1
|
Reyes MSG, Palharini RSA, Monteiro FF, Ayala S, Undurraga EA. Prevalence and Distribution of Salmonella in Water Bodies in South America: A Systematic Review. Microorganisms 2025; 13:489. [PMID: 40142382 PMCID: PMC11944343 DOI: 10.3390/microorganisms13030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
The presence of Salmonella in rivers, lakes, or beaches in South America represents a challenge to public health and aquatic ecosystems. This review explores the distribution, prevalence, and the main factors contributing to the survival and spread of Salmonella, including wastewater discharge, agricultural runoff, and climatic variables such as high temperatures and precipitation. These factors also facilitate the distribution of multidrug-resistant strains in water. The review is based on bibliographic searches in various databases, focusing on Salmonella species, South American countries, and types of water bodies. Predominant serovars include S. Enteritidis and S. Typhimurium, with S. Typhi and S. Panama frequently detected in Chile, S. Enteritidis in Argentina, and S. Typhimurium in Brazil. Less common serovars, including S. Dublin and S. Paratyphi B, were identified, along with subspecies such as diarizonae and houtenae. These findings highlight the role of environmental, physicochemical, and anthropogenic factors influencing Salmonella dynamics. The review identifies research gaps, advocating for further studies to better understand the interactions between Salmonella, climate change, and human activity. Strengthening surveillance and mitigation strategies is crucial to protect water resources and public health in South America.
Collapse
Affiliation(s)
- Makarena Sofia Gonzalez Reyes
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 8370146, RM, Chile;
| | - Rayana Santos Araujo Palharini
- Departamento de Prevención de Riesgos y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 8330383, RM, Chile
| | - Felipe Ferreira Monteiro
- Departamento de Ciências Atmosféricas e Climáticas, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Salvador Ayala
- Centro de Epidemiología y Políticas de Salud (CEPS), Universidad Del Desarrollo, Las Condes, Santiago 7610658, RM, Chile;
| | - Eduardo A. Undurraga
- Escuela de Gobierno, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, RM, Chile;
- Research Center for Integrated Disaster Risk Management (CIGIDEN), Macul, Santiago 7820436, RM, Chile
| |
Collapse
|
2
|
Waters EV, Lee WWY, Ismail Ahmed A, Chattaway MA, Langridge GC. From acute to persistent infection: revealing phylogenomic variations in Salmonella Agona. PLoS Pathog 2024; 20:e1012679. [PMID: 39480892 PMCID: PMC11556752 DOI: 10.1371/journal.ppat.1012679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/12/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Salmonella enterica serovar Agona (S. Agona) has been increasingly recognised as a prominent cause of gastroenteritis. This serovar is a strong biofilm former that can undergo genome rearrangement and enter a viable but non-culturable state whilst remaining metabolically active. Similar strategies are employed by S. Typhi, the cause of typhoid fever, during human infection, which are believed to assist with the transition from acute infection to chronic carriage. Here we report S. Agona's ability to persist in people and examine factors that might be contributing to chronic carriage. A review of 2233 S. Agona isolates from UK infections (2004-2020) and associated carriage was undertaken, in which 1155 had short-read sequencing data available. A subset of 207 isolates was selected from different stages of acute and persistent infections within individual patients. The subset underwent long-read sequencing and genome structure (GS) analysis, as well as phenotyping assays including carbon source utilisation and biofilm formation. Associations between genotypes and phenotypes were investigated to compare acute infections to those which progress to chronic. GS analysis revealed the conserved arrangement GS1.0 in 195 isolates, and 8 additional GSs in 12 isolates. These rearranged isolates were typically associated with early, convalescent carriage (3 weeks- 3 months). We also identified an increase in SNP variation during this period of infection. We believe this increase in genome-scale and SNP variation reflects a population expansion after acute S. Agona infection, potentially reflecting an immune evasion mechanism which enables persistent infection to become established.
Collapse
Affiliation(s)
- Emma V. Waters
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, United Kingdom
- Centre for Microbial Interactions, Norwich Research Park, Norwich, United Kingdom
| | - Winnie W. Y. Lee
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Amina Ismail Ahmed
- Gastrointestinal Bacteria Reference Unit, United Kingdom Health Security Agency, London, United Kingdom
| | - Marie-Anne Chattaway
- Gastrointestinal Bacteria Reference Unit, United Kingdom Health Security Agency, London, United Kingdom
- Genomic and Enabling Data Health Protection Research Unit, University of Warwick, Coventry, United Kingdom
| | - Gemma C. Langridge
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, United Kingdom
- Centre for Microbial Interactions, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
3
|
Aguirre-Sánchez JR, Chaidez C, Castro-Del Campo N. The pangenome analysis of the environmental source Salmonella enterica highlights a diverse accessory genome and a distinct serotype clustering. FEMS Microbiol Lett 2024; 371:fnae090. [PMID: 39533060 DOI: 10.1093/femsle/fnae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Salmonella remains the leading cause of foodborne infections globally. Environmental reservoirs, particularly aquatic bodies, serve as conduits for the fecal-oral transmission of this pathogen. While the gastrointestinal tract is traditionally considered the primary habitat of Salmonella, mounting evidence suggests the bacterium's capacity for survival in external environments. The application of advanced technological platforms, such as next-generation sequencing, facilitates a comprehensive analysis of Salmonella's genomic features. This study aims to characterize the genomic composition of Salmonella isolates from river water, contributing to a potential paradigm shift and advancing public health protection. A total of 25 river water samples were collected and processed, followed by microbiological isolation of Salmonella strains, which were then sequenced. Genomic characterization revealed adaptive mechanisms, including gene duplication. Furthermore, an open pangenome, predisposed to incorporating foreign genetic material, was identified. Notably, antibiotic resistance genes were found to be part of the core genome, challenging previous reports that placed them in the accessory genome.
Collapse
Affiliation(s)
- José Roberto Aguirre-Sánchez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD). Culiacán, Sinaloa, C.P. 80110, México
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD). Culiacán, Sinaloa, C.P. 80110, México
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD). Culiacán, Sinaloa, C.P. 80110, México
| |
Collapse
|
4
|
Zhang X, Wang R, Xie X, Hu Y, Wang J, Sun Q, Feng X, Lin W, Tong S, Yan W, Wen H, Wang M, Zhai S, Sun C, Wang F, Niu Q, Kropinski A, Cui Y, Jiang X, Peng S, Li S, Tong Y. Mining bacterial NGS data vastly expands the complete genomes of temperate phages. NAR Genom Bioinform 2022; 4:lqac057. [PMID: 35937545 PMCID: PMC9346568 DOI: 10.1093/nargab/lqac057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Temperate phages (active prophages induced from bacteria) help control pathogenicity, modulate community structure, and maintain gut homeostasis. Complete phage genome sequences are indispensable for understanding phage biology. Traditional plaque techniques are inapplicable to temperate phages due to their lysogenicity, curbing their identification and characterization. Existing bioinformatics tools for prophage prediction usually fail to detect accurate and complete temperate phage genomes. This study proposes a novel computational temperate phage detection method (TemPhD) mining both the integrated active prophages and their spontaneously induced forms (temperate phages) from next-generation sequencing raw data. Applying the method to the available dataset resulted in 192 326 complete temperate phage genomes with different host species, expanding the existing number of complete temperate phage genomes by more than 100-fold. The wet-lab experiments demonstrated that TemPhD can accurately determine the complete genome sequences of the temperate phages, with exact flanking sites, outperforming other state-of-the-art prophage prediction methods. Our analysis indicates that temperate phages are likely to function in the microbial evolution by (i) cross-infecting different bacterial host species; (ii) transferring antibiotic resistance and virulence genes and (iii) interacting with hosts through restriction-modification and CRISPR/anti-CRISPR systems. This work provides a comprehensively complete temperate phage genome database and relevant information, which can serve as a valuable resource for phage research.
Collapse
Affiliation(s)
- Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing 100071, People's Republic of China
| | - Ruohan Wang
- Department of Computer Science, City University of Hong Kong , Hong Kong 999077, People's Republic of China
| | - Xiangcheng Xie
- College of Computer, National University of Defense Technology , Changsha 410073, People's Republic of China
| | - Yunjia Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
- School of Medicine, Shanghai University , Shanghai 200444, People's Republic of China
| | - Jianping Wang
- Department of Computer Science, City University of Hong Kong , Hong Kong 999077, People's Republic of China
| | - Qiang Sun
- The 964th Hospital , Changchun 130021, People's Republic of China
| | - Xikang Feng
- School of Software, Northwestern Polytechnical University , Xi’an 710072, People's Republic of China
| | - Wei Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Shanwei Tong
- Bioinformatics Graduate Program, University of British Columbia , Vancouver BC V6T 1Z4, Canada
- Faculty of Health Sciences, Simon Fraser University , Burnaby , BC V5A 1S6, Canada
| | - Wei Yan
- National Library of Medicine, National Institutes of Health , Bethesda , MD 20894, USA
| | - Huiqi Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing 100071, People's Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Mengyao Wang
- Department of Computer Science, City University of Hong Kong , Hong Kong 999077, People's Republic of China
| | - Shixiang Zhai
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , Qingdao 266071, People's Republic of China
| | - Cheng Sun
- School of Computer Science and Electronic Engineering, Hunan University , Changsha 410082, People's Republic of China
| | - Fangyi Wang
- Department of Statistics, the Ohio State University , Columbus, OH 43210, USA
| | - Qi Niu
- School of Computer Science and Electronic Engineering, Hunan University , Changsha 410082, People's Republic of China
| | - Andrew M Kropinski
- Departments of Food Science, and Pathobiology, University of Guelph , Guelph , ON N1G 2W1 , Canada
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing 100071, People's Republic of China
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health , Bethesda , MD 20894, USA
| | - Shaoliang Peng
- School of Computer Science and Electronic Engineering, Hunan University , Changsha 410082, People's Republic of China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong , Hong Kong 999077, People's Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| |
Collapse
|
5
|
Qin M, Chen P, Deng B, He R, Wu Y, Yang Y, Deng W, Ding X, Yang F, Xie C, Yang Y, Tian GB. The Emergence of a Multidrug-Resistant and Pathogenic ST42 Lineage of Staphylococcus haemolyticus from a Hospital in China. Microbiol Spectr 2022; 10:e0234221. [PMID: 35579464 PMCID: PMC9241665 DOI: 10.1128/spectrum.02342-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus haemolyticus is an opportunistic pathogen associated with hospital-acquired infections. However, the genetic diversity of S. haemolyticus among the patients and the hospital environment is largely unknown. Here, we isolated 311 S. haemolyticus strains from different sampling sites of patients and hospital environment. Genomic analysis showed that ST42 is an emerging clone widely disseminated in the hospital. S. haemolyticus ST42 strains exhibited decreased susceptibilities for multiple antibiotics compared with other STs and carried significantly more antibiotic resistance genes (ARGs). Furthermore, ST42 strains harbored more virulence genes per isolate than in other STs, and the capsular biosynthesis genes capDEFG were more prevalent in ST42 strains. Using the Galleria mellonella infection model, we demonstrated that ST42 strains are highly virulent compared with non-ST42 strains. Taken together, our data identified an emerging ST42 clone of S. haemolyticus with aggregated ARGs and virulence determinants in the hospital, representing a significant health threat in terms of both disease and treatment. IMPORTANCES. haemolyticus is an emerging opportunistic pathogen with a high burden of antimicrobial resistance. We performed molecular epidemiological analysis of S. haemolyticus that was isolated from a hospital, and found that the phylogenetic lineages are diverse accompanied by a dominant epidemic clonal lineage ST42. We demonstrated that S. haemolyticus ST42 strains have been disseminated among patients and the hospital environment. The data provide mechanistic insight and indicate that S. haemolyticus ST42 strains are multidrug-resistance and virulent clones via accumulating more ARGs and virulence genes.
