is involved in the super-enhancer-driven transcriptional programs underlying features specific to lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2017; 314:L177-L191. [PMID: 28971975 DOI: 10.1152/ajplung.00193.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lung fibroblasts participate in the pathogenesis of respiratory diseases, including lung cancer and pulmonary fibrosis. Although fibroblasts are ubiquitous constituents of various organs, their cellular diversity among different organs has been poorly characterized. Here, we aimed to investigate the distinct gene signature of lung fibroblasts that represents its pulmonary origin and the underlying gene regulatory networks. Promoter-level differential expression analysis by cap analysis of gene expression (CAGE) sequencing revealed distinct gene expression patterns of fibroblasts derived from different anatomical sites and identified 88 coding genes with higher expression in lung fibroblasts relative to other fibroblasts. Multiple key transcription factors important for lung mesenchyme development, including the T-box transcription factors TBX2, TBX4, and TBX5 were enriched in this lung-specific signature and were associated with super-enhancers. TBX4 showed highly specific expression in lung fibroblasts and was required for cell proliferation and collagen gel contraction capacity. Transcriptome analysis revealed that TBX4 could broadly regulate fibroblast-related pathways and partly contribute to super-enhancer-mediated transcriptional programs. Of pathological importance, lung fibroblast-specific genes were globally downregulated in lung cancer-associated fibroblasts (CAFs). Notably, TBX2, TBX4, and TBX5 were downregulated and hypermethylated in lung CAFs, suggesting an association between epigenetic silencing of these factors and phenotypic alteration of lung fibroblasts in cancer. Our study highlights the importance of T-box transcription factors, especially TBX4, and super-enhancers in the roles of lung fibroblasts in pulmonary physiology and pathogenesis.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan.,Division for Health Service Promotion, The University of Tokyo , Tokyo , Japan.,Division of Genomic Technologies, RIKEN Center for Life Science Technologies , Kanagawa , Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Yu Mikami
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan.,Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Satoshi Noguchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Yasuhiro Yamauchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital , Tokyo , Japan
| | - Takeshi Fukami
- National Hospital Organization Tokyo National Hospital , Tokyo , Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital , Tokyo , Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry , Tokyo , Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry , Tokyo , Japan
| | - Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences , Fukushima , Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan.,Division for Health Service Promotion, The University of Tokyo , Tokyo , Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| |
Collapse
|
33
|
He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet 2017; 13:e1006992. [PMID: 28859094 PMCID: PMC5597256 DOI: 10.1371/journal.pgen.1006992] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/13/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meina Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shenfei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- * E-mail: ,
| |
Collapse
|
34
|
Bohnenpoll T, Wittern AB, Mamo TM, Weiss AC, Rudat C, Kleppa MJ, Schuster-Gossler K, Wojahn I, Lüdtke THW, Trowe MO, Kispert A. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet 2017; 13:e1006951. [PMID: 28797033 PMCID: PMC5567910 DOI: 10.1371/journal.pgen.1006951] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/22/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022] Open
Abstract
The differentiated cell types of the epithelial and mesenchymal tissue compartments of the mature ureter of the mouse arise in a precise temporal and spatial sequence from uncommitted precursor cells of the distal ureteric bud epithelium and its surrounding mesenchyme. Previous genetic efforts identified a member of the Hedgehog (HH) family of secreted proteins, Sonic hedgehog (SHH) as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme. Here, we used conditional loss- and gain-of-function experiments of the unique HH signal transducer Smoothened (SMO) to further characterize the cellular functions and unravel the effector genes of HH signaling in ureter development. We showed that HH signaling is not only required for proliferation and SMC differentiation of cells of the inner mesenchymal region but also for survival of cells of the outer mesenchymal region, and for epithelial proliferation and differentiation. We identified the Forkhead transcription factor gene Foxf1 as a target of HH signaling in the ureteric mesenchyme. Expression of a repressor version of FOXF1 in this tissue completely recapitulated the mesenchymal and epithelial proliferation and differentiation defects associated with loss of HH signaling while re-expression of a wildtype version of FOXF1 in the inner mesenchymal layer restored these cellular programs when HH signaling was