1
|
da Silva LA, de Camargo BR, Fisch AAFMS, Santos B, Ardisson-Araújo DMP, Ribeiro BM. Identification and detection of known and new viruses in larvae of laboratory-reared fall armyworm, Spodoptera frugiperda. J Invertebr Pathol 2025; 210:108290. [PMID: 39978754 DOI: 10.1016/j.jip.2025.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a significant pest that causes economic losses worldwide. Many companies and research centers rear FAW to produce their microbiological-based products, such as viruses that target FAW. Nevertheless, colonies are vulnerable to collapsing, mainly due to uncontrolled and unexpected viral infections. In this work, dead FAWs exhibiting signs of viral infection were collected from unsuccessful attempts to propagate a baculovirus at a baculovirus production facility in Brazil. Total RNA was extracted and used to construct a cDNA library that was sequenced. The results showed the presence of five viruses, including three RNA viruses (alphanodavirus, rhabdovirus, and iflavirus) and two DNA viruses (densovirus and alphabaculovirus). To confirm the presence of the identified viruses in laboratory-reared FAWs, ten individual larvae from four accredited laboratories in Brazil were analyzed by RT-PCR with specific primers for each virus identified by sequencing, except the alphabaculovirus. Alphanodavirus and rhabdovirus were not detected in any of the four tested colonies, whereas the iflavirus was detected in two laboratories. A putative new densovirus was found in all samples. Accurate identification and timely detection of viruses that could disrupt the health of laboratory-reared insect colonies are crucial to ensure the production of high-quality biological products.
Collapse
Affiliation(s)
- Leonardo A da Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil.
| | - Brenda R de Camargo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Andrews A F M S Fisch
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Bráulio Santos
- Bosquiroli e Santos Ltda, Highway Pr-182, Km 320/321, 0, Km 320/321 Annex Biopark Bloc 02 Condominium Industrial Jardim Porto Alegre, 85906-300 Toledo, PR, Brazil
| | - Daniel M P Ardisson-Araújo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Bergmann M Ribeiro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
2
|
Visser TM, Wang HD, Abbo SR, Vogels CB, Koenraadt CJ, Pijlman GP. Effect of chikungunya, Mayaro and Una virus coinfection on vector competence of Aedes aegypti mosquitoes. One Health 2025; 20:100991. [PMID: 40027925 PMCID: PMC11869603 DOI: 10.1016/j.onehlt.2025.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
The mosquito-borne alphaviruses chikungunya (CHIKV), Mayaro (MAYV) and the lesser known Una (UNAV) are currently co-circulating in Latin America, sharing their geographical and ecological niche with the Aedes aegypti mosquito. The sylvatic MAYV cycle and the unknown cycle of UNAV could possibly spill over and become urban transmission cycles involving Ae. aegypti. Despite their potential impact on public health, we know little about arboviral coinfections in humans, animals or mosquitoes. Especially the effect of coinfections on transmission by Ae. aegypti mosquitoes is understudied. We investigated the vector competence of Ae. aegypti for single, dual, and triple exposures with UNAV, MAYV and CHIKV, provided simultaneously in an infectious blood meal. Mosquitoes were incubated for ten days at 28 °C and 70 % humidity. After RNA extractions from mosquito bodies and saliva, the presence and relative quantity of each virus in coinfected mosquitoes was determined. We show that Ae. aegypti can become infected with all three viruses simultaneously, and transmit at least two alphaviruses in a single mosquito bite after dual or triple infection. Additionally, we show for the first time that Ae. aegypti is a competent vector for UNAV, and that dual infections do not influence vector competence. In triple coinfections, however, the total viral load carried by mosquitoes decreases, lowering the transmission potential. Understanding how coinfections affect arbovirus biology and transmission of is essential for assessing public health risks. However, emerging Ae. aegypti-vectored arboviruses and coinfections are a One Health concern, as ecological and environmental changes will increasingly drive the geographic distributions of viruses, vectors, and hosts in the future.
Collapse
Affiliation(s)
- Tessa M. Visser
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Haidong D. Wang
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sandra R. Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, USA
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
Picinini Freitas L, Carabali M, Schmidt AM, Salazar Flórez JE, Ávila Monsalve B, García-Balaguera C, Restrepo BN, Jaramillo-Ramirez GI, Zinszer K. A nationwide joint spatial modelling of simultaneous epidemics of dengue, chikungunya, and Zika in Colombia. BMC Infect Dis 2025; 25:406. [PMID: 40133812 PMCID: PMC11934603 DOI: 10.1186/s12879-025-10782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Chikungunya, and Zika emerged in the 2010s in the Americas, causing simultaneous epidemics with dengue. However, little is known of these Aedes-borne diseases (ABDs) joint patterns and contributors at the population-level. METHODS We applied a novel Poisson-multinomial spatial model to the registered cases of dengue (n = 291,820), chikungunya (n = 75,913), and Zika (n = 72,031) by municipality in Colombia, 2014-2016. This model estimates the relative risk of total ABDs cases and associated factors, and, simultaneously, the odds of presence and contributors of each disease using dengue as a baseline category. This approach allows us to identify combined characteristics of ABDs, since they are transmitted by the same mosquitoes, while also identifying differences between them. RESULTS We found an increased ABDs risk in valleys and south of the Andes, the Caribbean coast, and borders, with temperature as the main contributor (Relative Risk 2.32, 95% Credible Interval, CrI, 2.05-2.64). Generally, dengue presence was the most probable among the ABDs, although that of Zika was greater on Caribbean islands. Chikungunya and Zika were more likely present than dengue in municipalities with less vegetation (Odds Ratio, OR, 0.75, 95%CrI 0.65-0.86, and 0.85, 95%CrI 0.74-0.99, respectively). Chikungunya tended to be present in more socially vulnerable areas than dengue (OR 1.20, 95%CrI 0.99-1.44) and Zika (OR 1.19, 95%CrI 0.95-1.48). CONCLUSIONS Important differences between the ABDs were identified and can help guide local and context-specific interventions, such as those aimed at preventing cases importation in border and tourism locations and reducing chikungunya burden in socially vulnerable regions.
Collapse
Affiliation(s)
- Laís Picinini Freitas
- École de Santé Publique, Université de Montréal, Montréal, Canada.
- Centre de Recherche en Santé Publique, Montréal, Canada.
| | - Mabel Carabali
- Department of Epidemiology, Biostatistics and Occupational Health, Mcgill University, Montréal, Canada
| | - Alexandra M Schmidt
- Department of Epidemiology, Biostatistics and Occupational Health, Mcgill University, Montréal, Canada
| | - Jorge Emilio Salazar Flórez
- Infectious and Chronic Diseases Study Group (GEINCRO), San Martín University Foundation, Medellín, Colombia
- Universidad CES, Instituto Colombiano de Medicina Tropical, Medellín, Colombia
| | | | | | - Berta N Restrepo
- Universidad CES, Instituto Colombiano de Medicina Tropical, Medellín, Colombia
| | | | - Kate Zinszer
- École de Santé Publique, Université de Montréal, Montréal, Canada
- Centre de Recherche en Santé Publique, Montréal, Canada
| |
Collapse
|
4
|
Cecilio P, Iniguez E, Huffcutt P, Ribeiro SP, Kamhawi S, Valenzuela JG, Serafim TD. The impact of blood on vector-borne diseases with emphasis on mosquitoes and sand flies. Trends Parasitol 2025; 41:196-209. [PMID: 39979193 PMCID: PMC11998667 DOI: 10.1016/j.pt.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
The impact of blood and its factors on vector-borne diseases is significant and multifaceted yet understudied. While blood is expected to play a central role in transmission, pathogen development, vector behavior, and vector competence, in experimental settings, most studies are developed in the frame of a single, infected blood meal. To effectively combat vector-borne diseases, we need to determine what is the influence of insect blood-feeding behavior on transmission and development of pathogens, toward translation to natural field settings. This review summarizes current findings, highlights key gaps, and outlines future research directions to enhance our understanding of the role of blood in vector-borne disease transmission.
Collapse
Affiliation(s)
- Pedro Cecilio
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Patrick Huffcutt
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Servio P Ribeiro
- Laboratory of Ecology of Diseases & Forests, NUPEB/ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
5
|
Gallichotte EN, Fitzmeyer EA, Williams L, Spangler MC, Bosco-Lauth AM, Ebel GD. WNV and SLEV coinfection in avian and mosquito hosts: impact on viremia, antibody responses, and vector competence. J Virol 2024; 98:e0104124. [PMID: 39324792 PMCID: PMC11495067 DOI: 10.1128/jvi.01041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related flaviviruses that can cause encephalitis in humans and related diseases in animals. In nature, both are transmitted by Culex, with wild birds, including jays, sparrows, and robins, serving as vertebrate hosts. WNV and SLEV circulate in the same environments and have recently caused concurrent disease outbreaks in humans. The extent that coinfection of mosquitoes or birds may alter transmission dynamics, however, is not well characterized. We therefore sought to determine if coinfection alters infection kinetics and virus levels in birds and infection rates in mosquitoes. Accordingly, American robins (Turdus migratorius), two species of mosquitoes, and vertebrate and invertebrate cells were infected with WNV and/or SLEV to assess how simultaneous exposure may alter infection outcomes. There was variable impact of coinfection in vertebrate cells, with some evidence that SLEV can suppress WNV replication. However, robins had comparable viremia and antibody responses regardless of coinfection. Conversely, in Culex cells and mosquitoes, we saw a minimal impact of simultaneous exposure to both viruses on replication, with comparable infection, dissemination, and transmission rates in singly infected and coinfected mosquitoes. Importantly, while WNV and SLEV levels in coinfected mosquito midguts were positively correlated, we saw no correlation between them in salivary glands and saliva. These results reveal that while coinfection can occur in both avian and mosquito hosts, the viruses minimally impact one another. The potential for coinfection to alter virus population structure or the likelihood of rare genotypes emerging remains unknown.IMPORTANCEWest Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related viruses that are transmitted by the same mosquitoes and infect the same birds in nature. Both viruses circulate in the same regions and have caused concurrent outbreaks in humans. It is possible that mosquitoes, birds, and/or humans could be infected with both WNV and SLEV simultaneously, as has been observed with Zika, chikungunya, and dengue viruses. To study the impact of coinfection, we experimentally infected vertebrate and invertebrate cells, American robins, and two Culex species with WNV and/or SLEV. Robins were efficiently coinfected, with no impact of coinfection on virus levels or immune response. Similarly, in mosquitoes, coinfection did not impact infection rates, and mosquitoes could transmit both WNV and SLEV together. These results reveal that WNV and SLEV coinfection in birds and mosquitoes can occur in nature, which may impact public health and human disease risk.
Collapse
Affiliation(s)
- Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Landon Williams
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mark Cole Spangler
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Angela M. Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Hick TAH, Geertsema C, Nguyen W, Bishop CR, van Oosten L, Abbo SR, Dumenil T, van Kuppeveld FJM, Langereis MA, Rawle DJ, Tang B, Yan K, van Oers MM, Suhrbier A, Pijlman GP. Safety concern of recombination between self-amplifying mRNA vaccines and viruses is mitigated in vivo. Mol Ther 2024; 32:2519-2534. [PMID: 38894543 PMCID: PMC11405153 DOI: 10.1016/j.ymthe.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.
