1
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Bachmann MF, Krenger PS, Mohsen MO, Kramer MF, Starchenka S, Whitehead P, Vogel M, Heath MD. On the role of antibody affinity and avidity in the IgE-mediated allergic response. Allergy 2025; 80:37-46. [PMID: 39189064 PMCID: PMC11724228 DOI: 10.1111/all.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/28/2024]
Abstract
Type I hypersensitivity, also known as classical allergy, is mediated via allergen-specific IgE antibodies bound to type I FcR (FcεRI) on the surface of mast cells and basophils upon cross-linking by allergens. This IgE-mediated cellular activation may be blocked by allergen-specific IgG through multiple mechanisms, including direct neutralization of the allergen or engagement of the inhibitory receptor FcγRIIb which blocks IgE signal transduction. In addition, co-engagement of FcεRI and FcγRIIb by IgE-IgG-allergen immune complexes causes down regulation of receptor-bound IgE, resulting in desensitization of the cells. Both, activation of FcεRI by allergen-specific IgE and engagement of FcγRIIb by allergen-specific IgG are driven by allergen-binding. Here we delineate the distinct roles of antibody affinity versus avidity in driving these processes and discuss the role of IgG subclasses in inhibiting basophil and mast cell activation.
Collapse
Affiliation(s)
- Martin F. Bachmann
- Department of Rheumatology and ImmunologyUniversity Hospital of BernBernSwitzerland
- Department for Biomedical Research Bern (DBMR)University of BernBernSwitzerland
- Nuffield Department of Medicine, The Jenner InstituteUniversity of OxfordOxfordUK
| | - Pascal S. Krenger
- Department of Rheumatology and ImmunologyUniversity Hospital of BernBernSwitzerland
- Department for Biomedical Research Bern (DBMR)University of BernBernSwitzerland
| | - Mona O. Mohsen
- Department of Rheumatology and ImmunologyUniversity Hospital of BernBernSwitzerland
- Department for Biomedical Research Bern (DBMR)University of BernBernSwitzerland
| | | | | | | | - Monique Vogel
- Department of Rheumatology and ImmunologyUniversity Hospital of BernBernSwitzerland
- Department for Biomedical Research Bern (DBMR)University of BernBernSwitzerland
| | | |
Collapse
|
3
|
Teixeira CSS, Carriço-Sá B, Villa C, Mafra I, Costa J. Can Physicochemical Properties Alter the Potency of Aeroallergens? Part 2 - Impact of Physicochemical Properties. Curr Allergy Asthma Rep 2024; 24:609-617. [PMID: 39302572 PMCID: PMC11481639 DOI: 10.1007/s11882-024-01173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF REVIEW A holistic perspective on how physicochemical properties modulate the allergenicity of proteins has recently been performed for food allergens, launching the challenge of a similar analysis for aeroallergens. After a first review on aeroallergen classification into protein families (Part 1), this second part (Part 2) will exploit the impact of physicochemical properties (abundance/biological function, protein structure/presence of post-translational modifications, ligand/cofactor/lipid-binding) on inhalant protein allergenicity. RECENT FINDINGS The abundance linked to biological function is correlated with increased allergenic risk for most protein families, while the loss of structural integrity with consequent destruction of conformational epitopes is well linked with decreased allergenicity. Ligand-binding effect totally depends on the ligand type being highly variable among aeroallergens. Knowledge about the physicochemical properties of aeroallergens is still scarce, which highlights the need for research using integrated approaches (in silico and experimental) to generate and analyze new data on known/new aeroallergens.
Collapse
Affiliation(s)
- Carla S S Teixeira
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Bruno Carriço-Sá
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
Li Z, Tian J, Yang F. Tyrosine nitration enhances the allergenic potential of house dust mite allergen Der p 2. ENVIRONMENTAL RESEARCH 2024; 252:118826. [PMID: 38579999 DOI: 10.1016/j.envres.2024.118826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Nitration of allergenic proteins caused by atmospheric pollutants O3 and NO2 may enhance their allergenic potential. In the study, the influence of nitration was investigated on the allergenicity of Der p 2, which is a main allergen from house dust mites and plays an important role in allergenic rhinitis and asthma. The results reveal that nitrated Der p 2 enhanced the IgE-binding capacity, upregulated the mRNA expression and release of IL-6 and IL-8 from bronchial epithelial cells, and induced higher levels of specific-IgE, TH2 cytokines and white blood cells in mice. Besides, nitrated Der p 2 caused more severe oxidative stress and allergenic symptoms in mice. It is concluded that nitration enhanced the allergenicity of Der p 2 through not only directly inducing higher amount of specific-IgE and stronger responses of TH2 cytokines, but also indirectly aggravating allergic symptoms by oxidative stress and adjuvant-like activation airway epithelial cells. The study suggests that the contribution of nitration to the promotion in allergenicity should not be ignored when precisely assessing the risk of house dust mite allergens in real environment.
