1
|
Hassall RM, Holding M, Medlock JM, Asaaga FA, Vanwambeke SO, Hewson R, Purse BV. Identifying hotspots and risk factors for tick-borne encephalitis virus emergence at its range margins to guide interventions, Great Britain. Euro Surveill 2025; 30:2400441. [PMID: 40183125 PMCID: PMC11969960 DOI: 10.2807/1560-7917.es.2025.30.13.2400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/12/2024] [Indexed: 04/05/2025] Open
Abstract
BackgroundTick-borne encephalitis virus (TBEV) is expanding its range in Europe, with increasing human cases reported. Since the first detection of TBEV in ticks in the United Kingdom in 2019, one possible, two probable and two confirmed autochthonous cases in humans have been reported.AimWe aimed to understand the environmental and ecological factors limiting TBEV foci at their range edge and predict suitable areas for TBEV establishment across Great Britain (GB) by modelling patterns of exposure to TBEV in deer.MethodsWe developed spatial risk models for TBEV by integrating data between 2018 and 2021 on antibodies against tick-borne flavivirus in fallow, muntjac, red and roe deer with data on potential risk factors, including climate, land use, forest connectivity and distributions of bank voles and yellow-necked mice. We overlayed modelled suitability for TBEV exposure across GB with estimations on number of visitors to predict areas of high human exposure risk.ResultsModels for fallow, muntjac and roe deer performed well in independent validation (Boyce index > 0.92). Probable exposure to TBEV was more likely to occur in sites with a greater percentage cover of coniferous woodland, with multiple deer species, higher winter temperatures and rates of spring warming.ConclusionThe resulting TBEV suitability maps can be used by public health bodies in GB to tailor surveillance and identify probable high-risk areas for human exposure to guide awareness raising and vaccination policy. Combining animal surveillance and iterative spatial risk modelling can enhance preparedness in areas of tick-borne disease emergence.
Collapse
Affiliation(s)
- Richard Mj Hassall
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, United Kingdom
| | - Maya Holding
- Virology and Pathogenesis Group, Specialist Microbiology and Laboratories, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Emerging and Zoonotic Infections at the University of Liverpool, Liverpool, United Kingdom
| | - Jolyon M Medlock
- Medical Entomology and Zoonoses Ecology, Climate Change and Health Security, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Festus A Asaaga
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, United Kingdom
| | - Sophie O Vanwambeke
- Université catholique de Louvain (UCLouvain), Earth & Life Institute, Earth and Climate Research Center, Louvain-la-Neuve, Belgium
| | - Roger Hewson
- Virology and Pathogenesis Group, Specialist Microbiology and Laboratories, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Bethan V Purse
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, United Kingdom
| |
Collapse
|
2
|
Bago J, Bjedov L, Vucelja M, Tomljanović K, Cetinić Balent N, Zember S, Margaletić J, Đaković Rode O. The Influence of Biogeographic Diversity, Climate and Wildlife on the Incidence of Tick-Borne Encephalitis in Croatia. Viruses 2025; 17:266. [PMID: 40007021 PMCID: PMC11860385 DOI: 10.3390/v17020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Tick-borne encephalitis (TBE) is a common arbovirus infection in Croatia. The aim of the study was to analyse 17 years of data on TBE seroprevalence and acute TBE cases in correlation with winter temperature, precipitation and wildlife abundance to identify possible patterns that may be predictive indicators of TBE incidence. Clinical diagnosis of TBE was confirmed by determining IgM and IgG anti-TBE antibodies. Of the 19,094 analysed patients, 4.2% had acute TBE, significantly more often in older age (p < 0.001) and male gender (p < 0.001). Overall seroprevalence of TBE among the tested population was 5.8% and varied annually from 2.8% to 10.7%. The mean acute TBE incidence rate was 1.1/100,000 population with significant regional differences: 1.7/100,000 in the continental vs. 0.2/100,000 and 0.5/100,000 in the Mediterranean and Alpine regions, respectively. A particularly high incidence of 3.1/100,000 was recorded in northern Croatia. TBE displayed a seasonal pattern, peaking in June and July. Moderate negative correlations were observed between TBE acute cases and winter temperatures from December to February (r = -0.461; p = 0.062), relative rodent abundance (r = -0.414; p = 0.098) and yearly precipitation from one year before (r = -0.401; p = 0.123). The analysis showed that more acute TBE cases are recorded after a warmer winter and a negative correlation between the abundance of forest Apodemus sp. and the number of TBE cases in the same year.
Collapse
Affiliation(s)
- Josip Bago
- Public Health Institute of Varaždin County, 42000 Varaždin, Croatia;
| | - Linda Bjedov
- Faculty of Forestry and Wood Technology, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (M.V.); (K.T.); (J.M.)
| | - Marko Vucelja
- Faculty of Forestry and Wood Technology, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (M.V.); (K.T.); (J.M.)
| | - Kristijan Tomljanović
- Faculty of Forestry and Wood Technology, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (M.V.); (K.T.); (J.M.)
| | - Nataša Cetinić Balent
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (N.C.B.); (S.Z.)
| | - Sanja Zember
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (N.C.B.); (S.Z.)
| | - Josip Margaletić
- Faculty of Forestry and Wood Technology, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (M.V.); (K.T.); (J.M.)
| | - Oktavija Đaković Rode
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, 10000 Zagreb, Croatia; (N.C.B.); (S.Z.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Pascoe EL, Bakker JW, Wijburg SR, de Vries A, Sprong H, Marcantonio M, Lang D, Dobler G, Köhler CF, Esser HJ, Koenraadt CJ. Multiple variants of tick-borne encephalitis virus in voles, mice and ticks, the Netherlands, 2021 to 2023. Euro Surveill 2025; 30:2400247. [PMID: 39885821 PMCID: PMC11920782 DOI: 10.2807/1560-7917.es.2025.30.4.2400247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/30/2024] [Indexed: 02/01/2025] Open
Abstract
BackgroundTick-borne encephalitis (TBE) can be a severe neurological disease. Identifying ecological factors that may facilitate tick-borne encephalitis virus (TBEV) circulation in the Netherlands could improve awareness and detection.AimWe aimed to identify ecological factors affecting TBEV circulation in the Netherlands and to determine if there is sustained circulation and spread of the virus.MethodsBetween June and September 2021, rodents and ticks from three previously TBEV-positive locations were tested for TBEV by PCR. We sequenced TBEV and compared the sequences with previous and subsequent sequences from the Netherlands and other countries to investigate the spread of TBEV-variants.ResultsWe captured 383 rodents, 928 feeding ticks and 1,571 questing Ixodes ticks and detected TBEV from six (three Apodemus sylvaticus and three Clethrionomys glareolus) (2.9%) of 206 tested rodents and two (0.9%) of 215 questing tick pools. Detection of TBEV was associated with questing tick density (Mann-Whitney U test = 81.5; 95% confidence interval (CI): - 3.7-6.3 × 10-5; p = 0.05). Tick larvae (odds ratio (OR) = 9.0; 95% CI: 2.8-38.2; p < 0.01) and nymphs (OR = 3.8; 95% CI: 1.3-13.6; p < 0.01) were more frequent on A. sylvaticus than on C. glareolus. Sequence comparisons suggest multiple introductions and local circulation of TBEV but no spread among locations.ConclusionTick-borne encephalitis virus occurs in diverse woodlands in the Netherlands, posing a risk to those frequenting these areas. Surveillance for the early detection and monitoring of TBEV spread, along with public awareness campaigns on preventive measures, should continue. Recognition of TBE symptoms and supportive diagnostics should be made available nationwide.
Collapse
Affiliation(s)
- Emily L Pascoe
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Julian W Bakker
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sara R Wijburg
- Dutch Wildlife Health Centre, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ankje de Vries
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Matteo Marcantonio
- LandLife Ecospatial Labs, Mezzocorona, Italy
- Earth & Life Institute, University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Daniel Lang
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Gerhard Dobler
- Department of Infectious Diseases and Tropical Medicine, University of Munich, Munich, Germany
- Institute for Zoology, Parasitology Unit, University of Hohenheim, Stuttgart, Germany
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Clara F Köhler
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Helen J Esser
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
4
|
Takeishi M, Morikawa S, Kuwata R, Kawaminami M, Shimoda H, Isawa H, Maeda K, Yoshikawa Y. Characterization and arbovirus susceptibility of cultured CERNI cells derived from sika deer (Cervus nippon). In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00933-z. [PMID: 38961045 DOI: 10.1007/s11626-024-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024]
Abstract
Cervus nippon (sika deer) are widely distributed throughout eastern Asia. Deer possess a variety of antibodies against several zoonotic pathogens, indicating that they act as reservoir of zoonoses. In this study, we reported the characterization of cultured cells derived from sika deer and evaluated their susceptibility to arthropod-borne viruses to clarify their usefulness in virological studies. Cells derived from testicular tissue in Dulbecco's modified eagle medium with 16% fetal bovine serum started growing as primary cultured cells. The diploid cells consisted of 68 chromosomes, consistent with those of Japanese sika deer previously reported. The phylogenetic analysis showed the cells formed a robust clade with Japanese population of C. nippon, indicating that the cultured cells established in this study were originated from the Japanese sika deer. The cells immortalized by the simian virus 40 T-antigen were predominantly spindle-shaped cells exhibiting adhesive properties, and cultivated at 37°C and 5% CO2, which are common culture conditions for many mammalian cell lines. Western blotting analysis indicated that the cultured cells were multiple types of cells that coexist, including at least epithelial, fibroblast, and also Leydig cells. We confirmed that the cells have susceptibility to several arboviruses distributed in Japan: Getah virus, Japanese encephalitis virus, Oz virus, and severe fever with thrombocytopenia syndrome virus, but not to Tarumiz tick virus. From these results, the cells contribute to clarify the role of sika deer as a reservoir of zoonoses in nature and deer-associated experimental research at the cellular and molecular levels.
Collapse
Affiliation(s)
- Makoto Takeishi
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Shigeru Morikawa
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan.
| | - Mitsumori Kawaminami
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8515, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yasuhiro Yoshikawa
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| |
Collapse
|
5
|
Dagostin F, Tagliapietra V, Marini G, Ferrari G, Cervellini M, Wint W, Alexander NS, Zuccali MG, Molinaro S, Fiorito N, Dub T, Rocchini D, Rizzoli A. High habitat richness reduces the risk of tick-borne encephalitis in Europe: A multi-scale study. One Health 2024; 18:100669. [PMID: 38283833 PMCID: PMC10820641 DOI: 10.1016/j.onehlt.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Background The natural transmission cycle of tick-borne encephalitis (TBE) virus is enhanced by complex interactions between ticks and key hosts strongly connected to habitat characteristics. The diversity of wildlife host species and their relative abundance is known to affect transmission of tick-borne diseases. Therefore, in the current context of global biodiversity loss, we explored the relationship between habitat richness and the pattern of human TBE cases in Europe to assess biodiversity's role in disease risk mitigation. Methods We assessed human TBE case distribution across 879 European regions using official epidemiological data reported to The European Surveillance System (TESSy) between 2017 and 2021 from 15 countries. We explored the relationship between TBE presence and the habitat richness index (HRI1) by means of binomial regression. We validated our findings at local scale using data collected between 2017 and 2021 in 227 municipalities located in Trento and Belluno provinces, two known TBE foci in northern Italy. Findings Our results showed a significant parabolic effect of HRI on the probability of presence of human TBE cases in the European regions included in our dataset, and a significant, negative effect of HRI on the local presence of TBE in northern Italy. At both spatial scales, TBE risk decreases in areas with higher values of HRI. Interpretation To our knowledge, no efforts have yet been made to explore the relationship between biodiversity and TBE risk, probably due to the scarcity of high-resolution, large-scale data about the abundance or density of critical host species. Hence, in this study we considered habitat richness as proxy for vertebrate host diversity. The results suggest that in highly diverse habitats TBE risk decreases. Hence, biodiversity loss could enhance TBE risk for both humans and wildlife. This association is relevant to support the hypothesis that the maintenance of highly diverse ecosystems mitigates disease risk.