Collapse
Affiliation(s)
- Tessy A H Hick
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Linda van Oosten
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Daniel J Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Gierek M, Ochała-Gierek G, Woźnica AJ, Zaleśny G, Jarosz A, Niemiec P. Winged Threat on the Offensive: A Literature Review Due to the First Identification of Aedes japonicus in Poland. Viruses 2024; 16:703. [PMID: 38793584 PMCID: PMC11125806 DOI: 10.3390/v16050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genetic studies preceded by the observation of an unknown mosquito species in Mikołów (Poland) confirmed that it belongs to a new invasive species in Polish fauna, Aedes japonicus (Theobald, 1901), a known vector for numerous infectious diseases. Ae. japonicus is expanding its geographical presence, raising concerns about potential disease transmission given its vector competence for chikungunya virus, dengue virus, West Nile virus, and Zika virus. This first genetically confirmed identification of Ae. japonicus in Poland initiates a comprehensive review of the literature on Ae. japonicus, its biology and ecology, and the viral infections transmitted by this species. This paper also presents the circumstances of the observation of Ae. japonicus in Poland and a methodology for identifying this species.
Collapse
Affiliation(s)
- Marcin Gierek
- Center for Burns Treatment, 41-100 Siemianowice Śląskie, Poland;
| | | | - Andrzej Józef Woźnica
- Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 5B i 7A, 51-631 Wrocław, Poland;
| | - Grzegorz Zaleśny
- Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 5B i 7A, 51-631 Wrocław, Poland;
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences, Medical University of Silesia in Katowice, ul. Medykow 18, 40-752 Katowice, Poland;
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences, Medical University of Silesia in Katowice, ul. Medykow 18, 40-752 Katowice, Poland;
| |
Collapse
|
8
|
Patt JM, Makagon A, Norton B, Marvit M, Rutschman P, Neligeorge M, Salesin J. An optical system to detect, surveil, and kill flying insect vectors of human and crop pathogens. Sci Rep 2024; 14:8174. [PMID: 38589427 PMCID: PMC11002038 DOI: 10.1038/s41598-024-57804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.
Collapse
Affiliation(s)
- Joseph M Patt
- United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, 34945, USA.
| | - Arty Makagon
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Bryan Norton
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Maclen Marvit
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Phillip Rutschman
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Matt Neligeorge
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Jeremy Salesin
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| |
Collapse
|
9
|
Laukaitis-Yousey HJ, Macaluso KR. Cat Flea Coinfection with Rickettsia felis and Rickettsia typhi. Vector Borne Zoonotic Dis 2024; 24:201-213. [PMID: 38422214 PMCID: PMC11035851 DOI: 10.1089/vbz.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Purpose: Flea-borne rickettsioses, collectively referred to as a term for etiological agents Rickettsia felis, Rickettsia typhi, and RFLOs (R. felis-like organisms), has become a public health concern around the world, specifically in the United States. Due to a shared arthropod vector (the cat flea) and clinical signs, discriminating between Rickettsia species has proven difficult. While the effects of microbial coinfections in the vector can result in antagonistic or synergistic interrelationships, subsequently altering potential human exposure and disease, the impact of bacterial interactions within flea populations remains poorly defined. Methods: In this study, in vitro and in vivo systems were utilized to assess rickettsial interactions in arthropods. Results: Coinfection of both R. felis and R. typhi within a tick-derived cell line indicated that the two species could infect the same cell, but distinct growth kinetics led to reduced R. felis growth over time, regardless of infection order. Sequential flea coinfections revealed the vector could acquire both Rickettsia spp. and sustain coinfection for up to 2 weeks, but rickettsial loads in coinfected fleas and feces were altered during coinfection. Conclusion: Altered rickettsial loads during coinfection suggest R. felis and R. typhi interactions may enhance the transmission potential of either agent. Thus, this study provides a functional foundation to disentangle transmission events propelled by complex interspecies relationships during vector coinfections.
Collapse
Affiliation(s)
- Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
10
|
Peng J, Zhang M, Wang G, Zhang D, Zheng X, Li Y. Biased virus transmission following sequential coinfection of Aedes aegypti with dengue and Zika viruses. PLoS Negl Trop Dis 2024; 18:e0012053. [PMID: 38557981 PMCID: PMC10984552 DOI: 10.1371/journal.pntd.0012053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Mosquito-borne arboviruses are expanding their territory and elevating their infection prevalence due to the rapid climate change, urbanization, and increased international travel and global trade. Various significant arboviruses, including the dengue virus, Zika virus, Chikungunya virus, and yellow fever virus, are all reliant on the same primary vector, Aedes aegypti. Consequently, the occurrence of arbovirus coinfection in mosquitoes is anticipated. Arbovirus coinfection in mosquitoes has two patterns: simultaneous and sequential. Numerous studies have demonstrated that simultaneous coinfection of arboviruses in mosquitoes is unlikely to exert mutual developmental influence on these viruses. However, the viruses' interplay within a mosquito after the sequential coinfection seems intricated and not well understood. METHODOLOGY/PRINCIPAL FINDINGS We conducted experiments aimed at examining the phenomenon of arbovirus sequential coinfection in both mosquito cell line (C6/36) and A. aegypti, specifically focusing on dengue virus (DENV, serotype 2) and Zika virus (ZIKV). We firstly observed that DENV and ZIKV can sequentially infect mosquito C6/36 cell line, but the replication level of the subsequently infected ZIKV was significantly suppressed. Similarly, A. aegypti mosquitoes can be sequentially coinfected by these two arboviruses, regardless of the order of virus exposure. However, the replication, dissemination, and the transmission potential of the secondary virus were significantly inhibited. We preliminarily explored the underlying mechanisms, revealing that arbovirus-infected mosquitoes exhibited activated innate immunity, disrupted lipid metabolism, and enhanced RNAi pathway, leading to reduced susceptibility to the secondary arbovirus infections. CONCLUSIONS/SIGNIFICANCE Our findings suggest that, in contrast to simultaneous arbovirus coinfection in mosquitoes that can promote the transmission and co-circulation of these viruses, sequential coinfection appears to have limited influence on arbovirus transmission dynamics. However, it is important to note that more experimental investigations are needed to refine and expand upon this conclusion.
Collapse
Affiliation(s)
- Jiameng Peng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Meichun Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Gang Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Dongjing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiaoying Zheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Olajiga OM, Jameson SB, Carter BH, Wesson DM, Mitzel D, Londono-Renteria B. Artificial Feeding Systems for Vector-Borne Disease Studies. BIOLOGY 2024; 13:188. [PMID: 38534457 DOI: 10.3390/biology13030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
This review examines the advancements and methodologies of artificial feeding systems for the study of vector-borne diseases, offering a critical assessment of their development, advantages, and limitations relative to traditional live host models. It underscores the ethical considerations and practical benefits of such systems, including minimizing the use of live animals and enhancing experimental consistency. Various artificial feeding techniques are detailed, including membrane feeding, capillary feeding, and the utilization of engineered biocompatible materials, with their respective applications, efficacy, and the challenges encountered with their use also being outlined. This review also forecasts the integration of cutting-edge technologies like biomimicry, microfluidics, nanotechnology, and artificial intelligence to refine and expand the capabilities of artificial feeding systems. These innovations aim to more accurately simulate natural feeding conditions, thereby improving the reliability of studies on the transmission dynamics of vector-borne diseases. This comprehensive review serves as a foundational reference for researchers in the field, proposing a forward-looking perspective on the potential of artificial feeding systems to revolutionize vector-borne disease research.
Collapse
Affiliation(s)
- Olayinka M Olajiga
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Samuel B Jameson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Brendan H Carter
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dawn M Wesson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dana Mitzel
- Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66506, USA
| | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. Parasit Vectors 2024; 17:73. [PMID: 38374048 PMCID: PMC10877814 DOI: 10.1186/s13071-023-06109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. METHODS Here, we examine single and co-infection of Mayaro virus (D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27 °C) and hot (32 °C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. RESULTS Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes with a tendency for higher titers in co-infected mosquitoes at both temperatures, and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs. single infections and was more evident at earlier time points (7 vs. 14 days post infection) for Mayaro. The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. CONCLUSIONS Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses. However, more studies are necessary to clarify the role of co-infection at different temperature regimes, including under more natural temperature settings.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
13
|
Correa-Morales F, González-Acosta C, Ibarra-Ojeda D, Moreno-García M. West Nile virus in Mexico: Why vectors matter for explaining the current absence of epidemics. Acta Trop 2024; 249:107065. [PMID: 37926384 DOI: 10.1016/j.actatropica.2023.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Since 2002, West Nile Virus (WNV) has been reported in 18 states in Mexico, either by PCR or serological testing. However, it is believed that the virus is present in more states. Only four states (out of 32) have reported confirmed human cases, and one state has serological evidence. In the country, WNV is present in mainly horses and birds, but its presence extends to crocodiles, felines, canines, swines, donkeys, caprines, antilopes, cattle, bats, and camelids. Positive mosquito species include Aedes and Culex spp. Different hypotheses have been proposed to explain the absence of WNV epidemics in Latin America. Since some regions of Mexico and the United States share ecological and climatic conditions, these hypotheses may not be sufficient to account for the absence of WNV outbreaks or epidemics. This paper discusses the proposed ideas and attempts to contextualize them for Mexico, particularly for the U.S.-Mexico border, where WNV infections have been reported in humans, horses, and mosquitoes. We propose that integration of urban ecology and entomology knowledge is needed to better understand the absence of WN cases in Mexico.
Collapse
Affiliation(s)
- Fabián Correa-Morales
- Centro Nacional de Programas Preventivos y Control de Enfermedades. Benjamín Franklin 132, Escandón, Ciudad de México C.P. 11800, Mexico
| | - Cassandra González-Acosta
- Centro Nacional de Programas Preventivos y Control de Enfermedades. Benjamín Franklin 132, Escandón, Ciudad de México C.P. 11800, Mexico
| | - David Ibarra-Ojeda
- Instituto de Servicios de Salud Pública del Estado de Baja California. Palacio Federal, 3er piso. Av. De los Pioneros #1005. Centro Cívico, Mexicali, Baja California 21000, Mexico
| | - Miguel Moreno-García
- Centro Nacional de Programas Preventivos y Control de Enfermedades. Benjamín Franklin 132, Escandón, Ciudad de México C.P. 11800, Mexico.
