1
|
Rodriguez‐Valencia V, Olive M, Le Goff G, Faisse M, Paupy C, Roiz D. Lower Bird Evenness and Diversity Are Associated With Higher Usutu Prevalence in Culex pipiens Mosquitoes. Zoonoses Public Health 2025; 72:359-368. [PMID: 39963005 PMCID: PMC12016009 DOI: 10.1111/zph.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION The mosquito-transmitted Usutu virus has spread in the last few years, becoming endemic in several areas of Europe, such as in the southern French region of the Camargue. Our aim was to study the relationships between the presence of the viral agent in Culex mosquitoes and the structure of bird communities in the context of the dilution effect. METHODS We carried out mosquito and bird censuses in several selected localities across a land-use gradient and screened mosquito pools for flaviviruses. We focused on exploring how host bird diversity, richness, abundance and evenness were associated with Usutu detection in Cx. pipiens. RESULTS Usutu virus was detected in seven pools of Cx. pipiens, and phylogenetic analysis identified Usutu lineage Africa 3, confirming its circulation. The probability of detection in mosquitoes is associated with areas with lower bird evenness and diversity but higher bird abundance and richness and higher Cx. pipiens abundances. CONCLUSIONS Bird evenness was the variable with the greatest explanatory power, being negatively related to the probability of detecting Usutu in Cx. pipiens, supporting a dilution effect. These results will help us better understand the relationships between bird community structure and the risk of Usutu mosquito-borne disease.
Collapse
Affiliation(s)
- Victor Rodriguez‐Valencia
- MIVEGEC, Univ. Montpellier, IRD, CNRSMontpellierFrance
- International Joint Laboratory ELDORADO, IRD/UNAMMéridaMexico
| | - Marie‐Marie Olive
- MIVEGEC, Univ. Montpellier, IRD, CNRSMontpellierFrance
- ASTRE, Cirad, INRAE. Universite de MontpellierMontpellierFrance
| | | | - Marine Faisse
- MIVEGEC, Univ. Montpellier, IRD, CNRSMontpellierFrance
| | | | - David Roiz
- MIVEGEC, Univ. Montpellier, IRD, CNRSMontpellierFrance
- International Joint Laboratory ELDORADO, IRD/UNAMMéridaMexico
| |
Collapse
|
2
|
Brüssow H, Figuerola J. The Spread of the Mosquito-Transmitted West Nile Virus in North America and Europe. Microb Biotechnol 2025; 18:e70120. [PMID: 40035176 PMCID: PMC11877000 DOI: 10.1111/1751-7915.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
West Nile virus (WNV) disease, a mosquito-transmitted Flavivirus infection, represents a substantial public health research interest. This virus was unknown in the Western hemisphere until it was introduced in 1999 into an immunologically naïve population. WNV caused an epizootic and epidemic in New York City. The infection then swept over North America, causing mass mortality in birds and cumulatively 60,000 human cases, half of whom were hospitalised, mostly with neurological symptoms. The virus closely resembled a goose virus isolated in Israel in 1998. Mosquitoes of the genus Culex were identified as the insect viral vectors. WNV can infect more than 300 bird species, but in the US, the American robin (Turdus migratorius) represented the ecologically most important bird viral reservoir. Mosquito-to-mosquito viral transmission might amplify the viral spread, and iatrogenic WNV transmission was also observed, leading to the screening of blood products. Compared with African WNV isolates, the New York WNV isolate NY99 showed a mutation in the nonstructural protein NS3 that increased its virulence in birds and was also observed in WNV outbreaks from Romania in 1996 and from Russia in 1999. During its spread across the US, NY99 acquired a mutation in the envelope gene E that favoured viral infection in the insect vector. Europe reported 1200 annual WNV cases in 2024, with a focus in Mediterranean countries, but a northward spread of the infection to Germany and The Netherlands was also noted. Global warming is likely to affect the geographical distribution of vector-borne infections such that people living in temperate climate areas might be increasingly exposed to these infections. Therefore, research on temperature effects on WNV transmission by Culex mosquitoes has become a recent focus of research. Pertinent climate aspects of WNV infections are retraced in the present review.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of Biosystems, Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| | - Jordi Figuerola
- Department of Global Change and ConservationEstación Biológica de Doñana‐CSICSevillaSpain
- CIBER Epidemiología y Salud PublicaMadridSpain
| |
Collapse
|
3
|
Kuchinsky SC, Duggal NK. Usutu virus, an emerging arbovirus with One Health importance. Adv Virus Res 2024; 120:39-75. [PMID: 39455168 DOI: 10.1016/bs.aivir.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Usutu virus (USUV, Flaviviridae) is an emerging arbovirus that has led to epizootic outbreaks in birds and numerous human neuroinvasive disease cases in Europe. It is maintained in an enzootic cycle with Culex mosquitoes and passerine birds, a transmission cycle that is shared by West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), two flaviviruses that are endemic in the United States. USUV and WNV co-circulate in Africa and Europe, and SLEV and WNV co-circulate in North America. These three viruses are prime examples of One Health issues, in which the interactions between humans, animals, and the environments they reside in can have important health impacts. The three facets of One Health are interwoven throughout this article as we discuss the mechanisms of flavivirus transmission and emergence. We explore the possibility of USUV emergence in the United States by analyzing the shared characteristics among USUV, WNV, and SLEV, including the role that flavivirus co-infections and sequential exposures may play in viral emergence. Finally, we provide insights on the importance of integrated surveillance programs as One Health tools that can be used to mitigate USUV emergence and spread.
Collapse
Affiliation(s)
- Sarah C Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
4
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Hermanns K, Marklewitz M, Zirkel F, Kopp A, Kramer-Schadt S, Junglen S. Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients. eLife 2023; 12:e66550. [PMID: 37702388 PMCID: PMC10547478 DOI: 10.7554/elife.66550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Previously unknown pathogens often emerge from primary ecosystems, but there is little knowledge on the mechanisms of emergence. Most studies analyzing the influence of land-use change on pathogen emergence focus on a single host-pathogen system and often observe contradictory effects. Here, we studied virus diversity and prevalence patterns in natural and disturbed ecosystems using a multi-host and multi-taxa approach. Mosquitoes sampled along a disturbance gradient in Côte d'Ivoire were tested by generic RT-PCR assays established for all major arbovirus and insect-specific virus taxa including novel viruses previously discovered in these samples based on cell culture isolates enabling an unbiased and comprehensive approach. The taxonomic composition of detected viruses was characterized and viral infection rates according to habitat and host were analyzed. We detected 331 viral sequences pertaining to 34 novel and 15 previously identified viruses of the families Flavi-, Rhabdo-, Reo-, Toga-, Mesoni- and Iflaviridae and the order Bunyavirales. Highest host and virus diversity was observed in pristine and intermediately disturbed habitats. The majority of the 49 viruses was detected with low prevalence. However, nine viruses were found frequently across different habitats of which five viruses increased in prevalence towards disturbed habitats, in congruence with the dilution effect hypothesis. These viruses were mainly associated with one specific mosquito species (Culex nebulosus), which increased in relative abundance from pristine (3%) to disturbed habitats (38%). Interestingly, the observed increased prevalence of these five viruses in disturbed habitats was not caused by higher host infection rates but by increased host abundance, an effect tentatively named abundance effect. Our data show that host species composition is critical for virus abundance. Environmental changes that lead to an uneven host community composition and to more individuals of a single species are a key driver of virus emergence.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Marco Marklewitz
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical CentreBerlinGermany
| | - Anne Kopp
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of Ecology, Technische Universität BerlinBerlinGermany
| | - Sandra Junglen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
6
|
Meena P, Jha V. Environmental Change, Changing Biodiversity, and Infections-Lessons for Kidney Health Community. Kidney Int Rep 2023; 8:1714-1729. [PMID: 37705916 PMCID: PMC10496083 DOI: 10.1016/j.ekir.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
There is a direct and accelerating connection between ongoing environmental change, the unprecedented decline in biodiversity, and the increase in infectious disease epidemiology worldwide. Rising global temperatures are threatening the biodiversity that underpins the richness and diversity of flora and fauna species in our ecosystem. Anthropogenic activities such as burning fossil fuels, deforestation, rapid urbanization, and expanding population are the primary drivers of environmental change resulting in biodiversity collapse. Climate change is influencing the emergence, prevalence, and transmission of infectious diseases both directly and through its impact on biodiversity. The environment is gradually becoming more suitable for infectious diseases by affecting a variety of pathogens, hosts, and vectors and by favoring transmission rates in many parts of the world that were until recently free of these infections. The acute effects of these zoonotic, vector and waterborne diseases are well known; however, evidence is emerging about their role in the development of chronic kidney disease. The pathways linking environmental change and biodiversity loss to infections impacting kidney health are diverse and complex. Climate change and biodiversity loss disproportionately affect the vulnerable and limit their ability to access healthcare. The kidney health community needs to contribute to the issue of environmental change and biodiversity loss through multisectoral action alongside government, policymakers, advocates, businesses, and the general population. We describe various aspects of the environmental change effects on the transmission and emergence of infectious diseases particularly focusing on its potential impact on kidney health. We also discuss the adaptive and mitigation measures and the gaps in research and policy action.
Collapse
Affiliation(s)
- Priti Meena
- Department of Nephrology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, New Delhi, India
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
- School of Public Health, Imperial College, London, UK
| |
Collapse
|
7
|
Gonzalez Daza W, Muylaert RL, Sobral-Souza T, Lemes Landeiro V. Malaria Risk Drivers in the Brazilian Amazon: Land Use-Land Cover Interactions and Biological Diversity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6497. [PMID: 37569037 PMCID: PMC10419050 DOI: 10.3390/ijerph20156497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Malaria is a prevalent disease in several tropical and subtropical regions, including Brazil, where it remains a significant public health concern. Even though there have been substantial efforts to decrease the number of cases, the reoccurrence of epidemics in regions that have been free of cases for many years presents a significant challenge. Due to the multifaceted factors that influence the spread of malaria, influencing malaria risk factors were analyzed through regional outbreak cluster analysis and spatio-temporal models in the Brazilian Amazon, incorporating climate, land use/cover interactions, species richness, and number of endemic birds and amphibians. Results showed that high amphibian and bird richness and endemism correlated with a reduction in malaria risk. The presence of forest had a risk-increasing effect, but it depended on its juxtaposition with anthropic land uses. Biodiversity and landscape composition, rather than forest formation presence alone, modulated malaria risk in the period. Areas with low endemic species diversity and high human activity, predominantly anthropogenic landscapes, posed high malaria risk. This study underscores the importance of considering the broader ecological context in malaria control efforts.
Collapse
Affiliation(s)
- William Gonzalez Daza
- Programa do Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Biociências, Av. Fernando Corrêa da Costa, 2367, Cuiabá 78060-900, MT, Brazil
| | - Renata L. Muylaert
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North 4472, New Zealand;
| | - Thadeu Sobral-Souza
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (T.S.-S.); (V.L.L.)
| | - Victor Lemes Landeiro
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (T.S.-S.); (V.L.L.)
| |
Collapse
|
8
|
Schwarz ER, Long MT. Comparison of West Nile Virus Disease in Humans and Horses: Exploiting Similarities for Enhancing Syndromic Surveillance. Viruses 2023; 15:1230. [PMID: 37376530 DOI: 10.3390/v15061230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) neuroinvasive disease threatens the health and well-being of horses and humans worldwide. Disease in horses and humans is remarkably similar. The occurrence of WNV disease in these mammalian hosts has geographic overlap with shared macroscale and microscale drivers of risk. Importantly, intrahost virus dynamics, the evolution of the antibody response, and clinicopathology are similar. The goal of this review is to provide a comparison of WNV infection in humans and horses and to identify similarities that can be exploited to enhance surveillance methods for the early detection of WNV neuroinvasive disease.