inhibited. We further showed that expression of Bmp4 in the ureteric mesenchyme depends on HH signaling and Foxf1, and that exogenous BMP4 rescued cell proliferation and epithelial differentiation in ureters with abrogated HH signaling or FOXF1 function. We conclude that SHH uses a FOXF1-BMP4 module to coordinate the cellular programs for ureter elongation and differentiation, and suggest that deregulation of this signaling axis occurs in human congenital anomalies of the kidney and urinary tract (CAKUT). The mammalian ureter is a simple tube with a specialized multi-layered epithelium, the urothelium, and a surrounding coat of fibroblasts and peristaltically active smooth muscle cells. Besides its important function in urinary drainage, the ureter represents a simple model system to study epithelial and mesenchymal tissue interactions in organ development. The differentiated cell types of the ureter coordinately arise from precursor cells of the distal ureteric bud and its surrounding mesenchyme. How their survival, growth and differentiation is regulated and coordinated within and between the epithelial and mesenchymal tissue compartments is largely unknown. Previous work identified Sonic hedgehog (SHH) as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme, but the entirety of the cellular functions and the molecular mediators of its mesenchymal signaling pathway have remained obscure. Here we showed that epithelial SHH acts in a paracrine fashion onto the ureteric mesenchyme to activate a FOXF1-BMP4 regulatory module that directs growth and differentiation of both ureteric tissue compartments. HH signaling additionally acts in outer mesenchymal cells as a survival factor. Thus, SHH is an epithelial signal that coordinates various cellular programs in early ureter development.
Collapse
Affiliation(s)
- Tobias Bohnenpoll
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Anna B. Wittern
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Tamrat M. Mamo
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Timo H.-W. Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
35
|
TBX2 subfamily suppression in lung cancer pathogenesis: a high-potential marker for early detection. Oncotarget 2017; 8:68230-68241. [PMID: 28978111 PMCID: PMC5620251 DOI: 10.18632/oncotarget.19938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The TBX2 subfamily (TBXs 2, 3, 4 and 5) transactivates or represses genes involved in lung organogenesis. Yet TBX2 subfamily expression in pathogenesis of non-small cell lung cancer (NSCLC), the most common lung malignancy, remains elusive. We sought to probe the expression profile of the TBX2 subfamily in early phases of NSCLC. Expression of TBX2 subfamily was analyzed in datasets of pan-normal specimens as well as NSCLCs and normal lung tissues. TBX2 subfamily expression in matched normal lungs, premalignant hyperplasias and NSCLCs was profiled by transcriptome sequencing. TBX2 subfamily expression was evaluated in the cancerization field consisting of matched NSCLCs and adjacent cytologically-normal airways relative to distant normal lungs and in a dataset of normal bronchial samples from smokers with indeterminate nodules suspicious for malignancy. Statistical analysis was performed using R. TBX2 subfamily expression was markedly elevated in normal lungs relative to other organ-specific normal tissues. Expression of the TBXs was significantly suppressed in NSCLCs relative to normal lungs (P < 10−9). TBX2 subfamily was significantly progressively decreased across premalignant lesions and NSCLCs relative to normal lungs (P < 10−4). The subfamily was significantly suppressed in NSCLCs and adjacent normal-appearing airways relative to distant normal lung tissues (P < 10−15). Further, suppressed TBX2 subfamily expression in normal bronchi was associated with lung cancer status (P < 10−5) in smokers. Our findings suggest that the TBX2 subfamily is notably suppressed in human NSCLC pathogenesis and may serve as a high-potential biomarker for early lung cancer detection in high-risk smokers.
Collapse
|
36
|
Lv Y, Si M, Chen N, Li Y, Ma X, Yang H, Zhang L, Zhu H, Xu GY, Wu GP, Cao C. TBX2 over-expression promotes nasopharyngeal cancer cell proliferation and invasion. Oncotarget 2017; 8:52699-52707. [PMID: 28881763 PMCID: PMC5581062 DOI: 10.18632/oncotarget.17084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/12/2017] [Indexed: 12/31/2022] Open
Abstract
TBX2 is a member of the T box transcription factor family. Its expression and potential biological functions in nasopharyngeal cancer (NPC) cells are studied here. We showed that TBX2 mRNA and protein expression was significantly elevated in multiple human NPC tissues, as compared with that in adjacent normal tissues. Knockdown of TBX2 by targeted-siRNA significantly inhibited proliferation and invasion of NPC cells (CNE-1 and HONE-1 lines). Meanwhile, TBX2 knockdown also induced G1-phase cell cycle arrest. At the molecular level, we discovered that expressions of several tumor suppressor genes, including p21, p27, phosphatase with tensin homology (PTEN) and E-Cadherin, were increased dramatically after TBX2 knockdown in above NPC cells. Collectively, our results imply that TBX2 over-expression promotes NPC cell proliferation and invasion, possibly via silencing several key tumor suppressor genes.