| |
Collapse
|
14
|
Anjos RO, Portilho MM, Jacob-Nascimento LC, Carvalho CX, Moreira PSS, Sacramento GA, Nery Junior NRR, de Oliveira D, Cruz JS, Cardoso CW, Argibay HD, Plante KS, Plante JA, Weaver SC, Kitron UD, Reis MG, Ko AI, Costa F, Ribeiro GS. Dynamics of chikungunya virus transmission in the first year after its introduction in Brazil: A cohort study in an urban community. PLoS Negl Trop Dis 2023; 17:e0011863. [PMID: 38150470 PMCID: PMC10775974 DOI: 10.1371/journal.pntd.0011863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/09/2024] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND The first chikungunya virus (CHIKV) outbreaks during the modern scientific era were identified in the Americas in 2013, reaching high attack rates in Caribbean countries. However, few cohort studies have been performed to characterize the initial dynamics of CHIKV transmission in the New World. METHODOLOGY/PRINCIPAL FINDINGS To describe the dynamics of CHIKV transmission shortly after its introduction in Brazil, we performed semi-annual serosurveys in a long-term community-based cohort of 652 participants aged ≥5 years in Salvador, Brazil, between Feb-Apr/2014 and Nov/2016-Feb/2017. CHIKV infections were detected using an IgG ELISA. Cumulative seroprevalence and seroincidence were estimated and spatial aggregation of cases was investigated. The first CHIKV infections were identified between Feb-Apr/2015 and Aug-Nov/2015 (incidence: 10.7%) and continued to be detected at low incidence in subsequent surveys (1.7% from Aug-Nov/2015 to Mar-May/2016 and 1.2% from Mar-May/2016 to Nov/206-Feb/2017). The cumulative seroprevalence in the last survey reached 13.3%. It was higher among those aged 30-44 and 45-59 years (16.1% and 15.6%, respectively), compared to younger (12.4% and 11.7% in <15 and 15-29 years, respectively) or older (10.3% in ≥60 years) age groups, but the differences were not statistically significant. The cumulative seroprevalence was similar between men (14.7%) and women (12.5%). Yet, among those aged 15-29 years, men were more often infected than women (18.1% vs. 7.4%, respectively, P = 0.01), while for those aged 30-44, a non-significant opposite trend was observed (9.3% vs. 19.0%, respectively, P = 0.12). Three spatial clusters of cases were detected in the study site and an increased likelihood of CHIKV infection was detected among participants who resided with someone with CHIKV IgG antibodies. CONCLUSIONS/SIGNIFICANCE Unlike observations in other settings, the initial spread of CHIKV in this large urban center was limited and focal in certain areas, leaving a high proportion of the population susceptible to further outbreaks. Additional investigations are needed to elucidate the factors driving CHIKV spread dynamics, including understanding differences with respect to dengue and Zika viruses, in order to guide prevention and control strategies for coping with future outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nivison R. R. Nery Junior
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | - Hernan D. Argibay
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| | - Kenneth S. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jessica A. Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Uriel D. Kitron
- Emory University, Atlanta, Georgia, United States of America
| | - Mitermayer G. Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Yale University, New Haven, Connecticut, United States of America
| | - Albert I. Ko
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Yale University, New Haven, Connecticut, United States of America
| | - Federico Costa
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
- Yale University, New Haven, Connecticut, United States of America
- University of Liverpool, Liverpool, United Kingdom
- Lancaster University, Lancaster, United Kingdom
| | - Guilherme S. Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
15
|
Baba MM, Ahmed A, Jackson SY, Oderinde BS. Cryptic Zika virus infections unmasked from suspected malaria cases in Northeastern Nigeria. PLoS One 2023; 18:e0292350. [PMID: 37939049 PMCID: PMC10631648 DOI: 10.1371/journal.pone.0292350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/19/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Although environmental and human behavioral factors in countries with Zika virus (ZIKV) outbreaks are also common in Nigeria, such an outbreak has not yet been reported probably due to misdiagnosis. The atypical symptoms of malaria and ZIKV infections at the initial phase could leverage their misdiagnosis. This study randomly recruited 496 malaria-suspected patients who visited selected health institutions in Adamawa, Bauchi, and Borno states for malaria tests. These patients' sera were analyzed for ZIKV antibodies using ELISA and plaque reduction neutralization tests (PRNT) at 90% endpoint. About 13.8% of Zika virus-neutralizing antibodies (nAb) did not cross-react with dengue, yellow fever, and West Nile viruses suggesting possible monotypic infections. However, 86% of the sera with ZIKV nAb also neutralized other related viruses at varied degrees: dengue viruses (60.7%), West Nile viruses (23.2%), yellow fever virus (7.1%) and 39.3% were co-infections with chikungunya viruses. Notably, the cross-reactions could also reflect co-infections as these viruses are also endemic in the country. The serum dilution that neutralized 90-100% ZIKV infectivity ranged from 1:8 to 1:128. Also, our findings suggest distinct protection against the ZIKV between different collection sites studied. As indicated by nAb, acute ZIKV infection was detected in 1.7% of IgM-positive patients while past infections occurred in 8.5% of IgM-negatives in the three states. In Borno State, 9.4% of IgG neutralized ZIKV denoting past infections while 13.5% were non-neutralizing IgM and IgG indicating other related virus infections. The age, gender, and occupation of the patients and ZIKV nAb were not significantly different. ZIKV nAb from samples collected within 1-7 days after the onset of symptoms was not significantly different from those of 7-10 days. A wider interval with the same techniques in this study may probably give better diagnostic outcomes. ZIKV nAb was significantly distinct among recipients and non-recipients of antibiotic/antimalaria treatments before seeking malaria tests. The inhibiting effect of these drugs on ZIKV infection progression may probably contribute to the absence of neurological disorders associated with the virus despite being endemic in the environment for several decades. Also, protection against ZIKV as marked by the nAb was different among the vaccinated and unvaccinated YF vaccine recipients. Thus, the YF vaccine may be a good alternative to the Zika vaccine in resource-constrained countries. CONCLUSION The cryptic ZIKV infections underscore the need for differential diagnosis of malaria-suspected febrile patients for arboviruses, especially the Zika virus. The absence of systemic surveillance for the virus is worrisome because of its association with neurological disorders in newborns. Co-infections with other arboviruses may impact adversely on the management of these diseases individually.
Collapse
Affiliation(s)
- Marycelin Mandu Baba
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Abubakar Ahmed
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University, Kano, Nigeria
| | - Samaila Yaga Jackson
- Department of Mathematical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Bamidele Soji Oderinde
- Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
16
|
Kasbergen LMR, Nieuwenhuijse DF, de Bruin E, Sikkema RS, Koopmans MPG. The increasing complexity of arbovirus serology: An in-depth systematic review on cross-reactivity. PLoS Negl Trop Dis 2023; 17:e0011651. [PMID: 37738270 PMCID: PMC10550177 DOI: 10.1371/journal.pntd.0011651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/04/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Diagnosis of arbovirus infection or exposure by antibody testing is becoming increasingly difficult due to global expansion of arboviruses, which induce antibodies that may (cross-)react in serological assays. We provide a systematic review of the current knowledge and knowledge gaps in differential arbovirus serology. The search included Medline, Embase and Web of Science databases and identified 911 publications which were reduced to 102 after exclusion of studies not providing data on possible cross-reactivity or studies that did not meet the inclusion criteria regarding confirmation of virus exposure of reference population sets. Using a scoring system to further assess quality of studies, we show that the majority of the selected papers (N = 102) provides insufficient detail to support conclusions on specificity of serological outcomes with regards to elucidating antibody cross-reactivity. Along with the lack of standardization of assays, metadata such as time of illness onset, vaccination, infection and travel history, age and specificity of serological methods were most frequently missing. Given the critical role of serology for diagnosis and surveillance of arbovirus infections, better standards for reporting, as well as the development of more (standardized) specific serological assays that allow discrimination between exposures to multiple different arboviruses, are a large global unmet need.
Collapse
Affiliation(s)
| | - David F. Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Reina S. Sikkema
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Ferrelli ML, Salvador R. Effects of Mixed Baculovirus Infections in Biological Control: A Comprehensive Historical and Technical Analysis. Viruses 2023; 15:1838. [PMID: 37766245 PMCID: PMC10534452 DOI: 10.3390/v15091838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Baculoviruses are insect-specific DNA viruses that have been exploited as bioinsecticides for the control of agricultural and forest pests around the world. Mixed infections with two different baculoviruses have been found in nature, infecting the same host. They have been studied to understand the biology of virus interactions, their effects on susceptible insects, and their insecticidal implications. In this work, we summarize and analyze the in vivo baculovirus co-infections reported in the literature, mainly focusing on pest biocontrol applications. We discuss the most common terms used to describe the effects of mixed infections, such as synergism, neutralism, and antagonism, and how to determine them based on host mortality. Frequently, baculovirus co-infections found in nature are caused by a combination of a nucleopolyhedrovirus and a granulovirus. Studies performed with mixed infections indicated that viral dose, larval stage, or the presence of synergistic factors in baculovirus occlusion bodies are important for the type of virus interaction. We also enumerate and discuss technical aspects to take into account in studies on mixed infections, such as statistical procedures, quantification of viral inocula, the selection of instars, and molecular methodologies for an appropriate analysis of baculovirus interaction. Several experimental infections using two different baculoviruses demonstrated increased viral mortality or a synergistic effect on the target larvae compared to single infections. This can be exploited to improve the baculovirus-killing properties of commercial formulations. In this work, we offer a current overview of baculovirus interactions in vivo and discuss their potential applications in pest control strategies.
Collapse
Affiliation(s)
- María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de Investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, Hurlingham 1686, Buenos Aires, Argentina
| |
Collapse
|
18
|
Ogwuche J, Chang CA, Ige O, Sagay AS, Chaplin B, Kahansim ML, Paul M, Elujoba M, Imade G, Kweashi G, Dai YC, Hsieh SC, Wang WK, Hamel DJ, Kanki PJ. Arbovirus surveillance in pregnant women in north-central Nigeria, 2019-2022. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.04.23293671. [PMID: 37609234 PMCID: PMC10441490 DOI: 10.1101/2023.08.04.23293671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The adverse impact of Zika (ZIKV), dengue (DENV), and chikungunya (CHIKV) virus infection in pregnancy has been recognized in Latin America and Asia but is not well studied in Africa. In Nigeria, we screened 1006 pregnant women for ZIKV, DENV and CHIKV IgM/IgG by rapid test (2019-2022). Women with acute infection were recruited for prospective study and infants were examined for any abnormalities from delivery through six months. A subset of rapid test-reactive samples were confirmed using virus-specific ELISAs and neutralization assays. Prevalence of acute infection (IgM+) was 3.8%, 9.9% and 11.8% for ZIKV, DENV and CHIKV, respectively; co-infections represented 24.5% of all infections. Prevalence in asymptomatic women was twice the level of symptomatic infection. We found a significant association between acute maternal ZIKV/DENV/CHIKV infection and any gross abnormal birth outcome (p=0.014). Further prospective studies will contribute to our understanding of the clinical significance of these endemic arboviruses in Africa.
Collapse
|
19
|
Leggewie M, Scherer C, Altinli M, Gestuveo RJ, Sreenu VB, Fuss J, Vazeille M, Mousson L, Badusche M, Kohl A, Failloux AB, Schnettler E. The Aedes aegypti RNA interference response against Zika virus in the context of co-infection with dengue and chikungunya viruses. PLoS Negl Trop Dis 2023; 17:e0011456. [PMID: 37440582 PMCID: PMC10343070 DOI: 10.1371/journal.pntd.0011456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Since its detection in 2015 in Brazil, Zika virus (ZIKV) has remained in the spotlight of international public health and research as an emerging arboviral pathogen. In addition to single infection, ZIKV may occur in co-infection with dengue (DENV) and chikungunya (CHIKV) viruses, with whom ZIKV shares geographic distribution and the mosquito Aedes aegypti as a vector. The main mosquito immune response against arboviruses is RNA interference (RNAi). It is unknown whether or not the dynamics of the RNAi response differ between single arboviral infections and co-infections. In this study, we investigated the interaction of ZIKV and DENV, as well as ZIKV and CHIKV co-infections with the RNAi response in Ae. aegypti. Using small RNA sequencing, we found that the efficiency of small RNA production against ZIKV -a hallmark of antiviral RNAi-was mostly similar when comparing single and co-infections with either DENV or CHIKV. Silencing of key antiviral RNAi proteins, showed no change in effect on ZIKV replication when the cell is co-infected with ZIKV and DENV or CHIKV. Interestingly, we observed a negative effect on ZIKV replication during CHIKV co-infection in the context of Ago2-knockout cells, though his effect was absent during DENV co-infection. Overall, this study provides evidence that ZIKV single or co-infections with CHIKV or DENV are equally controlled by RNAi responses. Thus, Ae. aegypti mosquitoes and derived cells support co-infections of ZIKV with either CHIKV or DENV to a similar level than single infections, as long as the RNAi response is functional.