Collapse
Affiliation(s)
- Erika R Schwarz
- Montana Veterinary Diagnostic Laboratory, MT Department of Livestock, Bozeman, MT 59718, USA
| | - Maureen T Long
- Department of Comparative, Diagnostic, & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
L'Ambert G, Gendrot M, Briolant S, Nguyen A, Pages S, Bosio L, Palomo V, Gomez N, Benoit N, Savini H, Pradines B, Durand GA, Leparc-Goffart I, Grard G, Fontaine A. Analysis of trapped mosquito excreta as a noninvasive method to reveal biodiversity and arbovirus circulation. Mol Ecol Resour 2023; 23:410-423. [PMID: 36161270 PMCID: PMC10092573 DOI: 10.1111/1755-0998.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023]
Abstract
Emerging and endemic mosquito-borne viruses can be difficult to detect and monitor because they often cause asymptomatic infections in human or vertebrate animals or cause nonspecific febrile illness with a short recovery waiting period. Some of these pathogens circulate into complex cryptic cycles involving several animal species as reservoir or amplifying hosts. Detection of cases in vertebrate hosts can be complemented by entomological surveillance, but this method is not adapted to low infection rates in mosquito populations that typically occur in low or nonendemic areas. We identified West Nile virus circulation in Camargue, a wetland area in South of France, using a cost-effective xenomonitoring method based on the molecular detection of virus in excreta from trapped mosquitoes. We also succeeded at identifying the mosquito species community on several sampling sites, together with the vertebrate hosts on which they fed prior to being captured using amplicon-based metabarcoding on mosquito excreta without processing any mosquitoes. Mosquito excreta-based virus surveillance can complement standard surveillance methods because it is cost-effective and does not require personnel with a strong background in entomology. This strategy can also be used to noninvasively explore the ecological network underlying arbovirus circulation.
Collapse
Affiliation(s)
- Grégory L'Ambert
- Entente Interdépartementale Pour la Démoustication du Littoral Méditerranéen (EID Méditerranée), Montpellier, France
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Sébastien Briolant
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | | | - Sylvain Pages
- Entente Interdépartementale Pour la Démoustication du Littoral Méditerranéen (EID Méditerranée), Montpellier, France
| | - Laurent Bosio
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Vincent Palomo
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Nicolas Gomez
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Nicolas Benoit
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Hélène Savini
- IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,Service des Maladies Infectieuses, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Guillaume André Durand
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Isabelle Leparc-Goffart
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France.,Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Univ, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
10
|
Fehér OE, Fehérvári P, Tolnai CH, Forgách P, Malik P, Jerzsele Á, Wagenhoffer Z, Szenci O, Korbacska-Kutasi O. Epidemiology and Clinical Manifestation of West Nile Virus Infections of Equines in Hungary, 2007-2020. Viruses 2022; 14:v14112551. [PMID: 36423160 PMCID: PMC9694158 DOI: 10.3390/v14112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
West Nile virus (WNV) is an emerging pathogen in Hungary, causing severe outbreaks in equines and humans since 2007. The aim of our study was to provide a comprehensive report on the clinical signs of West Nile neuroinvasive disease (WNND) in horses in Hungary. Clinical details of 124 confirmed equine WNND cases were collected between 2007 and 2019. Data about the seasonal and geographical presentation, demographic data, clinical signs, treatment protocols, and disease progression were evaluated. Starting from an initial case originating from the area of possible virus introduction by migratory birds, the whole country became endemic with WNV over the subsequent 12 years. The transmission season did not expand significantly during the data collection period, but vaccination protocols should be always reviewed according to the recent observations. There was not any considerable relationship between the occurrence of WNND and age, breed, or gender. Ataxia was by far the most common neurologic sign related to the disease, but weakness, behavioral changes, and muscle fasciculation appeared frequently. Apart from recumbency combined with inappetence, no other clinical sign or treatment regime correlated with survival. The survival rate showed a moderate increase throughout the years, possibly due to the increased awareness of practitioners.
Collapse
Affiliation(s)
- Orsolya Eszter Fehér
- Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
- Correspondence:
| | - Péter Fehérvári
- Department of Biomathematics and Informatics, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Csenge Hanna Tolnai
- University Equine Clinic, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Petra Forgách
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, 1143 Budapest, Hungary
| | - Péter Malik
- National Food Chain Safety Office, Veterinary Diagnostic Directorate, Tábornok u. 2., 1143 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István utca 2, 1078 Budapest, Hungary
| | - Zsombor Wagenhoffer
- Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
| | - Otto Szenci
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
| | - Orsolya Korbacska-Kutasi
- Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
- University Equine Clinic, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|
11
|
Hernández-Morcillo M, Torralba M, Baiges T, Bernasconi A, Bottaro G, Brogaard S, Bussola F, Díaz-Varela E, Geneletti D, Grossmann CM, Kister J, Klingler M, Loft L, Lovric M, Mann C, Pipart N, Roces-Díaz JV, Sorge S, Tiebel M, Tyrväinen L, Varela E, Winkel G, Plieninger T. Scanning the solutions for the sustainable supply of forest ecosystem services in Europe. SUSTAINABILITY SCIENCE 2022; 17:2013-2029. [PMID: 35340343 PMCID: PMC8939503 DOI: 10.1007/s11625-022-01111-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Forests are key components of European multifunctional landscapes and supply numerous forest ecosystem services (FES) fundamental to human well-being. The sustainable provision of FES has the potential to provide responses to major societal challenges, such as climate change, biodiversity loss, or rural development. To identify suitable strategies for the future sustenance of FES, we performed a solution scanning exercise with a group of transdisciplinary forest and FES experts from different European regions. We identified and prioritized fifteen major challenges hindering the balanced provision of multiple FES and identified a series of potential solutions to tackle each of them. The most prominent challenges referred to the increased frequency and impacts of extreme weather events and the normative mindset regarding forest management. The respective solutions pointed to the promotion of forest resilience via climate-smart forestry and mainstreaming FES-oriented management through a threefold strategy focusing on education, awareness raising, and networking. In a subsequent survey, most solutions were assessed as highly effective, transferable, monitorable, and with potential for being economically efficient. The implementation of the solutions could have synergistic effects when applying the notion of leverage points. Seven emerging pathways towards the sustainable supply of FES have been identified. These pathways build on each other and are organized based on their potential for transformation: (1) shifting forest management paradigms towards pluralistic ecosystem valuation; (2) using integrated landscape approaches; (3) increasing forest resilience; (4) coordinating actions between forest-related actors; (5) increasing participation in forest planning and management; (6) continuous, open, and transparent knowledge integration; and (7) using incentive-based instruments to support regulating and cultural FES. These pathways can contribute to the implementation of the new EU Forestry Strategy to support the balanced supply of multiple FES. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11625-022-01111-4.
Collapse
Affiliation(s)
- M. Hernández-Morcillo
- Eberswalde University for Sustainable Development, Sustainable Forest Resource Economics, Schicklerstrasse 5, 16225 Eberswalde, Germany
| | - M. Torralba
- Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, 37213 Witzenhausen, Germany
- Department of Agricultural Economics and Rural Development, University of Göttingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany
| | - T. Baiges
- Centre de Propietat Forestal (CPF), Santa Perpètua de Mogoda, 08130 Barcelona, Spain
| | - A. Bernasconi
- Pan Bern AG, Hirschengraben 24, 3001, Bern, Switzerland
| | - G. Bottaro
- Land Environment Agriculture and Forestry Department (TeSAF), University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy
| | - S. Brogaard
- Lund University Centre for Sustainability Studies Lund University, Box 170, 221 00 Lund, Sweden
| | - F. Bussola
- Forest Service of the Autonomous Province of Trento, via Trener 3, 38121 Trento, Italy
| | - E. Díaz-Varela
- Research Group COMPASSES-Planning and Management in Social-Ecological Complex Adaptive Systems University of Santiago de Compostela. Campus Universitario, s/n 27002, Lugo, Spain
| | - D. Geneletti
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, Trento, Italy
| | - C. M. Grossmann
- Forest Research Institute Baden-Wuerttemberg (FVA), Wonnhaldestrasse 4, 79100 Freiburg, Germany
| | - J. Kister
- Department of Geography, University of Innsbruck, Innrain 52f, 6020 Innsbruck, Austria
| | - M. Klingler
- University of Natural Resources and Life Sciences Vienna, Institute for Sustainable Economic Development, Feistmantelstraße 4, 1180 Vienna, Austria
| | - L. Loft
- Working Group Governance of Ecosystem Services, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - M. Lovric
- European Forest Institute Yliopistokatu 6B, 80100 Joensuu, Finland
| | - C. Mann
- Eberswalde University for Sustainable Development, Sustainable Forest Resource Economics, Schicklerstrasse 5, 16225 Eberswalde, Germany
| | - N. Pipart
- KU Leuven, Department of Earth and Environmental Sciences Celestijnenlaan 200E, 3001 Leuven, Belgium
| | - J. V. Roces-Díaz
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Cerdanyola del Valles, Spain
| | - S. Sorge
- Eberswalde University for Sustainable Development, Sustainable Forest Resource Economics, Schicklerstrasse 5, 16225 Eberswalde, Germany
| | - M. Tiebel
- Department of Agricultural Economics and Rural Development, University of Göttingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany
| | - L. Tyrväinen
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - E. Varela
- Forest Science and Technology Centre of Catalonia, Ctra. St. Llorenç de Morunys, 25280 Solsona, Spain
| | - G. Winkel
- Forest and Nature Conservation Policy Group, Wageningen University, Droevendaalsesteeg 3, 6700 AA Wageningen, The Netherlands
| | - T. Plieninger
- Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, 37213 Witzenhausen, Germany
- Department of Agricultural Economics and Rural Development, University of Göttingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany
| |
Collapse
|
12
|
Bienentreu JF, Schock DM, Greer AL, Lesbarrères D. Ranavirus Amplification in Low-Diversity Amphibian Communities. Front Vet Sci 2022; 9:755426. [PMID: 35224079 PMCID: PMC8863596 DOI: 10.3389/fvets.2022.755426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
In an era where emerging infectious diseases are a serious threat to biodiversity, epidemiological patterns need to be identified, particularly the complex mechanisms driving the dynamics of multi-host pathogens in natural communities. Many amphibian species have faced unprecedented population declines associated with diseases. Yet, specific processes shaping host-pathogen relationships within and among communities for amphibian pathogens such as ranaviruses (RV) remain poorly understood. To address this gap, we conducted a comprehensive study of RV in low-diversity amphibian communities in north-western Canada to assess the effects of biotic factors (species identity, species richness, abundance) and abiotic factors (conductivity, pH) on the pathogen prevalence and viral loads. Across 2 years and 18 sites, with communities of up to three hosts (wood frog, Rana sylvatica; boreal chorus frog, Pseudacris maculata; Canadian toad, Anaxyrus hemiophrys), we observed that RV prevalence nearly doubled with each additional species in a community, suggesting an amplification effect in aquatic, as well as terrestrial life-history stages. Infection intensity among infected wood frogs and boreal chorus frogs also significantly increased with an increase in species richness. Interestingly, we did not observe any effects of host abundance or abiotic factors, highlighting the importance of including host identity and species richness when investigating multi-host pathogens. Ultimately, only such a comprehensive approach can improve our understanding of complex and often highly context-dependent host-pathogen interactions.
