1
|
Glass AM, Navas-Martin S. Interferon-induced protein ISG15 in the central nervous system, quo vadis? FEBS Lett 2025. [PMID: 40353372 DOI: 10.1002/1873-3468.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
The ubiquitin-like interferon (IFN)-stimulated gene 15 (ISG15) is a unique molecular effector that functions both intra- and extracellularly. Central to its pleiotropic nature is the ability to coordinate cellular responses following its conjugation to target proteins via ISGylation or in its free form. The activity of ISG15 is highly context-dependent: in the case of viral infections, ISG15 can serve as a pro- or antiviral factor. While ISG15 has been studied extensively, several gaps persist in our understanding of its role in dysregulated immune homeostasis. In particular, the role of ISG15 in the central nervous system (CNS), which has traditionally been considered an immune-privileged site, remains ill-defined. Interestingly, elevated ISG15 expression is observed in the CNS following instances of brain injury, autoimmunity, neurodegeneration, and viral infection. In this review, we seek to provide a comprehensive analysis of these studies as they pertain to ISG15 and its potential roles in the CNS. Furthermore, we discuss questions and challenges in the field while highlighting ISG15 as a potential diagnostic biomarker or therapeutic target. Impact statement While ISG15 has been studied extensively, several gaps remain in our understanding of its role in dysregulated immune homeostasis and its impact within the central nervous system (CNS). In this review, we provide a comprehensive analysis of the emerging roles of ISG15 in brain injury, autoimmunity, neurodegeneration, and viral infection within the CNS.
Collapse
Affiliation(s)
- Adam M Glass
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Bai S, Pan X, Yang T, Gao N, Zhu C, Xia A, Feng M, Zhang M, Zhang X, Xu J. Rabies virus large protein-derived T-cell immunogen facilitates rapid viral clearance and enhances protection against lethal challenge in mice. COMMUNICATIONS MEDICINE 2025; 5:127. [PMID: 40251380 PMCID: PMC12008279 DOI: 10.1038/s43856-025-00851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/05/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Rabies remains a devastating and fatal infectious disease worldwide. To date, vaccination is the most reliable and effective strategy for controlling rabies. However, despite the effectiveness of inactivated vaccines, cumbersome vaccination procedures and the high costs of post-exposure prophylaxis impose a significant economic burden, particularly in developing countries with limited access to vaccines. Therefore, there is an urgent need to develop a novel rabies vaccine that reduces costs while enhancing safety and efficacy. METHODS We developed a novel mRNA rabies vaccine called RABV-G-LT, which incorporates two immunogens: RABV-G, a glycoprotein designed mainly to elicit neutralizing antibody responses, and RABV-LT, a T-cell immunogen derived from the large protein of the rabies virus. Additionally, we evaluated the immunogenicity of RABV-G-LT in both mice and non-human primates. RESULTS The RABV-LT mRNA vaccination alone induced potent RABV-LT-specific T-cell responses and provided modest protection against rabies virus challenge in mice. Importantly, the dual-immunogen mRNA vaccine RABV-G-LT elicited vigorous and persistent neutralization antibody and T-cell responses, resulting in significantly more efficient clearance of the rabies virus in the brain and spinal cord. This conferred enhanced protection, evidenced by lesser initial weight loss and earlier recovery of body weight compared with the RABV-G mRNA or inactivated vaccine groups. Moreover, RABV-G-LT also mounted persistent strong antigen-specific T-cell and antibody immune responses in nonhuman primates. CONCLUSIONS Our study suggested that combining the T-cell immunogen and virus-neutralizing antibody immunogen was a practical approach to strengthening the defense against the rabies virus.
Collapse
Affiliation(s)
- Shimeng Bai
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- Bio-therapeutic Center, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Hospital Affiliated with the School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xinghao Pan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Tianhan Yang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Nan Gao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Ai Xia
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Meiqi Feng
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Miaomiao Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Xiaoyan Zhang
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
| | - Jianqing Xu
- Clinical Center of Biotherapy, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
3
|
Sugiyama A, Minami M, Ugajin K, Inaba-Inoue S, Yabuno N, Takekawa Y, Xiaomei S, Takei S, Sasaki M, Nomai T, Jiang X, Kita S, Maenaka K, Hirose M, Yao M, Gooley PR, Moseley GW, Sugita Y, Ose T. Structural analysis reveals how tetrameric tyrosine-phosphorylated STAT1 is targeted by the rabies virus P-protein. Sci Signal 2025; 18:eads2210. [PMID: 40100957 DOI: 10.1126/scisignal.ads2210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Signal transducer and activator of transcription (STAT) family members mediate signaling in the Janus kinase (JAK)-STAT pathway and are activated by phosphorylation at a conserved tyrosine residue, resulting in dimerization through reciprocal interactions between the phosphotyrosine and a Src homology 2 (SH2) domain. Tyrosine-phosphorylated STAT (pY-STAT) then translocates to the nucleus to induce the expression of genes encoding antiviral proteins. Although the active and functional forms of STATs are conventionally considered to be dimers, STATs can undergo higher-order oligomerization, which is implicated in regulating transcriptional activity. We present the cryo-electron microscopy (cryo-EM) structure of the tetrameric form of intact pY-STAT1 in complex with DNA, which indicates that interactions between the amino-terminal domains (NTDs) of STAT1 induce oligomerization. The tetrameric structure revealed a compact conformation with a previously uncharacterized binding interface: Two DNA-bound dimers are twofold symmetrically aligned to transform into a tandem DNA-binding model without NTD dimer separation. Moreover, biochemical analyses indicated that the rabies virus P-protein selectively targeted tetrameric pY-STAT1. Combined with data showing which regions contribute to the interaction between pY-STAT1 and the P-protein, we constructed a binding model explaining how P recognizes the pY-STAT1 tetramer. These data provide insight into how pathogenic viruses target signaling pathways that mediate the host immune response.
Collapse
Affiliation(s)
- Aoi Sugiyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Miku Minami
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kaito Ugajin
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Satomi Inaba-Inoue
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nana Yabuno
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuichiro Takekawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Sun Xiaomei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shiho Takei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mina Sasaki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tomo Nomai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Xinxin Jiang
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yukihiko Sugita
- Institute for Life and Medical Sciences, Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8507, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Wobessi JNS, Bailly JL, Kameni Feussom JM, Njouom R, Sadeuh-Mba SA. Spatiotemporal dynamics of rabies virus detected in rabid dogs in Cameroon, 2010-2021. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105688. [PMID: 39515442 DOI: 10.1016/j.meegid.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Rabies is a viral zoonosis that causes an estimated 60,000 human deaths each year, mainly in Africa and Asia. The etiological agent of rabies, the Rabies Lyssavirus or Rabies Virus (RABV) has been characterized in dog populations in Cameroon, in previous studies. However, the dynamics of RABV maintenance and propagation in dogs are still to be documented in Cameroon. This study thus, aimed at investigating the spatial and temporal dynamics of RABV variants in Cameroon. Long genomic sequences of about 4893 nucleotides, encompassing the N, P, M and G genes as well as part of the G-L intergenic region (Ψ), were determined from 56 RABV strains recovered from dog populations in Cameroon from 2010 to 2021. Temporal and spatial dynamics of RABV circulation in Cameroon were investigated by Bayesian analyses with the BEAST 1.10.4 package from extended RABV genomic sequences data combined with their collection dates and the geographical coordinates of their sampling areas. This revealed a genetic evolution rate of 3.14 × 10-4 substitutions/site/year among Africa-1a and Africa-2 clades of RABV from Cameroon. The most recent common ancestor (MRCA) of the studied strains of the Africa-1a lineage was estimated to have emerged between 1880 and 1906 (95 % HPD; mean 1894), while that of the strains of the Africa-2 clade had a slightly later estimated origin between 1907 and 1928 (95 % HPD, mean 1918). Overall, phylogeographic analyses suggested RABV spread in Cameroon between sub-national regions. Our data provides substantial support to previous findings from similar epidemiological settings, indicating human mediated movements of infected dogs between distant cities may be a key factor in the maintenance of the enzootic cycle of rabies among dogs in Cameroon.
Collapse
Affiliation(s)
- Jocelyne Noel Sowe Wobessi
- Virology Service, Centre Pasteur du Cameroun, PO Box 1274, Yaounde, Cameroon; Ecole Doctorale Regionale (EDR) d'Afrique Centrale, Tropical Infectiology, Franceville, Gabon
| | - Jean-Luc Bailly
- Laboratoire Micro-organisme Genome et Environnement (LMGE), Clermont Ferrand, France
| | - Jean-Marc Kameni Feussom
- Cameroon Epidemiological Network for Animal Diseases (RESCAM), Ministry of Livestock, Fisheries and Animal Industries, Yaounde, Cameroon; Epidemiology and Public Health Veterinary Association (ESPV), Yaounde, Cameroon
| | - Richard Njouom
- Virology Service, Centre Pasteur du Cameroun, PO Box 1274, Yaounde, Cameroon
| | - Serge Alain Sadeuh-Mba
- Virology Service, Centre Pasteur du Cameroun, PO Box 1274, Yaounde, Cameroon; Salisbury Animal Health Laboratory, Maryland Department of Agriculture, 27722 Nanticoke Rd, Salisbury, MD 21801, United States of America.
| |
Collapse
|
5
|
Gong HY, Chen RX, Tan SM, Wang X, Chen JM, Zhang YL, Liao M. Viruses Identified in Shrews ( Soricidae) and Their Biomedical Significance. Viruses 2024; 16:1441. [PMID: 39339918 PMCID: PMC11437491 DOI: 10.3390/v16091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Shrews (Soricidae) are common small wild mammals. Some species of shrews, such as Asian house shrews (Suncus murinus), have a significant overlap in their habitats with humans and domestic animals. Currently, over 190 species of viruses in 32 families, including Adenoviridae, Arenaviridae, Arteriviridae, Astroviridae, Anelloviridae, Bornaviridae, Caliciviridae, Chuviridae, Coronaviridae, Filoviridae, Flaviviridae, Hantaviridae, Hepadnaviridae, Hepeviridae, Nairoviridae, Nodaviridae, Orthoherpesviridae, Orthomyxoviridae, Paramyxoviridae, Parvoviridae, Phenuiviridae, Picobirnaviridae, Picornaviridae, Polyomaviridae, Poxviridae, Rhabdoviridae, Sedoreoviridae, Spinareoviridae, and three unclassified families, have been identified in shrews. Diverse shrew viruses, such as Borna disease virus 1, Langya virus, and severe fever with thrombocytopenia syndrome virus, cause diseases in humans and/or domestic animals, posing significant threats to public health and animal health. This review compiled fundamental information about shrews and provided a comprehensive summary of the viruses that have been detected in shrews, with the aim of facilitating a deep understanding of shrews and the diversity, epidemiology, and risks of their viruses.