Collapse
Affiliation(s)
- Mayke Leggewie
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection; Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Germany
| | - Christina Scherer
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection; Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Germany
| | - Mine Altinli
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection; Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Germany
| | - Rommel J. Gestuveo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Division of Biological Sciences, University of the Philippines Visayas, Miagao, Iloilo, Philippines
| | | | - Janina Fuss
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Marlis Badusche
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Esther Schnettler
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection; Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Germany
- University Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Hamburg, Germany
| |
Collapse
|
20
|
Frota CC, Correia FGS, Alves Vasconcelos LR, de Sousa PRC, Ferreira MLDS, Saraiva SP, Mota Ferreira R, Romcy KAM, Pinheiro RF, de Oliveira RTG, Pinheiro Júnior FML, Martins AF, Sanhueza-Sanzana C, de Almeida RLF, Kendall C, Coelho ICB, Pires Neto RDJ, Aguiar ÍWO, Kerr LRFS. Positivity of dengue, chikungunya, and Zika infections in women in Northeast Brazil post-Zika epidemic. Pathog Glob Health 2023; 117:485-492. [PMID: 36316985 PMCID: PMC10262776 DOI: 10.1080/20477724.2022.2142187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
The state of Ceará, in the Northeast Region of Brazil, presents the simultaneous circulation of Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV) viruses. In 2017 there were a high number of cases of these three arboviruses, especially CHIKV. Here, we detected the presence of arboviruses ZIKV, DENV and CHIKV and their coinfections in women in endemic regions of the city of Fortaleza, Ceará in a post-Zika epidemic year. Sociodemographic and environmental characteristics associated with arbovirus positivity were also analyzed. Women (n = 1289) between 15 and 39 years old were included. RT-qPCR was performed for virus detection and IgM antibody positivity was also analyzed. One hundred and six (8.3%) participants were positive for one or more arboviruses. Monoinfections (76; 5.9%) were distributed between 22 (1.7%) for ZIKV, 39 (3.1%) for DENV and 15 (1.2%) for CHIKV. Co-infections were detected in 30 (2.3%) of the positive participants and one case with triple infection was found. IgM positivity was found in 2.4% of ZIKV RT-qPCR, 9.6% of DENV and 16.3% of CHIKV. RT-qPCR positivity for arboviruses was associated with low socioeconomic class and presence of a water box sealing in the household. A higher positivity to the three viruses occurred in the month with the lowest wind velocity, which was also preceded by the highest peak of rain and humidity. We identified the simultaneous circulation and co-infection of ZIKV, DENV and CHIKV in Fortaleza in a post-Zika epidemic year. We also highlight the need for continuous epidemiological surveillance combined with molecular diagnostic tools.
Collapse
Affiliation(s)
| | | | | | | | | | - Susy Pereira Saraiva
- Public Health Postgraduate Program, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | - Carl Kendall
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | |
Collapse
|
21
|
Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541186. [PMID: 37292724 PMCID: PMC10245717 DOI: 10.1101/2023.05.17.541186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. Here, we examine single and co-infection of Mayaro virus (-D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27°C) and hot (32°C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes, with a tendency for higher titers in co-infected mosquitoes at both temperatures and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs single infections and was more evident at earlier timepoints (7 vs 14 days post infection). The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses, but further studies are necessary to clarify the role of co-infection at different and variable temperature regimes.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chiara Vanalli
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristine Werling
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Isabella M Cattadori
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
22
|
Lin DCD, Weng SC, Tsao PN, Chu JJH, Shiao SH. Co-infection of dengue and Zika viruses mutually enhances viral replication in the mosquito Aedes aegypti. Parasit Vectors 2023; 16:160. [PMID: 37165438 PMCID: PMC10172068 DOI: 10.1186/s13071-023-05778-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The mosquito Aedes aegypti transmits two of the most serious mosquito-borne viruses, dengue virus (DENV) and Zika virus (ZIKV), which results in significant human morbidity and mortality worldwide. The quickly shifting landscapes of DENV and ZIKV endemicity worldwide raise concerns that their co-circulation through the Ae. aegypti mosquito vector could greatly exacerbate the disease burden in humans. Recent reports have indicated an increase in the number of co-infection cases in expanding co-endemic regions; however, the impact of co-infection on viral infection and the detailed molecular mechanisms remain to be defined. METHODS C6/36 (Aedes albopictus) cells were cultured in Dulbecco's modified Eagle medium/Mitsuhashi and Maramorosch Insect Medium (DMEM/MM) (1:1) containing 2% heat-inactivated fetal bovine serum and 1× penicillin/streptomycin solution. For virus propagation, the cells were infected with either DENV serotype 2 (DENV2) strain 16681 or ZIKV isolate Thailand/1610acTw (MF692778.1). Mosquitoes (Ae. aegypti UGAL [University of Georgia Laboratory]/Rockefeller strain) were orally infected with DENV2 and ZIKV through infectious blood-feeding. RESULTS We first examined viral replication activity in cells infected simultaneously, or sequentially, with DENV and ZIKV, and found interspecies binding of viral genomic transcripts to the non-structural protein 5 (NS5). When we challenged Ae. aegypti mosquitos with both DENV2 and ZIKV sequentially to probe similar interactions, virus production and vector susceptibility to infection were significantly enhanced. CONCLUSIONS Our results suggest that DENV2 and ZIKV simultaneously establishing infection in the Ae. aegypti mosquito vector may augment one another during replication. The data also implicate the homologous NS5 protein as a key intersection between the flaviviruses in co-infection, highlighting it as a potential target for vector control.
Collapse
Affiliation(s)
- Daniel Chieh-Ding Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
23
|
Garcia G, Irudayam JI, Jeyachandran AV, Dubey S, Chang C, Castillo Cario S, Price N, Arumugam S, Marquez AL, Shah A, Fanaei A, Chakravarty N, Joshi S, Sinha S, French SW, Parcells MS, Ramaiah A, Arumugaswami V. Innate immune pathway modulator screen identifies STING pathway activation as a strategy to inhibit multiple families of arbo and respiratory viruses. Cell Rep Med 2023; 4:101024. [PMID: 37119814 DOI: 10.1016/j.xcrm.2023.101024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees. STING agonists (cAIMP, diABZI, and 2',3'-cGAMP) and Dectin-1 agonist scleroglucan demonstrate the most potent, broad-spectrum antiviral function. Furthermore, STING agonists inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enterovirus-D68 (EV-D68) infection in cardiomyocytes. Transcriptome analysis reveals that cAIMP treatment rescue cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provides protection against CHIKV in a chronic CHIKV-arthritis mouse model. Our study describes innate immune signaling circuits crucial for RNA virus replication and identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Swati Dubey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Chang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nate Price
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sathya Arumugam
- Department of Mathematics, Government College Daman, Daman, Dadra and Nagar Haveli and Daman and Diu 396210, India
| | - Angelica L Marquez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aayushi Shah
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amir Fanaei
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shantanu Joshi
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sanjeev Sinha
- All India Institute of Medical Sciences, New Delhi, India
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark S Parcells
- Department of Animal and Food Sciences, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore 560065, India; City of Milwaukee Health Department, Milwaukee, WI 53202, USA.
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Franco EJ, Hanrahan KC, Brown AN. Favipiravir Inhibits Zika Virus (ZIKV) Replication in HeLa Cells by Altering Viral Infectivity. Microorganisms 2023; 11:1097. [PMID: 37317071 PMCID: PMC10223361 DOI: 10.3390/microorganisms11051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023] Open
Abstract
This study aims to evaluate the antiviral potential of the nucleoside analogue favipiravir (FAV) against ZIKV, an arbovirus for which there are no approved antiviral therapies, in three human-derived cell lines. HeLa (cervical), SK-N-MC (neuronal), and HUH-7 (liver) cells were infected with ZIKV and exposed to different concentrations of FAV. Viral supernatant was sampled daily, and infectious viral burden was quantified by plaque assay. Changes in ZIKV infectivity were quantified by calculating specific infectivity. FAV-related toxicities were also assessed for each cell line in both infected and uninfected cells. Our results demonstrate that FAV activity was most pronounced in HeLa cells, as substantial declines in infectious titers and viral infectivity were observed in this cell type. The decline in infectious virus occurred in an exposure-dependent manner and was more pronounced as FAV exposure times increased. Additionally, toxicity studies showed that FAV was not toxic to any of the three cell lines and, surprisingly, caused substantial improvements in the viability of infected HeLa cells. Although SK-N-MC and HUH-7 cells were susceptible to FAV's anti-ZIKV activity, similar effects on viral infectivity and improvements in cell viability with therapy were not observed. These results indicate that FAV's ability to substantially alter viral infectivity is host cell specific and suggest that the robust antiviral effect observed in HeLa cells is mediated through drug-induced losses of viral infectivity.
Collapse
Affiliation(s)
- Evelyn J. Franco
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida College of Medicine, Orlando, FL 32827, USA; (E.J.F.); (K.C.H.)
- Department of Pharmaceutics, University of Florida College of Pharmacy, Orlando, FL 32827, USA
| | - Kaley C. Hanrahan
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida College of Medicine, Orlando, FL 32827, USA; (E.J.F.); (K.C.H.)
| | - Ashley N. Brown
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida College of Medicine, Orlando, FL 32827, USA; (E.J.F.); (K.C.H.)
- Department of Pharmaceutics, University of Florida College of Pharmacy, Orlando, FL 32827, USA
| |
Collapse
|
25
|
Farias PCS, Pastor AF, Gonçales JP, do Nascimento IDS, de Souza Ferraz ES, Lopes TRR, do Carmo RF, Côelho MRCD, Silva Júnior JVJ. Epidemiological profile of arboviruses in two different scenarios: dengue circulation vs. dengue, chikungunya and Zika co-circulation. BMC Infect Dis 2023; 23:177. [PMID: 36949383 PMCID: PMC10035144 DOI: 10.1186/s12879-023-08139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The severity and distribution of dengue virus (DENV) infections have been attributed to a complex interaction among viral, host and environmental factors. Herein, we investigated the influence of chikungunya (CHIKV) and Zika (ZIKV) viruses on the epidemiological profile of dengue cases, using Recife, Pernambuco state, Brazil, as a study model. In addition, we described and compared the epidemiological profile related to each arbovirus (DENV vs. CHIKV vs. ZIKV). METHODS All cases of dengue, chikungunya and Zika reported to the Pernambuco Health Department in 2011-2013 (DENV circulation) and 2016-2018 (DENV, CHIKV and ZIKV co-circulation) were included in our study. The cases were classified by sex, age and race/color and their distribution was analyzed by the χ2 test. Furthermore, the data were also analyzed for co-infections. Temperature, humidity and rainfall data were analyzed using one-way ANOVA and paired t-test. RESULTS During 2011-2013, 15,315 dengue cases were diagnosed, most of them female, brown and 20-29 age group. Between 2016 and 2018, 15,870 dengue cases were described, which presented the same profile described above. In the two triennia, the female/male dengue ratio fluctuated significantly, ranging from 1.07 to 1.52. Regarding chikungunya, 7076 cases were reported, most of them female and brown. The female/male ratio also fluctuated significantly, ranging from 1.62 to 2.1. Two main age groups were observed in chikungunya: ≤ 19 years (minority of diagnoses) and ≥ 20 years (majority of diagnoses). In the same triennium, 266 Zika cases were reported to the Pernambuco Health Department, mainly in females and in the 0-9 and 20-39 age groups. In general, 119 co-infections were identified: 117 DENV-CHIKV, 1 CHIKV-ZIKV and 1 DENV-CHIKV-ZIKV. Concerning climate data, only the humidity in 2011 was significantly different from the other years. CONCLUSION The epidemiological profile of dengue cases did not change after the introduction of CHIKV and ZIKV. Females were the most diagnosed with dengue, chikungunya or Zika, however we found important differences in the age profile of these arboviruses, which should be considered by public health policies, as well as investigated in future studies of virus-host interaction.