Collapse
Affiliation(s)
- Mingyang Qin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ping Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Baoguo Deng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruowen He
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yiping Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yanxian Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xin Ding
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Fan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chuanbo Xie
- Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongqiang Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
6
|
AT Homopolymer Strings in Salmonella enterica Subspecies I Contribute to Speciation and Serovar Diversity. Microorganisms 2021; 9:microorganisms9102075. [PMID: 34683396 PMCID: PMC8538453 DOI: 10.3390/microorganisms9102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Adenine and thymine homopolymer strings of at least 8 nucleotides (AT 8+mers) were characterized in Salmonella enterica subspecies I. The motif differed between other taxonomic classes but not between Salmonella enterica serovars. The motif in plasmids was possibly associated with serovar. Approximately 12.3% of the S. enterica motif loci had mutations. Mutability of AT 8+mers suggests that genomes undergo frequent repair to maintain optimal gene content, and that the motif facilitates self-recognition; in addition, serovar diversity is associated with plasmid content. A theory that genome regeneration accounts for both persistence of predominant Salmonella serovars and serovar diversity provides a new framework for investigating root causes of foodborne illness.
Collapse
|
7
|
Genomic population structure associated with repeated escape of Salmonella enterica ATCC14028s from the laboratory into nature. PLoS Genet 2021; 17:e1009820. [PMID: 34570761 PMCID: PMC8496778 DOI: 10.1371/journal.pgen.1009820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/07/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium strain ATCC14028s is commercially available from multiple national type culture collections, and has been widely used since 1960 for quality control of growth media and experiments on fitness (“laboratory evolution”). ATCC14028s has been implicated in multiple cross-contaminations in the laboratory, and has also caused multiple laboratory infections and one known attempt at bioterrorism. According to hierarchical clustering of 3002 core gene sequences, ATCC14028s belongs to HierCC cluster HC20_373 in which most internal branch lengths are only one to three SNPs long. Many natural Typhimurium isolates from humans, domesticated animals and the environment also belong to HC20_373, and their core genomes are almost indistinguishable from those of laboratory strains. These natural isolates have infected humans in Ireland and Taiwan for decades, and are common in the British Isles as well as the Americas. The isolation history of some of the natural isolates confirms the conclusion that they do not represent recent contamination by the laboratory strain, and 10% carry plasmids or bacteriophages which have been acquired in nature by HGT from unrelated bacteria. We propose that ATCC14028s has repeatedly escaped from the laboratory environment into nature via laboratory accidents or infections, but the escaped micro-lineages have only a limited life span. As a result, there is a genetic gap separating HC20_373 from its closest natural relatives due to a divergence between them in the late 19th century followed by repeated extinction events of escaped HC20_373. Clades of closely related bacteria exist in nature. Individual isolates from such clades are often distinguishable by genomic sequencing because genomic sequence differences can be acquired over a few years due to neutral drift and natural selection. The evolution of laboratory strains is often largely frozen, physically due to storage conditions and genetically due to long periods of storage. Thus, laboratory strains can normally be readily distinguished from natural isolates because they show much less diversity. However, laboratory strain ATCC14028s shows modest levels of sequence diversity because it has been shipped around the world to multiple laboratories and is routinely used for analyses of laboratory evolution. Closely related natural isolates also exist, but their genetic diversity is not dramatically greater at the core genome level. Indeed, many scientists doubt that such isolates are natural, and interpret them as undetected contamination by the laboratory strain. We present data indicating that ATCC14028s has repeatedly escaped from the laboratory through inadvertent contamination of the environment, infection of technical staff and deliberate bioterrorism. The escapees survive in nature long enough that some acquire mobile genomic elements by horizontal gene transfer, but eventually they go extinct. As a result, even extensive global databases of natural isolates lack closely related isolates whose ancestors diverged from ATCC14028s within the last 100 years.
Collapse
|
8
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
9
|
Yang Y, Yang Y, Chen G, Lin M, Chen Y, He R, Galvão KN, El-Gawad El-Sayed Ahmed MA, Roberts AP, Wu Y, Zhong LL, Liang X, Qin M, Ding X, Deng W, Huang S, Li HY, Dai M, Chen DQ, Zhang L, Liao K, Xia Y, Tian GB. Molecular characterization of carbapenem-resistant and virulent plasmids in Klebsiella pneumoniae from patients with bloodstream infections in China. Emerg Microbes Infect 2021; 10:700-709. [PMID: 33739229 PMCID: PMC8023600 DOI: 10.1080/22221751.2021.1906163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bloodstream infections (BSIs) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are potentially life-threatening and an urgent threat to public health. The present study aims to clarify the characteristics of carbapenemase-encoding and virulent plasmids, and their interactions with the host bacterium. A total of 425 Kp isolates were collected from the blood of BSI patients from nine Chinese hospitals, between 2005 and 2019. Integrated epidemiological and genomic data showed that ST11 and ST307 Kp isolates were associated with nosocomial outbreak and transmission. Comparative analysis of 147 Kp genomes and 39 completely assembled chromosomes revealed extensive interruption of acrR by ISKpn26 in all Kp carbapenemase-2 (KPC-2)-producing ST11 Kp isolates, leading to activation of the AcrAB-Tolc multidrug efflux pump and a subsequent reduction in susceptibility to the last-resort antibiotic tigecycline and six other antibiotics. We described 29 KPC-2 plasmids showing diverse structures, two virulence plasmids in two KPC-2-producing Kp, and two novel multidrug-resistant (MDR)-virulent plasmids. This study revealed a multifactorial impact of KPC-2 plasmid on Kp, which may be associated with nosocomial dissemination of MDR isolates.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People's Republic of China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanxian Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Guanping Chen
- Sun Yat-sen University School of Medicine, Guangzhou, People's Republic of China
| | - Minmin Lin
- Department of Respiratory Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People's Republic of China
| | - Yuan Chen
- Sun Yat-sen University School of Medicine, Guangzhou, People's Republic of China
| | - Ruowen He
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People's Republic of China.,Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo, Egypt
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, UK.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, UK
| | - Yiping Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Lan-Lan Zhong
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People's Republic of China
| | - Xiaoxue Liang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Mingyang Qin
- Basic Medical College, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Songyin Huang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hong-Yu Li
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Ding-Qiang Chen
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Liyan Zhang
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital / Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Kang Liao
- Department of Clinical Laboratory, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People's Republic of China.,School of Medicine, Xizang Minzu University, Xianyang, People's Republic of China
| |
Collapse
|
10
|
Zhang K, Zhang Y, Wang Z, Li Y, Xu H, Jiao X, Li Q. Characterization of CRISPR array in Salmonella enterica from asymptomatic people and patients. Int J Food Microbiol 2021; 355:109338. [PMID: 34333443 DOI: 10.1016/j.ijfoodmicro.2021.109338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Salmonella enterica is a major foodborne pathogen causing symptomatic diseases or asymptomatic infections in humans. To reveal the genetic difference of Salmonella strains from patients to that from asymptomatic people, we used CRISPR typing to analyze the phylogenetic relationship of 180 clinical strains during 2017-2018 in Jiangsu, China. The CRISPR typing divided these isolates into 76 CRISPR types with a discriminatory power of 97.6%. S. Typhimurium and its monophasic variants of 6 CRISPR types are the significant serotypes causing both human diseases and asymptomatic infection, while S. Enteritidis mainly resulted in diseases and shared one CRISPR type. The spacer HadB20 displayed as a new molecular marker to differentiate ST34-S. Typhimurium monophasic variant from ST19-S. Typhimurium. S. Derby, S. London, and S. Senftenberg frequently caused asymptomatic infection with diverse CRISPR types, while S. Mbandaka and S. Meleagridis, occasionally isolated from patients, had conserved CRISPR types. Additionally, 30 of 516 newly identified spacers showed homology to sequences in both plasmids and bacteriophages. Interestingly, some spacers from one serotype showed homology to the correspondent prophage or plasmid sequences in another serotype; and more than two spacers identified in one strain showed homology to the sequences located in the identical plasmids or phages, revealing the constant evolution of Salmonella CRISPR arrays during the interactions between bacteria and phages or plasmids.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Yue Zhang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Yang Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| |
Collapse
|
11
|
Baert L, Gimonet J, Barretto C, Fournier C, Jagadeesan B. Genetic changes are introduced by repeated exposure of Salmonella spiked in low water activity and high fat matrix to heat. Sci Rep 2021; 11:8144. [PMID: 33854082 PMCID: PMC8046991 DOI: 10.1038/s41598-021-87330-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
WGS is used to define if isolates are "in" or "out" of an outbreak and/or microbial root cause investigation. No threshold of genetic differences is fixed and the conclusions on similarity between isolates are mainly based on the knowledge generated from previous outbreak investigations and reported mutation rates. Mutation rates in Salmonella when exposed to food processing conditions are lacking. Thus, in this study, the ability of heat and dry stress to cause genetic changes in two Salmonella serotypes frequently isolated from low moisture foods was investigated. S. enterica serovars S. Agona ATCC 51,957 and S. Mbandaka NCTC 7892 (ATCC 51,958) were repeatedly exposed to heat (90 °C for 5 min) in a low water activity and high fat matrix. No increased fitness of the strains was observed after 10 repeated heat treatments. However, genetic changes were introduced and the number of genetic differences increased with every heat treatment cycle. The genetic changes appeared randomly in the genome and were responsible for a population of diverse isolates with 0 to 28 allelic differences (0 to 38 SNPs) between them. This knowledge is key to interpret WGS results for source tracking investigations as part of a root cause analysis in a contamination event as isolates are exposed to stress conditions.