Collapse
Affiliation(s)
- Yan Lv
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Meng Si
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Nannan Chen
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ya Li
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xingkai Ma
- Department of Otolaryngology, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Huijun Yang
- Department of Otolaryngology, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Ling Zhang
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Hongyan Zhu
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China.,Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ge-Ping Wu
- Center of Translational Medicine, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China.,Department of Otolaryngology, The First People Hospital of Zhangjiagang City, Soochow University, Suzhou, China
| | - C Cao
- Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Canonical Sonic Hedgehog Signaling in Early Lung Development. J Dev Biol 2017; 5:jdb5010003. [PMID: 29615561 PMCID: PMC5831770 DOI: 10.3390/jdb5010003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022] Open
Abstract
The canonical hedgehog (HH) signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH proteins, Sonic Hedgehog (SHH) plays an essential role during lung development. In fact, abnormal levels of this secreted protein lead to severe foregut defects and lung hypoplasia. Canonical SHH signal transduction relies on the presence of transmembrane receptors, such as Patched1 and Smoothened, accessory proteins, as Hedgehog-interacting protein 1, and intracellular effector proteins, like GLI transcription factors. Altogether, this complex signaling machinery contributes to conveying SHH response. Pulmonary morphogenesis is deeply dependent on SHH and on its molecular interactions with other signaling pathways. In this review, the role of SHH in early stages of lung development, specifically in lung specification, primary bud formation, and branching morphogenesis is thoroughly reviewed.
Collapse
|
38
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Expression of T-box transcription factors 2, 4 and 5 is decreased in the branching airway mesenchyme of nitrofen-induced hypoplastic lungs. Pediatr Surg Int 2017; 33:139-143. [PMID: 27833996 DOI: 10.1007/s00383-016-4005-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major therapeutic challenge in newborns with congenital diaphragmatic hernia (CDH). T-box transcription factors (Tbx) have been identified as key components of the gene network that regulates fetal lung development. Tbx2, Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung, regulating the process of lung branching morphogenesis. Furthermore, lungs of Tbx2-, Tbx4- and Tbx5-deficient mice are hypoplastic and exhibit decreased lung branching, similar to PH in human CDH. We hypothesized that the expression of Tbx2, Tbx4 and Tbx5 is decreased in the branching airway mesenchyme of hypoplastic rat lungs with nitrofen-induced CDH. METHODS Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetuses were killed on D15, D18 and D21, and dissected lungs were divided into control and nitrofen-exposed specimens. Pulmonary gene expression of Tbx2, Tbx4 and Tbx5 was investigated by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for Tbx2, Tbx4 and Tbx5 was combined with the mesenchymal marker Fgf10 to assess protein expression and localization in branching airway tissue. RESULTS Relative mRNA levels of Tbx2, Tbx4 and Tbx5 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Tbx2, Tbx4 and Tbx5 in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. CONCLUSION Decreased expression of Tbx2, Tbx4 and Tbx5 in the pulmonary mesenchyme during fetal lung development may lead to a decrease or arrest of airway branching, thus contributing to PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland. .,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
39
|
Drummond BE, Li Y, Marra AN, Cheng CN, Wingert RA. The tbx2a/b transcription factors direct pronephros segmentation and corpuscle of Stannius formation in zebrafish. Dev Biol 2017; 421:52-66. [PMID: 27840199 PMCID: PMC5955707 DOI: 10.1016/j.ydbio.2016.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