Collapse
Affiliation(s)
- Zhiqi Li
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Jingyi Tian
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiashan, China.
| |
Collapse
|
5
|
Fröhlich-Nowoisky J, Bothen N, Backes AT, Weller MG, Pöschl U. Oligomerization and tyrosine nitration enhance the allergenic potential of the birch and grass pollen allergens Bet v 1 and Phl p 5. FRONTIERS IN ALLERGY 2023; 4:1303943. [PMID: 38125293 PMCID: PMC10732249 DOI: 10.3389/falgy.2023.1303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Protein modifications such as oligomerization and tyrosine nitration alter the immune response to allergens and may contribute to the increasing prevalence of allergic diseases. In this mini-review, we summarize and discuss relevant findings for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified with tetranitromethane (laboratory studies), peroxynitrite (physiological processes), and ozone and nitrogen dioxide (environmental conditions). We focus on tyrosine nitration and the formation of protein dimers and higher oligomers via dityrosine cross-linking and the immunological effects studied.
Collapse
Affiliation(s)
| | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael G. Weller
- Division 1.5 - Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
6
|
Taki AC, Ruethers T, Nugraha R, Karnaneedi S, Williamson NA, Nie S, Leeming MG, Mehr SS, Campbell DE, Lopata AL. Thermostable allergens in canned fish: Evaluating risks for fish allergy. Allergy 2023; 78:3221-3234. [PMID: 37650248 PMCID: PMC10952748 DOI: 10.1111/all.15864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Major fish allergens, including parvalbumin (PV), are heat stable and can withstand extensive cooking processes. Thus, the management of fish allergy generally relies on complete avoidance. Fish-allergic patients may be advised to consume canned fish, as some fish-allergic individuals have reported tolerance to canned fish. However, the safety of consuming canned fish has not been evaluated with comprehensive immunological and molecular analysis of canned fish products. METHODS We characterized the in vitro immunoreactivity of serum obtained from fish-allergic subjects to canned fish. Seventeen canned fish products (salmon n = 8; tuna n = 7; sardine n = 2) were assessed for the content and integrity of PV using allergen-specific antibodies. Subsequently, the sIgE binding of five selected products was evaluated for individual fish-allergic patients (n = 53). Finally, sIgE-binding proteins were identified by mass spectrometry. RESULTS The canned fish showed a markedly reduced PV content and binding to PV-specific antibodies compared with conventionally cooked fish. However, PV and other heat-stable fish allergens, including tropomyosin and collagen, still maintained their sIgE-binding capacity. Of 53 patients, 66% showed sIgE binding to canned fish proteins. The canned sardine contained proteins bound to sIgE from 51% of patients, followed by canned salmon (43%-45%) and tuna (8%-17%). PV was the major allergen in canned salmon and sardine. Tropomyosin and/or collagen also showed sIgE binding. CONCLUSION We showed that canned fish products may not be safe for all fish-allergic patients. Canned fish products should only be considered into the diet of individuals with fish allergy, after detailed evaluation which may include in vitro diagnostics to various heat-stable fish allergens and food challenge conducted in suitable environments.