Collapse
Affiliation(s)
- Leen Baert
- Nestlé Research, Vers-Chez-les-Blanc 26, 1000, Lausanne, Switzerland.
| | - Johan Gimonet
- Nestlé Research, Vers-Chez-les-Blanc 26, 1000, Lausanne, Switzerland
| | - Caroline Barretto
- Nestlé Research, Vers-Chez-les-Blanc 26, 1000, Lausanne, Switzerland
| | - Coralie Fournier
- Nestlé Research, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | | |
Collapse
|
12
|
Richard D, Pruvost O, Balloux F, Boyer C, Rieux A, Lefeuvre P. Time-calibrated genomic evolution of a monomorphic bacterium during its establishment as an endemic crop pathogen. Mol Ecol 2020; 30:1823-1835. [PMID: 33305421 DOI: 10.1111/mec.15770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023]
Abstract
Horizontal gene transfer is of major evolutionary importance as it allows for the redistribution of phenotypically important genes among lineages. Such genes with essential functions include those involved in resistance to antimicrobial compounds and virulence factors in pathogenic bacteria. Understanding gene turnover at microevolutionary scales is critical to assess the pace of this evolutionary process. Here, we characterized and quantified gene turnover for the epidemic lineage of a bacterial plant pathogen of major agricultural importance worldwide. Relying on a dense geographic sampling spanning 39 years of evolution, we estimated both the dynamics of single nucleotide polymorphism accumulation and gene content turnover. We identified extensive gene content variation among lineages even at the smallest phylogenetic and geographic scales. Gene turnover rate exceeded nucleotide substitution rate by three orders of magnitude. Accessory genes were found preferentially located on plasmids, but we identified a highly plastic chromosomal region hosting ecologically important genes such as transcription activator-like effectors. Whereas most changes in the gene content are probably transient, the rapid spread of a mobile element conferring resistance to copper compounds widely used for the management of plant bacterial pathogens illustrates how some accessory genes can become ubiquitous within a population over short timeframes.
Collapse
Affiliation(s)
- Damien Richard
- Cirad, UMR PVBMT, Réunion, France.,ANSES, Plant Health Laboratory, Réunion, France.,Université de la Réunion, UMR PVBMT, Réunion, France
| | | | | | | | | | | |
Collapse
|
13
|
Whole-Genome Sequence Analysis of an Extensively Drug-Resistant Salmonella enterica Serovar Agona Isolate from an Australian Silver Gull ( Chroicocephalus novaehollandiae) Reveals the Acquisition of Multidrug Resistance Plasmids. mSphere 2020; 5:5/6/e00743-20. [PMID: 33239365 PMCID: PMC7690955 DOI: 10.1128/msphere.00743-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although most of the approximately 94 million annual human cases of gastroenteritis due to Salmonella enterica resolve without medical intervention, antimicrobial therapy is recommended for patients with severe disease. Wild birds can be natural hosts of Salmonella that pose a threat to human health; however, multiple-drug-resistant serovars of S. enterica have rarely been described. In 2012, silver gull (Chroicocephalus novaehollandiae) chicks at a major breeding colony were shown to host Salmonella, most isolates of which were susceptible to antibiotics. However, multiple-drug-resistant (MDR) Escherichia coli with resistance to carbapenems, ceftazidime, and fluoroquinolones was reported from this breeding colony. In this paper, we describe a novel MDR Salmonella strain subsequently isolated from the same breeding colony. SG17-135, an isolate of S. enterica with phenotypic resistance to 12 individual antibiotics but only nine antibiotic classes including penicillins, cephalosporins, monobactams, macrolides, fluoroquinolones, aminoglycosides, dihydrofolate reductase inhibitors (trimethoprim), sulfonamides, and glycylcyclines was recovered from a gull chick in 2017. Whole-genome sequence (WGS) analysis of SG17-135 identified it as Salmonella enterica serovar Agona (S Agona) with a chromosome comprising 4,813,284 bp, an IncHI2 ST2 plasmid (pSG17-135-HI2) of 311,615 bp, and an IncX1 plasmid (pSG17-135-X) of 27,511 bp. pSG17-135-HI2 housed a complex resistance region comprising 16 antimicrobial resistance genes including bla CTX-M-55 The acquisition of MDR plasmids by S. enterica described here poses a serious threat to human health. Our study highlights the importance of taking a One Health approach to identify environmental reservoirs of drug-resistant pathogens and MDR plasmids.IMPORTANCE Defining environmental reservoirs hosting mobile genetic elements that shuttle critically important antibiotic resistance genes is key to understanding antimicrobial resistance (AMR) from a One Health perspective. Gulls frequent public amenities, parklands, and sewage and other waste disposal sites and carry drug-resistant Escherichia coli Here, we report on SG17-135, a strain of Salmonella enterica serovar Agona isolated from the cloaca of a silver gull chick nesting on an island in geographic proximity to the greater metropolitan area of Sydney, Australia. SG17-135 is closely related to pathogenic strains of S Agona, displays resistance to nine antimicrobial classes, and carries important virulence gene cargo. Most of the antibiotic resistance genes hosted by SG17-135 are clustered on a large IncHI2 plasmid and are flanked by copies of IS26 Wild birds represent an important link in the evolution and transmission of resistance plasmids, and an understanding of their behavior is needed to expose the interplay between clinical and environmental microbial communities.
Collapse
|
14
|
Dangel A, Berger A, Messelhäußer U, Konrad R, Hörmansdorfer S, Ackermann N, Sing A. Genetic diversity and delineation of Salmonella Agona outbreak strains by next generation sequencing, Bavaria, Germany, 1993 to 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 31064635 PMCID: PMC6505185 DOI: 10.2807/1560-7917.es.2019.24.18.1800303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background In 2017, a food-borne Salmonella Agona outbreak caused by infant milk products from a French supplier occurred in Europe. Simultaneously, S. Agona was detected in animal feed samples in Bavaria. Aim Using next generation sequencing (NGS) and three data analysis methods, this study’s objectives were to verify clonality of the Bavarian feed strains, rule out their connection to the outbreak, explore the genetic diversity of Bavarian S. Agona isolates from 1993 to 2018 and compare the analysis approaches employed, for practicality and ability to delineate outbreaks caused by the genetically monomorphic Agona serovar. Methods In this observational retrospective study, three 2017 Bavarian feed isolates were compared to a French outbreak isolate and 48 S. Agona isolates from our strain collections. The later included human, food, feed, veterinary and environmental isolates, of which 28 were epidemiologically outbreak related. All isolates were subjected to NGS and analysed by: (i) a publicly available species-specific core genome multilocus sequence typing (cgMLST) scheme, (ii) single nucleotide polymorphism phylogeny and (iii) an in-house serovar-specific cgMLST scheme. Using additional international S. Agona outbreak NGS data, the cluster resolution capacity of the two cgMLST schemes was assessed. Results We could prove clonality of the feed isolates and exclude their relation to the French outbreak. All approaches confirmed former Bavarian epidemiological clusters. Conclusion Even for S. Agona, species-level cgMLST can produce reasonable resolution, being standardisable by public health laboratories. For single samples or homogeneous sample sets, higher resolution by serovar-specific cgMLST or SNP genotyping can facilitate outbreak investigations.
Collapse
Affiliation(s)
- Alexandra Dangel
- These authors contributed equally to this article.,Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Anja Berger
- These authors contributed equally to this article.,Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Ute Messelhäußer
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Regina Konrad
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | | | - Nikolaus Ackermann
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Andreas Sing
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| |
Collapse
|
15
|
Hoffmann M, Miller J, Melka D, Allard MW, Brown EW, Pettengill JB. Temporal Dynamics of Salmonella enterica subsp. enterica Serovar Agona Isolates From a Recurrent Multistate Outbreak. Front Microbiol 2020; 11:478. [PMID: 32265893 PMCID: PMC7104706 DOI: 10.3389/fmicb.2020.00478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/05/2020] [Indexed: 11/19/2022] Open
Abstract
The largest outbreak of Salmonella Agona in the United States occurred in 1998. It affected more than 400 patients and was linked to toasted oat cereal. Ten years later, a similar outbreak occurred with the same outbreak strain linked to the same production facility. In this study, whole-genome sequence (WGS) data from a set of 46 Salmonella Agona including five isolates associated with the 1998 outbreak and 25 isolates associated with the 2008 outbreak were analyzed. From each outbreak one isolate was sequenced on the Pacific Biosciences RS II Sequencer to determine the complete genome sequence. We reconstructed a phylogenetic hypothesis of the samples using a reference-based method for identifying variable sites. Using Single Nucleotide Polymorphism (SNP) analyses, we were able to distinguish and separate Salmonella Agona isolates from both outbreaks with only a mean of eight SNP differences between them. The phylogeny illustrates that the 2008 outbreak involves direct descendants from the 1998 outbreak rather than a second independent contamination event. Based on these results, there is evidence supporting the persistence of Salmonella over time in food processing facilities and highlights the need for consistent monitoring and control of organisms in the supply chain to minimize the risk of successive outbreaks.
Collapse
Affiliation(s)
- Maria Hoffmann
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, United States
| | - John Miller
- Division of Public Health and Biostatistics, Office of Food Defense, Communication and Emergency Response, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, United States
| | - David Melka
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, United States
| | - Marc W Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, United States
| | - Eric W Brown
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, United States
| | - James B Pettengill
- Division of Public Health and Biostatistics, Office of Food Defense, Communication and Emergency Response, Center for Food Safety and Applied Nutrition, U.S. Food & Drug Administration, College Park, MD, United States
| |
Collapse
|
16
|
Aoki Y, Watanabe Y, Kitazawa K, Ando N, Hirai S, Yokoyama E. Emergence of Salmonella enterica subsp. enterica serovar Chester in a rural area of Japan. J Vet Med Sci 2020; 82:580-584. [PMID: 32188802 PMCID: PMC7273606 DOI: 10.1292/jvms.20-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In Japan, only one outbreak of Salmonella enterica subsp. enterica serovar Chester (S. Chester) has been confirmed in 1999. We performed a single-center retrospective case review of S. Chester infections that occurred in a rural area of Japan in 2016 (n=8). Case 5 and 6 occurred in twin infants who had contact with a pet dog. The dog's stool culture was positive for S. Chester. Pulsed-field gel electrophoresis and cluster analysis of S. Chester strains revealed that all the isolates appeared to be derived from the same genetic clone. Emergence of Salmonella infection can be overlooked if cases are not reported to health authorities; therefore, core hospitals should play a role to alert the occurrence of public health issue.