Collapse
Affiliation(s)
| | - André Filipe Pastor
- Federal Institute of Education, Science and Technology of Sertão Pernambucano, Floresta, Pernambuco, Brazil
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Juliana Prado Gonçales
- Virology Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- SER Educational Group, Recife, Pernambuco, Brazil
| | | | | | - Thaísa Regina Rocha Lopes
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Av. Roraima, Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Rodrigo Feliciano do Carmo
- Collegiate of Pharmaceutical Sciences, Federal University of Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | | | - José Valter Joaquim Silva Júnior
- Virology Sector, Keizo Asami Institute, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Av. Roraima, Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
26
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
27
|
In Vitro and In Vivo Coinfection and Superinfection Dynamics of Mayaro and Zika Viruses in Mosquito and Vertebrate Backgrounds. J Virol 2023; 97:e0177822. [PMID: 36598200 PMCID: PMC9888278 DOI: 10.1128/jvi.01778-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Globalization and climate change have contributed to the simultaneous increase and spread of arboviral diseases. Cocirculation of several arboviruses in the same geographic region provides an impetus to study the impacts of multiple concurrent infections within an individual vector mosquito. Here, we describe coinfection and superinfection with the Mayaro virus (Togaviridae, Alphavirus) and Zika virus (Flaviviridae, Flavivirus) in vertebrate and mosquito cells, as well as Aedes aegypti adult mosquitoes, to understand the interaction dynamics of these pathogens and effects on viral infection, dissemination, and transmission. Aedes aegypti mosquitoes were able to be infected with and transmit both pathogens simultaneously. However, whereas Mayaro virus was largely unaffected by coinfection, it had a negative impact on infection and dissemination rates for Zika virus compared to single infection scenarios. Superinfection of Mayaro virus atop a previous Zika virus infection resulted in increased Mayaro virus infection rates. At the cellular level, we found that mosquito and vertebrate cells were also capable of being simultaneously infected with both pathogens. Similar to our findings in vivo, Mayaro virus negatively affected Zika virus replication in vertebrate cells, displaying complete blocking under certain conditions. Viral interference did not occur in mosquito cells. IMPORTANCE Epidemiological and clinical studies indicate that multiple arboviruses are cocirculating in human populations, leading to some individuals carrying more than one arbovirus at the same time. In turn, mosquitoes can become infected with multiple pathogens simultaneously (coinfection) or sequentially (superinfection). Coinfection and superinfection can have synergistic, neutral, or antagonistic effects on viral infection dynamics and ultimately have impacts on human health. Here we investigate the interaction between Zika virus and Mayaro virus, two emerging mosquito-borne pathogens currently circulating together in Latin America and the Caribbean. We find a major mosquito vector of these viruses-Aedes aegypti-can carry and transmit both arboviruses at the same time. Our findings emphasize the importance of considering co- and superinfection dynamics during vector-pathogen interaction studies, surveillance programs, and risk assessment efforts in epidemic areas.
Collapse
|
28
|
Factors Affecting Arbovirus Midgut Escape in Mosquitoes. Pathogens 2023; 12:pathogens12020220. [PMID: 36839492 PMCID: PMC9963182 DOI: 10.3390/pathogens12020220] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Arboviral diseases spread by mosquitoes cause significant morbidity and mortality throughout much of the world. The treatment and prevention of these diseases through medication and vaccination is often limited, which makes controlling arboviruses at the level of the vector ideal. One way to prevent the spread of an arbovirus would be to stop its vector from developing a disseminated infection, which is required for the virus to make its way to the saliva of the mosquito to be potentially transmitted to a new host. The midgut of the mosquito provides one such opportunity to stop an arbovirus in its tracks. It has been known for many years that in certain arbovirus-vector combinations, or under certain circumstances, an arbovirus can infect and replicate in the midgut but is unable to escape from the tissue to cause disseminated infection. This situation is known as a midgut escape barrier. If we better understand why this barrier occurs, it might aid in the development of more informed control strategies. In this review, we discuss how the midgut escape barrier contributes to virus-vector specificity and possible mechanisms that may allow this barrier to be overcome in successful virus-vector combinations. We also discuss several of the known factors that either increase or decrease the likelihood of midgut escape.
Collapse
|
29
|
Seok S, Raz CD, Miller JH, Malcolm AN, Eason MD, Romero-Weaver AL, Giordano BV, Jacobsen CM, Wang X, Akbari OS, Raban R, Mathias DK, Caragata EP, Vorsino AE, Chiu JC, Lee Y. Arboviral disease outbreaks, Aedes mosquitoes, and vector control efforts in the Pacific. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1035273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recurring outbreaks of mosquito-borne diseases, like dengue, in the Pacific region represent a major biosecurity risk to neighboring continents through potential introductions of disease-causing pathogens. Aedes mosquitoes, highly prevalent in this region, are extremely invasive and the predominant vectors of multiple viruses including causing dengue, chikungunya, and Zika. Due to the absence of vaccines for most of these diseases, Aedes control remains a high priority for public health. Currently, international organizations put their efforts into improving mosquito surveillance programs in the Pacific region. Also, a novel biocontrol method using Wolbachia has been tried in the Pacific region to control Aedes mosquito populations. A comprehensive understanding of mosquito biology is needed to assess the risk that mosquitoes might be introduced to neighboring islands in the region and how this might impact arboviral virus transmission. As such, we present a comprehensive review of arboviral disease outbreak records as well as Aedes mosquito biology research findings relevant to the Pacific region collected from both non-scientific and scientific sources.
Collapse
|
30
|
Garcia G, Irudayam JI, Jeyachandran AV, Dubey S, Chang C, Cario SC, Price N, Arumugam S, Marquez AL, Shah A, Fanaei A, Chakravarty N, Joshi S, Sinha S, French SW, Parcells M, Ramaiah A, Arumugaswami V. Broad-spectrum antiviral inhibitors targeting pandemic potential RNA viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524824. [PMID: 36711787 PMCID: PMC9882367 DOI: 10.1101/2023.01.19.524824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak. Therefore, it is critical to identify broad-spectrum antiviral agents. We have tested a small library of innate immune agonists targeting pathogen recognition receptors, including TLRs, STING, NOD, Dectin and cytosolic DNA or RNA sensors. We observed that TLR3, STING, TLR8 and Dectin-1 ligands inhibited arboviruses, Chikungunya virus (CHIKV), West Nile virus (WNV) and Zika virus, to varying degrees. Cyclic dinucleotide (CDN) STING agonists, such as cAIMP, diABZI, and 2',3'-cGAMP, and Dectin-1 agonist scleroglucan, demonstrated the most potent, broad-spectrum antiviral function. Comparative transcriptome analysis revealed that CHIKV-infected cells had larger number of differentially expressed genes than of WNV and ZIKV. Furthermore, gene expression analysis showed that cAIMP treatment rescued cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provided protection against CHIKV in a CHIKV-arthritis mouse model. Cardioprotective effects of synthetic STING ligands against CHIKV, WNV, SARS-CoV-2 and enterovirus D68 (EV-D68) infections were demonstrated using human cardiomyocytes. Interestingly, the direct-acting antiviral drug remdesivir, a nucleoside analogue, was not effective against CHIKV and WNV, but exhibited potent antiviral effects against SARS-CoV-2, RSV (respiratory syncytial virus), and EV-D68. Our study identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses, which can be rapidly deployed to prevent or mitigate future pandemics.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arjit Vijay Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Swati Dubey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Chang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sebastian Castillo Cario
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nate Price
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sathya Arumugam
- Department of Mathematics, Government College Daman, U.T of DNH & DD, India
| | - Angelica L. Marquez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aayushi Shah
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amir Fanaei
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shantanu Joshi
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Sanjeev Sinha
- All India Institute of Medical Sciences, New Delhi, India
| | - Samuel W. French
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Mark Parcells
- Department of Animal and Food Sciences, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Arunachalam Ramaiah
- Tata Institute for Genetics and Society, Center at inStem, Bangalore 560065, India
- City of Milwaukee Health Department, Milwaukee, WI 53202, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Lead Contact
| |
Collapse
|
31
|
Mendonça DC, Reis EVS, Arias NEC, Valencia HJ, Bonjardim CA. A study of the MAYV replication cycle: Correlation between the kinetics of viral multiplication and viral morphogenesis. Virus Res 2023; 323:199002. [PMID: 36370917 PMCID: PMC10194297 DOI: 10.1016/j.virusres.2022.199002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Mayaro virus (MAYV) is mainly found in Central and South America and causes a febrile illness followed by debilitating arthritis and arthralgia similar to chikungunya virus (CHIKV). Infection leads to long-term sequelae with a direct impact on the patient's productive capacity, resulting in economic losses. Mayaro fever is a neglected disease due to the limited epidemiological data. In Brazil, it is considered a potential public health risk with the number of cases increasing every year. Most of our knowledge about MAYV biology is inferred from data obtained from other alphaviruses as well as more recent studies on MAYV. Here, we analyzed the kinetics of viral replication through standard growth curves, quantification of intracellular and extracellular particles, and RNA quantification. We compared transmission electron microscopy data during different stages of infection. This approach allowed us to establish a chronological order of events during MAYV replication and its respective timepoints including cell entry through clathrin-mediated endocytosis occurring at 15-30 min, genome replication at 2-3 h, morphogenesis at 4 hpi, and release at 4-6 hpi. We also present evidence of uncharacterized events such as ribosome reorganization as well as clusters of early viral precursors and release through exocytosis in giant forms. Our work sheds new and specific light on the MAYV replication cycle and may contribute to future studies on the field.