Collapse
Affiliation(s)
- Aya C. Taki
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
- Tropical Futures InstituteJames Cook UniversitySingapore CitySingapore
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Food and Allergy ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine ScienceIPB UniversityBogorIndonesia
| | - Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Food and Allergy ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Nicholas A. Williamson
- Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Shuai Nie
- Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Michael G. Leeming
- Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Sam S. Mehr
- Centre for Food and Allergy ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of Allergy and ImmunologyThe Royal Children's HospitalParkvilleVictoriaAustralia
| | - Dianne E. Campbell
- Centre for Food and Allergy ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of Allergy and ImmunologyThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Discipline of Paediatrics and Child HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
- Tropical Futures InstituteJames Cook UniversitySingapore CitySingapore
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Food and Allergy ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
7
|
Hasan-Abad AM, Mohammadi M, Mirzaei H, Mehrabi M, Motedayyen H, Arefnezhad R. Impact of oligomerization on the allergenicity of allergens. Clin Mol Allergy 2022; 20:5. [PMID: 35488339 PMCID: PMC9052586 DOI: 10.1186/s12948-022-00172-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Type I hypersensitivity (allergic reaction) is an unsuitable or overreactive immune response to an allergen due to cross-link immunoglobulin E (IgE) antibodies bound to its high-affinity IgE receptors (FcεRIs) on effector cells. It is needless to say that at least two epitopes on allergens are required to the successful and effective cross-linking. There are some reports pointing to small proteins with only one IgE epitope could cross-link FcεRI-bound IgE through homo-oligomerization which provides two same IgE epitopes. Therefore, oligomerization of allergens plays an indisputable role in the allergenic feature and stability of allergens. In this regard, we review the signaling capacity of the B cell receptor (BCR) complex and cross-linking of FcεRI which results in the synthesis of allergen-specific IgE. This review also discusses the protein-protein interactions involved in the oligomerization of allergens and provide some explanations about the oligomerization of some well-known allergens, such as calcium-binding allergens, Alt a 1, Bet v 1, Der p 1, Per a3, and Fel d 1, along with the effects of their concentrations on dimerization.
Collapse
Affiliation(s)
- Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Mohammadi
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Reza Arefnezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Virtanen T. Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. FRONTIERS IN ALLERGY 2022; 2:824736. [PMID: 35387007 PMCID: PMC8974866 DOI: 10.3389/falgy.2021.824736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
A major part of important mammalian respiratory allergens belongs to the lipocalin family of proteins. By this time, 19 respiratory mammalian lipocalin allergens have been registered in the WHO/IUIS Allergen Nomenclature Database. Originally, lipocalins, small extracellular proteins (molecular mass ca. 20 kDa), were characterized as transport proteins but they are currently known to exert a variety of biological functions. The three-dimensional structure of lipocalins is well-preserved, and lipocalin allergens can exhibit high amino acid identities, in several cases more than 50%. Lipocalins contain an internal ligand-binding site where they can harbor small principally hydrophobic molecules. Another characteristic feature is their capacity to bind to specific cell-surface receptors. In all, the physicochemical properties of lipocalin allergens do not offer any straightforward explanations for their allergenicity. Allergic sensitization begins at epithelial barriers where diverse insults through pattern recognition receptors awaken innate immunity. This front-line response is manifested by epithelial barrier-associated cytokines which together with other components of immunity can initiate the sensitization process. In the following, the crucial factor in allergic sensitization is interleukin (IL)-4 which is needed for stabilizing and promoting the type 2 immune response. The source for IL-4 has been searched widely. Candidates for it may be non-professional antigen-presenting cells, such as basophils or mast cells, as well as CD4+ T cells. The synthesis of IL-4 by CD4+ T cells requires T cell receptor engagement, i.e., the recognition of allergen peptides, which also provides the specificity for sensitization. Lipocalin and innate immunity-associated cell-surface receptors are implicated in facilitating the access of lipocalin allergens into the immune system. However, the significance of this for allergic sensitization is unclear, as the recognition by these receptors has been found to produce conflicting results. As to potential adjuvants associated with mammalian lipocalin allergens, the hydrophobic ligands transported by lipocalins have not been reported to enhance sensitization while it is justified to suppose that lipopolysaccharide plays a role in it. Taken together, type 2 immunity to lipocalin allergens appears to be a harmful immune response resulting from a combination of signals involving both the innate and adaptive immunities.