Collapse
Affiliation(s)
- Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Valentina Tagliapietra
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Giulia Ferrari
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco Cervellini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino, Italy
| | - William Wint
- Environmental Research Group Oxford Ltd, c/o Dept Biology, Oxford, United Kingdom
| | - Neil S. Alexander
- Environmental Research Group Oxford Ltd, c/o Dept Biology, Oxford, United Kingdom
| | | | | | | | - Timothée Dub
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Duccio Rocchini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life, Czech Republic
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
6
|
Habib J, Zenner L, Garel M, Mercier A, Poirel MT, Itty C, Appolinaire J, Amblard T, Benedetti P, Sanchis F, Benabed S, Abi Rizk G, Gibert P, Bourgoin G. Prevalence of tick-borne pathogens in ticks collected from the wild mountain ungulates mouflon and chamois in 4 regions of France. Parasite 2024; 31:21. [PMID: 38602373 PMCID: PMC11008225 DOI: 10.1051/parasite/2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
Ticks are major vectors of various pathogens of health importance, such as bacteria, viruses and parasites. The problems associated with ticks and vector-borne pathogens are increasing in mountain areas, particularly in connection with global climate change. We collected ticks (n = 2,081) from chamois and mouflon in 4 mountainous areas of France. We identified 6 tick species: Ixodes ricinus, Rhipicephalus bursa, Rh. sanguineus s.l., Haemaphysalis sulcata, H. punctata and Dermacentor marginatus. We observed a strong variation in tick species composition among the study sites, linked in particular to the climate of the sites. We then analysed 791 ticks for DNA of vector-borne pathogens: Babesia/Theileria spp., Borrelia burgdorferi s.l., Anaplasma phagocytophilum, A. marginale, A. ovis, and Rickettsia of the spotted fever group (SFG). Theileria ovis was detected only in Corsica in Rh. bursa. Babesia venatorum (2 sites), Borrelia burgdorferi s.l. (B. afzelii and B. garinii; 2 sites) and Anaplasma phagocytophilum (3 sites) were detected in I. ricinus. Anaplasma ovis was detected at one site in I. ricinus and Rh. sanguineus s.l. SFG Rickettsia were detected at all the study sites: R. monacensis and R. helvetica in I. ricinus at the 3 sites where this tick is present; R. massiliae in Rh. sanguineus s.l. (1 site); and R. hoogstraalii and Candidatus R. barbariae in Rh. bursa in Corsica. These results show that there is a risk of tick-borne diseases for humans and domestic and wild animals frequenting these mountain areas.
Collapse
Affiliation(s)
- Jad Habib
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
- Université Libanaise, Faculté d’Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire 3 rue de l'université Beyrouth Lebanon
| | - Lionel Zenner
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Mathieu Garel
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Antoine Mercier
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Marie-Thérèse Poirel
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Christian Itty
- Office Français de la Biodiversité, Service Appui aux Acteurs et Mobilisation des Territoires, Direction Régionale Occitanie 7 rue du Four, Fagairolles 34610 Castanet-le-Haut France
| | - Joël Appolinaire
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Thibaut Amblard
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Pierre Benedetti
- Office Français de la Biodiversité, Unité Espaces Naturels de Corse Funtanella 20218 Moltifao France
| | - Frédéric Sanchis
- Office Français de la Biodiversité, Unité Espaces Naturels de Corse Funtanella 20218 Moltifao France
| | - Slimania Benabed
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| | - Georges Abi Rizk
- Université Libanaise, Faculté d’Agronomie et de Médecine Vétérinaire, Département de Médecine Vétérinaire 3 rue de l'université Beyrouth Lebanon
| | - Philippe Gibert
- Office Français de la Biodiversité, Service Anthropisation et Fonctionnement des Écosystèmes Terrestres 5 allée de Bethléem, Z.I. Mayencin 38610 Gières France
| | - Gilles Bourgoin
- Université de Lyon, VetAgro Sup – Campus Vétérinaire de Lyon, Laboratoire de Parasitologie Vétérinaire 1 avenue Bourgelat BP 83 69280 Marcy-l’Etoile France
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive 43 bd du 11 novembre 1918 69622 Villeurbanne France
| |
Collapse
|
7
|
Boulanger N. [Anthropization and tick-borne diseases: the example of Lyme borreliosis]. C R Biol 2024; 346:35-41. [PMID: 37655860 DOI: 10.5802/crbiol.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 09/02/2023]
Abstract
Ticks and tick-borne diseases are on the rise throughout the world. The reasons are multifactorial but all associated with human practices, including climate change and socio-economic and eco systemic changes. In the northern hemisphere, Lyme borreliosis and its vector, the tick belonging to the Ixodes ricinus complex, are particularly studied. Changes in forestry and the expansion of certain wild ungulates since the Second World War could explain the increasing presence of this tick in our environment. As it is likely to transmit other microorganisms potentially pathogenic to humans, an integrated multidisciplinary approach to identify human practices promoting its expansion is critical to control the (re)emergence of infectious diseases. Other ticks also benefit from the same anthropised context to increase their numbers in the environment.
Collapse
|
8
|
Jore S, Viljugrein H, Hjertqvist M, Dub T, Mäkelä H. Outdoor recreation, tick borne encephalitis incidence and seasonality in Finland, Norway and Sweden during the COVID-19 pandemic (2020/2021). Infect Ecol Epidemiol 2023; 13:2281055. [PMID: 38187169 PMCID: PMC10769561 DOI: 10.1080/20008686.2023.2281055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
During the pandemic outdoor activities were encouraged to mitigate transmission risk while providing safe spaces for social interactions. Human behaviour, which may favour or disfavour, contact rates between questing ticks and humans, is a key factor impacting tick-borne encephalitis (TBE) incidence. We analyzed annual and weekly TBE cases in Finland, Norway and Sweden from 2010 to 2021 to assess trend, seasonality, and discuss changes in human tick exposure imposed by COVID-19. We compared the pre-pandemic incidence (2010-2019) with the pandemic incidence (2020-2021) by fitting a generalized linear model (GLM) to incidence data. Pre-pandemic incidence was 1.0, 0.29 and 2.8 for Finland, Norway and Sweden, respectively, compared to incidence of 2.2, 1.0 and 3.9 during the pandemic years. However, there was an increasing trend for all countries across the whole study period. Therefore, we predicted the number of cases in 2020/2021 based on a model fitted to the annual cases in 2010-2019. The incidences during the pandemic were 1.3 times higher for Finland, 1.7 times higher for Norway and no difference for Sweden. When social restrictions were enforced to curb the spread of SARS-CoV-2 there were profound changes in outdoor recreational behavior. Future consideration of public health interventions that promote outdoor activities may increase exposure to vector-borne diseases.
Collapse
Affiliation(s)
- Solveig Jore
- Zoonotic, Food & Waterborne Infections, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Hildegunn Viljugrein
- Norwegian Veterinary Institute, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, Norway
| | - Marika Hjertqvist
- Department of Communicable Disease Control and Health Protection, Public Health Agency of Sweden, Solna, Sweden
| | - Timothée Dub
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Henna Mäkelä
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
9
|
Dagostin F, Tagliapietra V, Marini G, Cataldo C, Bellenghi M, Pizzarelli S, Cammarano RR, Wint W, Alexander NS, Neteler M, Haas J, Dub T, Busani L, Rizzoli A. Ecological and environmental factors affecting the risk of tick-borne encephalitis in Europe, 2017 to 2021. Euro Surveill 2023; 28:2300121. [PMID: 37855903 PMCID: PMC10588310 DOI: 10.2807/1560-7917.es.2023.28.42.2300121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/11/2023] [Indexed: 10/20/2023] Open
Abstract
BackgroundTick-borne encephalitis (TBE) is a disease which can lead to severe neurological symptoms, caused by the TBE virus (TBEV). The natural transmission cycle occurs in foci and involves ticks as vectors and several key hosts that act as reservoirs and amplifiers of the infection spread. Recently, the incidence of TBE in Europe has been rising in both endemic and new regions.AimIn this study we want to provide comprehensive understanding of the main ecological and environmental factors that affect TBE spread across Europe.MethodsWe searched available literature on covariates linked with the circulation of TBEV in Europe. We then assessed the best predictors for TBE incidence in 11 European countries by means of statistical regression, using data on human infections provided by the European Surveillance System (TESSy), averaged between 2017 and 2021.ResultsWe retrieved data from 62 full-text articles and identified 31 different covariates associated with TBE occurrence. Finally, we selected eight variables from the best model, including factors linked to vegetation cover, climate, and the presence of tick hosts.DiscussionThe existing literature is heterogeneous, both in study design and covariate types. Here, we summarised and statistically validated the covariates affecting the variability of TBEV across Europe. The analysis of the factors enhancing disease emergence is a fundamental step towards the identification of potential hotspots of viral circulation. Hence, our results can support modelling efforts to estimate the risk of TBEV infections and help decision-makers implement surveillance and prevention campaigns.
Collapse
Affiliation(s)
- Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Valentina Tagliapietra
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Claudia Cataldo
- Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Bellenghi
- Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Scilla Pizzarelli
- Knowledge Unit (Documentation, Library), Istituto Superiore di Sanità, Rome, Italy
| | | | - William Wint
- Environmental Research Group Oxford Ltd, Oxford, United Kingdom
| | | | | | | | - Timothée Dub
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Luca Busani
- Centre for Gender-specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| |
Collapse
|
10
|
Grassi L, Drigo M, Zelená H, Pasotto D, Cassini R, Mondin A, Franzo G, Tucciarone CM, Ossola M, Vidorin E, Menandro ML. Wild ungulates as sentinels of flaviviruses and tick-borne zoonotic pathogen circulation: an Italian perspective. BMC Vet Res 2023; 19:155. [PMID: 37710273 PMCID: PMC10500747 DOI: 10.1186/s12917-023-03717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Vector-borne zoonotic diseases are a concerning issue in Europe. Lyme disease and tick-borne encephalitis virus (TBEV) have been reported in several countries with a large impact on public health; other emerging pathogens, such as Rickettsiales, and mosquito-borne flaviviruses have been increasingly reported. All these pathogens are linked to wild ungulates playing roles as tick feeders, spreaders, and sentinels for pathogen circulation. This study evaluated the prevalence of TBEV, Borrelia burgdorferi sensu lato, Rickettsia spp., Ehrlichia spp., and Coxiella spp. by biomolecular screening of blood samples and ticks collected from wild ungulates. Ungulates were also screened by ELISA and virus neutralization tests for flaviviral antibody detection. RESULTS A total of 274 blood samples were collected from several wild ungulate species, as well as 406 Ixodes ricinus, which were feeding on them. Blood samples tested positive for B. burgdorferi s.l. (1.1%; 0-2.3%) and Rickettsia spp. (1.1%; 0-2.3%) and showed an overall flaviviral seroprevalence of 30.6% (22.1-39.2%): 26.1% (17.9-34.3%) for TBEV, 3.6% (0.1-7.1%) for Usutu virus and 0.9% (0-2.7%) for West Nile virus. Ticks were pooled when possible and yielded 331 tick samples that tested positive for B. burgdorferi s.l. (8.8%; 5.8-11.8%), Rickettsia spp. (26.6%; 21.8-31.2%) and Neoehrlichia mikurensis (1.2%; 0-2.4%). TBEV and Coxiella spp. were not detected in either blood or tick samples. CONCLUSIONS This research highlighted a high prevalence of several tick-borne zoonotic pathogens and high seroprevalence for flaviviruses in both hilly and alpine areas. For the first time, an alpine chamois tested positive for anti-TBEV antibodies. Ungulate species are of particular interest due to their sentinel role in flavivirus circulation and their indirect role in tick-borne diseases and maintenance as Ixodes feeders and spreaders.