Collapse
Affiliation(s)
- Diogo C Mendonça
- Grupo de Transdução de Sinal, Laboratório de Vírus, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais., 31270-901, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil.
| | - Erik V S Reis
- Grupo de Transdução de Sinal, Laboratório de Vírus, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais., 31270-901, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Nídia E C Arias
- Grupo de Transdução de Sinal, Laboratório de Vírus, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais., 31270-901, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Hugo J Valencia
- Grupo de Transdução de Sinal, Laboratório de Vírus, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais., 31270-901, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudio A Bonjardim
- Grupo de Transdução de Sinal, Laboratório de Vírus, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais., 31270-901, Avenida Antonio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
32
|
Garcia GA, Lord AR, Santos LMB, Kariyawasam TN, David MR, Couto-Lima D, Tátila-Ferreira A, Pavan MG, Sikulu-Lord MT, Maciel-de-Freitas R. Rapid and Non-Invasive Detection of Aedes aegypti Co-Infected with Zika and Dengue Viruses Using Near Infrared Spectroscopy. Viruses 2022; 15:11. [PMID: 36680052 PMCID: PMC9863061 DOI: 10.3390/v15010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The transmission of dengue (DENV) and Zika (ZIKV) has been continuously increasing worldwide. An efficient arbovirus surveillance system is critical to designing early-warning systems to increase preparedness of future outbreaks in endemic countries. The Near Infrared Spectroscopy (NIRS) is a promising high throughput technique to detect arbovirus infection in Ae. aegypti with remarkable advantages such as cost and time effectiveness, reagent-free, and non-invasive nature over existing molecular tools for similar purposes, enabling timely decision making through rapid detection of potential disease. Our aim was to determine whether NIRS can differentiate Ae. aegypti females infected with either ZIKV or DENV single infection, and those coinfected with ZIKV/DENV from uninfected ones. Using 200 Ae. aegypti females reared and infected in laboratory conditions, the training model differentiated mosquitoes into the four treatments with 100% accuracy. DENV-, ZIKV-, and ZIKV/DENV-coinfected mosquitoes that were used to validate the model could be correctly classified into their actual infection group with a predictive accuracy of 100%, 84%, and 80%, respectively. When compared with mosquitoes from the uninfected group, the three infected groups were predicted as belonging to the infected group with 100%, 97%, and 100% accuracy for DENV-infected, ZIKV-infected, and the co-infected group, respectively. Preliminary lab-based results are encouraging and indicate that NIRS should be tested in field settings to evaluate its potential role to monitor natural infection in field-caught mosquitoes.
Collapse
Affiliation(s)
- Gabriela A. Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Anton R. Lord
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
- Spectroscopy and Data Consultants Pty Ltd., Brisbane, QLD 4035, Australia
| | - Lilha M. B. Santos
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | | | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Aline Tátila-Ferreira
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
| | - Maggy T. Sikulu-Lord
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Rio de Janeiro, Brazil
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
33
|
Eliash N, Suenaga M, Mikheyev AS. Vector-virus interaction affects viral loads and co-occurrence. BMC Biol 2022; 20:284. [PMID: 36527054 PMCID: PMC9758805 DOI: 10.1186/s12915-022-01463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vector-borne viral diseases threaten human and wildlife worldwide. Vectors are often viewed as a passive syringe injecting the virus. However, to survive, replicate and spread, viruses must manipulate vector biology. While most vector-borne viral research focuses on vectors transmitting a single virus, in reality, vectors often carry diverse viruses. Yet how viruses affect the vectors remains poorly understood. Here, we focused on the varroa mite (Varroa destructor), an emergent parasite that can carry over 20 honey bee viruses, and has been responsible for colony collapses worldwide, as well as changes in global viral populations. Co-evolution of the varroa and the viral community makes it possible to investigate whether viruses affect vector gene expression and whether these interactions affect viral epidemiology. RESULTS Using a large set of available varroa transcriptomes, we identified how abundances of individual viruses affect the vector's transcriptional network. We found no evidence of competition between viruses, but rather that some virus abundances are positively correlated. Furthermore, viruses that are found together interact with the vector's gene co-expression modules in similar ways, suggesting that interactions with the vector affect viral epidemiology. We experimentally validated this observation by silencing candidate genes using RNAi and found that the reduction in varroa gene expression was accompanied by a change in viral load. CONCLUSIONS Combined, the meta-transcriptomic analysis and experimental results shed light on the mechanism by which viruses interact with each other and with their vector to shape the disease course.
Collapse
Affiliation(s)
- Nurit Eliash
- grid.18098.380000 0004 1937 0562Shamir Research Institute, University of Haifa, Katzrin, Israel ,grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Miyuki Suenaga
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Alexander S. Mikheyev
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan ,grid.1001.00000 0001 2180 7477Australian National University, Canberra, ACT, 2600 Australia
| |
Collapse
|
34
|
Poterek ML, Vogels CBF, Grubaugh ND, Ebel GD, Alex Perkins T, Cavany SM. Interactions between seasonal temperature variation and temporal synchrony drive increased arbovirus co-infection incidence. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220829. [PMID: 36277835 PMCID: PMC9579765 DOI: 10.1098/rsos.220829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/27/2022] [Indexed: 05/11/2023]
Abstract
Though instances of arthropod-borne (arbo)virus co-infection have been documented clinically, the overall incidence of arbovirus co-infection and its drivers are not well understood. Now that dengue, Zika and chikungunya viruses are all in circulation across tropical and subtropical regions of the Americas, it is important to understand the environmental and biological conditions that make co-infections more likely to occur. To understand this, we developed a mathematical model of co-circulation of two arboviruses, with transmission parameters approximating dengue, Zika and/or chikungunya viruses, and co-infection possible in both humans and mosquitoes. We examined the influence of seasonal timing of arbovirus co-circulation on the extent of co-infection. By undertaking a sensitivity analysis of this model, we examined how biological factors interact with seasonality to determine arbovirus co-infection transmission and prevalence. We found that temporal synchrony of the co-infecting viruses and average temperature were the most influential drivers of co-infection incidence. Our model highlights the synergistic effect of co-transmission from mosquitoes, which leads to more than double the number of co-infections than would be expected in a scenario without co-transmission. Our results suggest that appreciable numbers of co-infections are unlikely to occur except in tropical climates when the viruses co-occur in time and space.
Collapse
Affiliation(s)
- Marya L. Poterek
- Eck Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - T. Alex Perkins
- Eck Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sean M. Cavany
- Eck Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
35
|
Gómez M, Martínez D, Hernández C, Luna N, Patiño LH, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Arbovirus infection in Aedes aegypti from different departments of Colombia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of precise and timely knowledge about the molecular epidemiology of arboviruses of public health importance, particularly in the vector, has limited the comprehensive control of arboviruses. In Colombia and the Americas, entomovirological studies are scarce. Therefore, this study aimed to describe the frequency of natural infection and/or co-infection by Dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) in Aedes spp. circulating in different departments of Colombia (Amazonas, Boyacá, Magdalena, and Vichada) and identifying vector species by barcoding. Aedes mosquitoes were collected in departments with reported prevalence or incidence of arbovirus cases during 2020–2021, located in different biogeographic zones of the country: Amazonas, Boyacá, Magdalena, and Vichada. The insects were processed individually for RNA extraction, cDNA synthesis, and subsequent detection of DENV (serotypes DENV1-4 by multiplex PCR), CHIKV, and ZIKV (qRT-PCR). The positive mosquitoes for arboviruses were sequenced (Sanger method) using the subunit I of the cytochrome oxidase (COI) gene for species-level identification. In total, 558 Aedes mosquitoes were captured, 28.1% (n = 157) predominantly infected by DENV in all departments. The serotypes with the highest frequency of infection were DENV-1 and DENV-2 with 10.7% (n = 58) and 14.5% (n = 81), respectively. Coinfections between serotypes represented 3.9% (n = 22). CHIKV infection was detected in one individual (0.2%), and ZIKV infections were not detected. All infected samples were identified as A. aegypti (100%). From the COI dataset (593 bp), high levels of haplotype diversity (H = 0.948 ± 0.012) and moderate nucleotide diversity (π = 0.0225 ± 0.003) were identified, suggesting recent population expansions. Constructed phylogenetic analyses showed our COI sequences’ association with lineage I, which was reported widespread and related to a West African conspecific. We conclude that natural infection in A. aegypti by arbovirus might reflect the country’s epidemiological behavior, with a higher incidence of serotypes DENV-1 and DENV-2, which may be associated with high seroprevalence and asymptomatic infections in humans. This study demonstrates the high susceptibility of this species to arbovirus infection and confirms that A. aegypti is the main vector in Colombia. The importance of including entomovirological surveillance strategy within public health systems to understand transmission dynamics and the potential risk to the population is highlighted herein.
Collapse
|
36
|
Freitas LP, Carabali M, Yuan M, Jaramillo-Ramirez GI, Balaguera CG, Restrepo BN, Zinszer K. Spatio-temporal clusters and patterns of spread of dengue, chikungunya, and Zika in Colombia. PLoS Negl Trop Dis 2022; 16:e0010334. [PMID: 35998165 PMCID: PMC9439233 DOI: 10.1371/journal.pntd.0010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/02/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Colombia has one of the highest burdens of arboviruses in South America. The country was in a state of hyperendemicity between 2014 and 2016, with co-circulation of several Aedes-borne viruses, including a syndemic of dengue, chikungunya, and Zika in 2015. Methodology/Principal findings We analyzed the cases of dengue, chikungunya, and Zika notified in Colombia from January 2014 to December 2018 by municipality and week. The trajectory and velocity of spread was studied using trend surface analysis, and spatio-temporal high-risk clusters for each disease in separate and for the three diseases simultaneously (multivariate) were identified using Kulldorff’s scan statistics. During the study period, there were 366,628, 77,345 and 74,793 cases of dengue, chikungunya, and Zika, respectively, in Colombia. The spread patterns for chikungunya and Zika were similar, although Zika’s spread was accelerated. Both chikungunya and Zika mainly spread from the regions on the Atlantic coast and the south-west to the rest of the country. We identified 21, 16, and 13 spatio-temporal clusters of dengue, chikungunya and Zika, respectively, and, from the multivariate analysis, 20 spatio-temporal clusters, among which 7 were simultaneous for the three diseases. For all disease-specific analyses and the multivariate analysis, the most-likely cluster was identified in the south-western region of Colombia, including the Valle del Cauca department. Conclusions/Significance The results further our understanding of emerging Aedes-borne diseases in Colombia by providing useful evidence on their potential site of entry and spread trajectory within the country, and identifying spatio-temporal disease-specific and multivariate high-risk clusters of dengue, chikungunya, and Zika, information that can be used to target interventions. Dengue, chikungunya, and Zika are diseases transmitted to humans by the bite of infected Aedes mosquitoes. Between 2014 and 2016 chikungunya and Zika viruses started causing outbreaks in Colombia, one of the countries historically most affected by dengue. We used case counts of the diseases by municipality and week to study the spread trajectory of chikungunya and Zika within Colombia’s territory, and to identify space-time high-risk clusters, i.e., the areas and time periods that dengue, chikungunya, and Zika were more present. Chikungunya and Zika spread similarly in Colombia, but Zika spread faster. The Atlantic coast, a famous touristic destination in the country, was likely the place of entry of chikungunya and Zika in Colombia. The south-western region was identified as a high-risk cluster for all three diseases in separate and simultaneously. This region has a favorable climate for the Aedes mosquitoes and other characteristics that facilitate the diseases’ transmission, such as social deprivation and high population mobility. Our results provide useful information on the locations that should be prioritized for interventions to prevent the entry of new diseases transmitted by Aedes and to reduce the burden of dengue, chikungunya and Zika where they are established.