Collapse
Affiliation(s)
- Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Pomés A, Mueller GA, Chruszcz M. Structural Aspects of the Allergen-Antibody Interaction. Front Immunol 2020; 11:2067. [PMID: 32983155 PMCID: PMC7492603 DOI: 10.3389/fimmu.2020.02067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
The development of allergic disease involves the production of IgE antibodies upon allergen exposure in a process called sensitization. IgE binds to receptors on the surface of mast cells and basophils, and subsequent allergen exposure leads to cross-linking of IgE antibodies and release of cell mediators that cause allergy symptoms. Although this process is quite well-understood, very little is known about the epitopes on the allergen recognized by IgE, despite the importance of the allergen-antibody interaction for the allergic response to occur. This review discusses efforts to analyze allergen-antibody interactions, from the original epitope mapping studies using linear peptides or recombinant allergen fragments, to more sophisticated technologies, such as X-ray crystallography and nuclear magnetic resonance. These state-of-the-art approaches, combined with site-directed mutagenesis, have led to the identification of conformational IgE epitopes. The first structures of an allergen (egg lysozyme) in complex with Fab fragments from IgG antibodies were determined in the 1980s. Since then, IgG has been used as surrogate for IgE, due to the difficulty of obtaining monoclonal IgE antibodies. Technical developments including phage display libraries have contributed to progress in epitope mapping thanks to the isolation of IgE antibody constructs from combinatorial libraries made from peripheral blood mononuclear cells of allergic donors. Most recently, single B cell antibody sequencing and human hybridomas are new breakthrough technologies for finally obtaining human IgE monoclonal antibodies, ideal for epitope mapping. The information on antigenic determinants will facilitate the design of hypoallergens for immunotherapy and the investigation of the fundamental mechanisms of the IgE response.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
10
|
Lu S, Yao C, Zhou S, Lin Y, Zhang L, Zeng J, Rao L, Zhang W, Dai Y, Li H, Wang W, Wang Q. Studies on relationships between air pollutants and allergenicity of Humulus Scandens pollen collected from different areas of Shanghai. J Environ Sci (China) 2020; 95:43-48. [PMID: 32653191 DOI: 10.1016/j.jes.2020.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Pollen pollution and allergy are becoming prominent issues in China. However, few studies on pollinosis have been reported. As an allergen in the atmosphere, allergenic Humulus scandens pollen was collected from four districts of Shanghai, including Wusong (WS), Jiading (JD), Xujiahui (XJH) and Songjiang (SJ). The mass concentrations of SO2, NO2, O3, PM10, and PM2.5 (particulate matter with air dynamic diameter less than 10 and 2.5 µm, respectively) near the four sampling sites were also recorded during Humulus scandens pollen season. The allergenicity of the Humulus scandens pollen was assessed by using of a rat model and enzyme linked immunosorbent assay (ELISA). Relationships between the allergenicity and air pollutants were correlated. Our results demonstrated that the biological viability of the pollens collected from the four districts exhibited no significant differences. ELISA and dot blotting results further demonstrated that the serum of sensitized rats exhibited much higher immune-reactive response than that of control groups. Western blotting showed that the 15 KD (1KD = 1000 dalton) proteins of Humulus pollen led to the allergic response. The allergenic intensity of Humulus pollen protein from different samples followed the pattern: WS > JD > XJ > SJ. There was a negative relationship between the allergenicity of Humulus pollens and PM10 (R = -0.99) / PM2.5 (R = -0.73), and a positive relationship with O3 (R = 0.92). These data clearly showed that PM10 and PM2.5 could enhance Humulus pollen protein release, and O3 could aggravate the allergenicity of the Humulus pollen.
Collapse
Affiliation(s)
- Senlin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Chuanhe Yao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shumin Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yichun Lin
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Luying Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junyang Zeng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lanfang Rao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wei Zhang
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yafeng Dai
- Shandong University of Science and Technology, Qingdao 266590, China
| | - Hong Li
- Chinese Research Academy of Environmental Sciences, Beijing 100021, China
| | - Weiqian Wang
- School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Qingyue Wang
- School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
11
|
Köhler VK, Crescioli S, Fazekas-Singer J, Bax HJ, Hofer G, Pranger CL, Hufnagl K, Bianchini R, Flicker S, Keller W, Karagiannis SN, Jensen-Jarolim E. Filling the Antibody Pipeline in Allergy: PIPE Cloning of IgE, IgG 1 and IgG 4 against the Major Birch Pollen Allergen Bet v 1. Int J Mol Sci 2020; 21:E5693. [PMID: 32784509 PMCID: PMC7460837 DOI: 10.3390/ijms21165693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy.