Collapse
Affiliation(s)
- Joe-Felix Bienentreu
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- *Correspondence: Joe-Felix Bienentreu
| | - Danna M. Schock
- Sciences and Environmental Technology, Keyano College, Fort McMurray, AB, Canada
| | - Amy L. Greer
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
13
|
Abreu FVSD, de Andreazzi CS, Neves MSAS, Meneguete PS, Ribeiro MS, Dias CMG, de Albuquerque Motta M, Barcellos C, Romão AR, Magalhães MDAFM, Lourenço-de-Oliveira R. Ecological and environmental factors affecting transmission of sylvatic yellow fever in the 2017-2019 outbreak in the Atlantic Forest, Brazil. Parasit Vectors 2022; 15:23. [PMID: 35012637 PMCID: PMC8750868 DOI: 10.1186/s13071-021-05143-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yellow fever virus (YFV) is an arbovirus that, despite the existence of a safe and effective vaccine, continues to cause outbreaks of varying dimensions in the Americas and Africa. Between 2017 and 2019, Brazil registered un unprecedented sylvatic YFV outbreak whose severity was the result of its spread into zones of the Atlantic Forest with no signals of viral circulation for nearly 80 years. METHODS To investigate the influence of climatic, environmental, and ecological factors governing the dispersion and force of infection of YFV in a naïve area such as the landscape mosaic of Rio de Janeiro (RJ), we combined the analyses of a large set of data including entomological sampling performed before and during the 2017-2019 outbreak, with the geolocation of human and nonhuman primates (NHP) and mosquito infections. RESULTS A greater abundance of Haemagogus mosquitoes combined with lower richness and diversity of mosquito fauna increased the probability of finding a YFV-infected mosquito. Furthermore, the analysis of functional traits showed that certain functional groups, composed mainly of Aedini mosquitoes which includes Aedes and Haemagogus mosquitoes, are also more representative in areas where infected mosquitoes were found. Human and NHP infections were more common in two types of landscapes: large and continuous forest, capable of harboring many YFV hosts, and patches of small forest fragments, where environmental imbalance can lead to a greater density of the primary vectors and high human exposure. In both, we show that most human infections (~ 62%) occurred within an 11-km radius of the finding of an infected NHP, which is in line with the flight range of the primary vectors. CONCLUSIONS Together, our data suggest that entomological data and landscape composition analyses may help to predict areas permissive to yellow fever outbreaks, allowing protective measures to be taken to avoid human cases.
Collapse
Affiliation(s)
- Filipe Vieira Santos de Abreu
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas, MG Brazil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
- Present Address: Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | | | - Patrícia Soares Meneguete
- Secretaria de Estado de Saúde, Subsecretaria de Vigilância e Atenção Primária À Saúde, Rio de Janeiro, RJ Brazil
| | - Mário Sérgio Ribeiro
- Secretaria de Estado de Saúde, Subsecretaria de Vigilância e Atenção Primária À Saúde, Rio de Janeiro, RJ Brazil
| | - Cristina Maria Giordano Dias
- Secretaria de Estado de Saúde, Subsecretaria de Vigilância e Atenção Primária À Saúde, Rio de Janeiro, RJ Brazil
| | - Monique de Albuquerque Motta
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Christovam Barcellos
- Laboratório de Informação em Saúde, Instituto de Comunicação e Informação Científica e Tecnológica em Saúde, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | - Anselmo Rocha Romão
- Laboratório de Informação em Saúde, Instituto de Comunicação e Informação Científica e Tecnológica em Saúde, FIOCRUZ, Rio de Janeiro, RJ Brazil
| | | | - Ricardo Lourenço-de-Oliveira
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ Brazil
| |
Collapse
|
14
|
Amarasiri M, Furukawa T, Nakajima F, Sei K. Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148810. [PMID: 34265610 DOI: 10.1016/j.scitotenv.2021.148810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Infectious diseases are spreading in to previously unreported geographical regions, and are reappeared in regions 75 or 100 years after their last reported case, as a result of environmental changes caused by anthropogenic activities. A pathogen, vector/host monitoring methodology is therefore indispensable in identifying potential transmission sites, providing early warnings and evaluating the human health risks of these infectious diseases in a given area. Recently, environmental DNA (eDNA) and environmental RNA approach (eRNA) have become widespread in monitoring organisms in the environment due to advantages like lower cost, time, and labour requirements. However, eDNA/eRNA based monitoring of pathogens and vectors/hosts using aquatic samples is limited to very few studies. In this review, we summarized the currently available eDNA/eRNA based human and non-human pathogens and vectors/hosts detection studies in aquatic samples. Species-specific shedding, transport, and decay of eDNA/eRNA in aquatic environments which is essential in estimating the abundance of pathogen, vectors/host in focus is also summarized. We also suggest the usage of eDNA/eRNA approach in urban aquatic samples like runoff in identifying the disease vectors/hosts inhabiting in locations which are not accessible easily.
Collapse
Affiliation(s)
- Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan.
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan
| |
Collapse
|
15
|
Humphreys JM, Pelzel-McCluskey AM, Cohnstaedt LW, McGregor BL, Hanley KA, Hudson AR, Young KI, Peck D, Rodriguez LL, Peters DPC. Integrating Spatiotemporal Epidemiology, Eco-Phylogenetics, and Distributional Ecology to Assess West Nile Disease Risk in Horses. Viruses 2021; 13:v13091811. [PMID: 34578392 PMCID: PMC8473291 DOI: 10.3390/v13091811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-borne West Nile virus (WNV) is the causative agent of West Nile disease in humans, horses, and some bird species. Since the initial introduction of WNV to the United States (US), approximately 30,000 horses have been impacted by West Nile neurologic disease and hundreds of additional horses are infected each year. Research describing the drivers of West Nile disease in horses is greatly needed to better anticipate the spatial and temporal extent of disease risk, improve disease surveillance, and alleviate future economic impacts to the equine industry and private horse owners. To help meet this need, we integrated techniques from spatiotemporal epidemiology, eco-phylogenetics, and distributional ecology to assess West Nile disease risk in horses throughout the contiguous US. Our integrated approach considered horse abundance and virus exposure, vector and host distributions, and a variety of extrinsic climatic, socio-economic, and environmental risk factors. Birds are WNV reservoir hosts, and therefore we quantified avian host community dynamics across the continental US to show intra-annual variability in host phylogenetic structure and demonstrate host phylodiversity as a mechanism for virus amplification in time and virus dilution in space. We identified drought as a potential amplifier of virus transmission and demonstrated the importance of accounting for spatial non-stationarity when quantifying interaction between disease risk and meteorological influences such as temperature and precipitation. Our results delineated the timing and location of several areas at high risk of West Nile disease and can be used to prioritize vaccination programs and optimize virus surveillance and monitoring.
Collapse
Affiliation(s)
- John M. Humphreys
- Pest Management Research Unit, Agricultural Research Service, US Department of Agriculture, Sidney, MT 59270, USA
- Correspondence:
| | - Angela M. Pelzel-McCluskey
- Veterinary Services, Animal and Plant Health Inspection Service (APHIS), US Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Lee W. Cohnstaedt
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Manhattan, KS 66502, USA; (L.W.C.); (B.L.M.)
| | - Bethany L. McGregor
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Manhattan, KS 66502, USA; (L.W.C.); (B.L.M.)
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (K.A.H.); (K.I.Y.)
| | - Amy R. Hudson
- Big Data Initiative and SCINet Program for Scientific Computing, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20704, USA; (A.R.H.); (D.P.C.P.)
| | - Katherine I. Young
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (K.A.H.); (K.I.Y.)
| | - Dannele Peck
- Northern Plains Climate Hub, US Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Luis L. Rodriguez
- Plum Island Animal Disease Center, US Department of Agriculture, Orient Point, NY 11957, USA;
| | - Debra P. C. Peters
- Big Data Initiative and SCINet Program for Scientific Computing, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20704, USA; (A.R.H.); (D.P.C.P.)
| |
Collapse
|
16
|
de Oliveira-Filho EF, Fischer C, Berneck BS, Carneiro IO, Kühne A, de Almeida Campos AC, Ribas JRL, Netto EM, Franke CR, Ulbert S, Drexler JF. Ecologic Determinants of West Nile Virus Seroprevalence among Equids, Brazil. Emerg Infect Dis 2021; 27:2466-2470. [PMID: 34424166 PMCID: PMC8386811 DOI: 10.3201/eid2709.204706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Among 713 equids sampled in northeastern Brazil during 2013-2018, West Nile virus seroprevalence was 4.5% (95% CI 3.1%-6.3%). Mathematical modeling substantiated higher seroprevalence adjacent to an avian migratory route and in areas characterized by forest loss, implying increased risk for zoonotic infections in disturbed areas.
Collapse
|
17
|
Benatti HR, Luz HR, Lima DM, Gonçalves VD, Costa FB, Ramos VN, Aguiar DM, Pacheco RC, Piovezan U, Szabó MPJ, Ferraz KMPMB, Labruna MB. Morphometric Patterns and Blood Biochemistry of Capybaras ( Hydrochoerus hydrochaeris) from Human-Modified Landscapes and Natural Landscapes in Brazil. Vet Sci 2021; 8:vetsci8080165. [PMID: 34437487 PMCID: PMC8402786 DOI: 10.3390/vetsci8080165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
The capybara, Hydrochoerus hydrochaeris, is the largest extant rodent of the world. To better understand the correlation between size and body mass, and biochemical parameters of capybaras from areas with different degrees of anthropization (i.e., different food supplies), we sampled free-ranging capybaras from areas of natural landscapes (NLs) and human-modified landscapes (HMLs) in Brazil. Analyses of biometrical and biochemical parameters of capybaras showed that animals from HMLs were heavier (higher body mass) than those from NL, a condition possibly related to fat deposit rather than body length, as indicated by Body Condition Index (BCI) analyses. Biochemical parameters indicated higher serum levels of albumin, creatine kinase, cholesterol, fructosamine and total protein among capybaras from HMLs than from NLs; however, when all adult capybaras were analyzed together only cholesterol and triglycerides were positively correlated with body mass. We propose that the biochemical profile differences between HMLs and NLs are related to the obesity condition of capybaras among HMLs. Considering that heavier animals might live longer and reproduce more often, our results could have important implications in the population dynamics of capybaras among HMLs, where this rodent species is frequently represented by overgrowth populations that generate several levels of conflicts with human beings.