Collapse
Affiliation(s)
- Yoshihiro Aoki
- Department of Pediatrics, Asahi General Hospital, 1326 I, Asahi, Chiba 289-2511, Japan.,Department of Emergency and Critical Care Medicine, Aizawa Hospital, 2-5-1 Honjo, Matsumoto, Nagano 390-8510, Japan
| | - Yudai Watanabe
- Department of Clinical Laboratory, Asahi General Hospital, 1326 I, Asahi, Chiba 289-2511, Japan
| | - Katsuhiko Kitazawa
- Department of Pediatrics, Asahi General Hospital, 1326 I, Asahi, Chiba 289-2511, Japan
| | - Naoshi Ando
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba 260-8715, Japan
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba 260-8715, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba 260-8715, Japan
| |
Collapse
|
17
|
Miro E, Rossen JWA, Chlebowicz MA, Harmsen D, Brisse S, Passet V, Navarro F, Friedrich AW, García-Cobos S. Core/Whole Genome Multilocus Sequence Typing and Core Genome SNP-Based Typing of OXA-48-Producing Klebsiella pneumoniae Clinical Isolates From Spain. Front Microbiol 2020; 10:2961. [PMID: 32082262 PMCID: PMC7005014 DOI: 10.3389/fmicb.2019.02961] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022] Open
Abstract
Whole-genome sequencing (WGS)-based typing methods have emerged as promising and highly discriminative epidemiological tools. In this study, we combined gene-by-gene allele calling and core genome single nucleotide polymorphism (cgSNP) approaches to investigate the genetic relatedness of a well-characterized collection of OXA-48-producing Klebsiella pneumoniae isolates. We included isolates from the predominant sequence type ST405 (n = 31) OXA-48-producing K. pneumoniae clone and isolates from ST101 (n = 3), ST14 (n = 1), ST17 (n = 1), and ST1233 (n = 1), obtained from eight Catalan hospitals. Core-genome multilocus sequence typing (cgMLST) schemes from Institut Pasteur’s BIGSdb-Kp (634 genes) and SeqSphere+ (2,365 genes), and a SeqSphere+ whole-genome MLST (wgMLST) scheme (4,891 genes) were used. Allele differences or allelic mismatches and the genetic distance, as the proportion of allele differences, were used to interpret the results from a gene-by-gene approach, whereas the number of SNPs was used for the cgSNP analysis. We observed between 0–10 and 0–14 allele differences among the predominant ST405 using cgMLST and wgMLST from SeqSphere+, respectively, and <2 allelic mismatches when using Institut Pasteur’s BIGSdb-Kp cgMLST scheme. For ST101, we observed 14 and 54 allele differences when using cgMLST and wgMLST SeqSphere+, respectively, and 2–5 allelic mismatches for BIGSdb-Kp cgMLST. A low genetic distance (<0.0035, a previously established threshold for epidemiological link) was generally in concordance with a low number of allele differences (<8) when using the SeqSphere+ cgMLST scheme. The cgSNP analysis showed 6–29 SNPs in isolates with identical allelic SeqSphere+ cgMLST profiles and 16–61 cgSNPs among ST405 isolates. Furthermore, comparison of WGS-based typing results with previously obtained MLST and pulsed-field gel electrophoresis (PFGE) data showed some differences, demonstrating the different molecular principles underlying these techniques. In conclusion, the use of the different WGS-based typing methods that were used to elucidate the genetic relatedness of clonal OXA-48-producing K. pneumoniae all led to the same conclusions. Furthermore, threshold parameters in WGS-based typing methods should be applied with caution and should be used in combination with clinical epidemiological data and population and species characteristics.
Collapse
Affiliation(s)
- Elisenda Miro
- Department of Microbiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Monika A Chlebowicz
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Dag Harmsen
- Department of Periodontology and Restorative Dentistry, University of Münster, Münster, Germany
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Virginie Passet
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Ferran Navarro
- Department of Microbiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - S García-Cobos
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Senghore M, Diarra B, Gehre F, Otu J, Worwui A, Muhammad AK, Kwambana-Adams B, Kay GL, Sanogo M, Baya B, Orsega S, Doumbia S, Diallo S, de Jong BC, Pallen MJ, Antonio M. Evolution of Mycobacterium tuberculosis complex lineages and their role in an emerging threat of multidrug resistant tuberculosis in Bamako, Mali. Sci Rep 2020; 10:327. [PMID: 31941887 PMCID: PMC6962199 DOI: 10.1038/s41598-019-56001-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/30/2019] [Indexed: 11/10/2022] Open
Abstract
In recent years Bamako has been faced with an emerging threat from multidrug resistant TB (MDR-TB). Whole genome sequence analysis was performed on a subset of 76 isolates from a total of 208 isolates recovered from tuberculosis patients in Bamako, Mali between 2006 and 2012. Among the 76 patients, 61(80.3%) new cases and 15(19.7%) retreatment cases, 12 (16%) were infected by MDR-TB. The dominant lineage was the Euro-American lineage, Lineage 4. Within Lineage 4, the Cameroon genotype was the most prevalent genotype (n = 20, 26%), followed by the Ghana genotype (n = 16, 21%). A sub-clade of the Cameroon genotype, which emerged ~22 years ago was likely to be involved in community transmission. A sub-clade of the Ghana genotype that arose approximately 30 years ago was an important cause of MDR-TB in Bamako. The Ghana genotype isolates appeared more likely to be MDR than other genotypes after controlling for treatment history. We identified a clade of four related Beijing isolates that included one MDR-TB isolate. It is a major concern to find the Cameroon and Ghana genotypes involved in community transmission and MDR-TB respectively. The presence of the Beijing genotype in Bamako remains worrying, given its high transmissibility and virulence.
Collapse
Affiliation(s)
- Madikay Senghore
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
- Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Bassirou Diarra
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Florian Gehre
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Jacob Otu
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Archibald Worwui
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Abdul Khalie Muhammad
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Brenda Kwambana-Adams
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Gemma L Kay
- Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Moumine Sanogo
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bocar Baya
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Susan Orsega
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Souleymane Diallo
- University Clinical Research Center (UCRC)-SEREFO-Laboratory, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Mark J Pallen
- Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Quadram Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UA, UK
| | - Martin Antonio
- Medical Research Council Unit The Gambia at The London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia.
- Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
19
|
Zhou Z, Alikhan NF, Mohamed K, Fan Y, Achtman M. The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020; 30:138-152. [PMID: 31809257 PMCID: PMC6961584 DOI: 10.1101/gr.251678.119] [Citation(s) in RCA: 605] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
EnteroBase is an integrated software environment that supports the identification of global population structures within several bacterial genera that include pathogens. Here, we provide an overview of how EnteroBase works, what it can do, and its future prospects. EnteroBase has currently assembled more than 300,000 genomes from Illumina short reads from Salmonella, Escherichia, Yersinia, Clostridioides, Helicobacter, Vibrio, and Moraxella and genotyped those assemblies by core genome multilocus sequence typing (cgMLST). Hierarchical clustering of cgMLST sequence types allows mapping a new bacterial strain to predefined population structures at multiple levels of resolution within a few hours after uploading its short reads. Case Study 1 illustrates this process for local transmissions of Salmonella enterica serovar Agama between neighboring social groups of badgers and humans. EnteroBase also supports single nucleotide polymorphism (SNP) calls from both genomic assemblies and after extraction from metagenomic sequences, as illustrated by Case Study 2 which summarizes the microevolution of Yersinia pestis over the last 5000 years of pandemic plague. EnteroBase can also provide a global overview of the genomic diversity within an entire genus, as illustrated by Case Study 3, which presents a novel, global overview of the population structure of all of the species, subspecies, and clades within Escherichia.
Collapse
|
20
|
Vila Nova M, Durimel K, La K, Felten A, Bessières P, Mistou MY, Mariadassou M, Radomski N. Genetic and metabolic signatures of Salmonella enterica subsp. enterica associated with animal sources at the pangenomic scale. BMC Genomics 2019; 20:814. [PMID: 31694533 PMCID: PMC6836353 DOI: 10.1186/s12864-019-6188-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica is a public health issue related to food safety, and its adaptation to animal sources remains poorly described at the pangenome scale. Firstly, serovars presenting potential mono- and multi-animal sources were selected from a curated and synthetized subset of Enterobase. The corresponding sequencing reads were downloaded from the European Nucleotide Archive (ENA) providing a balanced dataset of 440 Salmonella genomes in terms of serovars and sources (i). Secondly, the coregenome variants and accessory genes were detected (ii). Thirdly, single nucleotide polymorphisms and small insertions/deletions from the coregenome, as well as the accessory genes were associated to animal sources based on a microbial Genome Wide Association Study (GWAS) integrating an advanced correction of the population structure (iii). Lastly, a Gene Ontology Enrichment Analysis (GOEA) was applied to emphasize metabolic pathways mainly impacted by the pangenomic mutations associated to animal sources (iv). RESULTS Based on a genome dataset including Salmonella serovars from mono- and multi-animal sources (i), 19,130 accessory genes and 178,351 coregenome variants were identified (ii). Among these pangenomic mutations, 52 genomic signatures (iii) and 9 over-enriched metabolic signatures (iv) were associated to avian, bovine, swine and fish sources by GWAS and GOEA, respectively. CONCLUSIONS Our results suggest that the genetic and metabolic determinants of Salmonella adaptation to animal sources may have been driven by the natural feeding environment of the animal, distinct livestock diets modified by human, environmental stimuli, physiological properties of the animal itself, and work habits for health protection of livestock.
Collapse
Affiliation(s)
- Meryl Vila Nova
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Kévin Durimel
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Kévin La
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Arnaud Felten
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Philippe Bessières
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel-Yves Mistou
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Mahendra Mariadassou
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Radomski
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France.
| |
Collapse
|
21
|
Bonneaud C, Weinert LA, Kuijper B. Understanding the emergence of bacterial pathogens in novel hosts. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180328. [PMID: 31401968 PMCID: PMC6711297 DOI: 10.1098/rstb.2018.0328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 01/03/2023] Open
Abstract
Our understanding of the ecological and evolutionary context of novel infections is largely based on viral diseases, even though bacterial pathogens may display key differences in the processes underlying their emergence. For instance, host-shift speciation, in which the jump of a pathogen into a novel host species is followed by the specialization on that host and the loss of infectivity of previous host(s), is commonly observed in viruses, but less often in bacteria. Here, we suggest that the extent to which pathogens evolve host generalism or specialism following a jump into a novel host will depend on their level of adaptation to dealing with different environments, their rates of molecular evolution and their ability to recombine. We then explore these hypotheses using a formal model and show that the high levels of phenotypic plasticity, low rates of evolution and the ability to recombine typical of bacterial pathogens should reduce their propensity to specialize on novel hosts. Novel bacterial infections may therefore be more likely to result in transient spillovers or increased host ranges than in host shifts. Finally, consistent with our predictions, we show that, in two unusual cases of contemporary bacterial host shifts, the bacterial pathogens both have small genomes and rapid rates of substitution. Further tests are required across a greater number of emerging pathogens to assess the validity of our hypotheses. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
22
|
Torii Y, Yokoyama E, Seki M, Shigemura H, Ishige T, Yanagimoto K, Uematsu K, Ando N, Fujimaki T, Murakami S. Genetic characteristics of emerging Salmonella enterica serovar Agona strains isolated from humans in the prior period to occurrence of the serovar shift in broilers. J Vet Med Sci 2019; 81:1117-1120. [PMID: 31231084 PMCID: PMC6715908 DOI: 10.1292/jvms.18-0522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies found that a dominant serovar of Salmonella
enterica isolates from three farms raising broilers in 2014 and 2015 was
serovar Agona and the number of Infantis isolates decreased (the serovar shift). In this
study, 52 S. Agona strains which isolated between 1993 and 2008, were
compared to the serovar shift clone by molecular epidemiology and phylogenetic analyses,
using pulsed field gel electrophoresis and whole genome sequence analyses. Of the 52
strains, one strain isolated from a human case in 1995 was genetically identical to the
serovar shift clone, even though it was isolated prior to the serovar shift. These results
suggested that the S. Agona serovar shift clone had existed in a source
other than chicken penetrated chicken population.