Collapse
Affiliation(s)
- Huan-Yu Gong
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Rui-Xu Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Su-Mei Tan
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Xiu Wang
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Ji-Ming Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Yuan-Long Zhang
- Guangdong Center for Animal Disease Prevention and Control, Guangzhou 510230, China
| | - Ming Liao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| |
Collapse
|
6
|
Kawaguchi N, Itakura Y, Intaruck K, Ariizumi T, Harada M, Inoue S, Maeda K, Ito N, Hall WW, Sawa H, Orba Y, Sasaki M. Reverse genetic approaches allowing the characterization of the rabies virus street strain belonging to the SEA4 subclade. Sci Rep 2024; 14:18509. [PMID: 39122768 PMCID: PMC11316049 DOI: 10.1038/s41598-024-69613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Rabies virus (RABV) is the causative agent of rabies, a lethal neurological disease in mammals. RABV strains can be classified into fixed strains (laboratory strains) and street strains (field/clinical strains), which have different properties including cell tropism and neuroinvasiveness. RABV Toyohashi strain is a street strain isolated in Japan from an imported case which had been bitten by rabid dog in the Philippines. In order to facilitate molecular studies of RABV, we established a reverse genetics (RG) system for the study of the Toyohashi strain. The recombinant virus was obtained from a cDNA clone of Toyohashi strain and exhibited similar growth efficiency as the original virus in cultured cell lines. Both the original and recombinant strains showed similar pathogenicity with high neuroinvasiveness in mice, and the infected mice developed a long and inconsistent incubation period, which is characteristic of street strains. We also generated a recombinant Toyohashi strain expressing viral phosphoprotein (P protein) fused with the fluorescent protein mCherry, and tracked the intracellular dynamics of the viral P protein using live-cell imaging. The presented reverse genetics system for Toyohashi strain will be a useful tool to explore the fundamental molecular mechanisms of the replication of RABV street strains.
Collapse
Affiliation(s)
- Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
7
|
Perraud V, Vanderhoydonck B, Bouvier G, Dias de Melo G, Kilonda A, Koukni M, Jochmans D, Rogée S, Ben Khalifa Y, Kergoat L, Lannoy J, Van Buyten T, Izadi-Pruneyre N, Chaltin P, Neyts J, Marchand A, Larrous F, Bourhy H. Mechanism of action of phthalazinone derivatives against rabies virus. Antiviral Res 2024; 224:105838. [PMID: 38373533 DOI: 10.1016/j.antiviral.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Rabies, a viral zoonosis, is responsible for almost 59,000 deaths each year, despite the existence of an effective post-exposure prophylaxis. Indeed, rabies causes acute encephalomyelitis, with a case-fatality rate of 100 % after the onset of neurological clinical signs. Therefore, the development of therapies to inhibit the rabies virus (RABV) is crucial. Here, we identified, from a 30,000 compound library screening, phthalazinone derivative compounds as potent inhibitors of RABV infection and more broadly of Lyssavirus and even Mononegavirales infections. Combining in vitro experiments, structural modelling, in silico docking and in vivo assays, we demonstrated that phthalazinone derivatives display a strong inhibition of lyssaviruses infection by acting directly on the replication complex of the virus, and with noticeable effects in delaying the onset of the clinical signs in our mouse model.
Collapse
Affiliation(s)
- Victoire Perraud
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Bart Vanderhoydonck
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Guillaume Bouvier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, F-75015, Paris, France
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Amuri Kilonda
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Mohamed Koukni
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | | | - Sophie Rogée
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Youcef Ben Khalifa
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | | | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015, Paris, France
| | - Patrick Chaltin
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium; Centre for Drug Design and Discovery (CD3), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johan Neyts
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnaud Marchand
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| |
Collapse
|
8
|
Fan Y, Hou Y, Li Q, Dian Z, Wang B, Xia X. RNA virus diversity in rodents. Arch Microbiol 2023; 206:9. [PMID: 38038743 DOI: 10.1007/s00203-023-03732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Many zoonotic disease emergencies are associated with RNA viruses in rodents that substantially impact public health. With the widespread application of meta-genomics and meta-transcriptomics for virus discovery over the last decade, viral sequences deposited in public databases have expanded rapidly, and the number of novel viruses discovered in rodents has increased. As important reservoirs of zoonotic viruses, rodents have attracted increasing attention for the risk of potential spillover of rodent-borne viruses. However, knowledge of rodent viral diversity and the major factors contributing to the risk of zoonotic epidemic outbreaks remains limited. Therefore, this study analyzes the diversity and composition of rodent RNA viruses using virus records from the Database of Rodent-associated Viruses (DRodVir/ZOVER), which covers the published literatures and records in GenBank database, reviews the main rodent RNA virus-induced human infectious diseases, and discusses potential challenges in this field.
Collapse
Affiliation(s)
- Yayu Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Ziqin Dian
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
9
|
Dundarova H, Ivanova-Aleksandrova N, Bednarikova S, Georgieva I, Kirov K, Miteva K, Neov B, Ostoich P, Pikula J, Zukal J, Hristov P. Phylogeographic Aspects of Bat Lyssaviruses in Europe: A Review. Pathogens 2023; 12:1089. [PMID: 37764897 PMCID: PMC10534866 DOI: 10.3390/pathogens12091089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.
Collapse
Affiliation(s)
- Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | | | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Irina Georgieva
- National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Krasimir Kirov
- Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
| | - Kalina Miteva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Boyko Neov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Peter Ostoich
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Peter Hristov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| |
Collapse
|
10
|
Harazim M, Perrot J, Varet H, Bourhy H, Lannoy J, Pikula J, Seidlová V, Dacheux L, Martínková N. Transcriptomic responses of bat cells to European bat lyssavirus 1 infection under conditions simulating euthermia and hibernation. BMC Immunol 2023; 24:7. [PMID: 37085747 PMCID: PMC10120247 DOI: 10.1186/s12865-023-00542-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
Collapse
Affiliation(s)
- Markéta Harazim
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia.
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | - Juliette Perrot
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité Bioinformatics and Biostatistics Hub, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Veronika Seidlová
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia
- RECETOX, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| |
Collapse
|
11
|
Mauhay JD, Saito N, Kimitsuki K, Mananggit MR, Cruz JL, Lagayan MG, Garcia AM, Lacanilao PM, Yamada K, Saito-Obata M, Manalo DL, Demetria CS, Quiambao BP, Nishizono A. Molecular Analysis of Rabies Virus Using RNA Extracted from Used Lateral Flow Devices. J Clin Microbiol 2023; 61:e0154322. [PMID: 36840574 PMCID: PMC10035306 DOI: 10.1128/jcm.01543-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Molecular analysis of rabies virus can provide accurate diagnosis and information on its genetic diversity. The transportation of rabies brain samples from remote areas to a central laboratory is challenging owing to biohazard risks and decomposability. We investigated the utility of used lateral flow devices (LFDs) for subsequent molecular analysis and assessed the necessary storage temperatures. Using RNA extracted from used LFD strips, we performed conventional reverse transcription-PCR (RT-PCR) using an LN34 primer set to amplify short fragments (165 bp) for rabies virus detection and the P1-304 primer set to amplify long fragments of the entire N gene amplicon (1,506 bp) for phylogenetic analysis. Among 71 used LFDs stored in a refrigerator and 64 used LFDs stored at room temperature, the LN34 assay showed high sensitivities (96.2% and 100%, respectively) for the diagnosis of rabies, regardless of the storage temperature. A significant reduction in the sensitivity of rabies diagnosis was observed when using the P1-304 primer set for used LFDs stored at room temperature compared to those stored at refrigeration temperature (20.9% versus 100%; P < 0.05). Subsequent sequencing and phylogenetic analysis were successfully performed using the amplicons generated by the P1-304 RT-PCR assays. Used LFDs are thus promising resources for rabies virus RNA detection and sequence analysis. Virus detection via RT-PCR, amplifying a short fragment, was possible regardless of the storage temperature of the used LFDs. However, refrigerated storage is recommended for RT-PCR amplification of long fragments for phylogenetic analysis.
Collapse
Affiliation(s)
- Jaira D Mauhay
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Nobuo Saito
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Kazunori Kimitsuki
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Milagros R Mananggit
- Regional Animal Disease Diagnostic Laboratory, Department of Agriculture Field Office III, San Fernando, Pampanga, Philippines
| | - Jeffrey L Cruz
- Department of Agriculture, Bureau of Animal Industry, Quezon, National Capital Region, Philippines
| | - Maria G Lagayan
- Department of Agriculture, Bureau of Animal Industry, Quezon, National Capital Region, Philippines
| | - Alyssa M Garcia
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Patricia M Lacanilao
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kentaro Yamada
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | | | - Daria L Manalo
- Research Institute for Tropical Medicine, Muntinlupa, National Capital Region, Philippines
| | - Catalino S Demetria
- Research Institute for Tropical Medicine, Muntinlupa, National Capital Region, Philippines
| | - Beatriz P Quiambao
- Research Institute for Tropical Medicine, Muntinlupa, National Capital Region, Philippines
| | - Akira Nishizono
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Research Center for Global and Local Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| |
Collapse
|
12
|
Harding C, Larsen BB, Otto HW, Potticary AL, Kraberger S, Custer JM, Suazo C, Upham NS, Worobey M, Van Doorslaer K, Varsani A. Diverse DNA virus genomes identified in fecal samples of Mexican free-tailed bats (Tadarida brasiliensis) captured in Chiricahua Mountains of southeast Arizona (USA). Virology 2023; 580:98-111. [PMID: 36801670 DOI: 10.1016/j.virol.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Bats (order Chiroptera) are some of the most abundant mammals on earth and their species ecology strongly influences zoonotic potential. While substantial research has been conducted on bat-associated viruses, particularly on those that can cause disease in humans and/or livestock, globally, limited research has focused on endemic bats in the USA. The southwest region of the US is of particular interest because of its high diversity of bat species. We identified 39 single-stranded DNA virus genomes in the feces of Mexican free-tailed bats (Tadarida brasiliensis) sampled in the Rucker Canyon (Chiricahua Mountains) of southeast Arizona (USA). Twenty-eight of these belong to the virus families Circoviridae (n = 6), Genomoviridae (n = 17), and Microviridae (n = 5). Eleven viruses cluster with other unclassified cressdnaviruses. Most of the viruses identified represent new species. Further research on identification of novel bat-associated cressdnaviruses and microviruses is needed to provide greater insights regarding their co-evolution and ecology relative to bats.