Collapse
Affiliation(s)
- Hector R. Benatti
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
| | - Hermes R. Luz
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Programa de Pós-Graduação em Biotecnologia do Renorbio, Ponto Focal Maranhão, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil
| | - Daniel M. Lima
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
| | - Vinicius D. Gonçalves
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
| | - Francisco B. Costa
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Faculdade de Medicina Veterinária, Universidade Estadual do Maranhão, São Luís 65055-970, MA, Brazil
| | - Vanessa N. Ramos
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil;
| | - Daniel M. Aguiar
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (D.M.A.); (R.C.P.)
| | - Richard C. Pacheco
- Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá 78060-900, MT, Brazil; (D.M.A.); (R.C.P.)
| | | | - Matias P. J. Szabó
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil;
| | - Katia Maria P. M. B. Ferraz
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Marcelo B. Labruna
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, SP, Brazil; (H.R.B.); (H.R.L.); (D.M.L.); (V.D.G.); (F.B.C.); (V.N.R.)
- Correspondence: ; Tel.: +55-11-3091-1394
| |
Collapse
|
18
|
Ferraguti M, Martínez-de la Puente J, Jiménez–Clavero MÁ, Llorente F, Roiz D, Ruiz S, Soriguer R, Figuerola J. A field test of the dilution effect hypothesis in four avian multi-host pathogens. PLoS Pathog 2021; 17:e1009637. [PMID: 34161394 PMCID: PMC8221496 DOI: 10.1371/journal.ppat.1009637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
The Dilution Effect Hypothesis (DEH) argues that greater biodiversity lowers the risk of disease and reduces the rates of pathogen transmission since more diverse communities harbour fewer competent hosts for any given pathogen, thereby reducing host exposure to the pathogen. DEH is expected to operate most intensely in vector-borne pathogens and when species-rich communities are not associated with increased host density. Overall, dilution will occur if greater species diversity leads to a lower contact rate between infected vectors and susceptible hosts, and between infected hosts and susceptible vectors. Field-based tests simultaneously analysing the prevalence of several multi-host pathogens in relation to host and vector diversity are required to validate DEH. We tested the relationship between the prevalence in house sparrows (Passer domesticus) of four vector-borne pathogens-three avian haemosporidians (including the avian malaria parasite Plasmodium and the malaria-like parasites Haemoproteus and Leucocytozoon) and West Nile virus (WNV)-and vertebrate diversity. Birds were sampled at 45 localities in SW Spain for which extensive data on vector (mosquitoes) and vertebrate communities exist. Vertebrate censuses were conducted to quantify avian and mammal density, species richness and evenness. Contrary to the predictions of DEH, WNV seroprevalence and haemosporidian prevalence were not negatively associated with either vertebrate species richness or evenness. Indeed, the opposite pattern was found, with positive relationships between avian species richness and WNV seroprevalence, and Leucocytozoon prevalence being detected. When vector (mosquito) richness and evenness were incorporated into the models, all the previous associations between WNV prevalence and the vertebrate community variables remained unchanged. No significant association was found for Plasmodium prevalence and vertebrate community variables in any of the models tested. Despite the studied system having several characteristics that should favour the dilution effect (i.e., vector-borne pathogens, an area where vector and host densities are unrelated, and where host richness is not associated with an increase in host density), none of the relationships between host species diversity and species richness, and pathogen prevalence supported DEH and, in fact, amplification was found for three of the four pathogens tested. Consequently, the range of pathogens and communities studied needs to be broadened if we are to understand the ecological factors that favour dilution and how often these conditions occur in nature.
Collapse
Affiliation(s)
- Martina Ferraguti
- Department of Wetland Ecology, Doñana Biological Station (EBD–CSIC), Seville, Spain
| | - Josué Martínez-de la Puente
- Department of Wetland Ecology, Doñana Biological Station (EBD–CSIC), Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Miguel Ángel Jiménez–Clavero
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA–CISA), Valdeolmos, Madrid, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA–CISA), Valdeolmos, Madrid, Spain
| | - David Roiz
- Department of Wetland Ecology, Doñana Biological Station (EBD–CSIC), Seville, Spain
| | - Santiago Ruiz
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Diputación de Huelva, Área de Medio Ambiente, Servicio de Control de Mosquitos, Huelva, Spain
| | - Ramón Soriguer
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Ethology & Biodiversity Conservation, Doñana Biological Station (EBD–CSIC), Seville, Spain
| | - Jordi Figuerola
- Department of Wetland Ecology, Doñana Biological Station (EBD–CSIC), Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- * E-mail:
| |
Collapse
|
19
|
Bartlow AW, Machalaba C, Karesh WB, Fair JM. Biodiversity and Global Health: Intersection of Health, Security, and the Environment. Health Secur 2021; 19:214-222. [PMID: 33733864 DOI: 10.1089/hs.2020.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Andrew W Bartlow
- Andrew W. Bartlow, PhD, and Jeanne M. Fair, PhD, are Scientists; both in Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM. Catherine Machalaba, PhD, MPH, is Senior Policy Advisor and Senior Research Scientist and William B. Karesh, DVM, is Executive Vice President for Health and Policy; both at EcoHealth Alliance, New York, NY
| | - Catherine Machalaba
- Andrew W. Bartlow, PhD, and Jeanne M. Fair, PhD, are Scientists; both in Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM. Catherine Machalaba, PhD, MPH, is Senior Policy Advisor and Senior Research Scientist and William B. Karesh, DVM, is Executive Vice President for Health and Policy; both at EcoHealth Alliance, New York, NY
| | - William B Karesh
- Andrew W. Bartlow, PhD, and Jeanne M. Fair, PhD, are Scientists; both in Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM. Catherine Machalaba, PhD, MPH, is Senior Policy Advisor and Senior Research Scientist and William B. Karesh, DVM, is Executive Vice President for Health and Policy; both at EcoHealth Alliance, New York, NY
| | - Jeanne M Fair
- Andrew W. Bartlow, PhD, and Jeanne M. Fair, PhD, are Scientists; both in Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM. Catherine Machalaba, PhD, MPH, is Senior Policy Advisor and Senior Research Scientist and William B. Karesh, DVM, is Executive Vice President for Health and Policy; both at EcoHealth Alliance, New York, NY
| |
Collapse
|
20
|
Fernández D, Giné-Vázquez I, Liu I, Yucel R, Nai Ruscone M, Morena M, García VG, Haro JM, Pan W, Tyrovolas S. Are environmental pollution and biodiversity levels associated to the spread and mortality of COVID-19? A four-month global analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116326. [PMID: 33412447 PMCID: PMC7752029 DOI: 10.1016/j.envpol.2020.116326] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
On March 12th, 2020, the WHO declared COVID-19 as a pandemic. The collective impact of environmental and ecosystem factors, as well as biodiversity, on the spread of COVID-19 and its mortality evolution remain empirically unknown, particularly in regions with a wide ecosystem range. The aim of our study is to assess how those factors impact on the COVID-19 spread and mortality by country. This study compiled a global database merging WHO daily case reports with other publicly available measures from January 21st to May 18th, 2020. We applied spatio-temporal models to identify the influence of biodiversity, temperature, and precipitation and fitted generalized linear mixed models to identify the effects of environmental variables. Additionally, we used count time series to characterize the association between COVID-19 spread and air quality factors. All analyses were adjusted by social demographic, country-income level, and government policy intervention confounders, among 160 countries, globally. Our results reveal a statistically meaningful association between COVID-19 infection and several factors of interest at country and city levels such as the national biodiversity index, air quality, and pollutants elements (PM10, PM2.5, and O3). Particularly, there is a significant relationship of loss of biodiversity, high level of air pollutants, and diminished air quality with COVID-19 infection spread and mortality. Our findings provide an empirical foundation for future studies on the relationship between air quality variables, a country's biodiversity, and COVID-19 transmission and mortality. The relationships measured in this study can be valuable when governments plan environmental and health policies, as alternative strategy to respond to new COVID-19 outbreaks and prevent future crises.
Collapse
Affiliation(s)
- Daniel Fernández
- Serra Húnter Fellow, Department of Statistics and Operations Research, Universitat Politècnica de Catalunya-BarcelonaTech, 08028, Spain.
| | - Iago Giné-Vázquez
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain, Barcelona, Spain; Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Fundació Sant Joan de Déu, Dr Antoni Pujades, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain
| | - Ivy Liu
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, 19122, USA
| | - Marta Nai Ruscone
- Department of Mathematics - DIMA, University of Genova, 16146, Genova, Italy
| | - Marianthi Morena
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Víctor Gerardo García
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, EEBE, A6.5, 08019, Barcelona, Spain; Fundació Eurecat, Plaça de la Ciència, 2, 08243, Manresa, Barcelona, Spain
| | - Josep Maria Haro
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain, Barcelona, Spain; Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Fundació Sant Joan de Déu, Dr Antoni Pujades, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain; King Saud University, Riyadh, Saudi Arabia
| | - William Pan
- Global Health Institute, Duke University, Durham, NC, 27708, USA; Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Stefanos Tyrovolas
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain, Barcelona, Spain; Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Fundació Sant Joan de Déu, Dr Antoni Pujades, 42, 08830, Sant Boi de Llobregat, Barcelona, Spain; School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
21
|
Catenacci LS, Ferreira MS, Fernandes D, Padda H, Travassos-da-Rosa ES, Deem SL, Vasconcelos PFC, Martins LC. Individual, household and environmental factors associated with arboviruses in rural human populations, Brazil. Zoonoses Public Health 2021; 68:203-212. [PMID: 33538403 DOI: 10.1111/zph.12811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022]
Abstract
Landscape change is one of the foremost drivers of the emergence of infectious diseases. Exploring demographic, household and environmental conditions under which infectious diseases occur may inform strategies to prevent disease emergence in human populations. We collected blood samples from 523 humans and explore factors for arbovirus emergence in Bahia, Brazil. The overall arbovirus seroprevalence was 65.2%, with the genus Flavivirus most prevalent (64.4%). Based on monotypic reactions, the population had contact with five arbovirus: Dengue 3, Ilheus, Oropouche, Caraparu and Eastern equine encephalitis virus. To our knowledge, this is the first study reporting exposure to Oropouche, Caraparu and Eastern equine encephalitis virus in human populations in Bahia, Northeast of Brazil. The best model fit demonstrated that household and environmental variables were more predictive of the risk of arbovirus exposure than demographic variables. The presence of forest and free-living monkeys in the areas close to the communities had a protective effect for the human population (i.e. lower seroprevalence). The dilution effect is considered as one explanation for this finding. These results highlight the important ecological role of wildlife-friendly agriculture.