Collapse
Affiliation(s)
- Yasushi Torii
- Laboratory of Animal Health, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba prefectural Institute of Public Health, Chiba, Chiba 260-8715, Japan
| | - Misaki Seki
- Laboratory of Animal Health, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| | - Hiroaki Shigemura
- Division of Pathology and Bacteriology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Fukuoka 818-0135, Japan
| | - Taichiro Ishige
- Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 256-0054, Japan
| | - Keita Yanagimoto
- Department of Microbiology, Yamanashi Institute of Public Health and Environments, Kofu, Yamanashi 400-0027, Japan
| | - Kosei Uematsu
- Department of Microbiology, Yamanashi Institute of Public Health and Environments, Kofu, Yamanashi 400-0027, Japan
| | - Naoshi Ando
- Division of Bacteriology, Chiba prefectural Institute of Public Health, Chiba, Chiba 260-8715, Japan
| | - Tsutomu Fujimaki
- Yamanashi Meat Hygiene Inspection Laboratory, Fuefuki, Yamanashi 406-0034, Japan
| | - Satoshi Murakami
- Laboratory of Animal Health, Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|
23
|
Hawkey J, Le Hello S, Doublet B, Granier SA, Hendriksen RS, Fricke WF, Ceyssens PJ, Gomart C, Billman-Jacobe H, Holt KE, Weill FX. Global phylogenomics of multidrug-resistant Salmonella enterica serotype Kentucky ST198. Microb Genom 2019; 5. [PMID: 31107206 PMCID: PMC6700661 DOI: 10.1099/mgen.0.000269] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serotype Kentucky can be a common causative agent of salmonellosis, usually associated with consumption of contaminated poultry. Antimicrobial resistance (AMR) to multiple drugs, including ciprofloxacin, is an emerging problem within this serotype. We used whole-genome sequencing (WGS) to investigate the phylogenetic structure and AMR content of 121 S.enterica serotype Kentucky sequence type 198 isolates from five continents. Population structure was inferred using phylogenomic analysis and whole genomes were compared to investigate changes in gene content, with a focus on acquired AMR genes. Our analysis showed that multidrug-resistant (MDR) S.enterica serotype Kentucky isolates belonged to a single lineage, which we estimate emerged circa 1989 following the acquisition of the AMR-associated Salmonella genomic island (SGI) 1 (variant SGI1-K) conferring resistance to ampicillin, streptomycin, gentamicin, sulfamethoxazole and tetracycline. Phylogeographical analysis indicates this clone emerged in Egypt before disseminating into Northern, Southern and Western Africa, then to the Middle East, Asia and the European Union. The MDR clone has since accumulated various substitution mutations in the quinolone-resistance-determining regions (QRDRs) of DNA gyrase (gyrA) and DNA topoisomerase IV (parC), such that most strains carry three QRDR mutations which together confer resistance to ciprofloxacin. The majority of AMR genes in the S. enterica serotype Kentucky genomes were carried either on plasmids or SGI structures. Remarkably, each genome of the MDR clone carried a different SGI1-K derivative structure; this variation could be attributed to IS26-mediated insertions and deletions, which appear to have hampered previous attempts to trace the clone’s evolution using sub-WGS resolution approaches. Several different AMR plasmids were also identified, encoding resistance to chloramphenicol, third-generation cephalosporins, carbapenems and/or azithromycin. These results indicate that most MDR S. enterica serotype Kentucky circulating globally result from the clonal expansion of a single lineage that acquired chromosomal AMR genes 30 years ago, and has continued to diversify and accumulate additional resistances to last-line oral antimicrobials. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Simon Le Hello
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella , World Health Organization Collaborative Centre for the Typing and Antibiotic Resistance of Salmonella , Institut Pasteur, 75015 Paris, France
| | - Benoît Doublet
- ISP, Institut National de la Recherche Agronomique, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Sophie A Granier
- Laboratoire de sécurité des aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), Université PARIS-EST, 94701 Maisons-Alfort, France.,Laboratoire de Fougères, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (ANSES), 35306 Fougères, France
| | - Rene S Hendriksen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - W Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Camille Gomart
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella , World Health Organization Collaborative Centre for the Typing and Antibiotic Resistance of Salmonella , Institut Pasteur, 75015 Paris, France
| | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kathryn E Holt
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella , World Health Organization Collaborative Centre for the Typing and Antibiotic Resistance of Salmonella , Institut Pasteur, 75015 Paris, France
| |
Collapse
|
24
|
Abstract
Pullorum disease, an acute poultry septicemia caused by Salmonella Gallinarum biovar Pullorum, is fatal for young chickens and is a heavy burden on poultry industry. The pathogen is rare in most developed countries but still extremely difficult to eliminate in China. Efficient epidemiological surveillance necessitates clarifying the origin of the isolates from different regions and their phylogenic relationships. Genomic epidemiological analysis of 97 S. Pullorum strains was carried out to reconstruct the phylogeny and transmission history of S. Pullorum. Further analysis demonstrated that functional gene loss and acquisition occurred simultaneously throughout the evolution of S. Pullorum, both of which reflected adaptation to the changing environment. The result of our study will be helpful in surveillance and prevention of pullorum disease. Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S. Pullorum) is the etiological agent of pullorum disease, causing white diarrhea with high mortality in chickens. There are many unsolved issues surrounding the epidemiology of S. Pullorum, including its origin and transmission history as well as the discordance between its phenotypic heterogeneity and genetic monomorphism. In this paper, we report the results of whole-genome sequencing of a panel of 97 S. Pullorum strains isolated between 1962 and 2014 from four countries across three continents. We utilized 6,795 core genome single nucleotide polymorphisms (SNPs) to reconstruct a phylogenetic tree within a spatiotemporal Bayesian framework, estimating that the most recent common ancestor of S. Pullorum emerged in ∼914 CE (95% confidence interval [95%CI], 565 to 1273 CE). The extant S. Pullorum strains can be divided into four distinct lineages, each of which is significantly associated with geographical distribution. The intercontinental transmissions of lineages III and IV can be traced to the mid-19th century and are probably related to the “Hen Fever” prevalent at that time. Further genomic analysis indicated that the loss or pseudogenization of functional genes involved in metabolism and virulence in S. Pullorum has been ongoing since before and after divergence from the ancestor. In contrast, multiple prophages and plasmids have been acquired by S. Pullorum, and these have endowed it with new characteristics, especially the multidrug resistance conferred by two large plasmids in lineage I. The results of this study provide insight into the evolution of S. Pullorum and prove the efficiency of whole-genome sequencing in epidemiological surveillance of pullorum disease. IMPORTANCE Pullorum disease, an acute poultry septicemia caused by Salmonella Gallinarum biovar Pullorum, is fatal for young chickens and is a heavy burden on poultry industry. The pathogen is rare in most developed countries but still extremely difficult to eliminate in China. Efficient epidemiological surveillance necessitates clarifying the origin of the isolates from different regions and their phylogenic relationships. Genomic epidemiological analysis of 97 S. Pullorum strains was carried out to reconstruct the phylogeny and transmission history of S. Pullorum. Further analysis demonstrated that functional gene loss and acquisition occurred simultaneously throughout the evolution of S. Pullorum, both of which reflected adaptation to the changing environment. The result of our study will be helpful in surveillance and prevention of pullorum disease.
Collapse
|
25
|
Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, Croucher NJ. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304-316. [PMID: 30679308 PMCID: PMC6360808 DOI: 10.1101/gr.241455.118] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 12/02/2022]
Abstract
The routine use of genomics for disease surveillance provides the opportunity for high-resolution bacterial epidemiology. Current whole-genome clustering and multilocus typing approaches do not fully exploit core and accessory genomic variation, and they cannot both automatically identify, and subsequently expand, clusters of significantly similar isolates in large data sets spanning entire species. Here, we describe PopPUNK (Population Partitioning Using Nucleotide K -mers), a software implementing scalable and expandable annotation- and alignment-free methods for population analysis and clustering. Variable-length k-mer comparisons are used to distinguish isolates' divergence in shared sequence and gene content, which we demonstrate to be accurate over multiple orders of magnitude using data from both simulations and genomic collections representing 10 taxonomically widespread species. Connections between closely related isolates of the same strain are robustly identified, despite interspecies variation in the pairwise distance distributions that reflects species' diverse evolutionary patterns. PopPUNK can process 103-104 genomes in a single batch, with minimal memory use and runtimes up to 200-fold faster than existing model-based methods. Clusters of strains remain consistent as new batches of genomes are added, which is achieved without needing to reanalyze all genomes de novo. This facilitates real-time surveillance with consistent cluster naming between studies and allows for outbreak detection using hundreds of genomes in minutes. Interactive visualization and online publication is streamlined through the automatic output of results to multiple platforms. PopPUNK has been designed as a flexible platform that addresses important issues with currently used whole-genome clustering and typing methods, and has potential uses across bacterial genetics and public health research.
Collapse
Affiliation(s)
- John A Lees
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Simon R Harris
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Gerry Tonkin-Hill
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Rebecca A Gladstone
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Department of Biostatistics, University of Oslo, 0372 Oslo, Norway
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Institute of Infection and Global Health, University of Liverpool, Liverpool L7 3EA, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
26
|
Jourdan-da Silva N, Fabre L, Robinson E, Fournet N, Nisavanh A, Bruyand M, Mailles A, Serre E, Ravel M, Guibert V, Issenhuth-Jeanjean S, Renaudat C, Tourdjman M, Septfons A, de Valk H, Le Hello S. Ongoing nationwide outbreak of Salmonella Agona associated with internationally distributed infant milk products, France, December 2017. ACTA ACUST UNITED AC 2019; 23. [PMID: 29338811 PMCID: PMC5770849 DOI: 10.2807/1560-7917.es.2018.23.2.17-00852] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
On 1 December 2017, an outbreak of Salmonella Agona infections among infants was identified in France. To date, 37 cases (median age: 4 months) and two further international cases have been confirmed. Five different infant milk products manufactured at one facility were implicated. On 2 and 10 December, the company recalled the implicated products; on 22 December, all products processed at the facility since February 2017. Trace-forward investigations indicated product distribution to 66 countries.