Collapse
Affiliation(s)
- Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Hana Zelená
- Department of Virology, Institute of Public Health, Ostrava, Czech Republic
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Rudi Cassini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Alessandra Mondin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Martina Ossola
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Elena Vidorin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università, 16, Legnaro, PD 35020 Italy
| |
Collapse
|
11
|
Marini G, Tagliapietra V, Cristofolini F, Cristofori A, Dagostin F, Zuccali MG, Molinaro S, Gottardini E, Rizzoli A. Correlation between airborne pollen data and the risk of tick-borne encephalitis in northern Italy. Sci Rep 2023; 13:8262. [PMID: 37217780 DOI: 10.1038/s41598-023-35478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Tick-borne encephalitis (TBE) is caused by a flavivirus that infects animals including humans. In Europe, the TBE virus circulates enzootically in natural foci among ticks and rodent hosts. The abundance of ticks depends on the abundance of rodent hosts, which in turn depends on the availability of food resources, such as tree seeds. Trees can exhibit large inter-annual fluctuations in seed production (masting), which influences the abundance of rodents the following year, and the abundance of nymphal ticks two years later. Thus, the biology of this system predicts a 2-year time lag between masting and the incidence of tick-borne diseases such as TBE. As airborne pollen abundance is related to masting, we investigated whether inter-annual variation in pollen load could be directly correlated with inter-annual variation in the incidence of TBE in human populations with a 2-year time lag. We focused our study on the province of Trento (northern Italy), where 206 TBE cases were notified between 1992 and 2020. We tested the relationship between TBE incidence and pollen load collected from 1989 to 2020 for 7 different tree species common in our study area. Through univariate analysis we found that the pollen quantities recorded two years prior for two tree species, hop-hornbeam (Ostrya carpinifolia) and downy oak (Quercus pubescens), were positively correlated with TBE emergence (R2 = 0.2) while a multivariate model with both tree species better explained the variation in annual TBE incidence (R2 = 0.34). To the best of our knowledge, this is the first attempt at quantifying the correlation between pollen quantities and the incidence of TBE in human populations. As pollen loads are collected by widespread aerobiological networks using standardized procedures, our study could be easily replicated to test their potential as early warning system for TBE and other tick-borne diseases.
Collapse
Affiliation(s)
- Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.
| | - Valentina Tagliapietra
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Fabiana Cristofolini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Antonella Cristofori
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | | | | | - Elena Gottardini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| |
Collapse
|
12
|
Kjær LJ, Johansson M, Lindgren PE, Asghar N, Wilhelmsson P, Fredlund H, Christensson M, Wallenhammar A, Bødker R, Rasmussen G, Kjellander P. Potential drivers of human tick-borne encephalitis in the Örebro region of Sweden, 2010-2021. Sci Rep 2023; 13:7685. [PMID: 37169798 PMCID: PMC10175290 DOI: 10.1038/s41598-023-34675-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Incidence of tick-borne encephalitis (TBE) has increased during the last years in Scandinavia, but the underlying mechanism is not understood. TBE human case data reported between 2010 and 2021 were aggregated into postal codes within Örebro County, south-central Sweden, along with tick abundance and environmental data to analyse spatial patterns and identify drivers of TBE. We identified a substantial and continuing increase of TBE incidence in Örebro County during the study period. Spatial cluster analyses showed significant hotspots (higher number of cases than expected) in the southern and northern parts of Örebro County, whereas a cold spot (lower number of cases than expected) was found in the central part comprising Örebro municipality. Generalised linear models showed that the risk of acquiring TBE increased by 12.5% and 72.3% for every percent increase in relative humidity and proportion of wetland forest, respectively, whereas the risk decreased by 52.8% for every degree Celsius increase in annual temperature range. However, models had relatively low goodness of fit (R2 < 0.27). Results suggest that TBE in Örebro County is spatially clustered, however variables used in this study, i.e., climatic variables, forest cover, water, tick abundance, sheep as indicator species, alone do not explain this pattern.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Magnus Johansson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Naveed Asghar
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Peter Wilhelmsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Hans Fredlund
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Örebro County Council, Örebro, Sweden
| | - Madeleine Christensson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences (SLU), Riddarhyttan, Sweden
| | - Amélie Wallenhammar
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - René Bødker
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Gunløg Rasmussen
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Örebro County Council, Örebro, Sweden
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences (SLU), Riddarhyttan, Sweden
| |
Collapse
|
13
|
Köhler CF, Holding ML, Sprong H, Jansen PA, Esser HJ. Biodiversity in the Lyme-light: ecological restoration and tick-borne diseases in Europe. Trends Parasitol 2023; 39:373-385. [PMID: 36890021 DOI: 10.1016/j.pt.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Biodiversity loss and the emergence of zoonotic diseases are two major global challenges. An urgent question is how ecosystems and wildlife communities can be restored whilst minimizing the risk of zoonotic diseases carried by wildlife. Here, we evaluate how current ambitions to restore Europe's natural ecosystems may affect the hazard of diseases vectored by the tick Ixodes ricinus at different scales. We find that effects of restoration efforts on tick abundance are relatively straightforward but that the interacting effects of vertebrate diversity and abundance on pathogen transmission are insufficiently known. Long-term integrated surveillance of wildlife communities, ticks, and their pathogens is needed to understand their interactions and to prevent nature restoration from increasing tick-borne disease (TBD) hazard.
Collapse
Affiliation(s)
- Clara Florentine Köhler
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Maya Louise Holding
- Virology and Pathogenesis Group, UK Health Security Agency, Porton Down, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Hein Sprong
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Patrick A Jansen
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Rossi B, Barreca F, Benvenuto D, Braccialarghe N, Campogiani L, Lodi A, Aguglia C, Cavasio RA, Giacalone ML, Kontogiannis D, Moccione M, Malagnino V, Andreoni M, Sarmati L, Iannetta M. Human Arboviral Infections in Italy: Past, Current, and Future Challenges. Viruses 2023; 15:v15020368. [PMID: 36851582 PMCID: PMC9963149 DOI: 10.3390/v15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Arboviruses represent a public health concern in many European countries, including Italy, mostly because they can infect humans, causing potentially severe emergent or re-emergent diseases, with epidemic outbreaks and the introduction of endemic circulation of new species previously confined to tropical and sub-tropical regions. In this review, we summarize the Italian epidemiology of arboviral infection over the past 10 years, describing both endemic and imported arboviral infections, vector distribution, and the influence of climate change on vector ecology. Strengthening surveillance systems at a national and international level is highly recommended to be prepared to face potential threats due to arbovirus diffusion.
Collapse
Affiliation(s)
- Benedetta Rossi
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Filippo Barreca
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Domenico Benvenuto
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Neva Braccialarghe
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Campogiani
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Alessandra Lodi
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Camilla Aguglia
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | | | - Maria Laura Giacalone
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Dimitra Kontogiannis
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Moccione
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Vincenzo Malagnino
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
15
|
Esser HJ, Lim SM, de Vries A, Sprong H, Dekker DJ, Pascoe EL, Bakker JW, Suin V, Franz E, Martina BEE, Koenraadt CJM. Continued Circulation of Tick-Borne Encephalitis Virus Variants and Detection of Novel Transmission Foci, the Netherlands. Emerg Infect Dis 2022; 28:2416-2424. [PMID: 36288572 PMCID: PMC9707572 DOI: 10.3201/eid2812.220552] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an emerging pathogen that was first detected in ticks and humans in the Netherlands in 2015 (ticks) and 2016 (humans). To learn more about its distribution and prevalence in the Netherlands, we conducted large-scale surveillance in ticks and rodents during August 2018-September 2020. We tested 320 wild rodents and >46,000 ticks from 48 locations considered to be at high risk for TBEV circulation. We found TBEV RNA in 3 rodents (0.9%) and 7 tick pools (minimum infection rate 0.02%) from 5 geographically distinct foci. Phylogenetic analyses indicated that 3 different variants of the TBEV-Eu subtype circulate in the Netherlands, suggesting multiple independent introductions. Combined with recent human cases outside known TBEV hotspots, our data demonstrate that the distribution of TBEV in the Netherlands is more widespread than previously thought.
Collapse
|
16
|
Borde JP, Glaser R, Braun K, Riach N, Hologa R, Kaier K, Chitimia-Dobler L, Dobler G. Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11830. [PMID: 36142105 PMCID: PMC9517139 DOI: 10.3390/ijerph191811830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Background: Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model. Methods: We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher's Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany. Results: The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%). Conclusions: Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.
Collapse
Affiliation(s)
- Johannes P. Borde
- Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine, University of Freiburg Medical Center, D-79106 Freiburg im Breisgau, Germany
- Praxis Prof. Dr. J. Borde & Kollegen, Gesundheitszentrum Oberkirch, Am Marktplatz 8, D-77704 Oberkirch, Germany
| | - Rüdiger Glaser
- Institute of Environmental Social Sciences and Geography, University of Freiburg, Schreiberstr. 20, D-79098 Freiburg im Breisgau, Germany
| | - Klaus Braun
- Institute of Environmental Social Sciences and Geography, University of Freiburg, Schreiberstr. 20, D-79098 Freiburg im Breisgau, Germany
| | - Nils Riach
- Institute of Environmental Social Sciences and Geography, University of Freiburg, Schreiberstr. 20, D-79098 Freiburg im Breisgau, Germany
| | - Rafael Hologa
- Institute of Environmental Social Sciences and Geography, University of Freiburg, Schreiberstr. 20, D-79098 Freiburg im Breisgau, Germany
| | - Klaus Kaier
- Medical Center, Faculty of Medicine, Institute of Medical Biometry and Statistics, University of Freiburg, Stefan-Meier-Straße 26, D-79104 Freiburg im Breisgau, Germany
| | - Lidia Chitimia-Dobler
- German National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, Neuherbergstraße 11, D-80937 München, Germany
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, D-70599 Stuttgart, Germany
| | - Gerhard Dobler
- German National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, Neuherbergstraße 11, D-80937 München, Germany
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, D-70599 Stuttgart, Germany
| |
Collapse
|
17
|
Vinson JE, Gottdenker NL, Chaves LF, Kaul RB, Kramer AM, Drake JM, Hall RJ. Land reversion and zoonotic spillover risk. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220582. [PMID: 35706674 PMCID: PMC9174719 DOI: 10.1098/rsos.220582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 05/03/2023]
Abstract
Deforestation alters wildlife communities and modifies human-wildlife interactions, often increasing zoonotic spillover potential. When deforested land reverts to forest, species composition differences between primary and regenerating (secondary) forest could alter spillover risk trajectory. We develop a mathematical model of land-use change, where habitats differ in their relative spillover risk, to understand how land reversion influences spillover risk. We apply this framework to scenarios where spillover risk is higher in deforested land than mature forest, reflecting higher relative abundance of highly competent species and/or increased human-wildlife encounters, and where regenerating forest has either very low or high spillover risk. We find the forest regeneration rate, the spillover risk of regenerating forest relative to deforested land, and how rapidly regenerating forest regains attributes of mature forest determine landscape-level spillover risk. When regenerating forest has a much lower spillover risk than deforested land, reversion lowers cumulative spillover risk, but instaneous spillover risk peaks earlier. However, when spillover risk is high in regenerating and cleared habitats, landscape-level spillover risk remains high, especially when cleared land is rapidly abandoned then slowly regenerates to mature forest. These results suggest that proactive wildlife management and awareness of human exposure risk in regenerating forests could be important tools for spillover mitigation.
Collapse
Affiliation(s)
- John E. Vinson
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Nicole L. Gottdenker
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Luis Fernando Chaves
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Apartado Postal 0816-15 02593, Panamá, República de Panamá
| | - RajReni B. Kaul
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Andrew M. Kramer
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Richard J. Hall
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
Da Rold G, Obber F, Monne I, Milani A, Ravagnan S, Toniolo F, Sgubin S, Zamperin G, Foiani G, Vascellari M, Drzewniokova P, Castellan M, De Benedictis P, Citterio CV. Clinical Tick-Borne Encephalitis in a Roe Deer (Capreolus capreolus L.). Viruses 2022; 14:v14020300. [PMID: 35215891 PMCID: PMC8875940 DOI: 10.3390/v14020300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a severe zoonosis occurring in the Palearctic region mainly transmitted through Ixodes ticks. In Italy, TBEV is restricted to the north-eastern part of the country. This report describes for the first time a case of clinical TBE in a roe deer (Capreolus capreolus L.). The case occurred in the Belluno province, Veneto region, an area endemic for TBEV. The affected roe deer showed ataxia, staggering movements, muscle tremors, wide-base stance of the front limbs, repetitive movements of the head, persistent teeth grinding, hypersalivation and prolonged recumbency. An autopsy revealed no significant lesions to explain the neurological signs. TBEV RNA was detected in the brain by real-time RT-PCR, and the nearly complete viral genome (10,897 nucleotides) was sequenced. Phylogenetic analysis of the gene encoding the envelope protein revealed a close relationship to TBEV of the European subtype, and 100% similarity with a partial sequence (520 nucleotides) of a TBEV found in ticks in the bordering Trento province. The histological examination of the midbrain revealed lymphohistiocytic encephalitis, satellitosis and microgliosis, consistent with a viral etiology. Other viral etiologies were ruled out by metagenomic analysis of the brain. This report underlines, for the first time, the occurrence of clinical encephalitic manifestations due to TBEV in a roe deer, suggesting that this pathogen should be included in the frame of differential diagnoses in roe deer with neurologic disease.