Collapse
Affiliation(s)
- Ciara Harding
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Ahva L Potticary
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; University of Georgia in the Department of Entomology, Athens, GA, 30602, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Crystal Suazo
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
13
|
Feige L, Kozaki T, Dias de Melo G, Guillemot V, Larrous F, Ginhoux F, Bourhy H. Susceptibilities of CNS Cells towards Rabies Virus Infection Is Linked to Cellular Innate Immune Responses. Viruses 2022; 15:88. [PMID: 36680128 PMCID: PMC9860954 DOI: 10.3390/v15010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Rabies is caused by neurotropic rabies virus (RABV), contributing to 60,000 human deaths annually. Even though rabies leads to major public health concerns worldwide, we still do not fully understand factors determining RABV tropism and why glial cells are unable to clear RABV from the infected brain. Here, we compare susceptibilities and immune responses of CNS cell types to infection with two RABV strains, Tha and its attenuated variant Th2P-4M, mutated on phospho- (P-protein) and matrix protein (M-protein). We demonstrate that RABV replicates in human stem cell-derived neurons and astrocytes but fails to infect human iPSC-derived microglia. Additionally, we observed major differences in transcription profiles and quantification of intracellular protein levels between antiviral immune responses mediated by neurons, astrocytes (IFNB1, CCL5, CXCL10, IL1B, IL6, and LIF), and microglia (CCL5, CXCL10, ISG15, MX1, and IL6) upon Tha infection. We also show that P- and M-proteins of Tha mediate evasion of NF-κB- and JAK-STAT-controlled antiviral host responses in neuronal cell types in contrast to glial cells, potentially explaining the strong neuron-specific tropism of RABV. Further, Tha-infected astrocytes and microglia protect neurons from Tha infection via a filtrable and transferable agent. Overall, our study provides novel insights into RABV tropism, showing the interest in studying the interplay of CNS cell types during RABV infection.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Tatsuya Kozaki
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
| | - Guilherme Dias de Melo
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, 75015 Paris, France
| | - Florence Larrous
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Center, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
- Inserm U1015, Gustave Roussy, Bâtiment de Médecine Moléculaire, 114 Rue Edouard Vaillant, 94800 Villejuif, France
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| |
Collapse
|
14
|
Embregts CWE, Farag EABA, Bansal D, Boter M, van der Linden A, Vaes VP, van Middelkoop-van den Berg I, IJpelaar J, Ziglam H, Coyle PV, Ibrahim I, Mohran KA, Alrajhi MMS, Islam MM, Abdeen R, Al-Zeyara AA, Younis NM, Al-Romaihi HE, AlThani MHJ, Sikkema RS, Koopmans MPG, Oude Munnink BB, GeurtsvanKessel CH. Rabies Virus Populations in Humans and Mice Show Minor Inter-Host Variability within Various Central Nervous System Regions and Peripheral Tissues. Viruses 2022; 14:v14122661. [PMID: 36560665 PMCID: PMC9781572 DOI: 10.3390/v14122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Rabies virus (RABV) has a broad host range and infects multiple cell types throughout the infection cycle. Next-generation sequencing (NGS) and minor variant analysis are powerful tools for studying virus populations within specific hosts and tissues, leading to novel insights into the mechanisms of host-switching and key factors for infecting specific cell types. In this study we investigated RABV populations and minor variants in both original (non-passaged) samples and in vitro-passaged isolates of various CNS regions (hippocampus, medulla oblongata and spinal cord) of a fatal human rabies case, and of multiple CNS and non-CNS tissues of experimentally infected mice. No differences in virus populations were detected between the human CNS regions, and only one non-synonymous single nucleotide polymorphism (SNP) was detected in the fifth in vitro passage of virus isolated from the spinal cord. However, the appearance of this SNP shows the importance of sequencing newly passaged virus stocks before further use. Similarly, we did not detect apparent differences in virus populations isolated from different CNS and non-CNS tissues of experimentally infected mice. Sequencing of viruses obtained from pharyngeal swab and salivary gland proved difficult, and we propose methods for improving sampling.
Collapse
Affiliation(s)
- Carmen W. E. Embregts
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| | | | | | - Marjan Boter
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Anne van der Linden
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Vincent P. Vaes
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | | | - Jeroen. IJpelaar
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Hisham Ziglam
- Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | | | - Imad Ibrahim
- Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khaled A. Mohran
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
- Biotechnology Departments ERC, Animal Health Research Institute, Dokki 12611, Egypt
| | | | - Md. Mazharul Islam
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
| | - Randa Abdeen
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
| | - Abdul Aziz Al-Zeyara
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
| | - Nidal Mahmoud Younis
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
| | | | | | - Reina S. Sikkema
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Bas B. Oude Munnink
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | | |
Collapse
|
15
|
Detection and molecular characterization of rabies virus isolates from humans in Cameroon. Diagn Microbiol Infect Dis 2022; 105:115834. [DOI: 10.1016/j.diagmicrobio.2022.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022]
|
16
|
Farr RJ, Godde N, Cowled C, Sundaramoorthy V, Green D, Stewart C, Bingham J, O'Brien CM, Dearnley M. Machine Learning Identifies Cellular and Exosomal MicroRNA Signatures of Lyssavirus Infection in Human Stem Cell-Derived Neurons. Front Cell Infect Microbiol 2022; 11:783140. [PMID: 35004351 PMCID: PMC8739477 DOI: 10.3389/fcimb.2021.783140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Despite being vaccine preventable, rabies (lyssavirus) still has a significant impact on global mortality, disproportionally affecting children under 15 years of age. This neurotropic virus is deft at avoiding the immune system while travelling through neurons to the brain. Until recently, research efforts into the role of non-coding RNAs in rabies pathogenicity and detection have been hampered by a lack of human in vitro neuronal models. Here, we utilized our previously described human stem cell-derived neural model to investigate the effect of lyssavirus infection on microRNA (miRNA) expression in human neural cells and their secreted exosomes. Conventional differential expression analysis identified 25 cellular and 16 exosomal miRNAs that were significantly altered (FDR adjusted P-value <0.05) in response to different lyssavirus strains. Supervised machine learning algorithms determined 6 cellular miRNAs (miR-99b-5p, miR-346, miR-5701, miR-138-2-3p, miR-651-5p, and miR-7977) were indicative of lyssavirus infection (100% accuracy), with the first four miRNAs having previously established roles in neuronal function, or panic and impulsivity-related behaviors. Another 4-miRNA signatures in exosomes (miR-25-3p, miR-26b-5p, miR-218-5p, miR-598-3p) can independently predict lyssavirus infected cells with >99% accuracy. Identification of these robust lyssavirus miRNA signatures offers further insight into neural lineage responses to infection and provides a foundation for utilizing exosome miRNAs in the development of next-generation molecular diagnostics for rabies.
Collapse
Affiliation(s)
- Ryan J Farr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Nathan Godde
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Christopher Cowled
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Vinod Sundaramoorthy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Diane Green
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Cameron Stewart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, VIC, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Megan Dearnley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| |
Collapse
|
17
|
Feige L, Sáenz-de-Santa-María I, Regnault B, Lavenir R, Lepelletier A, Halacu A, Rajerison R, Diop S, Nareth C, Reynes JM, Buchy P, Bourhy H, Dacheux L. Transcriptome Profile During Rabies Virus Infection: Identification of Human CXCL16 as a Potential New Viral Target. Front Cell Infect Microbiol 2021; 11:761074. [PMID: 34804996 PMCID: PMC8602097 DOI: 10.3389/fcimb.2021.761074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Rabies virus (RABV), the causative agent for rabies disease is still presenting a major public health concern causing approximately 60,000 deaths annually. This neurotropic virus (genus Lyssavirus, family Rhabdoviridae) induces an acute and almost always fatal form of encephalomyelitis in humans. Despite the lethal consequences associated with clinical symptoms of rabies, RABV limits neuro-inflammation without causing major histopathological lesions in humans. Nevertheless, information about the mechanisms of infection and cellular response in the central nervous system (CNS) remain scarce. Here, we investigated the expression of inflammatory genes involved in immune response to RABV (dog-adapted strain Tha) in mice, the most common animal model used to study rabies. To better elucidate the pathophysiological mechanisms during natural RABV infection, we compared the inflammatory transcriptome profile observed at the late stage of infection in the mouse brain (cortex and brain stem/cerebellum) with the ortholog gene expression in post-mortem brain biopsies of rabid patients. Our data indicate that the inflammatory response associated with rabies is more pronounced in the murine brain compared to the human brain. In contrast to murine transcription profiles, we identified CXC motif chemokine ligand 16 (CXCL16) as the only significant differentially expressed gene in post-mortem brains of rabid patients. This result was confirmed in vitro, in which Tha suppressed interferon alpha (IFN-α)-induced CXCL16 expression in human CNS cell lines but induced CXCL16 expression in IFN-α-stimulated murine astrocytes. We hypothesize that RABV-induced modulation of the CXCL16 pathway in the brain possibly affects neurotransmission, natural killer (NK) and T cell recruitment and activation. Overall, we show species-specific differences in the inflammatory response of the brain, highlighted the importance of understanding the potential limitations of extrapolating data from animal models to humans.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | | | | | - Rachel Lavenir
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | - Anthony Lepelletier
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | - Ala Halacu
- National Agency for Public Health, Chișinău, Moldova
| | | | - Sylvie Diop
- Infectious Diseases Department, National and University Hospital Center of Fann-Dakar, Dakar, Senegal
| | | | - Jean-Marc Reynes
- Virology Unit, Institut Pasteur de Madagascar, Tananarive, Madagascar
| | - Philippe Buchy
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| |
Collapse
|
18
|
Update on Potentially Zoonotic Viruses of European Bats. Vaccines (Basel) 2021; 9:vaccines9070690. [PMID: 34201666 PMCID: PMC8310327 DOI: 10.3390/vaccines9070690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Bats have been increasingly gaining attention as potential reservoir hosts of some of the most virulent viruses known. Numerous review articles summarize bats as potential reservoir hosts of human-pathogenic zoonotic viruses. For European bats, just one review article is available that we published in 2014. The present review provides an update on the earlier article and summarizes the most important viruses found in European bats and their possible implications for Public Health. We identify the research gaps and recommend monitoring of these viruses.