Collapse
Affiliation(s)
- Verena K. Köhler
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Judit Fazekas-Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK
| | - Gerhard Hofer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Christina L. Pranger
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| |
Collapse
|
12
|
Stratilová B, Řehulka P, Garajová S, Řehulková H, Stratilová E, Hrmova M, Kozmon S. Structural characterization of the Pet c 1.0201 PR-10 protein isolated from roots of Petroselinum crispum (Mill.) Fuss. PHYTOCHEMISTRY 2020; 175:112368. [PMID: 32334148 DOI: 10.1016/j.phytochem.2020.112368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The native dimeric Petroselinum crispum (Mill.) Fuss protein Pet c 1.0201 and a monomeric xyloglucan endotransglycosylase enzyme (Garajova et al., 2008) isolated from the root cells co-purify and share similar molecular masses and acidic isoelectric points. In this work, we determined the complete primary structure of the parsley Pet c 1.0201 protein, based on tryptic and chymotryptic peptides followed by the manual micro-gradient chromatographic separation coupled with offline MALDI-TOF/TOF mass spectrometry. The bioinformatics approach enabled us to include the parsley protein into the PR-10 family, as it exhibited the highest protein sequence identity with the Apium graveolens Api g 1.0201 allergen and the major Daucus carota allergen Dau c 1.0201. Hence, we designated the Petroselinum crispum protein as Pet c 1.0201 and deposited it in the UniProt Knowledgebase under the accession C0HKF5. 3D protein homology modelling and molecular dynamics simulations of the Pet c 1.0201 dimer confirmed the typical structure of the Bet v 1 family allergens, and the potential of the Pet c 1.0201 protein to dimerize in water. However, the behavioural properties of Pet c 1.0201 and the celery allergen Api g 1.0101 differed in the presence of salts due to transiently and stably formed dimeric forms of Pet c 1.0201 and Api g 1.0101, respectively.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University Bratislava, Mlynská dolina, SK-84215, Bratislava, Slovakia
| | - Pavel Řehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, CZ-50001, Hradec Králové, Czech Republic
| | - Soňa Garajová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia
| | - Helena Řehulková
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, CZ-50001, Hradec Králové, Czech Republic
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia
| | - Maria Hrmova
- School of Life Science, Huaiyin Normal University, Huai'an, 223300, China; School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stanislav Kozmon
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia.
| |
Collapse
|
13
|
Development of hypoallergenic variants of the major horse allergen Equ c 1 for immunotherapy by rational structure based engineering. Sci Rep 2019; 9:20148. [PMID: 31882906 PMCID: PMC6934807 DOI: 10.1038/s41598-019-56812-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/10/2019] [Indexed: 11/25/2022] Open
Abstract
The use of recombinant allergens is a promising approach in allergen-specific immunotherapy (AIT). Considerable limitation, however, has been the ability of recombinant allergens to activate effector cells leading to allergic reactions. Recombinant hypoallergens with preserved protein folding and capacity to induce protective IgG antibodies binding effectively to the native allergen upon sensitization would be beneficial for safer AIT. In this study, hypoallergen variants of the major horse allergen Equ c 1 were designed by introducing one point mutation on the putative IgE epitope region and two mutations on the monomer-monomer interface of Equ c 1 dimer. The recombinant Equ c 1 wild type and the variants were produced and purified to homogeneity, characterized by size-exclusion ultra-high performance liquid chromatography and ultra-high resolution mass spectrometry. The IgE-binding profiles were analyzed by a competitive immunoassay and the biological activity by a histamine release assay using sera from horse allergic individuals. Two Equ c 1 variants, Triple 2 (V47K + V110E + F112K) and Triple 3 (E21Y + V110E + F112K) showed lower allergen-specific IgE-binding capacity and decreased capability to release histamine from basophils in vitro when using sera from six allergic individuals. Triple 3 showed higher reduction than Triple 2 in IgE-binding (5.5 fold) and in histamine release (15.7 fold) compared to wild type Equ c 1. Mutations designed on the putative IgE epitope region and monomer-monomer interface of Equ c 1 resulted in decreased dimerization, a lower IgE-binding capacity and a reduced triggering of an allergic response in vitro.