Collapse
Affiliation(s)
- Graziana Da Rold
- U.O. Ecopathology SCT2-Belluno, Istituto Zoprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy; (F.O.); (C.V.C.)
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Correspondence:
| | - Federica Obber
- U.O. Ecopathology SCT2-Belluno, Istituto Zoprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy; (F.O.); (C.V.C.)
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
| | - Isabella Monne
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Genomics and Trascriptomics, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy
| | - Adelaide Milani
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Genomics and Trascriptomics, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy
| | - Silvia Ravagnan
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Federica Toniolo
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Sofia Sgubin
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Gianpiero Zamperin
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Genomics and Trascriptomics, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy
| | - Greta Foiani
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Universita 10, 35020 Legnaro, Italy
| | - Marta Vascellari
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Universita 10, 35020 Legnaro, Italy
| | - Petra Drzewniokova
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Emerging Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Martina Castellan
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Emerging Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Paola De Benedictis
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
- Laboratory for Viral Emerging Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Carlo Vittorio Citterio
- U.O. Ecopathology SCT2-Belluno, Istituto Zoprofilattico Sperimentale delle Venezie (IZSVe), Via Cappellari 44/A, 32100 Belluno, Italy; (F.O.); (C.V.C.)
- OIE Collaborating Centre for Diseases at the Animal/Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (I.M.); (A.M.); (S.R.); (F.T.); (S.S.); (G.Z.); (G.F.); (M.V.); (P.D.); (M.C.); (P.D.B.)
| |
Collapse
|
19
|
Bertola M, Montarsi F, Obber F, Da Rold G, Carlin S, Toniolo F, Porcellato E, Falcaro C, Mondardini V, Ormelli S, Ravagnan S. Occurrence and Identification of Ixodes ricinus Borne Pathogens in Northeastern Italy. Pathogens 2021; 10:1181. [PMID: 34578213 PMCID: PMC8470124 DOI: 10.3390/pathogens10091181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
In Europe, Ixodes ricinus is the main vector for tick-borne pathogens (TBPs), the most common tick species in Italy, particularly represented in pre-alpine and hilly northern areas. From 2011 to 2017, ticks were collected by dragging in Belluno province (northeast Italy) and analyzed by molecular techniques for TBP detection. Several species of Rickettsia spp. and Borrelia spp. Anaplaspa phagocitophilum, Neoerlichia mikurensis and Babesia venatorum, were found to be circulating in the study area carried by I. ricinus (n = 2668, all stages). Overall, 39.1% of screened pools were positive for at least one TBP, with a prevalence of 12.25% and 29.2% in immature stages and adults, respectively. Pathogens were detected in 85% of the monitored municipalities, moreover the presence of TBPs varied from one to seven different pathogens in the same year. The annual TBPs prevalence fluctuations observed in each municipality highlights the necessity of performing continuous tick surveillance. In conclusion, the observation of TBPs in ticks remains an efficient strategy for monitoring the circulation of tick-borne diseases (TBDs) in a specific area.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Graziana Da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Sara Carlin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Federica Toniolo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Elena Porcellato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Christian Falcaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | | | - Silvia Ormelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Silvia Ravagnan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| |
Collapse
|
20
|
Opalińska P, Wierzbicka A, Asman M, Rączka G, Dyderski MK, Nowak-Chmura M. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci Rep 2021; 11:10649. [PMID: 34017054 PMCID: PMC8137867 DOI: 10.1038/s41598-021-90234-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
The European roe deer (Capreolus capreolus) is the most common deer species in Europe. The species can be a reservoir of some tick-borne diseases but it is primarily recognized for its contribution as an amplifier host. In Central Europe, two roe deer ecotypes are living in adjacent areas: field and forest. We investigated differences in tick load and species composition on these two ecotypes. We collected ticks from 160 (80 the forest ecotype and 80 the field ecotype) roe deer culled in Wielkopolska Region (West-Central Poland). The most common was Ixodes ricinus (n = 1610; 99%) followed by Ixodes hexagonus (n = 22; 1%). The dominant life stage of the ticks was female. Prevalence was higher for forest roe deer. Mean number of ticks found on the forest ecotype was almost fivefold higher than on the field ecotype (3.75 ± 0.83 vs. 0.77 ± 0.20 ticks). The mean probability of tick occurrence was threefold higher in the forest (0.915 ± 0.050) than the field ecotype (0.279 ± 0.125). The most infested body parts of roe deer from both ecotypes were the neck and the head.
Collapse
Affiliation(s)
- Patrycja Opalińska
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Wojska Polskiego 71d, 60-625, Poznań, Poland
| | - Anna Wierzbicka
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Wojska Polskiego 71d, 60-625, Poznań, Poland.
| | - Marek Asman
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-218, Sosnowiec, Poland
| | - Grzegorz Rączka
- Department of Forest Management Planning, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625, Poznań, Poland
| | - Marcin K Dyderski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Magdalena Nowak-Chmura
- Department of Invertebrate Zoology and Parasitology, Institute of Biology, Pedagogical University of Cracov, Podbrzezie Str. 3, 31-054, Kraków, Poland
| |
Collapse
|
21
|
Blomqvist G, Näslund K, Svensson L, Beck C, Valarcher JF. Mapping geographical areas at risk for tick-borne encephalitis (TBE) by analysing bulk tank milk from Swedish dairy cattle herds for the presence of TBE virus-specific antibodies. Acta Vet Scand 2021; 63:16. [PMID: 33827636 PMCID: PMC8028798 DOI: 10.1186/s13028-021-00580-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/26/2021] [Indexed: 12/30/2022] Open
Abstract
Background The vector-borne human viral zoonosis tick-borne encephalitis (TBE) is of growing concern in Sweden. The area where TBE is considered endemic has expanded, with an increasing geographical distribution of Ixodes ricinus as the tick vector and a rising number of reported TBE cases in humans. Efforts to map TBE risk areas have been carried out by sentinel monitoring, mainly based on individual sampling and analysis of wild and domestic animals, as well as ticks, for tick-borne encephalitis virus (TBEV). However, the interpretation of the geographical distribution has been hampered by the patchy and focal nature of TBEV occurrence. This study presents TBEV surveillance data based on antibody analysis of bulk tank milk collected from dairy herds located throughout Sweden before (May) and after (November) the vector season. A commercial TBEV antibody ELISA was modified and evaluated for use in this study. Results The initial comparative TBEV antibody analysis revealed a good correlation between milk and serum antibody levels from individually sampled cows. Also, the TBEV-antibody levels for the mean-herd serum showed good comparability with TBEV antibody levels from bulk tank milk, thus indicating good predictability of seroprevalence when analysing bulk tank milk from a herd. Analyses of bulk tank milk samples collected from 616 herds in May and 560 herds in November showed a geographical distribution of TBEV seropositive herds that was largely consistent with reported human TBE cases. A few TBEV-reactive herds were also found outside known locations of human TBE cases. Conclusion Serological examination of bulk tank milk from dairy cattle herds may be a useful sentinel surveillance method to identify geographical presence of TBEV. In contrast to individual sampling this method allows a large number of animals to be monitored. TBEV seropositive herds were mainly found in coastal areas of southern Sweden similar to human TBE cases. However, some antibody-reactive herds were found outside known TBE areas at the time of the study.
Collapse
|
22
|
Morand S, Lajaunie C. Outbreaks of Vector-Borne and Zoonotic Diseases Are Associated With Changes in Forest Cover and Oil Palm Expansion at Global Scale. Front Vet Sci 2021; 8:661063. [PMID: 33842581 PMCID: PMC8024476 DOI: 10.3389/fvets.2021.661063] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Deforestation is a major cause of biodiversity loss with a negative impact on human health. This study explores at global scale whether the loss and gain of forest cover and the rise of oil palm plantations can promote outbreaks of vector-borne and zoonotic diseases. Taking into account the human population growth, we find that the increases in outbreaks of zoonotic and vector-borne diseases from 1990 to 2016 are linked with deforestation, mostly in tropical countries, and with reforestation, mostly in temperate countries. We also find that outbreaks of vector-borne diseases are associated with the increase in areas of palm oil plantations. Our study gives new support for a link between global deforestation and outbreaks of zoonotic and vector-borne diseases as well as evidences that reforestation and plantations may also contribute to epidemics of infectious diseases. The results are discussed in light of the importance of forests for biodiversity, livelihoods and human health and the need to urgently build an international governance framework to ensure the preservation of forests and the ecosystem services they provide, including the regulation of diseases. We develop recommendations to scientists, public health officers and policymakers who should reconcile the need to preserve biodiversity while taking into account the health risks posed by lack or mismanagement of forests.
Collapse
Affiliation(s)
- Serge Morand
- CNRS ISEM—CIRAD ASTRE, Montpellier University, Montpellier, France
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Claire Lajaunie
- Inserm-Laboratoire Population Environnement Développement (Aix-Marseille Université, IRD), Marseille, France
| |
Collapse
|
23
|
Pautienius A, Armonaite A, Simkute E, Zagrabskaite R, Buitkuviene J, Alpizar-Jara R, Grigas J, Zakiene I, Zienius D, Salomskas A, Stankevicius A. Cross-Sectional Study on the Prevalence and Factors Influencing Occurrence of Tick-Borne Encephalitis in Horses in Lithuania. Pathogens 2021; 10:pathogens10020140. [PMID: 33572628 PMCID: PMC7911650 DOI: 10.3390/pathogens10020140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Various animal species have been evaluated in depth for their potential as Tick-borne encephalitis virus (TBEV) sentinel species, although evidence for equine capacity is incomplete. Therefore, a comprehensive cross-sectional stratified serosurvey and PCR analysis of selected horses (n = 301) were performed in TBEV endemic localities in Lithuania. Attached and moving ticks (n = 241) have been collected from aforementioned hosts to evaluate natural infectivity of TBEV vectors (Ixodes spp.) in the recreational environments surrounding equestrian centers. All samples were screened for TBEV IgG and positive samples were confirmed by virus neutralization test (VNT). 113 (37.5%) horses from all counties of Lithuania tested positive for TBEV IgG, revealing age and sex indifferent results of equine seroprevalence that were significantly dependent on pedigree: horses of mixed breed were more susceptible to infection possibly due to their management practices. TBEV prevalence in equine species corresponded to TBEV-confirmed human cases in the precedent year. As much as 3.9% of horses were viraemic with TBEV-RNA with subsequent confirmation of TBEV European subtype. 4/38 of tested tick pools were positive for TBEV-RNA (Minimal infectious rate 1.2%). Several unknown microfoci were revealed during the study indicating areas of extreme risk close to popular human entertainment sites. The study provides important evidence in favor of horses’ usage as sentinel species, as equines could provide more detailed epidemiological mapping of TBEV, as well as more efficient collection of ticks for surveillance studies.