Collapse
|
19
|
Full-Genome Sequences and Phylogenetic Analysis of Archived Danish European Bat Lyssavirus 1 (EBLV-1) Emphasize a Higher Genetic Resolution and Spatial Segregation for Sublineage 1a. Viruses 2021; 13:v13040634. [PMID: 33917139 PMCID: PMC8067844 DOI: 10.3390/v13040634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
European bat lyssavirus type 1 (EBLV-1) is the causative agent for almost all reported rabies cases found in European bats. In recent years, increasing numbers of available EBLV-1 full genomes and their phylogenetic analyses helped to further elucidate the distribution and genetic characteristics of EBLV-1 and its two subtypes, namely EBLV-1a and EBLV-1b. Nonetheless, the absence of full-genome sequences from regions with known detections of EBLV-1 still limit the understanding of the phylogeographic relations between viruses from different European regions. In this study, a set of 21 archived Danish EBLV-1 samples from the years 1985 to 2009 was processed for the acquisition of full-genome sequences using a high-throughput sequencing approach. Subsequent phylogenetic analysis encompassing all available EBLV-1 full genomes from databases revealed the Danish sequences belong to the EBLV-1a subtype and further highlighted the distinct, close phylogenetic relationship of Danish, Dutch and German isolates in this region. In addition, the formation of five putative groups nearly exclusively formed by Danish isolates and the overall increased resolution of the EBLV-1a branch indicate a higher genetic diversity and spatial segregation for this sublineage than was previously known. These results emphasize the importance of phylogenetic analyses of full-genome sequences of lyssaviruses for genetic geography.
Collapse
|
20
|
Coertse J, Geldenhuys M, le Roux K, Markotter W. Lagos Bat Virus, an Under-Reported Rabies-Related Lyssavirus. Viruses 2021; 13:576. [PMID: 33805487 PMCID: PMC8067007 DOI: 10.3390/v13040576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lagos bat virus (LBV), one of the 17 accepted viral species of the Lyssavirus genus, was the first rabies-related virus described in 1956. This virus is endemic to the African continent and is rarely encountered. There are currently four lineages, although the observed genetic diversity exceeds existing lyssavirus species demarcation criteria. Several exposures to rabid bats infected with LBV have been reported; however, no known human cases have been reported to date. This review provides the history of LBV and summarizes previous knowledge as well as new detections. Genetic diversity, pathogenesis and prevention are re-evaluated and discussed.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Sandringham 2192, South Africa;
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Kevin le Roux
- Epidemiology Unit, Allerton Veterinary Laboratory, Pietermaritzburg, KwaZulu-Natal 3200, South Africa;
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| |
Collapse
|
21
|
Faye M, Abd El Wahed A, Faye O, Kissenkötter J, Hoffmann B, Sall AA, Faye O. A recombinase polymerase amplification assay for rapid detection of rabies virus. Sci Rep 2021; 11:3131. [PMID: 33542337 PMCID: PMC7862592 DOI: 10.1038/s41598-021-82479-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/13/2021] [Indexed: 11/09/2022] Open
Abstract
Rabies is a generally fatal encephalitis caused by a negative-sense single-stranded RNA lyssavirus transmitted to humans mainly from dog bite. Despite the recommendation by WHO and OIE to use the direct immunofluorescence test as standard method, molecular diagnostic assays like reverse transcription quantitative polymerase chain reaction (RT-qPCR) are increasing as a confirmatory method. However, both technologies are inaccessible in resource-limited settings. Moreover, the available point-of-need molecular assay is of poor detection limit for African strains. Herein, we developed a reverse transcription recombinase polymerase amplification (RT-RPA) assay as potential point-of-need diagnostic tool for rapid detection of various strains of rabies virus including locally isolated African strains. The sensitivity and specificity of the method was evaluated using a molecular RNA standard and different Rabies-related viruses belonging to the Rhabdoviridea family, respectively. The RABV-RPA performances were evaluated on isolates representative of the existing diversity and viral dilutions spiked in non-neural clinical specimen. The results were compared with RT-qPCR as a gold standard. The RABV-RPA detected down to 4 RNA molecules per reaction in 95% of the cases in less than 10 min. The RABV-RPA assay is highly specific as various RABV isolates were identified, but no amplification was observed for other member of the Rhabdoviridea family. The sample background did not affect the performance of the RABV-RPA as down to 11 RNA molecules were identified, which is similar to the RT-qPCR results. Our developed assay is suitable for use in low-resource settings as a promising alternative tool for ante-mortem rabies diagnosis in humans for facilitating timely control decisions.
Collapse
Affiliation(s)
- Martin Faye
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal.
| | - Ahmed Abd El Wahed
- Virology Lab, Division of Microbiology and Animal Hygiene, University of Göttingen, Göttingen, Germany.,Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
| | - Jonas Kissenkötter
- Virology Lab, Division of Microbiology and Animal Hygiene, University of Göttingen, Göttingen, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, 36, Avenue Pasteur, 220, Dakar, Senegal
| |
Collapse
|
22
|
Wu Z, Han Y, Liu B, Li H, Zhu G, Latinne A, Dong J, Sun L, Su H, Liu L, Du J, Zhou S, Chen M, Kritiyakan A, Jittapalapong S, Chaisiri K, Buchy P, Duong V, Yang J, Jiang J, Xu X, Zhou H, Yang F, Irwin DM, Morand S, Daszak P, Wang J, Jin Q. Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia. MICROBIOME 2021; 9:18. [PMID: 33478588 PMCID: PMC7818139 DOI: 10.1186/s40168-020-00965-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND As the largest group of mammalian species, which are also widely distributed all over the world, rodents are the natural reservoirs for many diverse zoonotic viruses. A comprehensive understanding of the core virome of diverse rodents should therefore assist in efforts to reduce the risk of future emergence or re-emergence of rodent-borne zoonotic pathogens. RESULTS This study aimed to describe the viral range that could be detected in the lungs of rodents from Mainland Southeast Asia. Lung samples were collected from 3284 rodents and insectivores of the orders Rodentia, Scandentia, and Eulipotyphla in eighteen provinces of Thailand, Lao PDR, and Cambodia throughout 2006-2018. Meta-transcriptomic analysis was used to outline the unique spectral characteristics of the mammalian viruses within these lungs and the ecological and genetic imprints of the novel viruses. Many mammalian- or arthropod-related viruses from distinct evolutionary lineages were reported for the first time in these species, and viruses related to known pathogens were characterized for their genomic and evolutionary characteristics, host species, and locations. CONCLUSIONS These results expand our understanding of the core viromes of rodents and insectivores from Mainland Southeast Asia and suggest that a high diversity of viruses remains to be found in rodent species of this area. These findings, combined with our previous virome data from China, increase our knowledge of the viral community in wildlife and arthropod vectors in emerging disease hotspots of East and Southeast Asia. Video abstract.
Collapse
Affiliation(s)
- Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | - Alice Latinne
- EcoHealth Alliance, New York, NY, USA
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Vietnam
- Wildlife Conservation Society, Health Program, Bronx, NY, USA
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Lilin Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Mingxing Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | | | | | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jinyong Jiang
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Xiang Xu
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Serge Morand
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
23
|
Luo DS, Li B, Shen XR, Jiang RD, Zhu Y, Wu J, Fan Y, Bourhy H, Hu B, Ge XY, Shi ZL, Dacheux L. Characterization of Novel Rhabdoviruses in Chinese Bats. Viruses 2021; 13:v13010064. [PMID: 33466539 PMCID: PMC7824899 DOI: 10.3390/v13010064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Bats, the second largest order of mammals worldwide, harbor specific characteristics such as sustaining flight, a special immune system, unique habits, and ecological niches. In addition, they are the natural reservoirs of a variety of emerging or re-emerging zoonotic pathogens. Rhabdoviridae is one of the most diverse families of RNA viruses, which consists of 20 ecologically diverse genera, infecting plants, mammals, birds, reptiles, and fish. To date, three bat-related genera are described, named Lyssavirus, Vesiculovirus, and Ledantevirus. However, the prevalence and the distribution of these bat-related rhabdoviruses remain largely unknown, especially in China. To fill this gap, we performed a large molecular retrospective study based on the real-time reverse transcription polymerase chain reaction (RT-qPCR) detection of lyssavirus in bat samples (1044 brain and 3532 saliva samples, from 63 different bat species) originating from 21 provinces of China during 2006–2018. None of them were positive for lyssavirus, but six bat brains (0.6%) of Rhinolophus bat species, originating from Hubei and Hainan provinces, were positive for vesiculoviruses or ledanteviruses. Based on complete genomes, these viruses were phylogenetically classified into three putative new species, tentatively named Yinshui bat virus (YSBV), Taiyi bat virus (TYBV), and Qiongzhong bat virus (QZBV). These results indicate the novel rhabdoviruses circulated in different Chinese bat populations.
Collapse
Affiliation(s)
- Dong-Sheng Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institut Pasteur, Lyssavirus Epidemiology and Neuropathology Unit, 75724 Paris, France;
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Xu-Rui Shen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Jia Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Yi Fan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hervé Bourhy
- Institut Pasteur, Lyssavirus Epidemiology and Neuropathology Unit, 75724 Paris, France;
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China;
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.-L.S.); (L.D.); Tel.: +86-02787197311 (Z.-L.S.); +33-140613303 (L.D.)
| | - Laurent Dacheux
- Institut Pasteur, Lyssavirus Epidemiology and Neuropathology Unit, 75724 Paris, France;
- Correspondence: (Z.-L.S.); (L.D.); Tel.: +86-02787197311 (Z.-L.S.); +33-140613303 (L.D.)
| |
Collapse
|
24
|
A case of human rabies with a long incubation period in Wuhan. IDCases 2020; 23:e00998. [PMID: 33318930 PMCID: PMC7724148 DOI: 10.1016/j.idcr.2020.e00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
We report one case of human rabies with a long incubation period in Wuhan, China. In Wuhan, many free-roaming dogs are not only dangerous to domestic dogs and livestock, they are also a threat to humans. Epidemiology of rabies with emphasis on its potential to spread in urban-rural fringe in Wuhan has been discussed. The elimination of RABV from free-roaming domestic dogs will drive a considerable reduction in human disease. We showed that the efficient collaboration was important between the hospital and a professional laboratory for rabies diagnosis.