Collapse
|
14
|
Clayton GM, White J, Lee S, Kappler JW, Chan SK. Structural characteristics of lipocalin allergens: Crystal structure of the immunogenic dog allergen Can f 6. PLoS One 2019; 14:e0213052. [PMID: 31525203 PMCID: PMC6746357 DOI: 10.1371/journal.pone.0213052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/13/2019] [Indexed: 01/30/2023] Open
Abstract
Lipocalins represent the most important protein family of the mammalian respiratory allergens. Four of the seven named dog allergens are lipocalins: Can f 1, Can f 2, Can f 4, and Can f 6. We present the structure of Can f 6 along with data on the biophysical and biological activity of this protein in comparison with other animal lipocalins. The Can f 6 structure displays the classic lipocalin calyx-shaped ligand binding cavity within a central β-barrel similar to other lipocalins. Despite low sequence identity between the different dog lipocalin proteins, there is a high degree of structural similarity. On the other hand, Can f 6 has a similar primary sequence to cat, horse, mouse lipocalins as well as a structure that may underlie their cross reactivity. Interestingly, the entrance to the ligand binding pocket is capped by a His instead of the usually seen Tyr that may help select its natural ligand binding partner. Our highly pure recombinant Can f 6 is able to bind to human IgE (hIgE) demonstrating biological antigenicity.
Collapse
Affiliation(s)
- Gina M. Clayton
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Program in Structural Biology and Biochemistry, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
| | - Schuyler Lee
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
| | - John W. Kappler
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Program in Structural Biology and Biochemistry, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Sanny K. Chan
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Division of Pediatric Allergy-Immunology, National Jewish Health, Denver, Colorado, United States of America
| |
Collapse
|
15
|
Felce JH, Sezgin E, Wane M, Brouwer H, Dustin ML, Eggeling C, Davis SJ. CD45 exclusion- and cross-linking-based receptor signaling together broaden FcεRI reactivity. Sci Signal 2018; 11:11/561/eaat0756. [PMID: 30563863 DOI: 10.1126/scisignal.aat0756] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For many years, the high-affinity receptor for immunoglobulin E (IgE) FcεRI, which is expressed by mast cells and basophils, has been widely held to be the exemplar of cross-linking (that is, aggregation dependent) signaling receptors. We found, however, that FcεRI signaling could occur in the presence or absence of receptor cross-linking. Using both cell and cell-free systems, we showed that FcεRI signaling was stimulated by surface-associated monovalent ligands through the passive, size-dependent exclusion of the receptor-type tyrosine phosphatase CD45 from plasma membrane regions of FcεRI-ligand engagement. Similarly to the T cell receptor, FcεRI signaling could also be initiated in a ligand-independent manner. These data suggest that a simple mechanism of CD45 exclusion-based receptor triggering could function together with cross-linking-based FcεRI signaling, broadening mast cell and basophil reactivity by enabling these cells to respond to both multivalent and surface-presented monovalent antigens. These findings also strengthen the case that a size-dependent, phosphatase exclusion-based receptor triggering mechanism might serve generally to facilitate signaling by noncatalytic immune receptors.
Collapse
Affiliation(s)
- James H Felce
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Madina Wane
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Heather Brouwer
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Simon J Davis
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK. .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
16
|
Takaiwa F, Ogo Y, Wakasa Y. Specific region affects the difference in accumulation levels between apple food allergen Mal d 1 and birch pollen allergen Bet v 1 which are expressed in vegetative tissues of transgenic rice. PLANT MOLECULAR BIOLOGY 2018; 98:439-454. [PMID: 30350245 DOI: 10.1007/s11103-018-0789-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Specific domain of the Mal d 1 was identified to be mainly involved in higher accumulation level in vegetative tissues of transgenic rice than the Bet v 1. Apple food allergen Mal d 1 and birch pollen allergen Bet v 1 belong to the same pathogen related protein 10 (PR10) family. When green fluorescent protein (GFP) fused to either of these allergens was expressed as a secretory protein in transgenic rice by ligating an N terminal signal peptide and a C terminal KDEL ER retention signal under the control of the maize ubiquitin constitutive promoter, the GFP:Mald1 highly accumulated in various tissues, whereas accumulation level of the GFP:Betv1 was remarkably reduced in vegetative tissues except for seed. Analysis by RT-PCR exhibited that there was little difference in their transcript levels, indicating the involvement of post-transcriptional regulation. To investigate the cause of such difference in accumulation levels, deletion analysis of the Mal d 1 and domain swapping between them were carried out in transgenic rice. The results showed that the region between positions 41-90 in the Mal d 1 is predominantly implicated in higher level accumulation in vegetative tissues as well as seed as compared with the Bet v 1. The GFP:Mald1 was localized in oligomeric form within ER lumen or ER-derived particles in vegetative tissues, whereas in seed mainly deposited into novel huge ER-derived protein bodies with the size of 5-10 µm in aleurone cells.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Yuko Ogo