Collapse
Affiliation(s)
- Arnoldas Pautienius
- Virology Laboratory, Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania;
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
- Correspondence:
| | - Austeja Armonaite
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| | - Evelina Simkute
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| | - Ruta Zagrabskaite
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08409 Vilnius, Lithuania; (R.Z.); (J.B.)
| | - Jurate Buitkuviene
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08409 Vilnius, Lithuania; (R.Z.); (J.B.)
| | - Russell Alpizar-Jara
- Research Center in Mathematics and Applications (CIMA-UE), Institute for Advanced Studies and Research, Department of Mathematics, School of Science and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal;
| | - Juozas Grigas
- Virology Laboratory, Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania;
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| | - Indre Zakiene
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| | - Dainius Zienius
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (D.Z.); (A.S.)
| | - Algirdas Salomskas
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (D.Z.); (A.S.)
| | - Arunas Stankevicius
- Laboratory of Immunology, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania; (A.A.); (E.S.); (I.Z.); (A.S.)
| |
Collapse
|
24
|
Citterio CV, Obber F, Trevisiol K, Dellamaria D, Celva R, Bregoli M, Ormelli S, Sgubin S, Bonato P, Da Rold G, Danesi P, Ravagnan S, Vendrami S, Righetti D, Agreiter A, Asson D, Cadamuro A, Ianniello M, Capelli G. Echinococcus multilocularis and other cestodes in red foxes (Vulpes vulpes) of northeast Italy, 2012-2018. Parasit Vectors 2021; 14:29. [PMID: 33413547 PMCID: PMC7789758 DOI: 10.1186/s13071-020-04520-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023] Open
Abstract
Background Echinococcus multilocularis is a small tapeworm affecting wild and domestic carnivores and voles in a typical prey-predator life cycle. In Italy, there has been a focus of E. multilocularis since 1997 in the northern Italian Alps, later confirmed in red foxes collected from 2001 to 2005. In this study, we report the results of seven years of monitoring on E. multilocularis and other cestodes in foxes and describe the changes that occurred over time and among areas (eco-regions) showing different environmental and ecological features on a large scale. Methods Eggs of cestodes were isolated from feces of 2872 foxes with a sedimentation/filtration technique. The cestode species was determined through multiplex PCR, targeting and sequencing ND1 and 12S genes. Analyses were aimed to highlight variations among different eco-regions and trends in prevalence across the study years. Results Out of 2872 foxes, 217 (7.55%) samples resulted positive for cestode eggs at coproscopy, with differences of prevalence according to year, sampling area and age class. Eight species of cestodes were identified, with Taenia crassiceps (2.65%), Taenia polyacantha (1.98%) and E. multilocularis (1.04%) as the most represented. The other species, Mesocestoides litteratus, Taenia krabbei, T. serialis, T. taeniaeformis and Dipylidium caninum, accounted for < 1% altogether. Echinococcus multilocularis was identified in foxes from two out of six eco-regions, in 30 fecal samples, accounting for 1.04% within the cestode positives at coproscopy. All E. multilocularis isolates came from Bolzano province. Prevalence of cestodes, both collectively and for each of the three most represented species (T. crassiceps, T. polyacantha and E. multilocularis), varied based on the sampling year, and for E. multilocularis an apparent increasing trend across the last few years was evidenced. Conclusions Our study confirms the presence of a focus of E. multilocularis in red foxes of northeast Italy. Although this focus seems still spatially limited, given its persistence and apparent increasing prevalence through the years, we recommend research to be conducted in the future on the ecological factors that, on a smaller scale, allow this zoonotic species to persist. On the same scale, we recommend a health education campaign to inform on the measures to prevent this zoonosis, targeted at people living in the area, especially hunters, dog owners, forestry workers and other potentially exposed categories.![]()
Collapse
Affiliation(s)
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy.
| | - Karin Trevisiol
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Debora Dellamaria
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Roberto Celva
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Marco Bregoli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Silvia Ormelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Sofia Sgubin
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Paola Bonato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Graziana Da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Patrizia Danesi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Silvia Ravagnan
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Stefano Vendrami
- Provincia di Belluno, Wildlife Management Office, Belluno, Italy
| | - Davide Righetti
- Provincia di Bolzano, Wildlife Management Office, Bolzano, Italy
| | - Andreas Agreiter
- Provincia di Bolzano, Wildlife Management Office, Bolzano, Italy
| | - Daniele Asson
- Provincia di Trento, Wildlife Management Office, Trento, Italy
| | - Andrea Cadamuro
- Regione Friuli Venezia Giulia, Wildlife Management Office, Udine, Italy
| | - Marco Ianniello
- Ministry of Health, General Directorate for Animal Health and Veterinary Drugs, Rome, Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| |
Collapse
|
25
|
Dub T, Ollgren J, Huusko S, Uusitalo R, Siljander M, Vapalahti O, Sane J. Game Animal Density, Climate, and Tick-Borne Encephalitis in Finland, 2007-2017. Emerg Infect Dis 2020; 26:2899-2906. [PMID: 33219653 PMCID: PMC7706931 DOI: 10.3201/eid2612.191282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) is an endemic infection of public health importance in Finland. We investigated the effect of ecologic factors on 2007-2017 TBE trends. We obtained domestic TBE case data from the National Infectious Diseases Register, weather data from the US National Oceanic and Atmospheric Administration, and data from the Natural Resources Institute in Finland on mammals killed by hunters yearly in game management areas. We performed a mixed-effects time-series analysis with time lags on weather and animal parameters, adding a random effect to game management areas. During 2007-2017, a total of 395/460 (86%) domestic TBE cases were reported with known place of exposure and date of sampling. Overall, TBE incidence increased yearly by 15%. After adjusting for the density of other animals and minimum temperatures, we found thatTBE incidence was positively associated with white-tailed deer density. Variation in host animal density should be considered when assessing TBE risks and designing interventions.
Collapse
|
26
|
Clark JJ, Gilray J, Orton RJ, Baird M, Wilkie G, Filipe ADS, Johnson N, McInnes CJ, Kohl A, Biek R. Population genomics of louping ill virus provide new insights into the evolution of tick-borne flaviviruses. PLoS Negl Trop Dis 2020; 14:e0008133. [PMID: 32925939 PMCID: PMC7515184 DOI: 10.1371/journal.pntd.0008133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors. Tick-borne pathogens represent a major emerging threat to public health and in recent years have been expanding into new areas. LIV is a neglected virus endemic to the UK and Ireland (though it has been detected in Scandinavia and Russia) which is closely related to the major human pathogen TBEV, but predominantly causes disease in sheep and grouse. The recent detection of TBEV in the UK, which has also emerged elsewhere in Europe, requires more detailed understanding of the spread and sequence diversity of LIV. This could be important for diagnosis and vaccination, but also to improve our understanding of the evolution and emergence of these tick-borne viruses. Here we describe the sequencing of 22 LIV isolates which have been sampled from several host species across the past century. We have utilised this dataset to investigate the evolutionary pressures that LIV is subjected to and have explored the evolution of LIV using phylogenetic analysis. Crucially we were unable to estimate a reliable molecular clock rate for LIV and found that this problem also extends to a larger phylogeny of TBEV sequences. This work highlights a previously unknown caveat of tick-borne flavivirus evolutionary analysis which may be important for understanding the evolution of these important pathogens.
Collapse
Affiliation(s)
- Jordan J. Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail: (JC); (RB)
| | - Janice Gilray
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine - University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JC); (RB)
| |
Collapse
|
27
|
Esser HJ, Liefting Y, Ibáñez-Justicia A, van der Jeugd H, van Turnhout CAM, Stroo A, Reusken CBEM, Koopmans MPG, de Boer WF. Spatial risk analysis for the introduction and circulation of six arboviruses in the Netherlands. Parasit Vectors 2020; 13:464. [PMID: 32912330 PMCID: PMC7488554 DOI: 10.1186/s13071-020-04339-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Background Arboviruses are a growing public health concern in Europe, with both endemic and exotic arboviruses expected to spread further into novel areas in the next decades. Predicting where future outbreaks will occur is a major challenge, particularly for regions where these arboviruses are not endemic. Spatial modelling of ecological risk factors for arbovirus circulation can help identify areas of potential emergence. Moreover, combining hazard maps of different arboviruses may facilitate a cost-efficient, targeted multiplex-surveillance strategy in areas where virus transmission is most likely. Here, we developed predictive hazard maps for the introduction and/or establishment of six arboviruses that were previously prioritized for the Netherlands: West Nile virus, Japanese encephalitis virus, Rift Valley fever virus, tick-borne encephalitis virus, louping-ill virus and Crimean-Congo haemorrhagic fever virus. Methods Our spatial model included ecological risk factors that were identified as relevant for these arboviruses by an earlier systematic review, including abiotic conditions, vector abundance, and host availability. We used geographic information system (GIS)-based tools and geostatistical analyses to model spatially continuous datasets on these risk factors to identify regions in the Netherlands with suitable ecological conditions for arbovirus introduction and establishment. Results The resulting hazard maps show that there is spatial clustering of areas with either a relatively low or relatively high environmental suitability for arbovirus circulation. Moreover, there was some overlap in high-hazard areas for virus introduction and/or establishment, particularly in the southern part of the country. Conclusions The similarities in environmental suitability for some of the arboviruses provide opportunities for targeted sampling of vectors and/or sentinel hosts in these potential hotspots of emergence, thereby increasing the efficient use of limited resources for surveillance.![]()
Collapse
Affiliation(s)
- Helen Joan Esser
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands. .,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Yorick Liefting
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Adolfo Ibáñez-Justicia
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Agriculture, Nature and Food Quality, Wageningen, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, The Netherlands
| | - Chris A M van Turnhout
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands.,Department of Animal Ecology & Ecophysiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Agriculture, Nature and Food Quality, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Department of Viroscience, WHO CC for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem Fred de Boer
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
28
|
Poli P, Lenoir J, Plantard O, Ehrmann S, Røed KH, Leinaas HP, Panning M, Guiller A. Strong genetic structure among populations of the tick Ixodes ricinus across its range. Ticks Tick Borne Dis 2020; 11:101509. [PMID: 32993929 DOI: 10.1016/j.ttbdis.2020.101509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/25/2023]
Abstract
Ixodes ricinus is the most common and widely distributed tick species in Europe, responsible for several zoonotic diseases, including Lyme borreliosis. Population genetics of disease vectors is a useful tool for understanding the spread of pathogens and infection risks. Despite the threat to the public health due to the climate-driven distribution changes of I. ricinus, the genetic structure of tick populations, though essential for understanding epidemiology, remains unclear. Previous studies have demonstrated weak to no apparent spatial pattern of genetic differentiation between European populations. Here, we analysed the population genetic structure of 497 individuals from 28 tick populations sampled from 20 countries across Europe, the Middle-East, and northern Africa. We analysed 125 SNPs loci after quality control. We ran Bayesian and multivariate hierarchical clustering analyses to identify and describe clusters of genetically related individuals. Both clustering methods support the identification of three spatially-structured clusters. Individuals from the south and north-western parts of Eurasia form a separated cluster from northern European populations, while central European populations are a mix between the two groups. Our findings have important implications for understanding the dispersal processes that shape the spread of zoonotic diseases under anthropogenic global changes.
Collapse
Affiliation(s)
- Pedro Poli
- Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, France.
| | - Jonathan Lenoir
- Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, France
| | | | - Steffen Ehrmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, N-0033, Oslo, Norway
| | - Hans Petter Leinaas
- Department of Biosciences, University of Oslo, Box 1066 Blindern, N-0316 Oslo, Norway
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str, 11 79104, Freiburg, Germany
| | - Annie Guiller
- Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, France.
| |
Collapse
|
29
|
Alfano N, Tagliapietra V, Rosso F, Ziegler U, Arnoldi D, Rizzoli A. Tick-borne encephalitis foci in northeast Italy revealed by combined virus detection in ticks, serosurvey on goats and human cases. Emerg Microbes Infect 2020; 9:474-484. [PMID: 32100632 PMCID: PMC7054962 DOI: 10.1080/22221751.2020.1730246] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is a severe zoonotic neurological disease endemic in northeast Italy since 1992. In the Province of Trento, a sharp increase in TBE incidence has been recorded since 2012, despite the vaccination efforts. To assess current TBE infection hazard in this area, we applied an integrated approach combining the distribution of human cases, the seroprevalence of tick-borne encephalitis virus (TBEV) in sentinel hosts and the screening of questing ticks for TBEV. A total of 706 goat sera from 69 farms were screened for TBEV-specific antibodies resulting in 5 positive farms, while the location of human cases was provided by the local Public Health Agency. Tick sampling was concentrated in areas where TBEV circulation was suggested by either seroprevalence in goats or human cases, resulting in 2,410 Ixodes ricinus collected and analyzed by real-time RT-PCR. Four tick samples from 2 areas with record of human cases were positive to TBEV corresponding to a 0.17% prevalence in the region, while risk areas suggested by serology on goats were not confirmed by tick screening. Our results revealed an increase in TBEV prevalence in ticks and the emergence of new active TBE foci, compared to previous surveys, and demonstrated the importance of an integrated approach for TBE risk assessment. A phylogenetic analysis of the partial E gene confirmed that the European TBEV subtype is circulating in northeast Italy and suggested that the different Italian TBEV strains originated independently as a result of different introductions from neighbouring countries, presumably through migratory birds.