Rabies remains endemic in China and continues to pose a major threat to public health with a nearly 100 % case fatality rate in humans. We confirmed a case of human rabies in Wuhan, in May 2018. The patient had got a dog bite wound 3 years before symptoms of confusion, hydrophobia, and photophobia onset. On May 14, our laboratory confirmed that the patient was infected with a rabies virus that circulates in dogs in China and died on May 24, two weeks later after admission. Complete glycoprotein gene sequences determined for this isolate indicated the source of a RABV infection was dog-related RABV variants.
Collapse
|
25
|
Affiliation(s)
- Marcione B. De Oliveira
- Graduate Program in Zoology, National Museum, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Cibele R. Bonvicino
- Graduate Program in Zoology, National Museum, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| |
Collapse
|
26
|
Sugiyama A, Nomai T, Jiang X, Minami M, Yao M, Maenaka K, Ito N, Gooley PR, Moseley GW, Ose T. Structural comparison of the C-terminal domain of functionally divergent lyssavirus P proteins. Biochem Biophys Res Commun 2020; 529:507-512. [PMID: 32703459 DOI: 10.1016/j.bbrc.2020.05.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Lyssavirus P protein is a multifunctional protein that interacts with numerous host-cell proteins. The C-terminal domain (CTD) of P is important for inhibition of JAK-STAT signaling enabling the virus to evade host immunity. Several regions on the surface of rabies virus P are reported to interact with host factors. Among them, an extended, discrete hydrophobic patch of P CTD is notable. Although structures of P CTD of two strains of rabies virus, and of mokola virus have been solved, the structure of P CTD for Duvenhage virus, which is functionally divergent from these species for immune evasion function, is not known. Here, we analyze the structures of P CTD of Duvenhage and of a distinct rabies virus strain to gain further insight on the nature and potential function of the hydrophobic surface. Molecular contacts in crystals suggest that the hydrophobic patch is important to intermolecular interactions with other proteins, which differ between the lyssavirus species.
Collapse
Affiliation(s)
- Aoi Sugiyama
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Tomo Nomai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Xinxin Jiang
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Miku Minami
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Naoto Ito
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Victoria, 3800, Australia
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
27
|
Suleiman MA, Kwaga JK, Okubanjo OO, Abarshi MM, Kia GSN. Molecular study of rabies virus in slaughtered dogs in Billiri and Kaltungo local government areas of Gombe state, Nigeria. Acta Trop 2020; 207:105461. [PMID: 32243880 DOI: 10.1016/j.actatropica.2020.105461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 11/27/2022]
Abstract
Rabies is one of the most dreadful diseases and a major viral zoonosis which has been shown to cause an almost 100% fatality rate in infected victims. It is characterized by acute progressive encephalitis in mammals. This study determined the genotypic characteristics of rabies virus in dogs slaughtered for human consumption based on sequence of a fragment of nucleoprotein gene. Brain tissues were collected from 50 dogs slaughtered in Billiri and Kaltungo Local Government Areas of Gombe State, Nigeria. Direct fluorescent antibody test (DFAT) was used to screen for the presence of rabies virus antigen. Viral RNA isolated from DFAT positive brain tissues were subjected to the reverse transcription polymerase chain reaction (RT-PCR) followed by sequencing of the amplicons. Maximum Likelihood (ML) was used to construct a phylogenetic tree for sequences obtained with 1000 bootstrap replicates. The DFAT detected rabies antigen in 3 (6%) of the 50 dog brain tissues, from which 1 (2%) was positive by RT-PCR. ML phylogeny approach of the nucleotide sequences inferred members as originating lyssavirus genus and dog species. Essentially, MK234794 in this study displayed 99.3% sequence similarity with other related rabies viruses in the Africa 2 cluster (Nigeria, Cameroon, Chad and Niger). Interestingly, MK234794 showed no cluster relation with the Africa 1a, 1b, 3 and Africa 4 clades, respectively. This indicates there is in-country and trans-boundary circulation of the rabies viruses with no co-circulation between the Africa lineages, especially as dogs are continuously being traded due to consumption of dog meat in West Africa. This finding has given additional insight into the molecular epidemiology of rabies virus in Nigeria, therefore providing more baseline information for future design of rabies control programs in the country.
Collapse
|
28
|
Revisiting the Classification of Percid Perhabdoviruses Using New Full-Length Genomes. Viruses 2020; 12:v12060649. [PMID: 32560066 PMCID: PMC7354598 DOI: 10.3390/v12060649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Perhabdoviruses are a threat to some freshwater fish species raised in aquaculture farms in Europe. Although the genetic diversity of these viruses is suspected to be high, the classification of isolates is still in its infancy, with just one full-length genome available and only partial sequences for a limited number of others. Here, we characterized a series of viruses isolated from percids in France from 1999 to 2009 by sequencing the nucleoprotein (N) gene. Four main clusters were distinguished, all related at varying levels of similarity to one of the two already-recognized species, namely Perch perhabdovirus and Sea trout perhabdovirus. Furthermore, we obtained the complete genome of five isolates, including one belonging to Sea trout rhabdovirus. The analysis of the complete L genes and the concatenated open reading frames confirmed the existence of four main genetic clusters, sharing 69 to 74% similarity. We propose the assignation of all these viral isolates into four species, including two new ones: Perch perhabdovirus 1, Perch perhabdovirus 2, Sea trout perhabdovirus 1 and Sea trout perhabdovirus 2. In addition, we developed new primers to readily amplify specific portions of the N gene of any isolate of each species by conventional PCR. The presence of such genetically diverse viruses in France is likely due to divergent viral populations maintained in the wild and then introduced to experimental facilities or farms, as well as via trade between farms across the European continent. It is now urgent to improve the identification tools for this large group of viruses to prevent their unchecked dissemination.
Collapse
|
29
|
Sundaramoorthy V, Godde N, J. Farr R, Green D, M. Haynes J, Bingham J, O’Brien CM, Dearnley M. Modelling Lyssavirus Infections in Human Stem Cell-Derived Neural Cultures. Viruses 2020; 12:E359. [PMID: 32218146 PMCID: PMC7232326 DOI: 10.3390/v12040359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Rabies is a zoonotic neurological infection caused by lyssavirus that continues to result in devastating loss of human life. Many aspects of rabies pathogenesis in human neurons are not well understood. Lack of appropriate ex-vivo models for studying rabies infection in human neurons has contributed to this knowledge gap. In this study, we utilize advances in stem cell technology to characterize rabies infection in human stem cell-derived neurons. We show key cellular features of rabies infection in our human neural cultures, including upregulation of inflammatory chemokines, lack of neuronal apoptosis, and axonal transmission of viruses in neuronal networks. In addition, we highlight specific differences in cellular pathogenesis between laboratory-adapted and field strain lyssavirus. This study therefore defines the first stem cell-derived ex-vivo model system to study rabies pathogenesis in human neurons. This new model system demonstrates the potential for enabling an increased understanding of molecular mechanisms in human rabies, which could lead to improved control methods.
Collapse
Affiliation(s)
- Vinod Sundaramoorthy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Nathan Godde
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Ryan J. Farr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Diane Green
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - John M. Haynes
- Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, VIC 3052, Australia;
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| | - Carmel M. O’Brien
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Megan Dearnley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory (AAHL), East Geelong, VIC 3219, Australia; (V.S.); (N.G.); (R.J.F.); (D.G.); (J.B.)
| |
Collapse
|
30
|
Phylogenetic analysis of near full-length sequences of the Desmodus rotundus genetic lineage of rabies virus. INFECTION GENETICS AND EVOLUTION 2020; 80:104179. [PMID: 31917361 DOI: 10.1016/j.meegid.2020.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/21/2019] [Accepted: 01/05/2020] [Indexed: 11/23/2022]
Abstract
The World Health Organization (WHO), reports that rabies causes tens of thousands of deaths every year killing humans, non-human primates and other animals. Rabies continues to be a public health issue, despite the existence of effective vaccines. The dogs remain the primary reservoir and transmitter of rabies to humans globally. In the Americas, bats are regarded as the second most common source of rabies virus to humans. The vampire bat Desmodus rotundus has been identified as a natural reservoir of rabies virus (RABV) in this region. The complete genome of the RABV variant maintained by populations of vampire bats D. rotundus has rarely been reported. In this study, we sequenced and analyzed the genome of a RABV variant detected in D. rotundus. The sample, collected from an endemic area in São Paulo State, was phylogenetically compared with the genome of the standard sample for species Rabies virus as well as other samples belonging to terrestrial and bat-associated cycles of rabies transmission, available in GenBank. Distinct patterns linked to the genetic lineage were identified. These data can aid in the understanding of the molecular epidemiology of this virus and the epidemiological importance of this species in the transmission of the RABV.
Collapse
|
31
|
Sonthonnax F, Besson B, Bonnaud E, Jouvion G, Merino D, Larrous F, Bourhy H. Lyssavirus matrix protein cooperates with phosphoprotein to modulate the Jak-Stat pathway. Sci Rep 2019; 9:12171. [PMID: 31434934 PMCID: PMC6704159 DOI: 10.1038/s41598-019-48507-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Phosphoprotein (P) and matrix protein (M) cooperate to undermine the immune response to rabies virus (RABV) infections. While P is involved in the modulation of the Jak-Stat pathway through the cytoplasmic retention of interferon (IFN)-activated STAT1 (pSTAT1), M interacts with the RelAp43-p105-ABIN2-TPL2 complex, to efficiently inhibit the nuclear factor-κB (NF-κB) pathway. Using transfections, protein-complementation assays, reverse genetics and DNA ChIP, we identified a role of M protein in the control of Jak-Stat signaling pathway, in synergy with the P protein. In unstimulated cells, both M and P proteins were found to interact with JAK1. Upon type-I IFN stimulation, the M switches toward pSTAT1 interaction, which results in an enhanced capacity of P protein to interact with pSTAT1 and restrain it in the cytoplasm. Furthermore, the role for M-protein positions 77, 100, 104 and 110 was also demonstrated in interaction with both JAK1 and pY-STAT1, and confirmed in vivo. Together, these data indicate that M protein cooperates with P protein to restrain in parallel, and sequentially, NF-κB and Jak-Stat pathways.