Collapse
Affiliation(s)
- Lilian S Catenacci
- Department of Veterinary Morphophysiology, Federal University of Piauí State, Teresina, Brazil.,Federal University of Para State- Post Graduate Program PPGSAAM, Castanhal, Brazil.,Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO, USA
| | - Milene S Ferreira
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute- Ministry of Health, Ananindeua, Brazil
| | - Debora Fernandes
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute- Ministry of Health, Ananindeua, Brazil
| | - Hannah Padda
- Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO, USA.,Washington University in St. Louis, St. Louis, MO, USA
| | | | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO, USA
| | - Pedro F C Vasconcelos
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute- Ministry of Health, Ananindeua, Brazil
| | - Livia C Martins
- Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute- Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
22
|
Hopken MW, Reyes-Torres LJ, Scavo N, Piaggio AJ, Abdo Z, Taylor D, Pierce J, Yee DA. Temporal and Spatial Blood Feeding Patterns of Urban Mosquitoes in the San Juan Metropolitan Area, Puerto Rico. INSECTS 2021; 12:insects12020129. [PMID: 33540671 PMCID: PMC7913113 DOI: 10.3390/insects12020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary Understanding the biodiversity of urban ecosystems is critical for management of invasive and pest species, conserving native species, and disease control. Mosquitoes (Culicidae) are ubiquitous and abundant in urban ecosystems, and rely on blood meals taken from vertebrates. We used DNA from freshly blood-fed mosquitoes to characterize the diversity of vertebrate host species in the San Juan Metropolitan Area, Puerto Rico. We collected two mosquito species that fed on a variety of vertebrates. Culex quinquefasciatus fed on 17 avian taxa (81.2% of blood meals), seven mammalian taxa (17.9%), and one reptilian taxon (0.85%). Aedes aegypti blood meals were from a less diverse group, with two avian taxa (11.1%) and three mammalian taxa (88.9%) identified. Domestic chickens dominated the blood meals of Cx. quinquefasciatus, both temporally and spatially, and no statistically significant shift from birds to mammals was detected. The species we detected from the mosquito blood meals provided a snapshot of the vertebrate community in the San Juan Metropolitan Area, most of which were domestic species. However, we also identified a variety of native and nonnative wild species. These results add knowledge about potential ecological factors that impact vector-borne disease management in urban habitats. Abstract Urban ecosystems are a patchwork of habitats that host a broad diversity of animal species. Insects comprise a large portion of urban biodiversity which includes many pest species, including those that transmit pathogens. Mosquitoes (Diptera: Culicidae) inhabit urban environments and rely on sympatric vertebrate species to complete their life cycles, and in this process transmit pathogens to animals and humans. Given that mosquitoes feed upon vertebrates, they can also act as efficient samplers that facilitate detection of vertebrate species that utilize urban ecosystems. In this study, we analyzed DNA extracted from mosquito blood meals collected temporally in multiple neighborhoods of the San Juan Metropolitan Area, Puerto Rico to evaluate the presence of vertebrate fauna. DNA was collected from 604 individual mosquitoes that represented two common urban species, Culex quinquefasciatus (n = 586) and Aedes aegypti (n = 18). Culex quinquefasciatus fed on 17 avian taxa (81.2% of blood meals), seven mammalian taxa (17.9%), and one reptilian taxon (0.85%). Domestic chickens dominated these blood meals both temporally and spatially, and no statistically significant shift from birds to mammals was detected. Aedes aegypti blood meals were from a less diverse group, with two avian taxa (11.1%) and three mammalian taxa (88.9%) identified. The blood meals we identified provided a snapshot of the vertebrate community in the San Juan Metropolitan Area and have potential implications for vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Matthew W. Hopken
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (Z.A.); (J.P.)
- United States Department of Agriculture National Wildlife Research Center, Fort Collins, CO 80521, USA; (A.J.P.); (D.T.)
- Correspondence:
| | - Limarie J. Reyes-Torres
- School of Biological, Environmental, & Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (L.J.R.-T.); (N.S.); (D.A.Y.)
| | - Nicole Scavo
- School of Biological, Environmental, & Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (L.J.R.-T.); (N.S.); (D.A.Y.)
| | - Antoinette J. Piaggio
- United States Department of Agriculture National Wildlife Research Center, Fort Collins, CO 80521, USA; (A.J.P.); (D.T.)
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (Z.A.); (J.P.)
| | - Daniel Taylor
- United States Department of Agriculture National Wildlife Research Center, Fort Collins, CO 80521, USA; (A.J.P.); (D.T.)
| | - James Pierce
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (Z.A.); (J.P.)
| | - Donald A. Yee
- School of Biological, Environmental, & Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; (L.J.R.-T.); (N.S.); (D.A.Y.)
| |
Collapse
|
23
|
Ebi KL, Harris F, Sioen GB, Wannous C, Anyamba A, Bi P, Boeckmann M, Bowen K, Cissé G, Dasgupta P, Dida GO, Gasparatos A, Gatzweiler F, Javadi F, Kanbara S, Kone B, Maycock B, Morse A, Murakami T, Mustapha A, Pongsiri M, Suzán G, Watanabe C, Capon A. Transdisciplinary Research Priorities for Human and Planetary Health in the Context of the 2030 Agenda for Sustainable Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8890. [PMID: 33265908 PMCID: PMC7729495 DOI: 10.3390/ijerph17238890] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Human health and wellbeing and the health of the biosphere are inextricably linked. The state of Earth's life-support systems, including freshwater, oceans, land, biodiversity, atmosphere, and climate, affect human health. At the same time, human activities are adversely affecting natural systems. This review paper is the outcome of an interdisciplinary workshop under the auspices of the Future Earth Health Knowledge Action Network (Health KAN). It outlines a research agenda to address cross-cutting knowledge gaps to further understanding and management of the health risks of these global environmental changes through an expert consultation and review process. The research agenda has four main themes: (1) risk identification and management (including related to water, hygiene, sanitation, and waste management); food production and consumption; oceans; and extreme weather events and climate change. (2) Strengthening climate-resilient health systems; (3) Monitoring, surveillance, and evaluation; and (4) risk communication. Research approaches need to be transdisciplinary, multi-scalar, inclusive, equitable, and broadly communicated. Promoting resilient and sustainable development are critical for achieving human and planetary health.
Collapse
Affiliation(s)
- Kristie L. Ebi
- Center for Health and the Global Environment (CHanGE), University of Washington, Seattle, WA 98195, USA
| | | | - Giles B. Sioen
- Future Earth, Global Hub Japan, Tsukuba 305-0053, Japan;
- National Institute for Environmental Studies, Tsukuba 305-0053, Japan;
| | - Chadia Wannous
- Towards A Safer World Network (TASW), 16561 Stockholm, Sweden;
| | - Assaf Anyamba
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Universities Space Research Association, Greenbelt, MD 20771, USA;
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide 5005, Australia;
| | - Melanie Boeckmann
- Department of Environment and Health, School of Public Health, Bielefeld University, 33615 Bielefeld, Germany;
| | - Kathryn Bowen
- Institute for Advanced Sustainability Studies, 14467 Potsdam, Germany;
- School of Population and Global Health, University of Melbourne, Melbourne 3052, Australia
- Fenner School of Environment and Society, Australian National University, Canberra 0200, Australia
| | - Guéladio Cissé
- Swiss Tropical and Public Health Institute, University of Basel, CH-4002 Basel, Switzerland;
- University of Basel, CH-4001 Basel, Switzerland
| | | | - Gabriel O. Dida
- Department of Health Systems Management and Public Health, The Technical University of Kenya, Nairobi, Kenya;
- School of Public Health and Community Development, Maseno University, Private Bag 40100, Kisumu, Kenya
| | | | - Franz Gatzweiler
- Global Interdisciplinary Science Programme on Urban Health and Wellbeing: A Systems Approach, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
| | - Firouzeh Javadi
- Institute of Decision Science for a Sustainable Society, Kyushu University, Fukuoka 819-0395, Japan; (F.J.); (T.M.)
| | - Sakiko Kanbara
- Disaster Nursing Global Leadership Program, University of Kochi, Kochi 781-8515, Japan;
| | - Brama Kone
- Lecturer-Researcher of Public Health, University Peleforo Gon Coulibaly of Korhogo, Korhogo, Cote D′Ivoire;
- Centre Suisse de Recherches Scientifiques in Côte d’Ivoire, Abidjan, Cote D′Ivoire
| | - Bruce Maycock
- College of Medicine & Health, University of Exeter, Cornwall TR1 3HD, UK;
| | - Andy Morse
- School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK;
| | - Takahiro Murakami
- Institute of Decision Science for a Sustainable Society, Kyushu University, Fukuoka 819-0395, Japan; (F.J.); (T.M.)
| | - Adetoun Mustapha
- Nigerian Institute for Medical Research, 6 Edmund Crescent, Yaba, Lagos, Nigeria;
| | - Montira Pongsiri
- Stockholm Environment Institute, Asia Centre, Bangkok 10330, Thailand;
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico;
| | - Chiho Watanabe
- National Institute for Environmental Studies, Tsukuba 305-0053, Japan;
| | - Anthony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne 3800, Australia;
| |
Collapse
|
24
|
Comparative Pathology of West Nile Virus in Humans and Non-Human Animals. Pathogens 2020; 9:pathogens9010048. [PMID: 31935992 PMCID: PMC7168622 DOI: 10.3390/pathogens9010048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) continues to be a major cause of human arboviral neuroinvasive disease. Susceptible non-human vertebrates are particularly diverse, ranging from commonly affected birds and horses to less commonly affected species such as alligators. This review summarizes the pathology caused by West Nile virus during natural infections of humans and non-human animals. While the most well-known findings in human infection involve the central nervous system, WNV can also cause significant lesions in the heart, kidneys and eyes. Time has also revealed chronic neurologic sequelae related to prior human WNV infection. Similarly, neurologic disease is a prominent manifestation of WNV infection in most non-human non-host animals. However, in some avian species, which serve as the vertebrate host for WNV maintenance in nature, severe systemic disease can occur, with neurologic, cardiac, intestinal and renal injury leading to death. The pathology seen in experimental animal models of West Nile virus infection and knowledge gains on viral pathogenesis derived from these animal models are also briefly discussed. A gap in the current literature exists regarding the relationship between the neurotropic nature of WNV in vertebrates, virus propagation and transmission in nature. This and other knowledge gaps, and future directions for research into WNV pathology, are addressed.
Collapse
|
25
|
Abstract
Abstract Since the beginning of the COVID-19 pandemic, bats are being pointed as responsible for its origin, even without solid scientific evidence. In this opinion piece, we discuss the most updated information on bats and COVID-19 and argue that bats should not be blamed for a disease they are not responsible for. Bats should be seen not as dangerous animals but, instead, as sources of several scientific insights useful for human health.
Collapse
Affiliation(s)
- Maria João Ramos Pereira
- Sociedade Brasileira para o Estudo de Quirópteros, Brasil; Universidade Federal do Rio Grande do Sul, Brasil
| | - Enrico Bernard
- Sociedade Brasileira para o Estudo de Quirópteros, Brasil; Universidade Federal de Pernambuco, Brasil
| | - Ludmilla M. S. Aguiar
- Sociedade Brasileira para o Estudo de Quirópteros, Brasil; Universidade de Brasília, Brasil
| |
Collapse
|
26
|
Vadell MV, Gómez Villafañe IE, Carbajo AE. Hantavirus infection and biodiversity in the Americas. Oecologia 2019; 192:169-177. [PMID: 31807865 DOI: 10.1007/s00442-019-04564-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
Abstract
Species diversity has been proposed to decrease prevalence of disease in a wide variety of host-pathogen systems, in a phenomenon labeled the dilution effect. This phenomenon was first proposed and tested for vector-borne diseases but was later extended to directly transmitted parasite systems such as hantavirus. Though there seems to be clear evidence for the dilution effect in some hantavirus/rodent systems, the generality of this hypothesis remains debated. In the present meta-analysis, we examined the evidence supporting the dilution effect for hantavirus/rodent systems in the Americas. General linear models employed on data from 56 field studies identified the abundance of the reservoir rodent species and its relative proportion in the community as the only relevant variables explaining the prevalence of antibodies against hantavirus in the reservoir. Thus, we found no clear support for the dilution effect hypothesis for hantavirus/rodent systems in the Americas.