Collapse
Affiliation(s)
- Niccolò Alfano
- Fondazione Edmund Mach, Research and Innovation Centre, Trento, Italy
| | | | - Fausta Rosso
- Fondazione Edmund Mach, Research and Innovation Centre, Trento, Italy
| | - Ute Ziegler
- Friederich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Daniele Arnoldi
- Fondazione Edmund Mach, Research and Innovation Centre, Trento, Italy
| | - Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Trento, Italy
| |
Collapse
|
30
|
Rosà R, Tagliapietra V, Manica M, Arnoldi D, Hauffe HC, Rossi C, Rosso F, Henttonen H, Rizzoli A. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Int J Parasitol 2019; 49:779-787. [DOI: 10.1016/j.ijpara.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
31
|
Rizzoli A, Tagliapietra V, Cagnacci F, Marini G, Arnoldi D, Rosso F, Rosà R. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. Int J Parasitol Parasites Wildl 2019; 9:394-401. [PMID: 31341772 PMCID: PMC6630057 DOI: 10.1016/j.ijppaw.2019.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
In the Anthropocene context, changes in climate, land use and biodiversity are considered among the most important anthropogenic factors affecting parasites-host interaction and wildlife zoonotic diseases emergence. Transmission of vector borne pathogens are particularly sensitive to these changes due to the complexity of their cycle, where the transmission of a microparasite depends on the interaction between its vector, usually a macroparasite, and its reservoir host, in many cases represented by a wildlife vertebrate. The scope of this paper focuses on the effect of some major, fast-occurring anthropogenic changes on the vectorial capacity for tick and mosquito borne pathogens. Specifically, we review and present the latest advances regarding two emerging vector-borne viruses in Europe: Tick-borne encephalitis virus (TBEV) and West Nile virus (WNV). In both cases, variation in vector to host ratio is critical in determining the intensity of pathogen transmission and consequently infection hazard for humans. Forecasting vector-borne disease hazard under the global change scenarios is particularly challenging, requiring long term studies based on a multidisciplinary approach in a One-Health framework.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
| |
Collapse
|
32
|
Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, Koopmans MPG, de Boer WF, Reusken CBEM. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019; 12:265. [PMID: 31133059 PMCID: PMC6537422 DOI: 10.1186/s13071-019-3515-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.
Collapse
Affiliation(s)
- Helen J Esser
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Ramona Mögling
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Natalie B Cleton
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem F de Boer
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
33
|
Domínguez L, Miranda RJ, Torres S, Moreno R, Ortega J, Bermúdez SE. Hard tick (Acari: Ixodidae) survey of Oleoducto trail, Soberania National Park, Panama. Ticks Tick Borne Dis 2019; 10:830-837. [PMID: 30981671 DOI: 10.1016/j.ttbdis.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/24/2022]
Abstract
Hard tick diversity was determined along the Oleoducto trail (OT), Soberania National Park, from February 2013 to September 2014. Ticks were surveyed at four sites of 500 m2 each and with increasing forest cover gradient and decreasing disturbance. Tick collections were made by dragging and flagging vegetation, and traps and mist nets were used to capture mammals and birds. Animals confiscated from poachers were also examined. To obtain information about potential hosts along the trail, 20 camera traps were used. 1536 ticks were collected, representing 20 species; of these, 1089 were questing ticks (10 species) collected on flags. We examined 143 birds (30 species) and 59 mammals (10 species), of which 40 birds and 36 mammals had ticks. Site 1 presented the lowest number of species and also the lowest number of potential hosts. Artiodactyls were the most frequent mammals photographed in camera traps, and ticks that parasitize these animals were among the most abundant in sites 2-4. Of these, Haemaphysalis juxtakochi was the most abundant species. Differences among sites were consistent with the gradient of forest cover, disturbance along OT and distribution of potential hosts.
Collapse
Affiliation(s)
- Lillian Domínguez
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama
| | - Roberto J Miranda
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama
| | - Sugeys Torres
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama
| | - Ricardo Moreno
- Fundación Yaguará Panamá, Panama; Smithsonian Tropical Research Institute, Panama
| | - Josué Ortega
- Fundación Yaguará Panamá, Panama; Smithsonian Tropical Research Institute, Panama
| | - Sergio E Bermúdez
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama.
| |
Collapse
|
34
|
Hönig V, Švec P, Marek L, Mrkvička T, Dana Z, Wittmann MV, Masař O, Szturcová D, Růžek D, Pfister K, Grubhoffer L. Model of Risk of Exposure to Lyme Borreliosis and Tick-Borne Encephalitis Virus-Infected Ticks in the Border Area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071173. [PMID: 30986900 PMCID: PMC6479554 DOI: 10.3390/ijerph16071173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/26/2023]
Abstract
In Europe, Lyme borreliosis (LB) and tick-borne encephalitis (TBE) are the two vector-borne diseases with the largest impact on human health. Based on data on the density of host-seeking Ixodes ricinus ticks and pathogen prevalence and using a variety of environmental data, we have created an acarological risk model for a region where both diseases are endemic (Czech Republic-South Bohemia and Germany-Lower Bavaria, Upper Palatinate). The data on tick density were acquired by flagging 50 sampling sites three times in a single season. Prevalence of the causative agents of LB and TBE was determined. Data on environmental variables (e.g., altitude, vegetation cover, NDVI, land surface temperature) were obtained from various sources and processed using geographical information systems. Generalized linear models were used to estimate tick density, probability of tick infection, and density of infected ticks for the whole area. A significantly higher incidence of human TBE cases was recorded in South Bohemia compared to Bavarian regions, which correlated with a lower tick density in Bavaria. However, the differences in pathogen prevalence rates were not significant. The model outputs were made available to the public in the form of risk maps, indicating the distribution of tick-borne disease risk in space.
Collapse
Affiliation(s)
- Václav Hönig
- Institute of Parasitology, Biology Centre, Academy of Sciences of Czech Republic, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
- Veterinary Research Institute, Hudcova 296, 621 00 Brno, Czech Republic.
| | - Pavel Švec
- Department of Geoinformatics, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic.
| | - Lukáš Marek
- GeoHealth Laboratory, Geospatial Research Institute, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| | - Tomáš Mrkvička
- Faculty of Economics, University of South Bohemia, Studentska 13, 370 05 Ceske Budejovice, Czech Republic.
| | - Zubriková Dana
- Institute of Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Leopoldstr. 5, 80802 Munich, Germany.
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Kosice, Slovakia.
| | - Maria Vögerl Wittmann
- Institute of Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Leopoldstr. 5, 80802 Munich, Germany.
| | - Ondřej Masař
- Department of Geoinformatics, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic.
| | - Daniela Szturcová
- Department of Geoinformatics, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic.
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre, Academy of Sciences of Czech Republic, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
- Veterinary Research Institute, Hudcova 296, 621 00 Brno, Czech Republic.
| | - Kurt Pfister
- Institute of Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Leopoldstr. 5, 80802 Munich, Germany.
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Academy of Sciences of Czech Republic, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
35
|
Jaenson TGT, Petersson EH, Jaenson DGE, Kindberg J, Pettersson JHO, Hjertqvist M, Medlock JM, Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasit Vectors 2018; 11:477. [PMID: 30153856 PMCID: PMC6114827 DOI: 10.1186/s13071-018-3057-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tick-borne encephalitis (TBE) is one tick-transmitted disease where the human incidence has increased in some European regions during the last two decades. We aim to find the most important factors causing the increasing incidence of human TBE in Sweden. Based on a review of published data we presume that certain temperature-related variables and the population densities of transmission hosts, i.e. small mammals, and of primary tick maintenance hosts, i.e. cervids and lagomorphs, of the TBE virus vector Ixodes ricinus, are among the potentially most important factors affecting the TBE incidence. Therefore, we compare hunting data of the major tick maintenance hosts and two of their important predators, and four climatic variables with the annual numbers of human cases of neuroinvasive TBE. Data for six Swedish regions where human TBE incidence is high or has recently increased are examined by a time-series analysis. Results from the six regions are combined using a meta-analytical method. Results With a one-year time lag, the roe deer (Capreolus capreolus), red deer (Cervus elaphus), mountain hare (Lepus timidus) and European hare (Lepus europaeus) showed positive covariance; the Eurasian elk (moose, Alces alces) and fallow deer (Dama dama) negative covariance; whereas the wild boar (Sus scrofa), lynx (Lynx lynx), red fox (Vulpes vulpes) and the four climate parameters showed no significant covariance with TBE incidence. All game species combined showed positive covariance. Conclusions The epidemiology of TBE varies with time and geography and depends on numerous factors, i.a. climate, virus genotypes, and densities of vectors, tick maintenance hosts and transmission hosts. This study suggests that the increased availability of deer to I. ricinus over large areas of potential tick habitats in southern Sweden increased the density and range of I. ricinus and created new TBEV foci, which resulted in increased incidence of human TBE. New foci may be established by TBE virus-infected birds, or by birds or migrating mammals infested with TBEV-infected ticks. Generally, persistence of TBE virus foci appears to require presence of transmission-competent small mammals, especially mice (Apodemus spp.) or bank voles (Myodes glareolus). Electronic supplementary material The online version of this article (10.1186/s13071-018-3057-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas G T Jaenson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18d, SE-752 36, Uppsala, Sweden.
| | - Erik H Petersson
- Department of Aquatic Resources, Division of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, SE-178 93, Drottningholm, Sweden
| | - David G E Jaenson
- Department of Automatic Control, Lund University, SE-221 00, Lund, Sweden
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - John H-O Pettersson
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Lovisenberggata 8, N-0456, Oslo, Norway.,Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, New South Wales, 2006, Australia.,Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Marika Hjertqvist
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Jolyon M Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Porton Down, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Porton Down, Salisbury, UK
| | - Hans Bengtsson
- Swedish Meteorological and Hydrological Institute (SMHI), Gothenburg, Sweden
| |
Collapse
|
36
|
Selmi M, Tomassone L, Ceballos LA, Crisci A, Ragagli C, Pintore MD, Mignone W, Pautasso A, Ballardini M, Casalone C, Mannelli A. Analysis of the environmental and host-related factors affecting the distribution of the tick Dermacentor marginatus. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:209-225. [PMID: 29713917 DOI: 10.1007/s10493-018-0257-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Understanding and responding to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial challenge for epidemiologists and health professionals. In this article we integrate knowledge about the human and the vector population, to provide a context from which to examine the underlying causal factors of D. marginatus-borne diseases emergence in the study area. Within this framework we analyse the biotic and abiotic factors that drive D. marginatus population dynamics and the role of its typical host for dispersal. These investigations suggest that D. marginatus is a tick species prone to spatially overlap its presence with human population presence. Then we consider the public health implications for the residents, when simply carrying out trivial outdoor activities may increase the risk to contact an infected tick.
Collapse
Affiliation(s)
- Marco Selmi
- Department of Prevention, Observatory for Vector Borne Diseases, Piazza Aldo Moro, Capannori, 55012, Lucca, Italy.
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Via L. da Vinci 44, 10095, Grugliasco, Turin, Italy
| | - Leonardo A Ceballos
- Department of Veterinary Sciences, University of Turin, Via L. da Vinci 44, 10095, Grugliasco, Turin, Italy
| | - Alfonso Crisci
- Institute of Biometeorology, Italian National Research Council, Via G. Caproni 8, Florence, Italy
| | | | - Maria D Pintore
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Walter Mignone
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Alessandra Pautasso
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Marco Ballardini
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Cristina Casalone
- Experimental Zooprophylactic Institute of Piedmont Liguria and Aosta Valley, Turin, Italy
| | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Turin, Via L. da Vinci 44, 10095, Grugliasco, Turin, Italy
| |
Collapse
|
37
|
De Keukeleire M, Robert A, Luyasu V, Kabamba B, Vanwambeke SO. Seroprevalence of Borrelia burgdorferi in Belgian forestry workers and associated risk factors. Parasit Vectors 2018; 11:277. [PMID: 29716647 PMCID: PMC5930862 DOI: 10.1186/s13071-018-2860-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/19/2018] [Indexed: 02/01/2023] Open
Abstract
Background As forest is the preferred environment for ticks, forestry workers are exposed to tick bites and tick-borne diseases. We assessed the seroprevalence of anti-Borrelia burgdorferi (Bb) antibodies and investigated, using an integrated landscape approach, the individual and environmental factors associated with the seroprevalence of Bb in Belgian forestry workers, a high-risk group in Belgium. Methods A group of 310 Belgian forest workers was examined to assess the seroprevalence of anti-Borrelia IgG antibodies. Using principal component analysis and binary logistic regression, the joint effects of individual characteristics and environmental characteristics were examined. Results Sixty-seven of the 310 workers were seropositive for Lyme disease (LD), leading to a seroprevalence of 21.6%. The seroprevalence was higher among forest workers visiting forests more frequently (P = 0.003) or who reported over 100 tick bites (P-value < 0.001). The intensity of tick bites and the use of protection measures against tick bites have a positive impact on LD seroprevalence while the quantity of shadow from trees at ground level had a negative one. Conclusions This study showed that forest workers are a population at risk for LD and, by extension, at risk for various tick-borne diseases. In addition to the role of the environment, our results also showed the importance of considering exposure when predicting the risk of infection by Bb.