Collapse
Affiliation(s)
- Florian Sonthonnax
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Benoit Besson
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Emilie Bonnaud
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Grégory Jouvion
- Unité de Neuropathologie expérimentale, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - David Merino
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Florence Larrous
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Hervé Bourhy
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| |
Collapse
|
32
|
Comparison of intra- and inter-host genetic diversity in rabies virus during experimental cross-species transmission. PLoS Pathog 2019; 15:e1007799. [PMID: 31220188 PMCID: PMC6615636 DOI: 10.1371/journal.ppat.1007799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/09/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
The development of high-throughput genome sequencing enables accurate measurements of levels of sub-consensus intra-host virus genetic diversity and analysis of the role played by natural selection during cross-species transmission. We analysed the natural and experimental evolution of rabies virus (RABV), an important example of a virus that is able to make multiple host jumps. In particular, we (i) analyzed RABV evolution during experimental host switching with the goal of identifying possible genetic markers of host adaptation, (ii) compared the mutational changes observed during passage with those observed in natura, and (iii) determined whether the colonization of new hosts or tissues requires adaptive evolution in the virus. To address these aims, animal infection models (dog and fox) and primary cell culture models (embryo brain cells of dog and fox) were developed and viral variation was studied in detail through deep genome sequencing. Our analysis revealed a strong unidirectional host evolutionary effect, as dog-adapted rabies virus was able to replicate in fox and fox cells relatively easily, while dogs or neuronal dog cells were not easily susceptible to fox adapted-RABV. This suggests that dog RABV may be able to adapt to some hosts more easily than other host variants, or that when RABV switched from dogs to red foxes it lost its ability to adapt easily to other species. Although no difference in patterns of mutation variation between different host organs was observed, mutations were common following both in vitro and in vivo passage. However, only a small number of these mutations also appeared in natura, suggesting that adaptation during successful cross-species virus transmission is a complex, multifactorial evolutionary process. Understanding the mechanisms that underpin the cross-species transmission and host adaptation of rabies virus (RABV) remains an important part of the ongoing goal to reduce and eliminate rabies. We utilized next-generation sequencing to perform a deep comparative analysis of the genomic evolution of RABV subpopulations during host adaptation in culture and in animals, with the aim of determining the molecular mechanisms involved in the host-species or tissue adaptation of rabies virus. In particular, we aimed to determine whether experimental evolution can recapitulate evolution in nature. Our results suggest that a limited number of mutations that appeared following both in vitro and in vivo passage were observed in natura. This study also suggests that dog RABV may be able to adapt to some hosts more easily than other host variants.
Collapse
|
33
|
Ogino T, Green TJ. Transcriptional Control and mRNA Capping by the GDP Polyribonucleotidyltransferase Domain of the Rabies Virus Large Protein. Viruses 2019; 11:E504. [PMID: 31159413 PMCID: PMC6631705 DOI: 10.3390/v11060504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Rabies virus (RABV) is a causative agent of a fatal neurological disease in humans and animals. The large (L) protein of RABV is a multifunctional RNA-dependent RNA polymerase, which is one of the most attractive targets for developing antiviral agents. A remarkable homology of the RABV L protein to a counterpart in vesicular stomatitis virus, a well-characterized rhabdovirus, suggests that it catalyzes mRNA processing reactions, such as 5'-capping, cap methylation, and 3'-polyadenylation, in addition to RNA synthesis. Recent breakthroughs in developing in vitro RNA synthesis and capping systems with a recombinant form of the RABV L protein have led to significant progress in our understanding of the molecular mechanisms of RABV RNA biogenesis. This review summarizes functions of RABV replication proteins in transcription and replication, and highlights new insights into roles of an unconventional mRNA capping enzyme, namely GDP polyribonucleotidyltransferase, domain of the RABV L protein in mRNA capping and transcription initiation.
Collapse
Affiliation(s)
- Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
34
|
Mechanisms for lyssavirus persistence in non-synanthropic bats in Europe: insights from a modeling study. Sci Rep 2019; 9:537. [PMID: 30679459 PMCID: PMC6345892 DOI: 10.1038/s41598-018-36485-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Bats are natural reservoirs of the largest proportion of viral zoonoses among mammals, thus understanding the conditions for pathogen persistence in bats is essential to reduce human risk. Focusing on the European Bat Lyssavirus subtype 1 (EBLV-1), causing rabies disease, we develop a data-driven spatially explicit metapopulation model to investigate EBLV-1 persistence in Myotis myotis and Miniopterus schreibersii bat species in Catalonia. We find that persistence relies on host spatial structure through the migratory nature of M. schreibersii, on cross-species mixing with M. myotis, and on survival of infected animals followed by temporary immunity. The virus would not persist in the single colony of M. myotis. Our study provides for the first time epidemiological estimates for EBLV-1 progression in M. schreibersii. Our approach can be readily adapted to other zoonoses of public health concern where long-range migration and habitat sharing may play an important role.
Collapse
|
35
|
Rogée S, Larrous F, Jochmans D, Ben-Khalifa Y, Neyts J, Bourhy H. Pyrimethamine inhibits rabies virus replication in vitro. Antiviral Res 2019; 161:1-9. [DOI: 10.1016/j.antiviral.2018.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
|
36
|
Cori A, Nouvellet P, Garske T, Bourhy H, Nakouné E, Jombart T. A graph-based evidence synthesis approach to detecting outbreak clusters: An application to dog rabies. PLoS Comput Biol 2018; 14:e1006554. [PMID: 30557340 PMCID: PMC6312344 DOI: 10.1371/journal.pcbi.1006554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/31/2018] [Accepted: 10/09/2018] [Indexed: 11/23/2022] Open
Abstract
Early assessment of infectious disease outbreaks is key to implementing timely and effective control measures. In particular, rapidly recognising whether infected individuals stem from a single outbreak sustained by local transmission, or from repeated introductions, is crucial to adopt effective interventions. In this study, we introduce a new framework for combining several data streams, e.g. temporal, spatial and genetic data, to identify clusters of related cases of an infectious disease. Our method explicitly accounts for underreporting, and allows incorporating preexisting information about the disease, such as its serial interval, spatial kernel, and mutation rate. We define, for each data stream, a graph connecting all cases, with edges weighted by the corresponding pairwise distance between cases. Each graph is then pruned by removing distances greater than a given cutoff, defined based on preexisting information on the disease and assumptions on the reporting rate. The pruned graphs corresponding to different data streams are then merged by intersection to combine all data types; connected components define clusters of cases related for all types of data. Estimates of the reproduction number (the average number of secondary cases infected by an infectious individual in a large population), and the rate of importation of the disease into the population, are also derived. We test our approach on simulated data and illustrate it using data on dog rabies in Central African Republic. We show that the outbreak clusters identified using our method are consistent with structures previously identified by more complex, computationally intensive approaches. Early assessment of infectious disease outbreaks is key to implementing timely and effective control measures. In particular, rapidly recognising whether infected individuals stem from a single outbreak sustained by local transmission, or from repeated introductions, is crucial to adopt effective interventions. In this study, we introduce a new approach which combines different types of data to identify clusters of related cases of an infectious disease. This approach relies on representing each type of data (e.g. temporal, spatial, or genetic) as a graph where nodes are cases, and two nodes are connected if the corresponding cases are closely related for this data. Our method then identifies clusters of cases which likely stem from the same introduction. Furthermore, we can use the size of these clusters to infer transmissibility of the disease and the number of importations of the pathogen into the population. We apply this approach to analyse dog rabies epidemics in Central African Republic. We show that outbreak clusters identified using our method are consistent with structures previously identified by more complex and computationally intensive approaches. Using simulated rabies epidemics, we show that our method has excellent potential for optimally detecting outbreak clusters. We also identify promising areas of research for transforming our method into a routine analysis tool for processing disease surveillance data.
Collapse
Affiliation(s)
- Anne Cori
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (AC); (TJ)
| | - Pierre Nouvellet
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tini Garske
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Hervé Bourhy
- Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Emmanuel Nakouné
- Département fièvres hémorragiques virales, Institut Pasteur de Bangui, Bangui, République Centrafricaine
| | - Thibaut Jombart
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- * E-mail: (AC); (TJ)
| |
Collapse
|
37
|
Khalsi F, Ayari A, Romdhane MB, Tinsa F, Boussetta K. Rabies encephalitis in children: a resurgence of a fatal anthropozoonosis. Afr Health Sci 2018; 18:539-541. [PMID: 30602985 PMCID: PMC6307015 DOI: 10.4314/ahs.v18i3.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Fatma Khalsi
- Service de Médecine Infantile B, Hôpital d'Enfants Béchir Hamza de Tunis, Tunisie
| | - Ahmed Ayari
- Service de Médecine Infantile B, Hôpital d'Enfants Béchir Hamza de Tunis, Tunisie
| | - Manel Ben Romdhane
- Service de Médecine Infantile B, Hôpital d'Enfants Béchir Hamza de Tunis, Tunisie
| | - Faten Tinsa
- Service de Médecine Infantile B, Hôpital d'Enfants Béchir Hamza de Tunis, Tunisie
| | - Khedija Boussetta
- Service de Médecine Infantile B, Hôpital d'Enfants Béchir Hamza de Tunis, Tunisie
| |
Collapse
|
38
|
Wei XK, He XX, Pan Y, Liu C, Tang HB, Zhong YZ, Li XN, Liang JJ, Luo TR. Evolutionary analysis of rabies virus isolates from Guangxi Province of southern China. BMC Vet Res 2018; 14:188. [PMID: 29914504 PMCID: PMC6006964 DOI: 10.1186/s12917-018-1514-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background Rabies is a severe epidemic in Guangxi province, China, with hundreds of deaths occurring each year. In the past six decades, rabies has emerged three times in Guangxi, and the province has reported the largest number of rabies cases in China. The domestic dog is the principal vector for rabies, and 95% of human cases are associated with transmission from dogs. Results To understand the genetic relationship between street rabies virus (RABV) from Guangxi, genetic diversity analysis was performed using RABV isolates collected between 1999 and 2012. The N gene of 42 RABV isolates, and the P and M genes, as well as fragments of the 3′ terminus (L1–680) and the polymerase activity module of the L gene (Lpam) of 36 RABV isolates were sequenced. In addition, whole genome sequencing was performed for 5 RABV isolates. There was evidence of topological discrepancy in the phylogenetic trees based on different genes of the RABV isolates. Amino acid variation of the deduced N protein exhibited different patterns to those obtained from the P and M proteins reported here, and the previously reported G protein (Tang H. et al., PLoS Negl Trop Dis, 8(10): e3114, 2014), and L1–680 and Lpam. These RABV isolates were divided into three main branches against fixed strains. Conclusion RABV is prevalent in Guangxi province and strains collected over the last two decades belong mainly to three groups (I, II, III). These RABV isolates reveal genetic diversity. Individual RABV genes from Guangxi exhibit different evolutionary characteristics. The results will have benefits for continuing comprehensive rabies surveillance, prevention and control in China. Electronic supplementary material The online version of this article (10.1186/s12917-018-1514-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian-Kai Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.,Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao-Xia He
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yan Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.,Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Cheng Liu
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hai-Bo Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.,Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yi-Zhi Zhong
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao-Ning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.,Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jing-Jing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.,Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China. .,Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
39
|
Dedkov V, Deviatkin A, Poleshchuk Е, Safonova M, Blinova E, Shchelkanov MY, Sidorov G, Simonova E, Shipulin G. Development and evaluation of a RT-qPCR assay for fast and sensitive rabies diagnosis. Diagn Microbiol Infect Dis 2018; 90:18-25. [DOI: 10.1016/j.diagmicrobio.2017.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
|
40
|
Troupin C, Picard-Meyer E, Dellicour S, Casademont I, Kergoat L, Lepelletier A, Dacheux L, Baele G, Monchâtre-Leroy E, Cliquet F, Lemey P, Bourhy H. Host Genetic Variation Does Not Determine Spatio-Temporal Patterns of European Bat 1 Lyssavirus. Genome Biol Evol 2017; 9:3202-3213. [PMID: 29165566 PMCID: PMC5721339 DOI: 10.1093/gbe/evx236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
The majority of bat rabies cases in Europe are attributed to European bat 1 lyssavirus (EBLV-1), circulating mainly in serotine bats (Eptesicus serotinus). Two subtypes have been defined (EBLV-1a and EBLV-1b), each associated with a different geographical distribution. In this study, we undertake a comprehensive sequence analysis based on 80 newly obtained EBLV-1 nearly complete genome sequences from nine European countries over a 45-year period to infer selection pressures, rates of nucleotide substitution, and evolutionary time scale of these two subtypes in Europe. Our results suggest that the current lineage of EBLV-1 arose in Europe ∼600 years ago and the virus has evolved at an estimated average substitution rate of ∼4.19×10-5 subs/site/year, which is among the lowest recorded for RNA viruses. In parallel, we investigate the genetic structure of French serotine bats at both the nuclear and mitochondrial level and find that they constitute a single genetic cluster. Furthermore, Mantel tests based on interindividual distances reveal the absence of correlation between genetic distances estimated between viruses and between host individuals. Taken together, this indicates that the genetic diversity observed in our E. serotinus samples does not account for EBLV-1a and -1b segregation and dispersal in Europe.