Collapse
Affiliation(s)
- María Victoria Vadell
- Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G. Malbrán", Puerto Iguazú, Misiones, Argentina.
| | - Isabel Elisa Gómez Villafañe
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Eduardo Carbajo
- Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
27
|
Guo F, Bonebrake TC, Gibson L. Land-Use Change Alters Host and Vector Communities and May Elevate Disease Risk. ECOHEALTH 2019; 16:647-658. [PMID: 29691680 DOI: 10.1007/s10393-018-1336-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 05/25/2023]
Abstract
Land-use change has transformed most of the planet. Concurrently, recent outbreaks of various emerging infectious diseases have raised great attention to the health consequences of anthropogenic environmental degradation. Here, we assessed the global impacts of habitat conversion and other land-use changes on community structures of infectious disease hosts and vectors, using a meta-analysis of 37 studies. From 331 pairwise comparisons of disease hosts/vectors in pristine (undisturbed) and disturbed areas, we found a decrease in species diversity but an increase in body size associated with land-use changes, potentially suggesting higher risk of infectious disease transmission in disturbed habitats. Neither host nor vector abundance, however, changed significantly following disturbance. When grouped by subcategories like disturbance type, taxonomic group, pathogen type and region, changes in host/vector community composition varied considerably. Fragmentation and agriculture in particular benefit host and vector communities and therefore might elevate disease risk. Our results indicate that while habitat disturbance could alter disease host/vector communities in ways that exacerbate pathogen prevalence, the relationship is highly context-dependent and influenced by multiple factors.
Collapse
Affiliation(s)
- Fengyi Guo
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | | | - Luke Gibson
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
28
|
Barker CM. Models and Surveillance Systems to Detect and Predict West Nile Virus Outbreaks. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1508-1515. [PMID: 31549727 DOI: 10.1093/jme/tjz150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Over the past 20 yr, many models have been developed to predict risk for West Nile virus (WNV; Flaviviridae: Flavivirus) disease in the human population. These models have aided our understanding of the meteorological and land-use variables that drive spatial and temporal patterns of human disease risk. During the same period, electronic data systems have been adopted by surveillance programs across much of the United States, including a growing interest in integrated data services that preserve the autonomy and attribution of credit to originating agencies but facilitate data sharing, analysis, and visualization at local, state, and national scales. At present, nearly all predictive models have been limited to the scientific literature, with few having been implemented for use by public-health and vector-control decision makers. The current article considers the development of models for spatial patterns, early warning, and early detection of WNV over the last 20 yr and considers some possible paths toward increasing the utility of these models for guiding interventions.
Collapse
Affiliation(s)
- Christopher M Barker
- Department of Pathology, Microbiology, & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
29
|
Kain MP, Bolker BM. Predicting West Nile virus transmission in North American bird communities using phylogenetic mixed effects models and eBird citizen science data. Parasit Vectors 2019; 12:395. [PMID: 31395085 PMCID: PMC6686473 DOI: 10.1186/s13071-019-3656-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/03/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND West Nile virus (WNV) is a mosquito-transmitted disease of birds that has caused bird population declines and can spill over into human populations. Previous research has identified bird species that infect a large fraction of the total pool of infected mosquitoes and correlate with human infection risk; however, these analyses cover small spatial regions and cannot be used to predict transmission in bird communities in which these species are rare or absent. Here we present a mechanistic model for WNV transmission that predicts WNV spread (R0) in any bird community in North America by scaling up from the physiological responses of individual birds to transmission at the level of the community. We predict unmeasured bird species' responses to infection using phylogenetic imputation, based on these species' phylogenetic relationships with bird species with measured responses. RESULTS We focused our analysis on Texas, USA, because it is among the states with the highest total incidence of WNV in humans and is well sampled by birders in the eBird database. Spatio-temporal patterns: WNV transmission is primarily driven by temperature variation across time and space, and secondarily by bird community composition. In Texas, we predicted WNV R0 to be highest in the spring and fall when temperatures maximize the product of mosquito transmission and survival probabilities. In the most favorable months for WNV transmission (April, May, September and October), we predicted R0 to be highest in the "Piney Woods" and "Oak Woods & Prairies" ecoregions of Texas, and lowest in the "High Plains" and "South Texas Brush County" ecoregions. Dilution effect: More abundant bird species are more competent hosts for WNV, and predicted WNV R0 decreases with increasing species richness. Keystone species: We predicted that northern cardinals (Cardinalis cardinalis) are the most important hosts for amplifying WNV and that mourning doves (Zenaida macroura) are the most important sinks of infection across Texas. CONCLUSIONS Despite some data limitations, we demonstrate the power of phylogenetic imputation in predicting disease transmission in heterogeneous host communities. Our mechanistic modeling framework shows promise both for assisting future analyses on transmission and spillover in heterogeneous multispecies pathogen systems and for improving model transparency by clarifying assumptions, choices and shortcomings in complex ecological analyses.
Collapse
Affiliation(s)
- Morgan P. Kain
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - Benjamin M. Bolker
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
- Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|
30
|
Clean bill of health? Towards an understanding of health risks posed by urban ibis. JOURNAL OF URBAN ECOLOGY 2019. [DOI: 10.1093/jue/juz006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
31
|
Loaiza JR, Rovira JR, Sanjur OI, Zepeda JA, Pecor JE, Foley DH, Dutari L, Radtke M, Pongsiri MJ, Molinar OS, Laporta GZ. Forest disturbance and vector transmitted diseases in the lowland tropical rainforest of central Panama. Trop Med Int Health 2019; 24:849-861. [DOI: 10.1111/tmi.13244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jose R. Loaiza
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Panama City Republic of Panama
- Smithsonian Tropical Research Institute Balboa Ancón Republic of Panama
- Programa Centroamericano de Maestría en Entomología Universidad de Panamá Panama City Republic of Panama
| | - Jose R. Rovira
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Panama City Republic of Panama
| | - Oris I. Sanjur
- Smithsonian Tropical Research Institute Balboa Ancón Republic of Panama
| | - Jesus Altagracia Zepeda
- Programa Centroamericano de Maestría en Entomología Universidad de Panamá Panama City Republic of Panama
| | - James E. Pecor
- Walter Reed Biosystematics Unit Smithsonian Institution Museum Support Center Suitland MD USA
| | - Desmond H. Foley
- Walter Reed Biosystematics Unit Smithsonian Institution Museum Support Center Suitland MD USA
| | - Larissa Dutari
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología Panama City Republic of Panama
- Department of Biotechnology Acharya Nagarjuna University Guntur India
| | | | | | - Octavio Smith Molinar
- Centro del Agua del Trópico Húmedo para América Latina y el Caribe Panamá República de Panamá
| | - Gabriel Z. Laporta
- Setor de Pós‐graduação, Pesquisa e Inovação Centro Universitário Saúde ABC Fundação do ABC Santo André Brazil
| |
Collapse
|
32
|
Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, Koopmans MPG, de Boer WF, Reusken CBEM. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019; 12:265. [PMID: 31133059 PMCID: PMC6537422 DOI: 10.1186/s13071-019-3515-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.
Collapse
Affiliation(s)
- Helen J Esser
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Ramona Mögling
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Natalie B Cleton
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem F de Boer
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
33
|
Huang ZYX, Xu C, van Langevelde F, Ma Y, Langendoen T, Mundkur T, Si Y, Tian H, Kraus RHS, Gilbert M, Han G, Ji X, Prins HHT, de Boer WF. Contrasting effects of host species and phylogenetic diversity on the occurrence of HPAI H5N1 in European wild birds. J Anim Ecol 2019; 88:1044-1053. [DOI: 10.1111/1365-2656.12997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/15/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Zheng Y. X. Huang
- College of Life Sciences Nanjing Normal University Nanjing China
- Resource Ecology Group Wageningen University Wageningen The Netherlands
| | - Chi Xu
- School of Life Sciences Nanjing University Nanjing China
| | - Frank van Langevelde
- Resource Ecology Group Wageningen University Wageningen The Netherlands
- School of Life Sciences Westville Campus, University of KwaZulu‐Natal Durban South Africa
| | - Yuying Ma
- College of Life Sciences Nanjing Normal University Nanjing China
| | | | | | - Yali Si
- Resource Ecology Group Wageningen University Wageningen The Netherlands
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling Tsinghua University Beijing China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science Beijing Normal University Beijing China
| | - Robert H. S. Kraus
- Department of Migration and Immuno‐Ecology Max Planck Institute for Ornithology Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
| | - Marius Gilbert
- Spatial Epidemiology Lab. (SpELL) Université Libre de Bruxelles Brussels Belgium
- Fonds National de la Recherche Scientifique Brussels Belgium
| | - Guan‐Zhu Han
- College of Life Sciences Nanjing Normal University Nanjing China
| | - Xiang Ji
- College of Life Sciences Nanjing Normal University Nanjing China
| | | | - Willem F. de Boer
- Resource Ecology Group Wageningen University Wageningen The Netherlands
| |
Collapse
|
34
|
Heller EL, Gaff HD, Brinkerhoff RJ, Walters EL. Urbanization and tick parasitism in birds of coastal southeastern Virginia. J Wildl Manage 2019. [DOI: 10.1002/jwmg.21646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erin L. Heller
- Department of Biological SciencesOld Dominion UniversityNorfolkVA23529USA
| | - Holly D. Gaff
- Department of Biological SciencesOld Dominion UniversityNorfolkVA23529USA
| | | | - Eric L. Walters
- Department of Biological SciencesOld Dominion UniversityNorfolkVA23529USA
| |
Collapse
|
35
|
Strand TM, Lundkvist Å. Rat-borne diseases at the horizon. A systematic review on infectious agents carried by rats in Europe 1995-2016. Infect Ecol Epidemiol 2019; 9:1553461. [PMID: 30834071 PMCID: PMC6394330 DOI: 10.1080/20008686.2018.1553461] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
To investigate the spectrum of rat-borne pathogens circulating in Europe a systematic review spanning across 55 European countries during the years 1995-2016 was performed. The study surveyed viruses, bacteria, macroparasites and unicellular eukaryotes (protozoa). Fifty-three different infectious agents, all with zoonotic potential, were reported to be carried by commensal rats; 48 by the brown rat (Rattus norvegicus) and 20 by the black rat (R. rattus). There was a tendency for rural areas to harbour more rat-borne microbes than urban areas regarding the brown rat, but the opposite could be observed for the black rat. The study clearly indicated that an improved surveillance on wild rats is needed in Europe, and further indicated the pathogens and geographical areas where the major focus is required. For example, six zoonotic microbes seemed to be clearly more geographically widespread in Europe than others; virulent or resistant E. coli, pathogenic Leptospira spp., Hymenolepis diminuta, H. nana, Capillaria hepatica and Toxoplasma gondii.
Collapse
Affiliation(s)
- Tanja Maria Strand
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
van der Plas F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev Camb Philos Soc 2019; 94:1220-1245. [PMID: 30724447 DOI: 10.1111/brv.12499] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/10/2023]
Abstract
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non-manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real-world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well-being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.