The simplified and genetically conserved zebrafish pronephros is an excellent model to examine the cryptic processes of cell fate decisions during the development of nephron segments as well as the origins of associated endocrine cells that comprise the corpuscles of Stannius (CS). Using whole mount in situ hybridization, we found that transcripts of the zebrafish genes t-box 2a (tbx2a) and t-box 2b (tbx2b), which belong to the T-box family of transcription factors, were expressed in the caudal intermediate mesoderm progenitors that give rise to the distal pronephros and CS. Deficiency of tbx2a, tbx2b or both tbx2a/b reduced the size of the distal late (DL) segment, which was accompanied by a proximal convoluted segment (PCT) expansion. Further, tbx2a/b deficiency led to significantly larger CS clusters. These phenotypes were also observed in embryos with the from beyond (fby)c144 mutation, which encodes a premature stop codon in the tbx2b T-box sequence. Conversely, overexpression of tbx2a and tbx2b in wild-type embryos expanded the DL segment where cells were comingled with the adjacent DE, and also decreased CS cell number, but notably did not alter PCT development-providing independent evidence that tbx2a and tbx2b are each necessary and sufficient to promote DL fate and suppress CS genesis. Epistasis studies indicated that tbx2a acts upstream of tbx2b to regulate the DL and CS fates, and likely has other targets as well. Retinoic acid (RA) addition and inhibition studies revealed that tbx2a and tbx2b are negatively regulated by RA signaling. Interestingly, the CS cell expansion that typifies tbx2a/b deficiency also occurred when blocking Notch signaling with the chemical DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester). Ectopic activation of Notch in Tg(hsp70::Gal4; UAS::NICD)(NICD) embryos led to a reduced CS post heat-shock induction. To further examine the link between the tbx2a/b genes and Notch during CS formation, DAPT treatment was used to block Notch activity in tbx2a/b deficient embryos, and tbx2a/b knockdown was performed in NICD transgenic embryos. Both manipulations caused similar CS expansions, indicating that Notch functions upstream of the tbx2a/b genes to suppress CS ontogeny. Taken together, these data reveal for the first time that tbx2a/b mitigate pronephros segmentation downstream of RA, and that interplay between Notch signaling and tbx2a/b regulate CS formation, thus providing several novel insights into the genetic regulatory networks that influence these lineages.
Collapse
Affiliation(s)
- Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yue Li
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda N Marra
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Christina N Cheng
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
40
|
Lüdtke TH, Rudat C, Wojahn I, Weiss AC, Kleppa MJ, Kurz J, Farin HF, Moon A, Christoffels VM, Kispert A. Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Dev Cell 2016; 39:239-253. [PMID: 27720610 DOI: 10.1016/j.devcel.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Numerous signals drive the proliferative expansion of the distal endoderm and the underlying mesenchyme during lung branching morphogenesis, but little is known about how these signals are integrated. Here, we show by analysis of conditional double mutants that the two T-box transcription factor genes Tbx2 and Tbx3 act together in the lung mesenchyme to maintain branching morphogenesis. Expression of both genes depends on epithelially derived Shh signaling, with additional modulation by Bmp, Wnt, and Tgfβ signaling. Genetic rescue experiments reveal that Tbx2 and Tbx3 function downstream of Shh to maintain pro-proliferative mesenchymal Wnt signaling, in part by direct repression of the Wnt antagonists Frzb and Shisa3. In combination with our previous finding that Tbx2 and Tbx3 repress the cell-cycle inhibitors Cdkn1a and Cdkn1b, we conclude that Tbx2 and Tbx3 maintain proliferation of the lung mesenchyme by way of at least two molecular mechanisms: regulating cell-cycle regulation and integrating the activity of multiple signaling pathways.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anne Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.
| |
Collapse
|
41
|
Abstract
T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates.