Collapse
Affiliation(s)
- Cécile Troupin
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Evelyne Picard-Meyer
- Laboratory for Rabies and Wildlife ANSES, Nancy, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, WHO Collaborating Centre for Research and Management on Zoonoses, Malzeville, France
| | - Simon Dellicour
- Institut Pasteur, Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Belgium
| | - Isabelle Casademont
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Anthony Lepelletier
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Guy Baele
- Institut Pasteur, Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Belgium
| | - Elodie Monchâtre-Leroy
- Laboratory for Rabies and Wildlife ANSES, Nancy, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, WHO Collaborating Centre for Research and Management on Zoonoses, Malzeville, France
| | - Florence Cliquet
- Laboratory for Rabies and Wildlife ANSES, Nancy, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, WHO Collaborating Centre for Research and Management on Zoonoses, Malzeville, France
| | - Philippe Lemey
- Institut Pasteur, Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Belgium
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| |
Collapse
|
41
|
Nadin-Davis SA, Colville A, Trewby H, Biek R, Real L. Application of high-throughput sequencing to whole rabies viral genome characterisation and its use for phylogenetic re-evaluation of a raccoon strain incursion into the province of Ontario. Virus Res 2017; 232:123-133. [PMID: 28219746 PMCID: PMC5433798 DOI: 10.1016/j.virusres.2017.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 01/08/2023]
Abstract
Raccoon rabies remains a serious public health problem throughout much of the eastern seaboard of North America due to the urban nature of the reservoir host and the many challenges inherent in multi-jurisdictional efforts to administer co-ordinated and comprehensive wildlife rabies control programmes. Better understanding of the mechanisms of spread of rabies virus can play a significant role in guiding such control efforts. To facilitate a detailed molecular epidemiological study of raccoon rabies virus movements across eastern North America, we developed a methodology to efficiently determine whole genome sequences of hundreds of viral samples. The workflow combines the generation of a limited number of overlapping amplicons covering the complete viral genome and use of high throughput sequencing technology. The value of this approach is demonstrated through a retrospective phylogenetic analysis of an outbreak of raccoon rabies which occurred in the province of Ontario between 1999 and 2005. As demonstrated by the number of single nucleotide polymorphisms detected, whole genome sequence data were far more effective than single gene sequences in discriminating between samples and this facilitated the generation of more robust and informative phylogenies that yielded insights into the spatio-temporal pattern of viral spread. With minor modification this approach could be applied to other rabies virus variants thereby facilitating greatly improved phylogenetic inference and thus better understanding of the spread of this serious zoonotic disease. Such information will inform the most appropriate strategies for rabies control in wildlife reservoirs.
Collapse
Affiliation(s)
- Susan A Nadin-Davis
- Animal Health Microbiology Research, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada.
| | - Adam Colville
- Animal Health Microbiology Research, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada.
| | - Hannah Trewby
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK.
| | - Leslie Real
- Department of Biology, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
42
|
Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus. J Virol Methods 2017; 243:120-130. [PMID: 28174073 DOI: 10.1016/j.jviromet.2016.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023]
Abstract
Rabies virus (RABV) remains one of the most important global zoonotic pathogens. RABV causes rabies, an acute encephalomyelitis associated with a high rate of mortality in humans and animals and affecting different parts of the world, particularly in Asia and Africa. Confirmation of rabies diagnosis relies on laboratory diagnosis, in which molecular techniques such as detection of viral RNA by reverse transcription polymerase chain reaction (RT-PCR) are increasingly being used. In this study, two real-time quantitative RT-PCR assays were developed for large-spectrum detection of RABV, with a focus on African isolates. The primer and probe sets were targeted highly conserved regions of the nucleoprotein (N) and polymerase (L) genes. The results indicated the absence of non-specific amplification and cross-reaction with a range of other viruses belonging to the same taxonomic family, i.e. Rhabdoviridae, as well as negative brain tissues from various host species. Analytical sensitivity ranged between 100 to 10 standard RNA copies detected per reaction for N-gene and L-gene assays, respectively. Effective detection and high sensitivity of these assays on African isolates showed that they can be successfully applied in general research and used in diagnostic process and epizootic surveillance in Africa using a double-check strategy.
Collapse
|
43
|
Troupin C, Dacheux L, Tanguy M, Sabeta C, Blanc H, Bouchier C, Vignuzzi M, Duchene S, Holmes EC, Bourhy H. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts. PLoS Pathog 2016; 12:e1006041. [PMID: 27977811 PMCID: PMC5158080 DOI: 10.1371/journal.ppat.1006041] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022] Open
Abstract
The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics. Zoonoses account for most recently emerged infectious diseases of humans, although little is known about the evolutionary mechanisms involved in cross-species virus transmission. Understanding the evolutionary patterns and processes that underpin such cross-species transmission is of importance for predicting the spread of zoonotic infections, and hence to their ultimate control. We present a large-scale and detailed reconstruction of the evolutionary history of rabies virus (RABV) in domestic and wildlife animal species. RABV is of particular interest as it is capable of infecting many mammals but, paradoxically, is only maintained in distinct epidemiological cycles associated with animal species from the orders Carnivora and Chiroptera. We show that bat-related RABV and dog-related RABV have experienced very different evolutionary dynamics, and that host jumps are sometimes characterized by significant increases in evolutionary rate. Among Carnivora, the association between RABV and particular host species most likely arose from a combination of the historical human-mediated spread of the virus and jumps into new primary host species. In addition, we show that changes in host species are associated with multiple evolutionary pathways including the occurrence of host-specific parallel evolution. Overall, our data indicate that the establishment of dog-related RABV in new carnivore hosts may only require subtle adaptive evolution.
Collapse
Affiliation(s)
- Cécile Troupin
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Marion Tanguy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
- Institut Pasteur, Genomics Platform, Paris, France
| | - Claude Sabeta
- Agricultural Research Council, Onderstepoort Veterinary Institute, OIE Rabies Reference Laboratory, Pretoria, South Africa
| | - Hervé Blanc
- Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Viral Populations and Pathogenesis Unit, Paris, France
| | | | - Marco Vignuzzi
- Institut Pasteur, Centre National de la Recherche Scientifique UMR 3569, Viral Populations and Pathogenesis Unit, Paris, France
| | - Sebastián Duchene
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
- * E-mail:
| |
Collapse
|
44
|
Rezza G, Ippolito G. Bats and Emerging Infections: An Ecological and Virological Puzzle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 972:35-48. [PMID: 27726073 PMCID: PMC7121264 DOI: 10.1007/5584_2016_131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
More than 200 viruses have been detected in bats. Some unique bat characteristics can explain the roles played in the maintenance and transmission of viruses: long phylogenetic history can have originated coevolution processes, great number of species are adapted to live in different environments, big mobility, long lifespan and gregarious behaviour of many species.To analyse zoonoses long longitudinal studies are needed with a multidisciplinary approximation to obtain the following eco-epidemiological data: colony size, number of bats per species, population structure, behaviour of each species, degree of contact between bats, social structure, remaining time of bats in the colony, colony type, foraging area, turnover rate of individuals, shelter temperature, relationship with other colonies and co-infection processes. These data allows assessing the epidemiological risk and which preventive measures are necessary to take.The structure and functionality of ecosystems are changing worldwide at an unprecedented rate and can modify the interactions between humans and infected bats. There are more or less local factors that can affect the emergence and spread of diseases (environmental alterations, changes in land use, human population growth, changes in human socioeconomic behavior or social structure, people mobility increase, trade increase, forest fires, extreme weather events, wars, breakdown in public health infrastructure, etc.).Twenty-three percent of all bat species in the world are decreasing. How does the regression of bat species affect the dynamic of viruses? The dichotomy between health risk and bat preservation is compatible with a preventive task based on more information and training.