Collapse
Affiliation(s)
| | - Laetitia Fabre
- Institut Pasteur, Centre National de Référence des Salmonella, Paris, France
| | - Eve Robinson
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.,Santé publique France, Saint-Maurice, France
| | | | | | | | | | - Estelle Serre
- Institut Pasteur, Centre National de Référence des Salmonella, Paris, France
| | - Magali Ravel
- Institut Pasteur, Centre National de Référence des Salmonella, Paris, France
| | - Véronique Guibert
- Institut Pasteur, Centre National de Référence des Salmonella, Paris, France
| | | | - Charlotte Renaudat
- Institut Pasteur, Centre National de Référence des Salmonella, Paris, France
| | | | | | | | - Simon Le Hello
- Institut Pasteur, Centre National de Référence des Salmonella, Paris, France
| |
Collapse
|
27
|
Isolation of Salmonella enterica serovar Agona strains and their similarities to strains derived from a clone caused a serovar shift in broilers. J Infect Chemother 2018; 25:71-74. [PMID: 30054228 DOI: 10.1016/j.jiac.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022]
Abstract
Salmonella enterica serovar Agona strains isolated from human cases were compared to strains that were derived from a clone caused a serovar shift in broilers. Pulsed field gel electrophoresis (PFGE) analysis with XbaI or BlnI digestion showed that three of seven strains from human case strains and most of the 81 strains from broilers were clustered in single complex in a minimum spanning tree (MST) reconstructed from the PFGE data. All the strains from human cases and 22 randomly selected strains from broilers were also analyzed by whole genome sequencing (WGS). Analysis of single nucleotide polymorphism (SNP) in the S. Agona core genes showed that four strains from human cases and all the strains from broilers were clustered in a maximum likelihood phylogenetic tree (ML tree) and an MST. These results indicated that the strains derived from the clone caused the serovar shift had already spread to humans. PFGE analysis with XbaI showed that four strains from broilers did not cluster with the other strains in an MST, though all those strains clustered in an ML tree and an MST reconstructed from SNP data. Moreover, three strains from broilers did not cluster in an MST reconstructed from PFGE with BlnI digestion, though those strains clustered in an ML tree and an MST reconstructed from SNP data. Therefore, it was suggested that S. Agona strains derived from a particular clone could not be traced by PFGE analysis but can be investigated by WGS analysis.
Collapse
|
28
|
Zhou Z, Lundstrøm I, Tran-Dien A, Duchêne S, Alikhan NF, Sergeant MJ, Langridge G, Fotakis AK, Nair S, Stenøien HK, Hamre SS, Casjens S, Christophersen A, Quince C, Thomson NR, Weill FX, Ho SYW, Gilbert MTP, Achtman M. Pan-genome Analysis of Ancient and Modern Salmonella enterica Demonstrates Genomic Stability of the Invasive Para C Lineage for Millennia. Curr Biol 2018; 28:2420-2428.e10. [PMID: 30033331 PMCID: PMC6089836 DOI: 10.1016/j.cub.2018.05.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/09/2018] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
Abstract
Salmonella enterica serovar Paratyphi C causes enteric (paratyphoid) fever in humans. Its presentation can range from asymptomatic infections of the blood stream to gastrointestinal or urinary tract infection or even a fatal septicemia [1]. Paratyphi C is very rare in Europe and North America except for occasional travelers from South and East Asia or Africa, where the disease is more common [2, 3]. However, early 20th-century observations in Eastern Europe [3, 4] suggest that Paratyphi C enteric fever may once have had a wide-ranging impact on human societies. Here, we describe a draft Paratyphi C genome (Ragna) recovered from the 800-year-old skeleton (SK152) of a young woman in Trondheim, Norway. Paratyphi C sequences were recovered from her teeth and bones, suggesting that she died of enteric fever and demonstrating that these bacteria have long caused invasive salmonellosis in Europeans. Comparative analyses against modern Salmonella genome sequences revealed that Paratyphi C is a clade within the Para C lineage, which also includes serovars Choleraesuis, Typhisuis, and Lomita. Although Paratyphi C only infects humans, Choleraesuis causes septicemia in pigs and boar [5] (and occasionally humans), and Typhisuis causes epidemic swine salmonellosis (chronic paratyphoid) in domestic pigs [2, 3]. These different host specificities likely evolved in Europe over the last ∼4,000 years since the time of their most recent common ancestor (tMRCA) and are possibly associated with the differential acquisitions of two genomic islands, SPI-6 and SPI-7. The tMRCAs of these bacterial clades coincide with the timing of pig domestication in Europe [6]. Salmonella enterica aDNA sequences were found within 800-year-old teeth and bone The invasive Para C lineage was defined from 50,000 modern S. enterica genomes The Para C lineage includes Ragna, the aDNA genome, and human and swine pathogens Only few genomic changes occurred in the Para C lineage over its 3,000-year history
Collapse
Affiliation(s)
- Zhemin Zhou
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Inge Lundstrøm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Alicia Tran-Dien
- Unité des Bactéries Pathogènes Entériques, Institut Pasteur, Paris, France
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nabil-Fareed Alikhan
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Martin J Sergeant
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | - Anna K Fotakis
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | | | | | - Stian S Hamre
- Department of Archaeology, History, Cultural Studies and Religion, University of Bergen, Post Box 7805, 5020 Bergen, Norway
| | - Sherwood Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Christopher Quince
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | - Simon Y W Ho
- School of Life and Environmental Sciences; University of Sydney, Sydney NSW 2006, Australia
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; NTNU University Museum, N-7491 Trondheim, Norway.
| | - Mark Achtman
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
29
|
David DJ, Pagliuso A, Radoshevich L, Nahori MA, Cossart P. Lmo1656 is a secreted virulence factor of Listeria monocytogenes that interacts with the sorting nexin 6-BAR complex. J Biol Chem 2018; 293:9265-9276. [PMID: 29666193 PMCID: PMC6005434 DOI: 10.1074/jbc.ra117.000365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes (Lm) is a facultative intracellular bacterial pathogen and the causative agent of listeriosis, a rare but fatal disease. During infection, Lm can traverse several physiological barriers; it can cross the intestine and placenta barrier and, in immunocompromised individuals, the blood–brain barrier. With the recent plethora of sequenced genomes available for Lm, it is clear that the complete repertoire of genes used by Lm to interact with its host remains to be fully explored. Recently, we focused on secreted Lm proteins because they are likely to interact with host cell components. Here, we investigated a putatively secreted protein of Lm, Lmo1656, that is present in most sequenced strains of Lm but absent in the nonpathogenic species Listeria innocua. lmo1656 gene is predicted to encode a small, positively charged protein. We show that Lmo1656 is secreted by Lm. Furthermore, deletion of the lmo1656 gene (Δlmo1656) attenuates virulence in mice infected orally but not intravenously, suggesting that Lmo1656 plays a role during oral listeriosis. We identified sorting nexin 6 (SNX6), an endosomal sorting component and BAR domain–containing protein, as a host cell interactor of Lmol656. SNX6 colocalizes with WT Lm during the early steps of infection. This colocalization depends on Lmo1656, and RNAi of SNX6 impairs infection in infected tissue culture cells, suggesting that SNX6 is utilized by Lm during infection. Our results reveal that Lmo1656 is a novel secreted virulence factor of Lm that facilitates recruitment of a specific member of the sorting nexin family in the mammalian host.
Collapse
Affiliation(s)
- Daryl Jason David
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Alessandro Pagliuso
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Lilliana Radoshevich
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Marie-Anne Nahori
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Pascale Cossart
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
30
|
Abstract
For many decades, Salmonella enterica has been subdivided by serological properties into serovars or further subdivided for epidemiological tracing by a variety of diagnostic tests with higher resolution. Recently, it has been proposed that so-called eBurst groups (eBGs) based on the alleles of seven housekeeping genes (legacy multilocus sequence typing [MLST]) corresponded to natural populations and could replace serotyping. However, this approach lacks the resolution needed for epidemiological tracing and the existence of natural populations had not been independently validated by independent criteria. Here, we describe EnteroBase, a web-based platform that assembles draft genomes from Illumina short reads in the public domain or that are uploaded by users. EnteroBase implements legacy MLST as well as ribosomal gene MLST (rMLST), core genome MLST (cgMLST), and whole genome MLST (wgMLST) and currently contains over 100,000 assembled genomes from Salmonella. It also provides graphical tools for visual interrogation of these genotypes and those based on core single nucleotide polymorphisms (SNPs). eBGs based on legacy MLST are largely consistent with eBGs based on rMLST, thus demonstrating that these correspond to natural populations. rMLST also facilitated the selection of representative genotypes for SNP analyses of the entire breadth of diversity within Salmonella. In contrast, cgMLST provides the resolution needed for epidemiological investigations. These observations show that genomic genotyping, with the assistance of EnteroBase, can be applied at all levels of diversity within the Salmonella genus.
Collapse
|
31
|
Pearce ME, Alikhan NF, Dallman TJ, Zhou Z, Grant K, Maiden MCJ. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. Int J Food Microbiol 2018; 274:1-11. [PMID: 29574242 PMCID: PMC5899760 DOI: 10.1016/j.ijfoodmicro.2018.02.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/10/2023]
Abstract
Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. cgMLST is proposed as a universal typing scheme for Salmonella. cgMLST is congruent with SNP analyses and easier to implement across laboratories. Genomic data are consistent with the epidemiology of the outbreak.
Collapse
Affiliation(s)
- Madison E Pearce
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom.
| | - Nabil-Fareed Alikhan
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - Timothy J Dallman
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - Kathie Grant
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom.
| |
Collapse
|
32
|
Liu Y, Zhang DF, Zhou X, Xu L, Zhang L, Shi X. Comprehensive Analysis Reveals Two Distinct Evolution Patterns of Salmonella Flagellin Gene Clusters. Front Microbiol 2017; 8:2604. [PMID: 29312269 PMCID: PMC5744181 DOI: 10.3389/fmicb.2017.02604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the primary causes of foodborne disease, especially Salmonella enterica subsp. enterica (I) which has caused ~99% of clinical salmonellosis cases for humans and domestic mammals. The flagella genes, fliC and fljB, which encode the Salmonella phase 1 and phase 2 antigens respectively, are considered as the Salmonella serotype determinant genes, and contribute to the virulence of Salmonella. However, the evolution of the two flagellin genes is still not well-understood. In this study, the fliC and fljB gene clusters were analyzed among 205 S. enterica subspecies I genomes. The dataset covered 87 different serovars of S. enterica subsp. enterica and included 9 genomes (six serovars) of four other Salmonella subspecies. Based on a pan-genome definition and flanked gene linkages, the fliC and fljB gene clusters were identified in 207 (91 serovars) and 138 (61 serovars) genomes, respectively. A phylogenetic tree constructed based on SNPs (Single Nucleotide Polymorphisms) of core genes were used to reflect the essential evolutionary relationships among various serovars. Congruence analysis was performed among the core genome and each gene of fliC and fljB gene clusters, with only fliA and fliS showing congruence to Salmonella core genome. Congruence was also observed among fliB, fliC/fljB, and fliD genes, and their phylogeny revealed a division into two major groups, which strongly corresponded to monophasic and biphasic serovars. Besides, homologous recombination events referring fliB, fliC, and fliD were found to have mainly occurred within each group. These results suggested two distinct evolutionary patterns of Salmonella flagellin gene clusters. Further insight on the evolutionary implication of the two patterns and a framework for phase variation mechanism are needed to be further processed.