Collapse
Affiliation(s)
- Mathilde De Keukeleire
- Earth and Life Institute (ELI), Georges Lemaitre Center for Earth and Climate Research, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgique. .,Pôle Epidémiologie et Biostatistique (EPID), Institut de Recherche Expérimentale et Clinique (IREC), Faculté de Santé Publique (FSP), Université catholique de Louvain (UCL), Bruxelles, Belgique.
| | - Annie Robert
- Pôle Epidémiologie et Biostatistique (EPID), Institut de Recherche Expérimentale et Clinique (IREC), Faculté de Santé Publique (FSP), Université catholique de Louvain (UCL), Bruxelles, Belgique
| | - Victor Luyasu
- Pôle Epidémiologie et Biostatistique (EPID), Institut de Recherche Expérimentale et Clinique (IREC), Faculté de Santé Publique (FSP), Université catholique de Louvain (UCL), Bruxelles, Belgique
| | - Benoît Kabamba
- Laboratory of Medical Microbiology, Université Catholique de Louvain (UCL), Bruxelles, Belgique
| | - Sophie O Vanwambeke
- Earth and Life Institute (ELI), Georges Lemaitre Center for Earth and Climate Research, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgique
| |
Collapse
|
38
|
Stefanoff P, Rubikowska B, Bratkowski J, Ustrnul Z, Vanwambeke SO, Rosinska M. A Predictive Model Has Identified Tick-Borne Encephalitis High-Risk Areas in Regions Where No Cases Were Reported Previously, Poland, 1999-2012. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E677. [PMID: 29617333 PMCID: PMC5923719 DOI: 10.3390/ijerph15040677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 12/30/2022]
Abstract
During 1999–2012, 77% of the cases of tick-borne encephalitis (TBE) were recorded in two out of 16 Polish provinces. However, historical data, mostly from national serosurveys, suggest that the disease could be undetected in many areas. The aim of this study was to identify which routinely-measured meteorological, environmental, and socio-economic factors are associated to TBE human risk across Poland, with a particular focus on areas reporting few cases, but where serosurveys suggest higher incidence. We fitted a zero-inflated Poisson model using data on TBE incidence recorded in 108 NUTS-5 administrative units in high-risk areas over the period 1999–2012. Subsequently we applied the best fitting model to all Polish municipalities. Keeping the remaining variables constant, the predicted rate increased with the increase of air temperature over the previous 10–20 days, precipitation over the previous 20–30 days, in forestation, forest edge density, forest road density, and unemployment. The predicted rate decreased with increasing distance from forests. The map of predicted rates was consistent with the established risk areas. It predicted, however, high rates in provinces considered TBE-free. We recommend raising awareness among physicians working in the predicted high-risk areas and considering routine use of household animal surveys for risk mapping.
Collapse
Affiliation(s)
- Pawel Stefanoff
- Department of Epidemiology of Infectious Diseases and Surveillance, National Institute of Public Health-National Institute of Hygiene, 00-791 Warsaw, Poland.
| | - Barbara Rubikowska
- Department of Population Health Monitoring and Analysis, National Institute of Public Health-National Institute of Hygiene, 00-791 Warsaw, Poland.
| | - Jakub Bratkowski
- Institute of Environmental Protection—National Research Institute (IOS—PIB), 00-548 Warsaw, Poland.
| | - Zbigniew Ustrnul
- Department of Climatology, Jagiellonian University, 30-387 Krakow, Poland.
- Institute of Meteorology and Water Management, 30-215 Krakow, Poland.
| | - Sophie O Vanwambeke
- Georges Lemaître Centre for Earth and Climate Research, Earth & Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Magdalena Rosinska
- Department of Epidemiology of Infectious Diseases and Surveillance, National Institute of Public Health-National Institute of Hygiene, 00-791 Warsaw, Poland.
| |
Collapse
|
39
|
Goldstein V, Boulanger N, Schwartz D, George JC, Ertlen D, Zilliox L, Schaeffer M, Jaulhac B. Factors responsible for Ixodes ricinus nymph abundance: Are soil features indicators of tick abundance in a French region where Lyme borreliosis is endemic? Ticks Tick Borne Dis 2018; 9:938-944. [PMID: 29606622 DOI: 10.1016/j.ttbdis.2018.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
In Europe, the hard tick Ixodes ricinus (Acari: Ixodidae) is the main vector of Lyme borreliosis spirochetes (Borrelia burgdorferi sensu lato group). A field study was conducted to evaluate the abundance of Ixodes nymphs in the French region of Alsace, where Lyme borreliosis is endemic, and to determine whether environmental factors such as soil moisture and composition may be associated with nymph abundance. In the ten sites studied, ticks were collected by drag sampling from March to October in 2013 and 2014. Temperature, relative humidity, saturation deficit, soil pH, humus composition and type of vegetation were recorded at each site. The abundance of I. ricinus was highly variable from one site to another. Inter-annual variations were also observed, since the nymph abundance were higher in 2013 than in 2014. This study shows that humus type can be indicative of nymph abundance. Three types of humus were observed: (1) moder, (2) mull, and (3) mull-moder humus. One of them, moder humus, which is characterized by a thick layer of fragmented leaves, was found in multivariate analyses to be strongly associated with the nymph abundance. This study demonstrates that factors such as saturation deficit do not suffice to explain the differences in nymph abundance among sites. The composition of the soil and especially the type of humus should also be taken into consideration when assessing acarological risk.
Collapse
Affiliation(s)
- Valérie Goldstein
- EA 7290: Virulence bactérienne précoce: groupe Borréliose de Lyme, Facultés de pharmacie et de médecine, Université de Strasbourg, 3 rue Koeberlé, 67097, Strasbourg, France
| | - Nathalie Boulanger
- EA 7290: Virulence bactérienne précoce: groupe Borréliose de Lyme, Facultés de pharmacie et de médecine, Université de Strasbourg, 3 rue Koeberlé, 67097, Strasbourg, France; Centre National de Référence des Borrelia, Centre hospitalier universitaire, Strasbourg, 3 rue Koeberlé, 67097, Strasbourg, France.
| | - Dominique Schwartz
- UMR 7362, Laboratoire Image, Ville et Environnement, Faculté de géographie, Université de Strasbourg, 3 rue de l'Argonne, 67000, Strasbourg, France
| | - Jean-Claude George
- Centre National de Référence des Borrelia, Centre hospitalier universitaire, Strasbourg, 3 rue Koeberlé, 67097, Strasbourg, France
| | - Damien Ertlen
- UMR 7362, Laboratoire Image, Ville et Environnement, Faculté de géographie, Université de Strasbourg, 3 rue de l'Argonne, 67000, Strasbourg, France
| | - Laurence Zilliox
- Centre National de Référence des Borrelia, Centre hospitalier universitaire, Strasbourg, 3 rue Koeberlé, 67097, Strasbourg, France
| | - Mickaël Schaeffer
- Département d'Information Médicale, Centre hospitalier universitaire, 1 place de l'Hôpital, 67000, Strasbourg, France
| | - Benoît Jaulhac
- EA 7290: Virulence bactérienne précoce: groupe Borréliose de Lyme, Facultés de pharmacie et de médecine, Université de Strasbourg, 3 rue Koeberlé, 67097, Strasbourg, France; Centre National de Référence des Borrelia, Centre hospitalier universitaire, Strasbourg, 3 rue Koeberlé, 67097, Strasbourg, France
| |
Collapse
|
40
|
Abstract
Background Ticks and tick-borne pathogens are a global problem for the health of humans and their livestock. Wood ants are important ecosystem engineers in forests worldwide. Although both taxa are well studied, little is known about their interactions under natural conditions. The purpose of the present field study was to test whether European red wood ants (Formica polyctena) influence the abundance of Ixodes tick populations in temperate forests. Methods Data collection took place in 130 sampling plots located at 26 ant nest sites paired with 26 control sites in northwestern Switzerland. At each sampling plot, tick abundance, ant abundance, ant nest volume and habitat variables (describing litter, vegetation and microclimate) were measured. We used linear mixed-effect models to analyze the abundance of questing ticks as a function of ant abundance and habitat variables. Results Ant nest volume, rather than the presence of ants, had a significant negative effect on tick abundance. The number of ticks decreased from 11.2 to 3.5 per 100 m2 if the volume of the adjacent ant nest increased from 0.1 m3 to 0.5 m3. Additionally, high vegetation cover and litter depth had negative and positive relationships with tick abundance, respectively. Conclusions We showed that the number of questing ticks was negatively correlated with the size of red wood ant nests. Further studies are needed to identify the mechanisms that drive the relationship. Possible mechanisms include the repellent effect of ant formic acid, and the predatory behavior of wood ants. The present field study suggests that red wood ants provide a new ecosystem service by reducing the local abundance of Ixodes ticks. Electronic supplementary material The online version of this article (10.1186/s13071-018-2712-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Zingg
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, 3052, Zollikofen, Switzerland.
| | - Patrick Dolle
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, 3052, Zollikofen, Switzerland
| | | | - Maren Kern
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, 3052, Zollikofen, Switzerland
| |
Collapse
|
41
|
ZHANG XUE, WU XIAOTIAN, WU JIANHONG. CRITICAL CONTACT RATE FOR VECTOR–HOST–PATHOGEN OSCILLATION INVOLVING CO-FEEDING AND DIAPAUSE. J BIOL SYST 2017. [DOI: 10.1142/s0218339017400083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We consider the dynamic vector–host–pathogen interaction motivated by tick-borne diseases such as tick-borne encephalitis and Lyme disease. We stratify the vector population in terms of the stage before and after the vector’s contact with hosts when co-feeding transmission may take place, and we also consider the case where vector development may involve two time lags due to normal development and diapause. We derive threshold conditions for disease persistence and for nonlinear oscillations in the vector population and in the diseased vector and host populations. Our objective here is to use a simple mechanistic dynamic model to show that diapause and co-feeding transmission may generate periodic and irregular oscillations even when seasonal variations of the environmental conditions are ignored. These oscillations are not necessary in synchrony with the seasonality of vector development, and hence complicated oscillatory patterns of vector-borne disease dynamics in the field and surveillance observations should be expected.
Collapse
Affiliation(s)
- XUE ZHANG
- Department of Mathematics, Northeastern University, Shenyang, Liaoning, 110819, P. R. China
| | - XIAOTIAN WU
- Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, P. R. China
| | - JIANHONG WU
- Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON, M3J1P3, Canada
| |
Collapse
|
42
|
De Keukeleire M, Vanwambeke SO, Kabamba B, Belkhir L, Pierre P, Luyasu V, Robert A. Time trend of clinical cases of Lyme disease in two hospitals in Belgium, 2000-2013. BMC Infect Dis 2017; 17:748. [PMID: 29207940 PMCID: PMC5718134 DOI: 10.1186/s12879-017-2841-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND As several studies indicated an increase in Lyme disease (LD), notably in neighbouring countries, concerns have arisen regarding the evolution of Lyme disease in Belgium. In order to confirm or infirm the increase of LD in Belgium, we focused on hospital admissions of patients diagnosed with LD between 2000 and 2013 based on hospital admission databases from two hospitals in Belgium. METHODS Hospital databases are a stable recording system. We did a retrospective analysis of the medical files of patients hospitalized with Lyme disease in two Belgian hospitals between 2000 and 2013. RESULTS The annual number of cases of LD for the two studied Belgian hospitals remained stable between 2000 and 2013, ranging from 1 for the Cliniques universitaires Saint-Luc to 15 for the the Clinique Saint-Pierre. No increasing trend were noted in the estimated annual incidence rate but the average estimated annual incidence rate was higher for the hospital Saint-Pierre (8.1 ± 3.7 per 100,000 inhabitants) than Saint-Luc (2.2 ± 1.5 per 100,000 inhabitants). The number of hospital cases of LD peaked between June and November. CONCLUSIONS Based on hospital admissions with LD, no increasing trend was observed for the period 2000-2013 in the two studied Belgian hospitals. This is in line with other studies carried out in Belgium.