Collapse
Affiliation(s)
- Giovanni Rezza
- 0000 0000 9120 6856grid.416651.1Istituto Superiore di Sanità IRCCS, Roma, Italy
| | - Giuseppe Ippolito
- 0000 0004 1760 4142grid.419423.9IRCCS, National Institute for Infectious Diseases, Roma, Italy
| |
Collapse
|
45
|
Moeschler S, Locher S, Conzelmann KK, Krämer B, Zimmer G. Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles. Viruses 2016; 8:E254. [PMID: 27649230 PMCID: PMC5035968 DOI: 10.3390/v8090254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies is a highly fatal zoonotic disease which is primarily caused by rabies virus (RABV) although other members of the genus Lyssavirus can cause rabies as well. As yet, 14 serologically and genetically diverse lyssaviruses have been identified, mostly in bats. To assess the quality of rabies vaccines and immunoglobulin preparations, virus neutralization tests with live RABV are performed in accordance with enhanced biosafety standards. In the present work, a novel neutralization test is presented which takes advantage of a modified vesicular stomatitis virus (VSV) from which the glycoprotein G gene has been deleted and replaced by reporter genes. This single-cycle virus was trans-complemented with RABV envelope glycoprotein. Neutralization of this pseudotype virus with RABV reference serum or immune sera from vaccinated mice showed a strong correlation with the rapid fluorescent focus inhibition test (RFFIT). Importantly, pseudotype viruses containing the envelope glycoproteins of other lyssaviruses were neutralized by reference serum to a significantly lesser extent or were not neutralized at all. Taken together, a pseudotype virus system has been successfully developed which allows the safe, fast, and sensitive detection of neutralizing antibodies directed against different lyssaviruses.
Collapse
Affiliation(s)
- Sarah Moeschler
- Institut für Virologie und Immunologie (IVI), Abteilung Virologie, CH-3147 Mittelhäusern, Switzerland.
| | - Samira Locher
- Institut für Virologie und Immunologie (IVI), Abteilung Virologie, CH-3147 Mittelhäusern, Switzerland.
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institut und Genzentrum, Ludwig-Maximilians-Universität, D-81377 München, Germany.
| | - Beate Krämer
- Paul-Ehrlich-Institut, Abteilung Veterinärmedizin, D-63225 Langen, Germany.
| | - Gert Zimmer
- Institut für Virologie und Immunologie (IVI), Abteilung Virologie, CH-3147 Mittelhäusern, Switzerland.
| |
Collapse
|
46
|
Bastida-González F, Ramírez-Hernández DG, Chavira-Suárez E, Lara-Padilla E, Zárate-Segura P. Development of Primer Pairs from Molecular Typing of Rabies Virus Variants Present in Mexico. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4659470. [PMID: 27563666 PMCID: PMC4987459 DOI: 10.1155/2016/4659470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Nucleoprotein (N) gene from rabies virus (RABV) is a useful sequence target for variant studies. Several specific RABV variants have been characterized in different mammalian hosts such as skunk, dog, and bats by using anti-nucleocapsid monoclonal antibodies (MAbs) via indirect fluorescent antibody (IFA) test, a technique not available in many laboratories in Mexico. In the present study, a total of 158 sequences of N gene from RABV were used to design eight pairs of primers (four external and four internal primers), for typing four different RABV variants (dog, skunk, vampire bat, and nonhematophagous bat) which are most common in Mexico. The results indicate that the primer and the typing variant from the brain samples, submitted to nested and/or real-time PCR, are in agreement in all four singleplex reactions, and the designed primer pairs are an alternative for use in specific variant RABV typing.
Collapse
Affiliation(s)
- Fernando Bastida-González
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Santo Tomás, Miguel Hidalgo, 11340 Ciudad de México, CDMX, Mexico
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, Paseo Tollocan s/n, La Moderna de la Cruz, 50180 Toluca, MEX, Mexico
| | - Dolores G. Ramírez-Hernández
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, Paseo Tollocan s/n, La Moderna de la Cruz, 50180 Toluca, MEX, Mexico
| | - Erika Chavira-Suárez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, 04510 Coyoacán, CDMX, Mexico
| | - Eleazar Lara-Padilla
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Santo Tomás, Miguel Hidalgo, 11340 Ciudad de México, CDMX, Mexico
| | - Paola Zárate-Segura
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Santo Tomás, Miguel Hidalgo, 11340 Ciudad de México, CDMX, Mexico
| |
Collapse
|
47
|
Houldcroft CJ, Underdown SJ. Neanderthal genomics suggests a pleistocene time frame for the first epidemiologic transition. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:379-88. [PMID: 27063929 DOI: 10.1002/ajpa.22985] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/10/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
High quality Altai Neanderthal and Denisovan genomes are revealing which regions of archaic hominin DNA have persisted in the modern human genome. A number of these regions are associated with response to infection and immunity, with a suggestion that derived Neanderthal alleles found in modern Europeans and East Asians may be associated with autoimmunity. As such Neanderthal genomes are an independent line of evidence of which infectious diseases Neanderthals were genetically adapted to. Sympathetically, human genome adaptive introgression is an independent line of evidence of which infectious diseases were important for AMH coming in to Eurasia and interacting with Neanderthals. The Neanderthals and Denisovans present interesting cases of hominin hunter-gatherers adapted to a Eurasian rather than African infectious disease package. Independent sources of DNA-based evidence allow a re-evaluation of the first epidemiologic transition and how infectious disease affected Pleistocene hominins. By combining skeletal, archaeological and genetic evidence from modern humans and extinct Eurasian hominins, we question whether the first epidemiologic transition in Eurasia featured a new package of infectious diseases or a change in the impact of existing pathogens. Coupled with pathogen genomics, this approach supports the view that many infectious diseases are pre-Neolithic, and the list continues to expand. The transfer of pathogens between hominin populations, including the expansion of pathogens from Africa, may also have played a role in the extinction of the Neanderthals and offers an important mechanism to understand hominin-hominin interactions well back beyond the current limits for aDNA extraction from fossils alone. Am J Phys Anthropol 160:379-388, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Division of Biological Anthropology, Department of Archaeology & Anthropology, University of Cambridge, Cambridge, CB2 3QG, UK.,Infection, Inflammation and Rheumatology Section, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Simon J Underdown
- Human Origins and Palaeoenvironmental Research Group (HOPE), Department of Anthropology & Geography, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
48
|
Complete Genome Sequence of a Vampire Bat Rabies Virus from French Guiana. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00188-16. [PMID: 27056216 PMCID: PMC4824249 DOI: 10.1128/genomea.00188-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A rabies virus was detected in a common vampire bat (Desmodus rotundus) in French Guiana. Its genomic sequence was obtained and found to be closely related to other hematophagous bat-related viruses that widely circulate in the northern Amazon region. This virus is named AT6.
Collapse
|
49
|
Bourhy H, Nakouné E, Hall M, Nouvellet P, Lepelletier A, Talbi C, Watier L, Holmes EC, Cauchemez S, Lemey P, Donnelly CA, Rambaut A. Revealing the Micro-scale Signature of Endemic Zoonotic Disease Transmission in an African Urban Setting. PLoS Pathog 2016; 12:e1005525. [PMID: 27058957 PMCID: PMC4825935 DOI: 10.1371/journal.ppat.1005525] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 03/03/2016] [Indexed: 11/24/2022] Open
Abstract
The development of novel approaches that combine epidemiological and genomic data provides new opportunities to reveal the spatiotemporal dynamics of infectious diseases and determine the processes responsible for their spread and maintenance. Taking advantage of detailed epidemiological time series and viral sequence data from more than 20 years reported by the National Reference Centre for Rabies of Bangui, the capital city of Central African Republic, we used a combination of mathematical modeling and phylogenetic analysis to determine the spatiotemporal dynamics of rabies in domestic dogs as well as the frequency of extinction and introduction events in an African city. We show that although dog rabies virus (RABV) appears to be endemic in Bangui, its epidemiology is in fact shaped by the regular extinction of local chains of transmission coupled with the introduction of new lineages, generating successive waves of spread. Notably, the effective reproduction number during each wave was rarely above the critical value of 1, such that rabies is not self-sustaining in Bangui. In turn, this suggests that rabies at local geographic scales is driven by human-mediated dispersal of RABV among sparsely connected peri-urban and rural areas as opposed to dispersion in a relatively large homogenous urban dog population. This combined epidemiological and genomic approach enables development of a comprehensive framework for understanding disease persistence and informing control measures, indicating that control measures are probably best targeted towards areas neighbouring the city that appear as the source of frequent incursions seeding outbreaks in Bangui.
Collapse
Affiliation(s)
- Hervé Bourhy
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | | | - Matthew Hall
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Pierre Nouvellet
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Anthony Lepelletier
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Chiraz Talbi
- Institut Pasteur, Unit Lyssavirus Dynamics and Host Adaptation, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Laurence Watier
- INSERM, UMR 1181 and Institut Pasteur, B2PHI, Paris, France
- Faculté de Médecine Paris Ile de France-Ouest, Université de Versailles–Saint-Quentin, Versailles, France
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases & Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, Sydney, Australia
| | - Simon Cauchemez
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
| | | | - Christl A. Donnelly
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
50
|
Lin YC, Chu PY, Chang MY, Hsiao KL, Lin JH, Liu HF. Spatial Temporal Dynamics and Molecular Evolution of Re-Emerging Rabies Virus in Taiwan. Int J Mol Sci 2016; 17:392. [PMID: 26999115 PMCID: PMC4813248 DOI: 10.3390/ijms17030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 11/26/2022] Open
Abstract
Taiwan has been recognized by the World Organization for Animal Health as rabies-free since 1961. Surprisingly, rabies virus (RABV) was identified in a dead Formosan ferret badger in July 2013. Later, more infected ferret badgers were reported from different geographic regions of Taiwan. In order to know its evolutionary history and spatial temporal dynamics of this virus, phylogeny was reconstructed by maximum likelihood and Bayesian methods based on the full-length of glycoprotein (G), matrix protein (M), and nucleoprotein (N) genes. The evolutionary rates and phylogeographic were determined using Beast and SPREAD software. Phylogenetic trees showed a monophyletic group containing all of RABV isolates from Taiwan and it further separated into three sub-groups. The estimated nucleotide substitution rates of G, M, and N genes were between 2.49 × 10−4–4.75 × 10−4 substitutions/site/year, and the mean ratio of dN/dS was significantly low. The time of the most recent common ancestor was estimated around 75, 89, and 170 years, respectively. Phylogeographic analysis suggested the origin of the epidemic could be in Eastern Taiwan, then the Formosan ferret badger moved across the Central Range of Taiwan to western regions and separated into two branches. In this study, we illustrated the evolution history and phylogeographic of RABV in Formosan ferret badgers.
Collapse
Affiliation(s)
- Yung-Cheng Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan.
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Mei-Yin Chang
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Kuang-Liang Hsiao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jih-Hui Lin
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei 11561, Taiwan.
| | - Hsin-Fu Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan.
- Department of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| |
Collapse
|