Collapse
Affiliation(s)
- Yue Liu
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Dao-Feng Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xiujuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xu
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Lida Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Achtman M. How old are bacterial pathogens? Proc Biol Sci 2017; 283:rspb.2016.0990. [PMID: 27534956 DOI: 10.1098/rspb.2016.0990] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 12/26/2022] Open
Abstract
Only few molecular studies have addressed the age of bacterial pathogens that infected humans before the beginnings of medical bacteriology, but these have provided dramatic insights. The global genetic diversity of Helicobacter pylori, which infects human stomachs, parallels that of its human host. The time to the most recent common ancestor (tMRCA) of these bacteria approximates that of anatomically modern humans, i.e. at least 100 000 years, after calibrating the evolutionary divergence within H. pylori against major ancient human migrations. Similarly, genomic reconstructions of Mycobacterium tuberculosis, the cause of tuberculosis, from ancient skeletons in South America and mummies in Hungary support estimates of less than 6000 years for the tMRCA of M. tuberculosis Finally, modern global patterns of genetic diversity and ancient DNA studies indicate that during the last 5000 years plague caused by Yersinia pestis has spread globally on multiple occasions from China and Central Asia. Such tMRCA estimates provide only lower bounds on the ages of bacterial pathogens, and additional studies are needed for realistic upper bounds on how long humans and animals have suffered from bacterial diseases.
Collapse
Affiliation(s)
- Mark Achtman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
34
|
Felten A, Vila Nova M, Durimel K, Guillier L, Mistou MY, Radomski N. First gene-ontology enrichment analysis based on bacterial coregenome variants: insights into adaptations of Salmonella serovars to mammalian- and avian-hosts. BMC Microbiol 2017; 17:222. [PMID: 29183286 PMCID: PMC5706153 DOI: 10.1186/s12866-017-1132-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background Many of the bacterial genomic studies exploring evolution processes of the host adaptation focus on the accessory genome describing how the gains and losses of genes can explain the colonization of new habitats. Consequently, we developed a new approach focusing on the coregenome in order to describe the host adaptation of Salmonella serovars. Methods In the present work, we propose bioinformatic tools allowing (i) robust phylogenetic inference based on SNPs and recombination events, (ii) identification of fixed SNPs and InDels distinguishing homoplastic and non-homoplastic coregenome variants, and (iii) gene-ontology enrichment analyses to describe metabolic processes involved in adaptation of Salmonella enterica subsp. enterica to mammalian- (S. Dublin), multi- (S. Enteritidis), and avian- (S. Pullorum and S. Gallinarum) hosts. Results The ‘VARCall’ workflow produced a robust phylogenetic inference confirming that the monophyletic clade S. Dublin diverged from the polyphyletic clade S. Enteritidis which includes the divergent clades S. Pullorum and S. Gallinarum (i). The scripts ‘phyloFixedVar’ and ‘FixedVar’ detected non-synonymous and non-homoplastic fixed variants supporting the phylogenetic reconstruction (ii). The scripts ‘GetGOxML’ and ‘EveryGO’ identified representative metabolic pathways related to host adaptation using the first gene-ontology enrichment analysis based on bacterial coregenome variants (iii). Conclusions We propose in the present manuscript a new coregenome approach coupling identification of fixed SNPs and InDels with regards to inferred phylogenetic clades, and gene-ontology enrichment analysis in order to describe the adaptation of Salmonella serovars Dublin (i.e. mammalian-hosts), Enteritidis (i.e. multi-hosts), Pullorum (i.e. avian-hosts) and Gallinarum (i.e. avian-hosts) at the coregenome scale. All these polyvalent Bioinformatic tools can be applied on other bacterial genus without additional developments. Electronic supplementary material The online version of this article (10.1186/s12866-017-1132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arnaud Felten
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Meryl Vila Nova
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Kevin Durimel
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Laurent Guillier
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Michel-Yves Mistou
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Nicolas Radomski
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France.
| |
Collapse
|
35
|
Tan JL, Ng KP, Ong CS, Ngeow YF. Genomic Comparisons Reveal Microevolutionary Differences in Mycobacterium abscessus Subspecies. Front Microbiol 2017; 8:2042. [PMID: 29109707 PMCID: PMC5660101 DOI: 10.3389/fmicb.2017.02042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium abscessus, a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex (M. abscessus, M. massiliense, and M. bolletii) are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site) identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a) recombination has affected the M. abscessus complex more than mutation and positive selection; (b) recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c) the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the diversification among members in this complex.
Collapse
Affiliation(s)
- Joon L Tan
- Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
| | - Kee P Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chia S Ong
- Faculty of Information Science and Technology, Multimedia University, Melaka, Malaysia
| | - Yun F Ngeow
- Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia
| |
Collapse
|
36
|
Colavecchio A, D'Souza Y, Tompkins E, Jeukens J, Freschi L, Emond-Rheault JG, Kukavica-Ibrulj I, Boyle B, Bekal S, Tamber S, Levesque RC, Goodridge LD. Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica. Front Microbiol 2017; 8:1283. [PMID: 28740489 PMCID: PMC5502288 DOI: 10.3389/fmicb.2017.01283] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S. Enteritidis, and 18 integrase genes in S. Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S. Enteritidis, and 9 integrase genes in S. Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S. Enteritidis and S. Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23 different integrase genes within the food-associated isolates, but only identified four different phages and integrase genes within clonal isolates of S. Enteritidis and S. Heidelberg. These results demonstrate the potential usefulness of PCR based detection of prophage integrase genes as a rapid indicator of genome diversity in S. enterica.
Collapse
Affiliation(s)
- Anna Colavecchio
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-BellevueQC, Canada
| | - Yasmin D'Souza
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-BellevueQC, Canada
| | - Elizabeth Tompkins
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-BellevueQC, Canada
| | - Julie Jeukens
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec CityQC, Canada
| | - Luca Freschi
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec CityQC, Canada
| | | | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec CityQC, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec CityQC, Canada
| | - Sadjia Bekal
- Pathogènes entériques et Bioterrorisme, Laboratoire de santé publique du Québec, Sainte-Anne-de-BellevueQC, Canada
| | - Sandeep Tamber
- Salmonella Research Laboratory, Bureau of Microbial Hazards, Health Canada, OttawaON, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec CityQC, Canada
| | - Lawrence D Goodridge
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-BellevueQC, Canada
| |
Collapse
|
37
|
Fine-Scale Structure Analysis Shows Epidemic Patterns of Clonal Complex 95, a Cosmopolitan Escherichia coli Lineage Responsible for Extraintestinal Infection. mSphere 2017; 2:mSphere00168-17. [PMID: 28593194 PMCID: PMC5451516 DOI: 10.1128/msphere.00168-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/17/2017] [Indexed: 01/11/2023] Open
Abstract
The Escherichia coli lineage known as clonal complex 95 (CC95) is a cosmopolitan human-associated lineage responsible for a significant fraction of extraintestinal infections of humans. Whole-genome sequence data of 200 CC95 strains from various origins enabled determination of the CC95 pangenome. The pangenome analysis revealed that strains of the complex could be assigned to one of five subgroups that vary in their serotype, extraintestinal virulence, virulence gene content, and antibiotic resistance gene profile. A total of 511 CC95 strains isolated from humans living in France, Australia, and the United States were screened for their subgroup membership using a PCR-based method. The CC95 subgroups are nonrandomly distributed with respect to their geographic origin. The relative frequency of the subgroups was shown to change through time, although the nature of the changes varies with continent. Strains of the subgroups are also nonrandomly distributed with respect to source of isolation (blood, urine, or feces) and host sex. Collectively, the evidence indicates that although strains belonging to CC95 may be cosmopolitan, human movement patterns have been insufficient to homogenize the distribution of the CC95 subgroups. Rather, the manner in which CC95 strains evolve appears to vary both spatially and temporally. Although CC95 strains appeared globally as pandemic, fine-scale structure analysis shows epidemic patterns of the CC95 subgroups. Furthermore, the observation that the relative frequency of CC95 subgroups at a single locality has changed over time indicates that the relative fitness of the subgroups has changed. IMPORTANCEEscherichia coli clonal complex 95 represents a cosmopolitan, genetically diverse lineage, and the extensive substructure observed in this lineage is epidemiologically and clinically relevant. The frequency with which CC95 strains are responsible for extraintestinal infection appears to have been stable over the past 15 years. However, the different subgroups identified within this lineage have an epidemic structure depending on the host, sample, continent, and time. Thus, the evolution and spread of strains belonging to CC95 are very different from those of another cosmopolitan human-associated clonal complex, CC131, which has increased significantly in frequency as a cause of extraintestinal infection over the past 15 years due to the evolution and spread of two very closely related, nearly monomorphic lineages.
Collapse
|
38
|
Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun 2017; 8:15483. [PMID: 28537263 PMCID: PMC5458099 DOI: 10.1038/ncomms15483] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/30/2017] [Indexed: 11/26/2022] Open
Abstract
An atypically large outbreak of Elizabethkingia anophelis infections occurred in Wisconsin. Here we show that it was caused by a single strain with thirteen characteristic genomic regions. Strikingly, the outbreak isolates show an accelerated evolutionary rate and an atypical mutational spectrum. Six phylogenetic sub-clusters with distinctive temporal and geographic dynamics are revealed, and their last common ancestor existed approximately one year before the first recognized human infection. Unlike other E. anophelis, the outbreak strain had a disrupted DNA repair mutY gene caused by insertion of an integrative and conjugative element. This genomic change probably contributed to the high evolutionary rate of the outbreak strain and may have increased its adaptability, as many mutations in protein-coding genes occurred during the outbreak. This unique discovery of an outbreak caused by a naturally occurring mutator bacterial pathogen provides a dramatic example of the potential impact of pathogen evolutionary dynamics on infectious disease epidemiology. Elizabethkingia anophelis is an emerging pathogen of high antimicrobial resistance. Perrin and colleagues sequenced isolates of a 2015/2016 E. anophelis outbreak in Wisconsin and found substantial genetic diversity, accelerated evolutionary rate and a disruptive mutation in the DNA repair gene mutY.