Collapse
Affiliation(s)
- Laís Picinini Freitas
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche en Santé Publique, Montreal, Quebec, Canada
| | - Mabel Carabali
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche en Santé Publique, Montreal, Quebec, Canada
| | - Mengru Yuan
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Berta N. Restrepo
- Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| | - Kate Zinszer
- School of Public Health, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche en Santé Publique, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
37
|
Granger HP, Rocha CVS, Correia TML, da Silva NMP, Chaves BA, Secundino NFC, Pimenta PFP, de Melo FF. Natural vertical cotransmission of Dengue virus and Chikungunya virus from Aedes aegypti in Brumado, Bahia, Brazil. Rev Soc Bras Med Trop 2022; 55:e0427. [PMID: 36000618 PMCID: PMC9413630 DOI: 10.1590/0037-8682-0427-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Arthropod-borne viruses have recently emerged and are pathogens of various human diseases, including dengue, zika, and chikungunya viruses. METHODS We collectedAedes aegyptilarvae (N = 20) from Brumado, Bahia, Brazil, and treated and individually preserved the specimens. We analyzed the samples for dengue, zika, and chikungunya viruses using molecular biology methods. RESULTS We found that 25% (N = 5) and 15% (N = 3) were positive exclusively for dengue and chikungunya viruses, respectively; 15% (N = 3) were coinfected with both. CONCLUSIONS This is the first report of dengue and chikungunya virus coinfection in A. aegypti larvae.
Collapse
Affiliation(s)
- Henry Paul Granger
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista, BA, Brasil
| | - Cínthya Viana Souza Rocha
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista, BA, Brasil
| | | | | | - Bárbara Aparecida Chaves
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Diretoria de Ensino e Pesquisa, Manaus, AM, Brasil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisas Clínicas Carlos Borborema, Manaus, AM, Brasil
| | - Nágila Francinete Costa Secundino
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Diretoria de Ensino e Pesquisa, Manaus, AM, Brasil
- Fundação Oswaldo Cruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | - Paulo Filemon Paolucci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Diretoria de Ensino e Pesquisa, Manaus, AM, Brasil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisas Clínicas Carlos Borborema, Manaus, AM, Brasil
- Fundação Oswaldo Cruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista, BA, Brasil
| |
Collapse
|
38
|
Taraphdar D, Singh B, Pattanayak S, Kiran A, Kokavalla P, Alam MF, Syed GH. Comodulation of Dengue and Chikungunya Virus Infection During a Coinfection Scenario in Human Cell Lines. Front Cell Infect Microbiol 2022; 12:821061. [PMID: 35573775 PMCID: PMC9097606 DOI: 10.3389/fcimb.2022.821061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Dengue virus (DENV) and Chikungunya virus (CHIKV) are the arboviruses that pose a threat to global public health. Coinfection and antibody-dependent enhancement are major areas of concern during DENV and CHIKV infections, which can alter the clinical severity. Acute hepatic illness is a common manifestation and major sign of disease severity upon infection with either dengue or chikungunya. Hence, in this study, we characterized the coexistence and interaction between both the viruses in human hepatic (Huh7) cells during the coinfection/superinfection scenario. We observed that prior presence of or subsequent superinfection with DENV enhanced CHIKV replication. However, prior CHIKV infection negatively affected DENV. In comparison to monoinfection, coinfection with both DENV and CHIKV resulted in lower infectivity as compared to monoinfections with modest suppression of CHIKV but dramatic suppression of DENV replication. Subsequent investigations revealed that subneutralizing levels of DENV or CHIKV anti-sera can respectively promote the ADE of CHIKV or DENV infection in FcγRII bearing human myelogenous leukemia cell line K562. Our observations suggest that CHIKV has a fitness advantage over DENV in hepatic cells and prior DENV infection may enhance CHIKV disease severity if the patient subsequently contracts CHIKV. This study highlights the natural possibility of dengue-chikungunya coinfection and their subsequent modulation in human hepatic cells. These observations have important implications in regions where both viruses are prevalent and calls for proper management of DENV-CHIKV coinfected patients.
Collapse
Affiliation(s)
- Debjani Taraphdar
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bharati Singh
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Sabyasachi Pattanayak
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Avula Kiran
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Poornima Kokavalla
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd. Faraz Alam
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Gulam Hussain Syed
- Virus-Host Interactions Lab, Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
39
|
Was It Chikungunya? Laboratorial and Clinical Investigations of Cases Occurred during a Triple Arboviruses’ Outbreak in Rio de Janeiro, Brazil. Pathogens 2022; 11:pathogens11020245. [PMID: 35215188 PMCID: PMC8879879 DOI: 10.3390/pathogens11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
The co-circulation of chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV) in Rio de Janeiro (RJ), Brazil, caused a challenging triple epidemic, as they share similar clinical signs and symptoms and geographical distribution. Here, we aimed to investigate the clinical and laboratorial aspects of chikungunya suspected cases assisted in RJ during the 2018 outbreak, focusing on the differential diagnosis with dengue and zika. All suspected cases were submitted to molecular and/or serological differential diagnostic approaches to arboviruses. A total of 242 cases suspected of arbovirus infection were investigated and 73.6% (178/242) were molecular and/or serologically confirmed as chikungunya. In RT-qPCR confirmed cases, cycle threshold (Ct) values ranged from 15.46 to 35.13, with acute cases presenting lower values. Chikungunya cases were mainly in females (64%) and the most frequently affected age group was adults between 46 to 59 years old (27%). Polyarthralgia affected 89% of patients, especially in hands and feet. No dengue virus (DENV) and Zika virus (ZIKV) infections were confirmed by molecular diagnosis, but 9.5% (23/242) had serological evidence of DENV exposure by the detection of specific anti-DENV IgM or NS1, and 42.7% (76/178) of chikungunya positive cases also presented recent DENV exposure reflected by a positive anti-DENV IgM or NS1 result. A significantly higher frequency of arthritis (p = 0.023) and limb edema (p < 0.001) was found on patients with CHIKV monoinfection compared to dengue patients and patients exposed to both viruses. Lastly, phylogenetic analysis showed that the chikungunya cases were caused by the ECSA genotype. Despite the triple arboviruses’ epidemic in the state of RJ, most patients with fever and arthralgia investigated here were diagnosed as chikungunya cases, and the incidence of CHIKV/DENV co-detection was higher than that reported in other studies.
Collapse
|
40
|
Xu Z, Peng Y, Yang M, Li X, Wang J, Zou R, Liang J, Fang S, Liu Y, Yang Y. Simultaneous detection of Zika, Chikungunya, Dengue, Yellow fever, West Nile and Japanese encephalitis viruses by a two-tube multiplex real-time RT-PCR assay. J Med Virol 2022; 94:2528-2536. [PMID: 35146775 DOI: 10.1002/jmv.27658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/07/2022]
Abstract
Due to the concurrent prevalence and increasing risk of co-infection of the clinically important Arboviruses, timely and accurate differential diagnosis is important for clinical management and the epidemiological investigation. A two-tube multiplex real-time RT-PCR assay for the simultaneous detection of Zika virus (ZIKV), Chikungunya virus (CHIKV), Dengue virus (DENV), Yellow fever virus (YFV), West Nile virus (WNV) and Japanese encephalitis virus (JEV) was developed and optimized with high specificity and sensitivity. The detection limit for all the 6 viruses could reach as low as 5 genome equivalent copies and 2.8 × 10-3 TCID50 for ZIKV, YFV, CHIKV and 2.8 × 10-2 TCID50 for JEV per reaction, with high accuracy and precision (R2 > 0.99). Coefficient of variation (CV) of intra-assay and inter-assay for our qRT-PCR assay was low, and the obtained positive rates ad Ct values of this assay were comparable with singleplex commercial kits. Moreover, the multiplex qRT-PCR assay was able to detect possible co-infections without competitive inhibition of target viral genomes. In conclusion, our rapid, sensitive, cost effective multiplex qRT-PCR will be of great use for the differential diagnosis in clinical setting and epidemiological investigation during surveillance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhixiang Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518100, China.,Savid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518100, China
| | - Minghui Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518100, China.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaohe Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518100, China
| | - Jun Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518100, China
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518100, China
| | - Jinhu Liang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518100, China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518100, China.,Savid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518100, China
| |
Collapse
|
41
|
OUP accepted manuscript. Trans R Soc Trop Med Hyg 2022; 116:924-929. [DOI: 10.1093/trstmh/trac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
|
42
|
Sturm A, Vos MW, Henderson R, Eldering M, Koolen KMJ, Sheshachalam A, Favia G, Samby K, Herreros E, Dechering KJ. Barcoded Asaia bacteria enable mosquito in vivo screens and identify novel systemic insecticides and inhibitors of malaria transmission. PLoS Biol 2021; 19:e3001426. [PMID: 34928952 PMCID: PMC8726507 DOI: 10.1371/journal.pbio.3001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/04/2022] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
This work addresses the need for new chemical matter in product development for control of pest insects and vector-borne diseases. We present a barcoding strategy that enables phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and apply this to discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector. Encoding of the blood meals was achieved through recombinant DNA-tagged Asaia bacteria that successfully colonised Aedes and Anopheles mosquitoes. An arrayed screen of a collection of pesticides showed that chemical classes of avermectins, phenylpyrazoles, and neonicotinoids were enriched for compounds with systemic adulticide activity against Anopheles. Using a luminescent Plasmodium falciparum reporter strain, barcoded screens identified 48 drug-like transmission-blocking compounds from a 400-compound antimicrobial library. The approach significantly increases the throughput in phenotypic screening campaigns using adult insects and identifies novel candidate small molecules for disease control. This study presents a barcoding strategy that enables high-throughput phenotypic screens of blood-feeding insects against small molecules in microtiter plate-based arrays and applies this to the discovery of novel systemic insecticides and compounds that block malaria parasite development in the mosquito vector.
Collapse
|
43
|
Chikungunya and arthritis: An overview. Travel Med Infect Dis 2021; 44:102168. [PMID: 34563686 DOI: 10.1016/j.tmaid.2021.102168] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Chikungunya is caused by CHIKV (chikungunya virus), an emerging and re-emerging arthropod-vectored viral infection that causes a febrile disease with primarily long term sequelae of arthralgia and myalgia and is fatal in a small fraction of infected patients. Sporadic outbreaks have been reported from different parts of the world chiefly Africa, Asia, the Indian and Pacific ocean regions, Europe and lately even in the Americas. Currently, treatment is primarily symptomatic as no vaccine, antibody-mediated immunotherapy or antivirals are available. Chikungunya belongs to a family of arthritogenic alphaviruses which have many pathophysiological similarities. Chikungunya arthritis has similarities and differences with rheumatoid arthritis. Although research into arthritis caused by these alphaviruses have been ongoing for decades and significant progress has been made, the mechanisms underlying viral infection and arthritis are not well understood. In this review, we give a background to chikungunya and the causative virus, outline the history of alphavirus arthritis research and then give an overview of findings on arthritis caused by CHIKV. We also discuss treatment options and the research done so far on various therapeutic intervention strategies.
Collapse
|
44
|
Rodrigues NB, Godoy RSM, Orfano AS, Chaves BA, Campolina TB, Costa BDA, Félix LDS, Silva BM, Norris DE, Pimenta PFP, Secundino NFC. Brazilian Aedes aegypti as a Competent Vector for Multiple Complex Arboviral Coinfections. J Infect Dis 2021; 224:101-108. [PMID: 33544850 DOI: 10.1093/infdis/jiab066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aedes aegypti is a highly competent vector in the transmission of arboviruses, such as chikungunya, dengue, Zika, and yellow fever viruses, and causes single and coinfections in the populations of tropical countries. METHODS The infection rate, viral abundance (VA), vector competence (VC), disseminated infection, and survival rate were recorded after single and multiple infections of the vector with 15 combinations of chikungunya, dengue, Zika, and yellow fever arboviruses. RESULTS Infection rates were 100% in all single and multiple infection experiments, except in 1 triple coinfection that presented a rate of 50%. The VC and disseminated infection rate varied from 100% (in single and quadruple infections) to 40% (in dual and triple infections). The dual and triple coinfections altered the VC and/or VA of ≥1 arbovirus. The highest viral VAs were detected for a single infection with chikungunya. The VAs in quadruple infections were similar when compared with each respective single infection. A decrease in survival rates was observed in a few combinations. CONCLUSIONS A. aegypti was able to host all single and multiple arboviral coinfections. The interference of the chikungunya virus suggests that distinct arbovirus families may have a significant role in complex coinfections.