Collapse
Affiliation(s)
- Mathilde De Keukeleire
- Earth and Life Institute (ELI), Georges Lemaitre Center for Earth and Climate Research, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle Epidémiologie et Biostatistique, Faculté de Santé Publique (FSP), Université catholique de Louvain (UCL), Bruxelles, Belgium
| | - Sophie O. Vanwambeke
- Earth and Life Institute (ELI), Georges Lemaitre Center for Earth and Climate Research, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Benoît Kabamba
- Division of Clinical Biology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Bruxelles, Belgium
| | - Leila Belkhir
- Department of Internal medicine and infectious diseases, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCL), Bruxelles, Belgium
| | - Philippe Pierre
- Neurology Department, Cliniques St-Pierre, Ottignies, Belgium
| | - Victor Luyasu
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle Epidémiologie et Biostatistique, Faculté de Santé Publique (FSP), Université catholique de Louvain (UCL), Bruxelles, Belgium
| | - Annie Robert
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle Epidémiologie et Biostatistique, Faculté de Santé Publique (FSP), Université catholique de Louvain (UCL), Bruxelles, Belgium
| |
Collapse
|
43
|
Brugger K, Walter M, Chitimia-Dobler L, Dobler G, Rubel F. Seasonal cycles of the TBE and Lyme borreliosis vector Ixodes ricinus modelled with time-lagged and interval-averaged predictors. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:439-450. [PMID: 29181672 PMCID: PMC5727152 DOI: 10.1007/s10493-017-0197-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/17/2017] [Indexed: 05/15/2023]
Abstract
Ticks of the species Ixodes ricinus (L.) are the major vectors for tick-borne diseases in Europe. The aim of this study was to quantify the influence of environmental variables on the seasonal cycle of questing I. ricinus. Therefore, an 8-year time series of nymphal I. ricinus flagged at monthly intervals in Haselmühl (Germany) was compiled. For the first time, cross correlation maps were applied to identify optimal associations between observed nymphal I. ricinus densities and time-lagged as well as temporal averaged explanatory variables. To prove the explanatory power of these associations, two Poisson regression models were generated. The first model simulates the ticks of the entire time series flagged per 100 m[Formula: see text], the second model the mean seasonal cycle. Explanatory variables comprise the temperature of the flagging month, the relative humidity averaged from the flagging month and 1 month prior to flagging, the temperature averaged over 4-6 months prior to the flagging event and the hunting statistics of the European hare from the preceding year. The first model explains 65% of the monthly tick variance and results in a root mean square error (RMSE) of 17 ticks per 100 m[Formula: see text]. The second model explains 96% of the tick variance. Again, the accuracy is expressed by the RMSE, which is 5 ticks per 100 m[Formula: see text]. As a major result, this study demonstrates that tick densities are higher correlated with time-lagged and temporal averaged variables than with contemporaneous explanatory variables, resulting in a better model performance.
Collapse
Affiliation(s)
- Katharina Brugger
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Melanie Walter
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
- German Center of Infection Research (DZIF) Partner Site Munich, Munich, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937, Munich, Germany
- German Center of Infection Research (DZIF) Partner Site Munich, Munich, Germany
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, 70593, Stuttgart, Germany
| | - Franz Rubel
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
44
|
Baráková I, Derdáková M, Selyemová D, Chvostáč M, Špitalská E, Rosso F, Collini M, Rosà R, Tagliapietra V, Girardi M, Ramponi C, Hauffe HC, Rizzoli A. Tick-borne pathogens and their reservoir hosts in northern Italy. Ticks Tick Borne Dis 2017; 9:164-170. [PMID: 28890111 DOI: 10.1016/j.ttbdis.2017.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022]
Abstract
The aim of this study was to determine the occurrence of Anaplasma phagocytophilum, Rickettsia spp., Babesia spp., and Candidatus Neoehrlichia mikurensis in Ixodes spp. ticks removed from wildlife, domestic animals and humans in the Province of Trento (northern Italy) in order to better understand their ecology and provide public health professionals with an updated list of pathogens which should be considered during their diagnostic procedures after a tick bite. During 2011-2012, 848 feeding ticks at all life stages (adults, nymphs and larvae) from various hosts (wild ungulates, birds and rodents; domestic sheep, dogs and humans) were collected. The highest prevalences of A. phagocytophilum and Rickettsia spp. were detected in adult and nymphal tick stages feeding on wild ungulates (11.4% prevalence for both pathogens), while the Babesia spp. prevailed in nymphal and larval ticks feeding on wild birds (7.7%). A wide spectrum of tick-borne agents was present in larval ticks: those detached from wild ungulates were positive for A. phagocytophilum, B. venatorum, R. helvetica, R. monacensis and R. raoultii, while those removed from wild rodents were positive for B. venatorum, R. helvetica, R. monacensis and Ca. N. mikurensis, and ticks from wild birds carried A. phagocytophilum, B. venatorum, B. capreoli and R. helvetica. This study provides evidence of circulation of five tick-borne pathogens not reported in this region before, specifically R. raoultii, R. monacensis, B. venatorum, B. capreoli and B. microti. Furthermore, it discusses the epidemiological role of the animal species from which the ticks were collected highlighting the needs for more experimental studies especially for those pathogens where transovarial transmission in ticks has been demonstrated.
Collapse
Affiliation(s)
- Ivana Baráková
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all´Adige, Trento, Italy; Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Markéta Derdáková
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Diana Selyemová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Eva Špitalská
- Biomedical Research Center, Institute of Virology Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all´Adige, Trento, Italy
| | - Margherita Collini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all´Adige, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all´Adige, Trento, Italy
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all´Adige, Trento, Italy
| | - Matteo Girardi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all´Adige, Trento, Italy
| | - Claudio Ramponi
- Azienda Provinciale per i Servizi Sanitari, Ospedale Santa Chiara, Trento, Italy
| | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all´Adige, Trento, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all´Adige, Trento, Italy.
| |
Collapse
|
45
|
Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product. SUSTAINABILITY 2017. [DOI: 10.3390/su9060901] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerg Microbes Infect 2017; 6:e31. [PMID: 28487561 PMCID: PMC5584484 DOI: 10.1038/emi.2017.17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 11/08/2022]
Abstract
A national crowdsourcing-based tick collection campaign was organized in 2015 with the objective of producing novel data on tick distribution and tick-borne pathogens in Finland. Nearly 20 000 Ixodes ticks were collected. The collected material revealed the nationwide distribution of I. persulcatus for the first time and a shift northwards in the distribution of I. ricinus in Finland. A subset of 2038 tick samples containing both species was screened for Borrelia burgdorferi sensu lato (the prevalence was 14.2% for I. ricinus and 19.8% for I. persulcatus), B. miyamotoi (0.2% and 0.4%, respectively) and tick-borne encephalitis virus (TBEV; 0.2% and 3.0%, respectively). We also report new risk areas for TBEV in Finland and, for the first time, the presence of B. miyamotoi in ticks from mainland Finland. Most importantly, our study demonstrates the overwhelming power of citizen science in accomplishing a collection effort that would have been impossible with the scientific community alone.
Collapse
|
47
|
Zanet S, Bassano M, Trisciuoglio A, Taricco I, Ferroglio E. Horses infected by Piroplasms different from Babesia caballi and Theileria equi : species identification and risk factors analysis in Italy. Vet Parasitol 2017; 236:38-41. [DOI: 10.1016/j.vetpar.2017.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
48
|
Kriz B, Daniel M, Benes C, Maly M. The role of game (wild boar and roe deer) in the spread of tick-borne encephalitis in the Czech Republic. Vector Borne Zoonotic Dis 2017; 14:801-7. [PMID: 25409271 DOI: 10.1089/vbz.2013.1569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the Czech Republic, the incidence of human tick-borne encephalitis (TBE) has been increasing over the last two decades. At the same time, populations of game have also shown an upward trend. In this country, the ungulate game is the main host group of hosts for Ixodes ricinus female ticks. This study examined the potential contribution of two most widespread game species (roe deer [Capreolus capreolus] and wild boar [Sus scrofa]) to the high incidence of TBE in the Czech Republic, using the annual numbers of culls as a proxy for the game population. This was an ecological study, with annual figures for geographical areas-municipalities with extended competence (MEC)-used as units of analysis. Between 2003 and 2011, a total of 6213 TBE cases were reported, and 1062,308 roe deer and 989,222 wild boars were culled; the culls of roe deer did not demonstrate a clear temporal trend, but wild boar culls almost doubled (from 77,269 to 143,378 per year). Statistical analyses revealed a positive association between TBE incidence rate and the relative number of culled wild boars. In multivariate analyses, a change in the numbers of culled wild boars between the 25th and 75th percentile was associated with TBE incidence rate ratio of 1.23 (95% confidence interval 1.07-1.41, p=0.003). By contrast, the association of TBE with culled roe deer was not statistically significant (p=0.481). The results suggest that the size of the wild boar population may have contributed to the current high levels and the rising trend in incidence of TBE, whereas the regulated population of roe deer does not seem to be implicated in recent geographical or temporal variations in TBE in the Czech Republic.
Collapse
Affiliation(s)
- Bohumir Kriz
- National Institute of Public Health, 3rd Medical Faculty, Charles University , Praha, Czech Republic
| | | | | | | |
Collapse
|
49
|
Collini M, Albonico F, Rosà R, Tagliapietra V, Arnoldi D, Conterno L, Rossi C, Mortarino M, Rizzoli A, Hauffe HC. Identification of Ixodes ricinus blood meals using an automated protocol with high resolution melting analysis (HRMA) reveals the importance of domestic dogs as larval tick hosts in Italian alpine forests. Parasit Vectors 2016; 9:638. [PMID: 27955678 PMCID: PMC5154095 DOI: 10.1186/s13071-016-1901-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In Europe, Ixodes ricinus L. is the main vector of a variety of zoonotic pathogens, acquired through blood meals taken once per stage from a vertebrate host. Defining the main tick hosts in a given area is important for planning public health interventions; however, until recently, no robust molecular methods existed for blood meal identification from questing ticks. Here we improved the time- and cost-effectiveness of an HRMA protocol for blood meal analysis and used it to identify blood meal sources of sheep tick larvae from Italian alpine forests. METHODS Nine hundred questing nymphs were collected using blanket-dragging in 18 extensive forests and 12 forest patches close to rural villages in the Province of Trento. Total DNA was either extracted manually, with the QIAamp DNA Investigator kit, or automatically using the KingFisher™ Flex Magnetic Particle Processors (KingFisher Cell and Tissue DNA Kit). Host DNA was amplified with six independent host group real-time PCR reactions and identified by means of HRMA. Statistical analyses were performed in R to assess the variables important for achieving successful identification and to compare host use in the two types of forest. RESULTS Automating DNA extraction improved time- and cost-effectiveness of the HRMA protocol, but identification success fell to 22.4% (KingFisher™) from 55.1% (QIAamp), with larval hosts identified in 215 of 848 questing nymphs; 23 mixed blood meals were noted. However, the list of hosts targeted by our primer sets was extended, improving the potential of the method. Host identification to species or genus level was possible for 137 and 102 blood meals, respectively. The most common hosts were Rodentia (28.9%) and, unexpectedly, Carnivora (28.4%), with domestic dogs accounting for 21.3% of all larval blood meals. Overall, Cetartiodactyla species fed 17.2% of larvae. Passeriformes (14.6%) fed a significantly higher proportion of larvae in forest patches (22.3%) than in extensive forest (9.6%), while Soricomorpha (10.9%) were more important hosts in extensive forest (15.2%) than in forest patches (4.3%). CONCLUSIONS The HRMA protocol for blood meal analysis is a valuable tool in the study of feeding ecology of sheep ticks, especially with the cost- and time- reductions introduced here. To our knowledge, we show for the first time that domestic dogs are important larval hosts in the Alps, which may have possible implications for tick-borne disease cycles in urbanized areas.
Collapse
Affiliation(s)
- Margherita Collini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Francesca Albonico
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Lorenza Conterno
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Chiara Rossi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Michele Mortarino
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Heidi Christine Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
50
|
Carpi G, Kitchen A, Kim HL, Ratan A, Drautz-Moses DI, McGraw JJ, Kazimirova M, Rizzoli A, Schuster SC. Mitogenomes reveal diversity of the European Lyme borreliosis vector Ixodes ricinus in Italy. Mol Phylogenet Evol 2016; 101:194-202. [DOI: 10.1016/j.ympev.2016.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 01/04/2023]
|