Collapse
Affiliation(s)
- Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| |
Collapse
|
37
|
Marklewitz M, Junglen S. Evolutionary and ecological insights into the emergence of arthropod-borne viruses. Acta Trop 2019; 190:52-58. [PMID: 30339799 DOI: 10.1016/j.actatropica.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023]
Abstract
The emergence of arthropod-borne viruses (arboviruses) is of global concern as they can rapidly spread across countries and to new continents as the recent examples of chikungunya virus and Zika virus have demonstrated. Whereas the global movement patterns of emerging arboviruses are comparatively well studied, there is little knowledge on initial emergence processes that enable sylvatic (enzootic) viruses to leave their natural amplification cycle and infect humans or livestock, often also involving infection of anthropophilic vector species. Emerging arboviruses almost exclusively originate in highly biodiverse ecosystems of tropical countries. Changes in host population diversity and density can affect pathogen transmission patterns and are likely to influence arbovirus emergence processes. This review focuses on concepts from disease ecology, explaining the interplay between biodiversity and pathogen emergence.
Collapse
Affiliation(s)
- Marco Marklewitz
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany
| | - Sandra Junglen
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
38
|
Sanabria Malagón C, Vargas Bernal E. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases. Bull Math Biol 2018; 81:4470-4483. [PMID: 30535844 DOI: 10.1007/s11538-018-00543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/28/2018] [Indexed: 11/25/2022]
Abstract
In this paper, we propose a method to study a general vector-host mathematical model in order to explain how the changes in biodiversity could influence the dynamics of vector-borne diseases. We find that under the assumption of frequency-dependent transmission, i.e., the assumption that the number of contacts is diluted by the total population of hosts, the presence of a competent host is a necessary condition for the existence of an endemic state. In addition, we obtain that in the case of an endemic disease with a unique competent and resilient host, an increase in its density amplifies the disease.
Collapse
|
39
|
Seroprevalence and risk factors of lumpy skin disease in Ethiopia. Prev Vet Med 2018; 160:99-104. [DOI: 10.1016/j.prevetmed.2018.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 11/17/2022]
|
40
|
West Nile virus transmission and human infection risk in Veneto (Italy): a modelling analysis. Sci Rep 2018; 8:14005. [PMID: 30228340 PMCID: PMC6143586 DOI: 10.1038/s41598-018-32401-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
An intensified and continuous West Nile virus (WNV) spread across northern Italy has been observed since 2008, which caused more than one hundred reported human infections until 2016. Veneto is one of the Italian regions where WNV is considered endemic, and the greatest intensity of circulation was observed during 2013 and 2016. By using entomological data collected across the region in those years, we calibrated a temperature-driven mathematical model through a Bayesian approach that simulates the WNV infection in an avian population with seasonal demography. We considered two alternative routes of life cycle re-activation of the virus at the beginning of each vector breeding season: in the first one the virus is maintained by infected birds, in the other by diapausing mosquitoes previously infected. Afterwards, we computed seasonal risk curves for human infection and quantified how they translate into reported symptomatic cases. According to our results, WNV is more likely to be re-activated each year via previously infected mosquitoes. The highest probability of human infection is expected to occur in August, consistently with observations. Our epidemiological estimates can be of particular interest for public health authorities, to support decisions in term of designing efficient surveillance plans and preventive measures.
Collapse
|
41
|
Aerts R, Honnay O, Van Nieuwenhuyse A. Biodiversity and human health: mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br Med Bull 2018; 127:5-22. [PMID: 30007287 DOI: 10.1093/bmb/ldy021] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/13/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Natural environments and green spaces provide ecosystem services that enhance human health and well-being. They improve mental health, mitigate allergies and reduce all-cause, respiratory, cardiovascular and cancer mortality. The presence, accessibility, proximity and greenness of green spaces determine the magnitude of their positive health effects, but the role of biodiversity (including species and ecosystem diversity) within green spaces remains underexplored. This review describes mechanisms and evidence of effects of biodiversity in nature and green spaces on human health. SOURCES OF DATA We identified studies listed in PubMed and Web of Science using combinations of keywords including 'biodiversity', 'diversity', 'species richness', 'human health', 'mental health' and 'well-being' with no restrictions on the year of publication. Papers were considered for detailed evaluation if they were written in English and reported data on levels of biodiversity and health outcomes. AREAS OF AGREEMENT There is evidence for positive associations between species diversity and well-being (psychological and physical) and between ecosystem diversity and immune system regulation. AREAS OF CONCERN There is a very limited number of studies that relate measured biodiversity to human health. There is more evidence for self-reported psychological well-being than for well-defined clinical outcomes. High species diversity has been associated with both reduced and increased vector-borne disease risk. GROWING POINTS Biodiversity supports ecosystem services mitigating heat, noise and air pollution, which all mediate the positive health effects of green spaces, but direct and long-term health outcomes of species diversity have been insufficiently studied so far. AREAS TIMELY FOR RESEARCH Additional research and newly developed methods are needed to quantify short- and long-term health effects of exposure to perceived and objectively measured species diversity, including health effects of nature-based solutions and exposure to microbiota.
Collapse
Affiliation(s)
- Raf Aerts
- Department of Chemical and Physical Health Risks, Unit Health Impact Assessment, Sciensano (Belgian Institute of Health), Brussels, Belgium.,Department of Earth and Environmental Sciences, Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biology, Division Ecology, Evolution and Biodiversity Conservation, University of Leuven (KU Leuven), Leuven, Belgium
| | - Olivier Honnay
- Department of Biology, Division Ecology, Evolution and Biodiversity Conservation, University of Leuven (KU Leuven), Leuven, Belgium
| | - An Van Nieuwenhuyse
- Department of Chemical and Physical Health Risks, Unit Health Impact Assessment, Sciensano (Belgian Institute of Health), Brussels, Belgium.,Department of Public Health and Primary Care, Division Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
42
|
Tran A, L'Ambert G, Balança G, Pradier S, Grosbois V, Balenghien T, Baldet T, Lecollinet S, Leblond A, Gaidet-Drapier N. An Integrative Eco-Epidemiological Analysis of West Nile Virus Transmission. ECOHEALTH 2017; 14:474-489. [PMID: 28584951 PMCID: PMC5662683 DOI: 10.1007/s10393-017-1249-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
West Nile disease, caused by the West Nile virus (WNV), is a mosquito-borne zoonotic disease affecting humans and horses that involves wild birds as amplifying hosts. The mechanisms of WNV transmission remain unclear in Europe where the occurrence of outbreaks has dramatically increased in recent years. We used a dataset on the competence, distribution, abundance, diversity and dispersal of wild bird hosts and mosquito vectors to test alternative hypotheses concerning the transmission of WNV in Southern France. We modelled the successive processes of introduction, amplification, dispersal and spillover of WNV to incidental hosts based on host-vector contact rates on various land cover types and over four seasons. We evaluated the relative importance of the mechanisms tested using two independent serological datasets of WNV antibodies collected in wild birds and horses. We found that the same transmission processes (seasonal virus introduction by migratory birds, Culex modestus mosquitoes as amplifying vectors, heterogeneity in avian host competence, absence of 'dilution effect') best explain the spatial variations in WNV seroprevalence in the two serological datasets. Our results provide new insights on the pathways of WNV introduction, amplification and spillover and the contribution of bird and mosquito species to WNV transmission in Southern France.
Collapse
Affiliation(s)
- Annelise Tran
- CIRAD, UPR AGIRs, Montpellier, France.
- CIRAD, UPR TETIS, Montpellier, France.
- CYROI, Sainte-Clotilde, Reunion Island, France.
| | | | | | - Sophie Pradier
- Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | | | | | | | | | - Agnès Leblond
- Université de Lyon, Marcy-l'Etoile, France
- INRA, Saint Genès Champanelle, France
| | | |
Collapse
|
43
|
Hosseini PR, Mills JN, Prieur-Richard AH, Ezenwa VO, Bailly X, Rizzoli A, Suzán G, Vittecoq M, García-Peña GE, Daszak P, Guégan JF, Roche B. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160129. [PMID: 28438918 PMCID: PMC5413877 DOI: 10.1098/rstb.2016.0129] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/12/2022] Open
Abstract
Biodiversity is of critical value to human societies, but recent evidence that biodiversity may mitigate infectious-disease risk has sparked controversy among researchers. The majority of work on this topic has focused on direct assessments of the relationship between biodiversity and endemic-pathogen prevalence, without disentangling intervening mechanisms; thus study outcomes often differ, fuelling more debate. Here, we suggest two critical changes to the approach researchers take to understanding relationships between infectious disease, both endemic and emerging, and biodiversity that may help clarify sources of controversy. First, the distinct concepts of hazards versus risks need to be separated to determine how biodiversity and its drivers may act differently on each. This distinction is particularly important since it illustrates that disease emergence drivers in humans could be quite different to the general relationship between biodiversity and transmission of endemic pathogens. Second, the interactive relationship among biodiversity, anthropogenic change and zoonotic disease risk, including both direct and indirect effects, needs to be recognized and accounted for. By carefully disentangling these interactions between humans' activities and pathogen circulation in wildlife, we suggest that conservation efforts could mitigate disease risks and hazards in novel ways that complement more typical disease control efforts.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.
Collapse
Affiliation(s)
- Parviez R Hosseini
- EcoHealth Alliance, 460 West 34th Street - 17th Floor, New York, NY 10001-2320, USA
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, 1335 Springdale Road, Northeast, Atlanta, GA 30306, USA
| | | | - Vanessa O Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 140 East Green Street, Athens, GA 30602-2202, USA
| | - Xavier Bailly
- INRA, UR346 Epidémiologie Animale, 63122 Saint Genès Champanelle, France
| | - Annapaola Rizzoli
- Edmund Mach Foundation, Research and Innovation Centre, 1 Via Edmondo Mach, 38010 San Michele all'Adige, Trentino, Italy
| | - Gerardo Suzán
- Departamento de Etología y Fauna Silvestre, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, C.P. 04510, Mexico
- FutureEarth Programme, OneHealth Core Research Programme Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
| | - Marion Vittecoq
- Centre de recherche de la Tour du Valat, Le Sambuc, 13200 Arles, France
| | - Gabriel E García-Peña
- Departamento de Etología y Fauna Silvestre, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, C.P. 04510, Mexico
- UMR MIVEGEC CNRS 5290/IRD 224/Université de Montpellier, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- FutureEarth Programme, OneHealth Core Research Programme Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
- Centre de Synthèse et d'Analyse sur la Biodiversité -CESAB. Bâtiment Henri Poincaré, Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34th Street - 17th Floor, New York, NY 10001-2320, USA
- FutureEarth Programme, OneHealth Core Research Programme Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
| | - Jean-François Guégan
- UMR MIVEGEC CNRS 5290/IRD 224/Université de Montpellier, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- FutureEarth Programme, OneHealth Core Research Programme Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
| | - Benjamin Roche
- UMI IRD/UPMC 209 UMMISCO, 32, avenue Henri Varagnat, 93143 Bondy Cedex, France
| |
Collapse
|
44
|
Levine RS, Hedeen DL, Hedeen MW, Hamer GL, Mead DG, Kitron UD. Avian species diversity and transmission of West Nile virus in Atlanta, Georgia. Parasit Vectors 2017; 10:62. [PMID: 28159002 PMCID: PMC5291963 DOI: 10.1186/s13071-017-1999-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background The dilution effect is the reduction in vector-borne pathogen transmission associated with the presence of diverse potential host species, some of which are incompetent. It is popularized as the notion that increased biodiversity leads to decreased rates of disease. West Nile virus (WNV) is an endemic mosquito-borne virus in the United States that is maintained in a zoonotic cycle involving various avian host species. In Atlanta, Georgia, substantial WNV presence in the vector and host species has not translated into a high number of human cases. Methods To determine whether a dilution effect was contributing to this reduced transmission, we characterized the host species community composition and performed WNV surveillance of hosts and vectors in urban Atlanta between 2010 and 2011. We tested the relationship between host diversity and both host seroprevalence and vector infection rates using a negative binomial generalized linear mixed model. Results Regardless of how we measured host diversity or whether we considered host seroprevalence and vector infection rates as predictor variables or outcome variables, we did not detect a dilution effect. Rather, we detected an amplification effect, in which increased host diversity resulted in increased seroprevalence or infection rates; this is the first empirical evidence for this effect in a mosquito-borne system. Conclusions We suggest that this effect may be driven by an over-abundance of moderately- to poorly-competent host species, such as northern cardinals and members of the Mimid family, which cause optimal hosts to become rarer and present primarily in species-rich areas. Our results support the notion that dilution or amplification effects depend more on the identities of the species comprising the host community than on the absolute diversity of hosts. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-1999-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca S Levine
- Department of Environmental Sciences, Emory University, 400 Dowman Drive, Math and Science Center 5th Floor, Suite E510, Atlanta, GA, 30322, USA.