Collapse
Affiliation(s)
- Nilton Barnabé Rodrigues
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel Soares Maia Godoy
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Silva Orfano
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Aparecida Chaves
- Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Thais Bonifácio Campolina
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Dos Anjos Costa
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Luíza Dos Santos Félix
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Melo Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Douglas Eric Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Paulo Filemon Paolucci Pimenta
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Nagila Francinete Costa Secundino
- Laboratory of Medical Entomology, René Rachou Institute-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
45
|
Wang H, Abbo SR, Visser TM, Westenberg M, Geertsema C, Fros JJ, Koenraadt CJM, Pijlman GP. Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes. Emerg Microbes Infect 2021; 9:2642-2652. [PMID: 33215969 PMCID: PMC7738303 DOI: 10.1080/22221751.2020.1854623] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are closely related mosquito-borne flaviviruses that are mainly transmitted between bird hosts by vector mosquitoes. Infections in humans are incidental but can cause severe disease. USUV is endemic in large parts of Europe, while WNV mainly circulates in Southern Europe. In recent years, WNV is also frequently detected in Northern Europe, thereby expanding the area where both viruses co-circulate. However, it remains unclear how USUV may affect the future spread of WNV and the likelihood of human co-infection. Here we investigated whether co-infections with both viruses in cell lines and their primary mosquito vector, Culex pipiens, affect virus replication and transmission dynamics. We show that USUV is outcompeted by WNV in mammalian, avian and mosquito cells during co-infection. Mosquitoes that were exposed to both viruses simultaneously via infectious blood meal displayed significantly reduced USUV transmission compared to mosquitoes that were only exposed to USUV (from 15% to 3%), while the infection and transmission of WNV was unaffected. In contrast, when mosquitoes were pre-infected with USUV via infectious blood meal, WNV transmission was significantly reduced (from 44% to 17%). Injection experiments established the involvement of the midgut in the observed USUV-mediated WNV inhibition. The competition between USUV and WNV during co-infection clearly indicates that the chance of concurrent USUV and WNV transmission via a single mosquito bite is low. The competitive relation between USUV and WNV may impact virus transmission dynamics in the field and affect the epidemiology of WNV in Europe.
Collapse
Affiliation(s)
- Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Marcel Westenberg
- Dutch National Plant Protection Organization (NPPO-NL), Wageningen, Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
46
|
Krüger A, de Jesus Santos AP, de Sá V, Ulrich H, Wrenger C. Aptamer Applications in Emerging Viral Diseases. Pharmaceuticals (Basel) 2021; 14:ph14070622. [PMID: 34203242 PMCID: PMC8308861 DOI: 10.3390/ph14070622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA molecules which are submitted to a process denominated SELEX. SELEX uses reiterative screening of a random oligonucleotide library to identify high-affinity binders to a chosen target, which may be a peptide, protein, or entire cells or viral particles. Aptamers can rival antibodies in target recognition, and benefit from their non-proteic nature, ease of modification, increased stability, and pharmacokinetic properties. This turns them into ideal candidates for diagnostic as well as therapeutic applications. Here, we review the recent accomplishments in the development of aptamers targeting emerging viral diseases, with emphasis on recent findings of aptamers binding to coronaviruses. We focus on aptamer development for diagnosis, including biosensors, in addition to aptamer modifications for stabilization in body fluids and tissue penetration. Such aptamers are aimed at in vivo diagnosis and treatment, such as quantification of viral load and blocking host cell invasion, virus assembly, or replication, respectively. Although there are currently no in vivo applications of aptamers in combating viral diseases, such strategies are promising for therapy development in the future.
Collapse
Affiliation(s)
- Arne Krüger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
| | - Ana Paula de Jesus Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Vanessa de Sá
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
- Correspondence: (H.U.); (C.W.)
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
- Correspondence: (H.U.); (C.W.)
| |
Collapse
|
47
|
Fraiture MA, Coucke W, Pol M, Rousset D, Gourinat AC, Biron A, Broeders S, Vandermassen E, Dupont-Rouzeyrol M, Roosens NHC. Non-Invasive versus Invasive Samples for Zika Virus Surveillance: A Comparative Study in New Caledonia and French Guiana in 2015-2016. Microorganisms 2021; 9:microorganisms9061312. [PMID: 34208593 PMCID: PMC8235784 DOI: 10.3390/microorganisms9061312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Zika virus, an arbovirus responsible for major outbreaks, can cause serious health issues, such as neurological diseases. In the present study, different types of samples (serum, saliva, and urine), collected in 2015–2016 in New Caledonia and French Guiana from 53 patients presenting symptoms and clinical signs triggered by arbovirus infections, were analyzed using a recently developed, and in-house validated, 4-plex RT-qPCR TaqMan method for simultaneous detection and discrimination of the Zika and Chikungunya viruses. Subsequently, statistical analyses were performed in order to potentially establish recommendations regarding the choice of samples type to use for an efficient and early stage Zika infection diagnosis. On this basis, the use of only urine samples presented the highest probability to detect viral RNA from Zika virus. Moreover, such a probability was improved using both urine and saliva samples. Consequently, the added value of non-invasive samples, associated with a higher acceptance level for collection among patients, instead of serum samples, for the detection of Zika infections was illustrated.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Transversal & Applied Genomics (TAG), Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium; (M.-A.F.); (S.B.); (E.V.)
| | - Wim Coucke
- Quality of Laboratories, Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium;
| | - Morgane Pol
- URE Dengue et Arboviroses, Institut Pasteur of New Caledonia, 11 avenue Paul Doumer, BP 61, CEDEX, 98845 Noumea, New Caledonia; (M.P.); (A.-C.G.); (A.B.); (M.D.-R.)
| | - Dominique Rousset
- Laboratoire de Virologie CNR Arbovirus, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, CEDEX, 97306 Cayenne, French Guiana;
| | - Ann-Claire Gourinat
- URE Dengue et Arboviroses, Institut Pasteur of New Caledonia, 11 avenue Paul Doumer, BP 61, CEDEX, 98845 Noumea, New Caledonia; (M.P.); (A.-C.G.); (A.B.); (M.D.-R.)
| | - Antoine Biron
- URE Dengue et Arboviroses, Institut Pasteur of New Caledonia, 11 avenue Paul Doumer, BP 61, CEDEX, 98845 Noumea, New Caledonia; (M.P.); (A.-C.G.); (A.B.); (M.D.-R.)
| | - Sylvia Broeders
- Transversal & Applied Genomics (TAG), Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium; (M.-A.F.); (S.B.); (E.V.)
- Quality of Laboratories, Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium;
| | - Els Vandermassen
- Transversal & Applied Genomics (TAG), Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium; (M.-A.F.); (S.B.); (E.V.)
| | - Myrielle Dupont-Rouzeyrol
- URE Dengue et Arboviroses, Institut Pasteur of New Caledonia, 11 avenue Paul Doumer, BP 61, CEDEX, 98845 Noumea, New Caledonia; (M.P.); (A.-C.G.); (A.B.); (M.D.-R.)
| | - Nancy H. C. Roosens
- Transversal & Applied Genomics (TAG), Sciensano, rue Juliette Wytsman 14, 1050 Brussels, Belgium; (M.-A.F.); (S.B.); (E.V.)
- Correspondence: ; Tel.: +32-(0)-2-642-52-58
| |
Collapse
|
48
|
Trammell CE, Goodman AG. Host Factors That Control Mosquito-Borne Viral Infections in Humans and Their Vector. Viruses 2021; 13:748. [PMID: 33923307 PMCID: PMC8145797 DOI: 10.3390/v13050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mosquito-borne viral infections are responsible for a significant degree of morbidity and mortality across the globe due to the severe diseases these infections cause, and they continue to increase each year. These viruses are dependent on the mosquito vector as the primary means of transmission to new vertebrate hosts including avian, livestock, and human populations. Due to the dynamic host environments that mosquito-borne viruses pass through as they are transmitted between vector and vertebrate hosts, there are various host factors that control the response to infection over the course of the pathogen's life cycle. In this review, we discuss these host factors that are present in either vector or vertebrate models during infection, how they vary or are conserved between hosts, and their implications in future research pertaining to disease prevention and treatment.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- NIH Protein Biotechnology Training Program, Washington State University, Pullman, WA 99164-6240, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
49
|
Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. Adaptation to vector-based transmission in a honeybee virus. J Anim Ecol 2021; 90:2254-2267. [PMID: 33844844 DOI: 10.1111/1365-2656.13493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
Global pollinator declines as a result of emerging infectious diseases are of major concern. Managed honeybees Apis mellifera are susceptible to numerous parasites and pathogens, many of which appear to be transmissible to sympatric non-Apis taxa. The ectoparasitic mite Varroa destructor is considered to be the most significant threat to honeybees due to its role in vectoring RNA viruses, particularly Deformed wing virus (DWV). Vector transmission of DWV has resulted in the accumulation of high viral loads in honeybees and is often associated with colony death. DWV has two main genotypes, A and B. DWV-A was more prevalent during the initial phase of V. destructor establishment. In recent years, the global prevalence of DWV-B has increased, suggesting that DWV-B is better adapted to vector transmission than DWV-A. We aimed to determine the role vector transmission plays in DWV genotype prevalence at a colony level. We experimentally increased or decreased the number of V. destructor mites in honeybee colonies, and tracked DWV-A and DWV-B loads over a period of 10 months. Our results show that the two DWV genotypes differ in their response to mite numbers. DWV-A accumulation in honeybees was positively correlated with mite numbers yet DWV-A was largely undetected in the absence of the mite. In contrast, colonies had high loads of DWV-B even when mite numbers were low. DWV-B loads persisted in miticide-treated colonies, indicating that this genotype has a competitive advantage over DWV-A irrespective of mite numbers. Our findings suggest that the global increase in DWV-B prevalence is not driven by selective pressure by the vector. Rather, DWV-B is able to persist in colonies at higher viral loads relative to DWV-A in the presence and absence of V. destructor. The interplay between V. destructor and DWV genotypes within honeybee colonies may have broad consequences upon viral diversity in sympatric taxa as a result of spillover.
Collapse
Affiliation(s)
- Amanda M Norton
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jolanda Tom
- Wageningen University and Research, Wageningen, The Netherlands
| | - Gabriele Buchmann
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - Madeleine Beekman
- Behaviour, Ecology and Evolution (BEE) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
50
|
Morgan J, Strode C, Salcedo-Sora JE. Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Negl Trop Dis 2021; 15:e0009259. [PMID: 33705409 PMCID: PMC7987142 DOI: 10.1371/journal.pntd.0009259] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/23/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
| | - Clare Strode
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
- * E-mail: (CS); (JES-S)
| | - J. Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (CS); (JES-S)
| |
Collapse
|