Collapse
|
42
|
Szafranski P, Coban-Akdemir ZH, Rupps R, Grazioli S, Wensley D, Jhangiani SN, Popek E, Lee AF, Lupski JR, Boerkoel CF, Stankiewicz P. Phenotypic expansion ofTBX4mutations to include acinar dysplasia of the lungs. Am J Med Genet A 2016; 170:2440-4. [DOI: 10.1002/ajmg.a.37822] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/17/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | | | - Rosemarie Rupps
- Department of Medical Genetics; University of British Columbia; Vancouver Canada
| | - Serge Grazioli
- Department of Pediatrics; University of British Columbia; Vancouver Canada
| | - David Wensley
- Department of Pediatrics; University of British Columbia; Vancouver Canada
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - Edwina Popek
- Department of Pathology and Immunology; Baylor College of Medicine; Houston Texas
| | - Anna F. Lee
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver Canada
| | - James R. Lupski
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
- Department of Pediatrics; Baylor College of Medicine; Houston Texas
- Human Genome Sequencing Center; Baylor College of Medicine; Houston Texas
- Texas Children's Hospital; Houston Texas
| | | | - Paweł Stankiewicz
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| |
Collapse
|
43
|
Clifford RL, Jones MJ, MacIsaac JL, McEwen LM, Goodman SJ, Mostafavi S, Kobor MS, Carlsten C. Inhalation of diesel exhaust and allergen alters human bronchial epithelium DNA methylation. J Allergy Clin Immunol 2016; 139:112-121. [PMID: 27321436 DOI: 10.1016/j.jaci.2016.03.046] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/15/2016] [Accepted: 03/22/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Allergic disease affects 30% to 40% of the world's population, and its development is determined by the interplay between environmental and inherited factors. Air pollution, primarily consisting of diesel exhaust emissions, has increased at a similar rate to allergic disease. Exposure to diesel exhaust may play a role in the development and progression of allergic disease, in particular allergic respiratory disease. One potential mechanism underlying the connection between air pollution and increased allergic disease incidence is DNA methylation, an epigenetic process with the capacity to integrate gene-environment interactions. OBJECTIVE We sought to investigate the effect of allergen and diesel exhaust exposure on bronchial epithelial DNA methylation. METHODS We performed a randomized crossover-controlled exposure study to allergen and diesel exhaust in humans, and measured single-site (CpG) resolution global DNA methylation in bronchial epithelial cells. RESULTS Exposure to allergen alone, diesel exhaust alone, or allergen and diesel exhaust together (coexposure) led to significant changes in 7 CpG sites at 48 hours. However, when the same lung was exposed to allergen and diesel exhaust but separated by approximately 4 weeks, significant changes in more than 500 sites were observed. Furthermore, sites of differential methylation differed depending on which exposure was experienced first. Functional analysis of differentially methylated CpG sites found genes involved in transcription factor activity, protein metabolism, cell adhesion, and vascular development, among others. CONCLUSIONS These findings suggest that specific exposures can prime the lung for changes in DNA methylation induced by a subsequent insult.
Collapse
Affiliation(s)
- Rachel L Clifford
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meaghan J Jones
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah J Goodman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara Mostafavi
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada; Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Canadian Institute for Advanced Research, Toronto, Ontario, Canada; Human Early Learning Partnership, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Chan-Yeung Centre for Occupational and Environmental Lung Disease, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
44
|
Chen Y, Pan L, Su Z, Wang J, Li H, Ma X, Liu Y, Lu F, Qu J, Hou L. The transcription factor TBX2 regulates melanogenesis in melanocytes by repressing Oca2. Mol Cell Biochem 2016; 415:103-9. [DOI: 10.1007/s11010-016-2680-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/04/2016] [Indexed: 01/24/2023]
|
45
|
Chen X, Bai G, Scholl TO. Spontaneous Preterm Delivery, Particularly with Reduced Fetal Growth, is Associated with DNA Hypomethylation of Tumor Related Genes. ACTA ACUST UNITED AC 2016; 3. [PMID: 27500275 PMCID: PMC4975560 DOI: 10.4172/2376-127x.1000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Preterm delivery and sub-optimal fetal growth are associated with each other and affect both mother and infant. Our aim was to determine (i) whether there are detectable differences in DNA methylation between early and late gestation and (ii) whether changes in DNA methylation from entry are associated with spontaneous preterm delivery with and without reduced fetal growth. Methods We conducted a case-control study nested within a large prospective cohort. Gene specific methylation was measured by Methyl-Profiler PCR Array in a Human Breast Cancer Signature Panel of 24 genes from maternal peripheral leukocytes genomic DNA at entry and 3rd trimester (sampled at 16 and 30 weeks of gestation, respectively). Clonal bisulfite DNA sequencing was performed to confirm the changes in selected genes (CYP1B1, GADD45A and CXCL12). Multivariable analysis was used for data analysis. Results There was significantly decrease in DNA methylation in 15 of 24 genes during the 3rd trimester in cases of spontaneous preterm delivery (n=23) as compared to the controls (n=19) (p<0.05–p<0.01 for each gene). Similar results were observed by bisulfite sequencing for 3 genes. The change in DNA methylation between late and early gestation was significantly different in cases (overall decrease in methylation was −4.0 ± 1.5%) compared to the controls (overall increase in methylation was 12.6 ± 2.19%, p<0.0001). A graded pattern of DNA methylation was observed in 15 genes. Cases who delivered preterm with reduced fetal growth had the lowest level of methylation, cases delivering preterm without reduced fetal growth were next and term controls were highest in methylation (p for trend <0.05 to p<0.01 for each gene). Cases of preterm delivery also had significantly lower dietary choline intake. Conclusions These data suggest that epigenetic modification is associated with an increased risk of spontaneous preterm delivery, spontaneous preterm delivery with reduced fetal growth in particular.