| | - David L Hedeen
- Georgia Department of Transportation, Office of Environmental Services, One Georgia Center, 600 West Peachtree Street NW, Atlanta, GA, 30308, USA
| | - Meghan W Hedeen
- Georgia Department of Transportation, Office of Environmental Services, One Georgia Center, 600 West Peachtree Street NW, Atlanta, GA, 30308, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University College of Agriculture and Life Sciences, TAMU 2475, College Station, TX, 77843, USA
| | - Daniel G Mead
- University of Georgia College of Veterinary Medicine, Southeastern Cooperative Wildlife Disease Study, 589 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Uriel D Kitron
- Department of Environmental Sciences, Emory University, 400 Dowman Drive, Math and Science Center 5th Floor, Suite E510, Atlanta, GA, 30322, USA
| |
Collapse
|
45
|
Marteis LS, Natal D, Sallum MAM, Medeiros‐Sousa AR, Oliveira TMP, La Corte R. Mosquitoes of the Caatinga: 1. Adults stage survey and the emerge of seven news species endemic of a dry tropical forest in Brazil. Acta Trop 2017; 166:193-201. [PMID: 27876648 DOI: 10.1016/j.actatropica.2016.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
The Caatinga is the least known Brazilian biome in terms of the diversity of Culicidae. No systematic study of the diversity or ecology of the mosquitoes of this biome is available, despite the importance of vector diseases in Brazil. The present study addressed the mosquito biodiversity in the Caatinga biome by sampling adult populations. Specimens were sampled monthly from March 2013 to September 2014 in a Caatinga conservation unit located in the Brazilian semiarid zone. Mosquito collections were carried out in Shannon traps from late afternoon to early evening, and manual aspiration was used to capture diurnal species as well. A total of 4,692 mosquitoes were collected. The most dominant and constant species were all undescribed species belonging to the genera Wyeomyia and Runchomyia, which together represented 80% of the specimens. The most abundant species of epidemiological importance was Haemagogus (Con.) leucocelaenus. The abundance of mosquitoes was positively associated with the relative humidity and temperature recorded during the month preceding the collection date. In the Caatinga, the diversity of adult mosquitoes was associated with the availability (quantity and diversity) of natural larval habitats found in the different phytophysiognomies of the biome, which vary according to temperature and humidity. The number of species unknown to science reflects the levels of endemism that exist in the study area, and reinforces the need to further taxonomic investigation in the biome.
Collapse
|
46
|
Lockaby G, Noori N, Morse W, Zipperer W, Kalin L, Governo R, Sawant R, Ricker M. Climatic, ecological, and socioeconomic factors associated with West Nile virus incidence in Atlanta, Georgia, U.S.A. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:232-243. [PMID: 27860011 DOI: 10.1111/jvec.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/17/2016] [Indexed: 05/14/2023]
Abstract
The integrated effects of the many risk factors associated with West Nile virus (WNV) incidence are complex and not well understood. We studied an array of risk factors in and around Atlanta, GA, that have been shown to be linked with WNV in other locations. This array was comprehensive and included climate and meteorological metrics, vegetation characteristics, land use / land cover analyses, and socioeconomic factors. Data on mosquito abundance and WNV mosquito infection rates were obtained for 58 sites and covered 2009-2011, a period following the combined storm water - sewer overflow remediation in that city. Risk factors were compared to mosquito abundance and the WNV vector index (VI) using regression analyses individually and in combination. Lagged climate variables, including soil moisture and temperature, were significantly correlated (positively) with vector index as were forest patch size and percent pine composition of patches (both negatively). Socioeconomic factors that were most highly correlated (positively) with the VI included the proportion of low income households and homes built before 1960 and housing density. The model selected through stepwise regression that related risk factors to the VI included (in the order of decreasing influence) proportion of houses built before 1960, percent of pine in patches, and proportion of low income households.
Collapse
Affiliation(s)
- Graeme Lockaby
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Navideh Noori
- University of Georgia, Odum School of Ecology, Athens, GA, U.S.A
| | - Wayde Morse
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Wayne Zipperer
- USDA Forest Service Southern Research Station, Gainesville, FL, U.S.A
| | - Latif Kalin
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Robin Governo
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Rajesh Sawant
- Auburn University, School of Forestry and Wildlife Sciences, Auburn, AL, U.S.A
| | - Matthew Ricker
- University of Pennsylvania, Department of Environmental, Geographical, and Geologic Sciences, Bloomsburg, PA, U.S.A
| |
Collapse
|
47
|
Abstract
Understanding pathogen exchange among human, wildlife, and livestock populations, and the varying ecological and cultural contexts in which this exchange takes place, is a major challenge. The present review contextualizes the risk factors that result from human interactions with livestock, companion animals, animal exhibits, wildlife through nature-based tourism, and wildlife through consumption. Given their phylogenetic relatedness to humans, primates are emphasized in this discussion; primates serve as reservoirs for several human pathogens, and some human pathogens can decimate wild primate populations. Anthropologists must play a central role in understanding cultural variation in attitudes toward other species as well as perceived risks when interacting with animals. I argue that the remediation of emerging infectious diseases will be accomplished primarily through human behavioral changes rather than through efforts in pathogen discovery. Given the history of human interactions with wildlife, candid discussions on zoonotic diseases will be increasingly important for our combined survival.
Collapse
|
48
|
Little E, Campbell SR, Shaman J. Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York. Parasit Vectors 2016; 9:443. [PMID: 27507279 PMCID: PMC4979155 DOI: 10.1186/s13071-016-1720-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/24/2016] [Indexed: 11/24/2022] Open
Abstract
Background West Nile Virus (WNV) is an endemic public health concern in the United States that produces periodic seasonal epidemics. Underlying these outbreaks is the enzootic cycle of WNV between mosquito vectors and bird hosts. Identifying the key environmental conditions that facilitate and accelerate this cycle can be used to inform effective vector control. Results Here, we model and forecast WNV infection rates among mosquito vectors in Suffolk County, New York using readily available meteorological and hydrological conditions. We first validate a statistical model built with surveillance data between 2001 and 2009 (m09) and specify a set of new statistical models using surveillance data from 2001 to 2012 (m12). This ensemble of new models is then used to make predictions for 2013–2015, and multimodel inference is employed to provide a formal probabilistic interpretation across the disparate individual model predictions. The findings of the m09 and m12 models align; with the ensemble of m12 models indicating an association between warm, dry early spring (April) conditions and increased annual WNV infection rates in Culex mosquitoes. Conclusions This study shows that real-time climate information can be used to predict WNV infection rates in Culex mosquitoes prior to its seasonal peak and before WNV spillover transmission risk to humans is greatest. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1720-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eliza Little
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Scott R Campbell
- Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, NY, USA
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
49
|
Abstract
The dilution effect, that high host species diversity can reduce disease risk, has attracted much attention in the context of global biodiversity decline and increasing disease emergence. Recent studies have criticized the generality of the dilution effect and argued that it only occurs under certain circumstances. Nevertheless, evidence for the existence of a dilution effect was reported in about 80% of the studies that addressed the diversity-disease relationship, and a recent meta-analysis found that the dilution effect is widespread. We here review supporting and critical studies, point out the causes underlying the current disputes. The dilution is expected to be strong when the competent host species tend to remain when species diversity declines, characterized as a negative relationship between species' reservoir competence and local extinction risk. We here conclude that most studies support a negative competence-extinction relationship. We then synthesize the current knowledge on how the diversity-disease relationship can be modified by particular species in community, by the scales of analyses, and by the disease risk measures. We also highlight the complex role of habitat fragmentation in the diversity-disease relationship from epidemiological, evolutionary and ecological perspectives, and construct a synthetic framework integrating these three perspectives. We suggest that future studies should test the diversity-disease relationship across different scales and consider the multiple effects of landscape fragmentation.
Collapse
|
50
|
Parham PE, Waldock J, Christophides GK, Hemming D, Agusto F, Evans KJ, Fefferman N, Gaff H, Gumel A, LaDeau S, Lenhart S, Mickens RE, Naumova EN, Ostfeld RS, Ready PD, Thomas MB, Velasco-Hernandez J, Michael E. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2013.0551. [PMID: 25688012 DOI: 10.1098/rstb.2013.0551] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10-15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector-pathogen systems.
Collapse
Affiliation(s)
- Paul E Parham
- Department of Public Health and Policy, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GL, UK Grantham Institute for Climate Change, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Joanna Waldock
- The Cyprus Institute, Nicosia, Cyprus Imperial College London, London SW7 2AZ, UK
| | | | - Deborah Hemming
- Meteorological Office Hadley Centre, UK Meteorological Office, Fitzroy Road, Exeter, EX1 3PB, UK
| | - Folashade Agusto
- Department of Mathematics, Austin Peay State University, Clarksville, TN 37044, USA
| | - Katherine J Evans
- Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Nina Fefferman
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Holly Gaff
- Department of Biological Sciences, Old Dominium University, Norfolk, VA 23529, USA
| | - Abba Gumel
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1904, USA School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069-7100, USA
| | - Shannon LaDeau
- Cary Institute of Ecosystem Studies, PO Box AB, Millbrook, NY 12545-0129, USA
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, USA
| | - Ronald E Mickens
- Department of Physics, Clark Atlanta University, PO Box 172, Atlanta, GA 30314, USA
| | - Elena N Naumova
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| | - Richard S Ostfeld
- Cary Institute of Ecosystem Studies, PO Box AB, Millbrook, NY 12545-0129, USA
| | - Paul D Ready
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Matthew B Thomas
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jorge Velasco-Hernandez
- Universidad Nacional Autnoma de Mexico Institute of Mathematics Mexico City, Distrito Federal, Mexico
| | - Edwin Michael
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| |
Collapse
|