Collapse
|
39
|
Cherry JL. A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history. BMC Bioinformatics 2017; 18:127. [PMID: 28231758 PMCID: PMC5324209 DOI: 10.1186/s12859-017-1520-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on the basis of whole-genome sequencing. Results Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data. The algorithm is applied to bacterial data sets containing up to nearly 2000 genomes with several thousand variable nucleotide sites. Run times are several seconds or less. Computational experiments show that maximum compatibility is less sensitive than maximum parsimony to the inclusion of nucleotide data that, though derived from actual sequence reads, has been identified as likely to be misleading. Conclusions Maximum compatibility is a useful tool for certain phylogenetic problems, such as inferring the relationships among closely-related bacteria from whole-genome sequence data. The algorithm presented here rapidly solves fairly large problems of this type, and provides robustness against misleading characters than can pollute large-scale sequencing data. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1520-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua L Cherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
40
|
Yoshikawa Y, Ochiai Y, Mochizuki M, Fujita O, Takano T, Hondo R, Ueda F. Genetic subtyping of Listeria monocytogenes via multiple-locus sequence typing using iap, sigB and actA. J Vet Med Sci 2017; 78:1831-1839. [PMID: 27725353 PMCID: PMC5240762 DOI: 10.1292/jvms.16-0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulse field gel electrophoresis (PFGE) is widely used for listeriosis surveillance. Although this technique is effective for epidemiology, the data among laboratories are inconsistent. We previously reported a method for Listeria monocytogenes subtyping combined with sequence analysis of partial iap and whole genome restriction fragment length polymorphism (RFLP) using XbaI, ClaI (BanIII) and PstI. However, distinguishing subtypes was challenging, because the output comprised complicated fragment patterns. In this study, we aimed to establish a simple genotyping method that does not depend on visual observation, rather it focuses on multi-locus sequence typing (MLST) using three genes, iap, sigB and actA. Sixty-eight strains of L. monocytogenes including EGD-e as a reference strain were investigated to ensure consistency with previous data on the genetic characterization. All strains were grouped into 29 types by both analyses. Although there are some differences in classification, major clades included the same strains. Simpson's indices of diversity (SID) by MLST and iap-RFLP-based typing were 0.967 (95% confidence interval [CI]: 0.955/0.978) and 0.967 (95% CI: 0.955/0.979), respectively. The discriminatory power of both methods can be considered almost identical. Compared with the results of 38 selected strains, the strains within the MLST clusters in this study coincided with those obtained using PFGE. Thus, the MLST strategy could help differentiate among L. monocytogenes isolates during epidemiological studies.
Collapse
Affiliation(s)
- Yuko Yoshikawa
- Division of Veterinary Hygiene and Public Health, Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Baltrus DA, McCann HC, Guttman DS. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:152-168. [PMID: 27798954 PMCID: PMC6638251 DOI: 10.1111/mpp.12506] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.
Collapse
Affiliation(s)
| | - Honour C. McCann
- New Zealand Institute for Advanced StudyMassey UniversityAuckland 0632New Zealand
| | - David S. Guttman
- Department of Cell and Systems BiologyUniversity of TorontoTorontoON M5S 3B2Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoON M5S 3B2Canada
| |
Collapse
|
42
|
Edlind T, Brewster JD, Paoli GC. Enrichment, Amplification, and Sequence-Based Typing of Salmonella enterica and Other Foodborne Pathogens. J Food Prot 2017; 80:15-24. [PMID: 28221883 DOI: 10.4315/0362-028x.jfp-16-014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Detection of Salmonella enterica in foods typically involves microbiological enrichment, molecular-based assay, and subsequent isolation and identification of a pure culture. This is ideally followed by strain typing, which provides information critical to the investigation of outbreaks and the attribution of their sources. Pulsed-field gel electrophoresis is the "gold standard" for S. enterica strain typing, but its limitations have encouraged the search for alternative methods, including whole genome sequencing. Both methods typically require a pure culture, which adds to the cost and turnaround time. A more rapid and cost-effective method with sufficient discriminatory power would benefit food industries, regulatory agencies, and public health laboratories. To address this need, a novel enrichment, amplification, and sequence-based typing (EAST) approach was developed involving (i) overnight enrichment and total DNA preparation, (ii) amplification of polymorphic tandem repeat-containing loci with electrophoretic detection, and (iii) DNA sequencing and bioinformatic analysis to identify related strains. EAST requires 3 days or less and provides a strain resolution that exceeds serotyping and is comparable to pulsed-field gel electrophoresis. Evaluation with spiked ground turkey demonstrated its sensitivity (with a starting inoculum of ≤1 CFU/g) and specificity (with unique or nearly unique alleles relative to databases of >1,000 strains). In tests with unspiked retail chicken parts, 3 of 11 samples yielded S. enterica -specific PCR products. Sequence analysis of three distinct typing targets (SeMT1, SeCRISPR1, and SeCRISPR2) revealed consistent similarities to specific serotype Schwarzengrund, Montevideo, and Typhimurium strains. EAST provides a time-saving and cost-effective approach for detecting and typing foodborne S. enterica , and postenrichment steps can be commercially outsourced to facilitate its implementation. Initial studies with Listeria monocytogenes and Shiga toxigenic Escherichia coli suggest that EAST can be extended to these foodborne pathogens.
Collapse
Affiliation(s)
- Tom Edlind
- MicrobiType LLC, 5110 Campus Drive, Plymouth Meeting, Pennsylvania 19462
| | - Jeffrey D Brewster
- U.S. Department of Agriculture, Agricultural Research Service, Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - George C Paoli
- U.S. Department of Agriculture, Agricultural Research Service, Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| |
Collapse
|
43
|
Collins C, Didelot X. Reconstructing the Ancestral Relationships Between Bacterial Pathogen Genomes. Methods Mol Biol 2017; 1535:109-137. [PMID: 27914076 DOI: 10.1007/978-1-4939-6673-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following recent developments in DNA sequencing technology, it is now possible to sequence hundreds of whole genomes from bacterial isolates at relatively low cost. Analyzing this growing wealth of genomic data in terms of ancestral relationships can reveal many interesting aspects of the evolution, ecology, and epidemiology of bacterial pathogens. However, reconstructing the ancestry of a sample of bacteria remains challenging, especially for the majority of species where recombination is frequent. Here, we review and describe the computational techniques currently available to infer ancestral relationships, including phylogenetic methods that either ignore or account for the effect of recombination, as well as model-based and model-free phylogeny-independent approaches.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK.
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
44
|
Duchêne S, Holt KE, Weill FX, Le Hello S, Hawkey J, Edwards DJ, Fourment M, Holmes EC. Genome-scale rates of evolutionary change in bacteria. Microb Genom 2016; 2:e000094. [PMID: 28348834 PMCID: PMC5320706 DOI: 10.1099/mgen.0.000094] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023] Open
Abstract
Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host–pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with ‘ancient DNA’ data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10−5 to 10−8 nucleotide substitutions per site year−1. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria.
Collapse
Affiliation(s)
- Sebastian Duchêne
- 1Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.,2Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC 3010, Australia.,3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kathryn E Holt
- 2Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC 3010, Australia.,3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Simon Le Hello
- 4Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris 75015, France
| | - Jane Hawkey
- 2Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC 3010, Australia.,3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David J Edwards
- 2Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC 3010, Australia.,3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathieu Fourment
- 1Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- 1Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Casjens SR, Grose JH. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology 2016; 496:255-276. [PMID: 27372181 DOI: 10.1016/j.virol.2016.05.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022]
Abstract
We identified 9371 tailed phage prophages of 20 known types in reported complete genome sequences of 3298 bacteria in the Salmonella genus. These include 4758 P2 type and 744 P22 type prophages. The latter prophage types were found in the genome sequences of 127 and 24 bacterial host genera, increasing the known host ranges of phages in these groups by 114 and 20 genera, respectively. These prophage nucleotide sequences displayed much more diversity than was previously known from the 48 P2 and 24 P22 type authentic phages whose genomes have been sequenced. More detailed analysis of these prophage sequences indicated that major capsid protein (MCP) gene exchange between tailed phage clusters or types is extremely rare and that P22 prophage-encoded tailspikes correspond perfectly with their hosts' surface polysaccharide structure; thus, MCP and tailspike sequences accurately predict tailed phage type (and thus lifestyle) and host cell surface polysaccharide structure, respectively.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT 84112, United States; Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.
| | - Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
46
|
Abstract
We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed.
Collapse
Affiliation(s)
- Mario López-Pérez
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
47
|
Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes. mBio 2016; 7:mBio.00403-16. [PMID: 27247229 PMCID: PMC4895104 DOI: 10.1128/mbio.00403-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease.
Collapse
|
48
|
den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, Iqbal Z, Kinney A, Limberger R, Musser KA, Shudt M, Strain E, Wiedmann M, Wolfgang WJ. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar enteritidis. Emerg Infect Dis 2016; 20:1306-14. [PMID: 25062035 PMCID: PMC4111163 DOI: 10.3201/eid2008.131399] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For Salmonella enterica serovar Enteritidis, 85% of isolates can be classified into 5 pulsed-field gel electrophoresis (PFGE) types. However, PFGE has limited discriminatory power for outbreak detection. Although whole-genome sequencing has been found to improve discrimination of outbreak clusters, whether this procedure can be used in real-time in a public health laboratory is not known. Therefore, we conducted a retrospective and prospective analysis. The retrospective study investigated isolates from 1 confirmed outbreak. Additional cases could be attributed to the outbreak strain on the basis of whole-genome data. The prospective study included 58 isolates obtained in 2012, including isolates from 1 epidemiologically defined outbreak. Whole-genome sequencing identified additional isolates that could be attributed to the outbreak, but which differed from the outbreak-associated PFGE type. Additional putative outbreak clusters were detected in the retrospective and prospective analyses. This study demonstrates the practicality of implementing this approach for outbreak surveillance in a state public health laboratory.
Collapse
|
49
|
Pang B, Du P, Zhou Z, Diao B, Cui Z, Zhou H, Kan B. The Transmission and Antibiotic Resistance Variation in a Multiple Drug Resistance Clade of Vibrio cholerae Circulating in Multiple Countries in Asia. PLoS One 2016; 11:e0149742. [PMID: 26930352 PMCID: PMC4773069 DOI: 10.1371/journal.pone.0149742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/04/2016] [Indexed: 01/12/2023] Open
Abstract
Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the ‘amplifier’ function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks.
Collapse
Affiliation(s)
- Bo Pang
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, 102206, People’s Republic of China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, People’s Republic of China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Baowei Diao
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, 102206, People’s Republic of China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, People’s Republic of China
| | - Zhigang Cui
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, 102206, People’s Republic of China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, People’s Republic of China
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, 102206, People’s Republic of China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, People’s Republic of China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, 102206, People’s Republic of China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, People’s Republic of China
- * E-mail:
| |
Collapse
|
50
|
Deng X, den Bakker HC, Hendriksen RS. Genomic Epidemiology: Whole-Genome-Sequencing-Powered Surveillance and Outbreak Investigation of Foodborne Bacterial Pathogens. Annu Rev Food Sci Technol 2016; 7:353-74. [PMID: 26772415 DOI: 10.1146/annurev-food-041715-033259] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As we are approaching the twentieth anniversary of PulseNet, a network of public health and regulatory laboratories that has changed the landscape of foodborne illness surveillance through molecular subtyping, public health microbiology is undergoing another transformation brought about by so-called next-generation sequencing (NGS) technologies that have made whole-genome sequencing (WGS) of foodborne bacterial pathogens a realistic and superior alternative to traditional subtyping methods. Routine, real-time, and widespread application of WGS in food safety and public health is on the horizon. Technological, operational, and policy challenges are still present and being addressed by an international and multidisciplinary community of researchers, public health practitioners, and other stakeholders.
Collapse
Affiliation(s)
- Xiangyu Deng
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, Georgia 30269;
| | - Henk C den Bakker
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas 79409
| | - Rene S Hendriksen
- National Food Institute, Research Group of Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, DK-2800 Denmark
| |
Collapse
|