Collapse
Affiliation(s)
- Xinhua Chen
- Department of Obstetrics and Gynecology, Rowan University - School of Osteopathic Medicine, Stratford, NJ, USA
| | - Guang Bai
- Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - Theresa O Scholl
- Department of Obstetrics and Gynecology, Rowan University - School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
46
|
Fischer K, Pflugfelder GO. Putative Breast Cancer Driver Mutations in TBX3 Cause Impaired Transcriptional Repression. Front Oncol 2015; 5:244. [PMID: 26579496 PMCID: PMC4625211 DOI: 10.3389/fonc.2015.00244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
The closely related T-box transcription factors TBX2 and TBX3 are frequently overexpressed in melanoma and various types of human cancers, in particular, breast cancer. The overexpression of TBX2 and TBX3 can have several cellular effects, among them suppression of senescence, promotion of epithelial-mesenchymal transition, and invasive cell motility. In contrast, loss of function of TBX3 and most other human T-box genes causes developmental haploinsufficiency syndromes. Stephens and colleagues (1), by exome sequencing of breast tumor samples, identified five different mutations in TBX3, all affecting the DNA-binding T-domain. One in-frame deletion of a single amino acid, p.N212delN, was observed twice. Due to the clustering of these mutations to the T-domain and for statistical reasons, TBX3 was inferred to be a driver gene in breast cancer. Since mutations in the T-domain generally cause loss of function and because the tumorigenic action of TBX3 has generally been attributed to overexpression, we determined whether the putative driver mutations had loss- or gain-of-function properties. We tested two in-frame deletions, one missense, and one frameshift mutant protein for DNA-binding in vitro, and for target gene repression in cell culture. In addition, we performed an in silico analysis of somatic TBX mutations in breast cancer, collected in The Cancer Genome Atlas (TCGA). Both the experimental and the in silico analysis indicate that the observed mutations predominantly cause loss of TBX3 function.
Collapse
|
47
|
Pan L, Ma X, Wen B, Su Z, Zheng X, Liu Y, Li H, Chen Y, Wang J, Lu F, Qu J, Hou L. Microphthalmia-associated transcription factor/T-box factor-2 axis acts through Cyclin D1 to regulate melanocyte proliferation. Cell Prolif 2015; 48:631-42. [PMID: 26486273 DOI: 10.1111/cpr.12227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/07/2015] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Control of cell proliferation is critical for accurate cell differentiation and tissue formation, during development and regeneration. Here, we have analysed the role of microphthalmia-associated transcription factor MITF and its direct target, T-box factor TBX2, in regulating proliferation of mammalian neural crest-derived melanocytes. MATERIALS AND METHODS Immunohistochemistry was used to examine spatial and temporal expression of TBX2 in melanocytes in vivo. RNAi and cell proliferation analysis were used to investigate functional roles of TBX2. Furthermore, quantitative RT-PCR, western blot analysis and flow cytometry were used to further scrutinize molecular mechanisms underlying TBX2-dependent cell proliferation. RESULTS TBX2 was found to be co-expressed with MITF in melanocytes of mouse hair follicles. Specific Tbx2 knockdown in primary neural crest cells led to inhibition MITF-positive melanoblast proliferation. Tbx2 knockdown in melan-a cells led to reduction in Cyclin D1 expression and G1-phase cell cycle arrest. TBX2 directly activated Ccnd1 transcription by binding to a specific sequence in the Ccnd1 promoter, and the defect in cell proliferation could be rescued partially by overexpression of Cyclin D1 in Tbx2 knockdown melanocytes. CONCLUSIONS Results suggest that the Mitf-Tbx2-Cyclin D1 pathway played an important role in regulation of melanocyte proliferation, and provided novel insights into the complex physiology of melanocytes.
Collapse
Affiliation(s)
- L Pan
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - X Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - B Wen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - Z Su
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - X Zheng
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - Y Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - H Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - Y Chen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - J Wang
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China
| | - F Lu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - J Qu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| | - L Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, 325003, China
| |
Collapse
|
48
|
Qiu X, Wu S, Hilchey SP, Thakar J, Liu ZP, Welle SL, Henn AD, Wu H, Zand MS. Diversity in Compartmental Dynamics of Gene Regulatory Networks: The Immune Response in Primary Influenza A Infection in Mice. PLoS One 2015; 10:e0138110. [PMID: 26413862 PMCID: PMC4586376 DOI: 10.1371/journal.pone.0138110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/26/2015] [Indexed: 01/23/2023] Open
Abstract
Current approaches to study transcriptional profiles post influenza infection typically rely on tissue sampling from one or two sites at a few time points, such as spleen and lung in murine models. In this study, we infected female C57/BL6 mice intranasally with mouse-adapted H3N2/Hong Kong/X31 avian influenza A virus, and then analyzed the gene expression profiles in four different compartments (blood, lung, mediastinal lymph nodes, and spleen) over 11 consecutive days post infection. These data were analyzed by an advanced statistical procedure based on ordinary differential equation (ODE) modeling. Vastly different lists of significant genes were identified by the same statistical procedure in each compartment. Only 11 of them are significant in all four compartments. We classified significant genes in each compartment into co-expressed modules based on temporal expression patterns. We then performed functional enrichment analysis on these co-expression modules and identified significant pathway and functional motifs. Finally, we used an ODE based model to reconstruct gene regulatory network (GRN) for each compartment and studied their network properties.
Collapse
Affiliation(s)
- Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
| | - Shuang Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
| | - Shannon P. Hilchey
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
| | - Juilee Thakar
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642 United States of America
| | - Zhi-Ping Liu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
- Department of Biomedical Engineering, Shandong University, Jinan, Shandong, China
| | - Stephen L. Welle
- Functional Genomics Center, University of Rochester, Rochester, NY, 14642, United States of America
| | - Alicia D. Henn
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, 14642 United States of America
| | - Hulin Wu
- Department of Biostatistics, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
- * E-mail: (HW); (MSZ)
| | - Martin S. Zand
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, United States of America
- * E-mail: (HW); (MSZ)
| |
Collapse
|
49
|
Häfner R, Bohnenpoll T, Rudat C, Schultheiss TM, Kispert A. Fgfr2 is required for the expansion of the early adrenocortical primordium. Mol Cell Endocrinol 2015; 413:168-77. [PMID: 26141512 DOI: 10.1016/j.mce.2015.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 01/10/2023]
Abstract
The adrenal cortex is a critical steroidogenic endocrine tissue, generated at least in part from intermediate mesoderm of the anterior urogenital ridge. Previous work has pinpointed a minor role of the FGFR2IIIb isoform in expansion and differentiation of the fetal adrenal cortex in mice but did not address the complete role of FGFR2 and FGFR1 signaling in adrenocortical development. Here, we show that a Tbx18(cre) line mediates specific recombination in the coelomic epithelium of the anterior urogenital ridge which gives rise by a delamination process to the adrenocortical primordium. Mice with conditional (Tbx18(cre)-mediated) deletion of all isoforms of Fgfr2 exhibited severely hypoplastic adrenal glands around birth. Cortical cells were dramatically reduced in number but showed steroidogenic differentiation and zonation. Neuroendocrine chromaffin cells were also reduced and formed a cell cluster adjacent to but not encapsulated by steroidogenic cells. Analysis of earlier time points revealed that the adrenocortical primordium was established in the intermediate mesoderm at E10.5 but that it failed to expand at subsequent stages. Our further experiments show that FGFR2 signaling acts as early as E11.5 to prevent apoptosis and enhance proliferation in adrenocortical progenitor cells. FGFR1 signaling does not contribute to early adrenocortical development. Our work suggests that FGFR2IIIb and IIIc isoforms largely act redundantly to promote expansion of the adrenocortical primordium.
Collapse
Affiliation(s)
- Regine Häfner
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Tobias Bohnenpoll
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport-Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
50
|
Bertolessi M, Linta L, Seufferlein T, Kleger A, Liebau S. A Fresh Look on T-Box Factor Action in Early Embryogenesis (T-Box Factors in Early Development). Stem Cells Dev 2015; 24:1833-51. [DOI: 10.1089/scd.2015.0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Maíra Bertolessi
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leonhard Linta
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|