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yuhya Wakasa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
17
|
Oeo-Santos C, Mas S, Quiralte J, Colás C, Blanca M, Fernández J, Feo Brito F, Villalba M, Barderas R. A Hypoallergenic Polygalacturonase Isoform from Olive Pollen Is Implicated in Pollen-Pollen Cross-Reactivity. Int Arch Allergy Immunol 2018; 177:290-301. [PMID: 30173224 DOI: 10.1159/000491027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/19/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cross-reactivity reactions between allergenic polygalacturonases (PGs) from different biological sources, especially foods and pollens from the Oleaceae family, have been described using Salsola kali PG (Sal k 6). No PG from olive pollen has been characterized to date, hampering further knowledge about cross-reactions through PGs. OBJECTIVES The aim of this work was to determine the potential allergenicity of the PG from olive pollen and clarify its role in cross-reactivity. METHODS A cDNA-encoding olive pollen PG sequence was subcloned into the pET41b vector and used to transform BL21(DE3) Escherichia coli cells to produce a His-tag fusion recombinant protein. The allergenic properties of olive pollen PG were determined by immunoblotting and ELISA in comparison to Sal k 6. The cross-reactivity potential of the protein with other pollen sources was analyzed by inhibition immunoassays. RESULTS The existence of other isoforms of Ole e 14 with different allergenicity was confirmed by proteomics and a meta-analysis of the recently reported olive genome. Sal k 6 showed a higher IgE recognition than Ole e 14 regardless of patient sensitization, suggesting the existence of more allergenic Ole e 14 isoforms in olive pollen. IgG and IgE inhibition assays supported the existence of cross-reactions between them and with other PGs from Oleaceae and Poaceae plant families. CONCLUSIONS A new allergen from olive pollen, Ole e 14, has been identified, produced as a recombinant isoform, and structurally and immunologically characterized. Its role in cross-reactivity has been confirmed and, due to its smaller IgE binding capacity, it could have an important role for therapeutic purposes.
Collapse
Affiliation(s)
- Carmen Oeo-Santos
- Departamento Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - Salvador Mas
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Valencia, Spain
| | - Joaquín Quiralte
- Departamento Alergología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Carlos Colás
- Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Miguel Blanca
- Unidad de Alergología, Hospital Universitario Regional de Málaga-IBIMA, UMA, Málaga, Spain
| | - Javier Fernández
- Departamento Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
| | | | - Mayte Villalba
- Departamento Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid,
| | - Rodrigo Barderas
- Departamento Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain.,UFIEC, CROSADIS, ISCIII, Majadahonda, Spain
| |
Collapse
|
18
|
Structure of a patient-derived antibody in complex with allergen reveals simultaneous conventional and superantigen-like recognition. Proc Natl Acad Sci U S A 2018; 115:E8707-E8716. [PMID: 30150373 PMCID: PMC6140506 DOI: 10.1073/pnas.1806840115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies classically bind antigens via their complementarity-determining regions, but an alternative mode of interaction involving V-domain framework regions has been observed for some B cell "superantigens." We report the crystal structure of an antibody employing both modes of interaction simultaneously and binding two antigen molecules. This human antibody from an allergic individual binds to the grass pollen allergen Phl p 7. Not only are two allergen molecules bound to each antibody fragment (Fab) but also each allergen molecule is bound by two Fabs: One epitope is recognized classically, the other in a superantigen-like manner. A single allergen molecule thus cross-links two identical Fabs, contrary to the one-antibody-one-epitope dogma, which dictates that a dimeric allergen at least is required for this to occur. Allergens trigger immediate hypersensitivity reactions by cross-linking receptor-bound IgE molecules on effector cells. We found that monomeric Phl p 7 induced degranulation of basophils sensitized solely with this monoclonal antibody expressed as an IgE, demonstrating that the dual specificity has functional consequences. The monomeric state of Phl p 7 and two structurally related allergens was confirmed by size-exclusion chromatography and multiangle laser light scattering, and the results were supported by degranulation studies with the related allergens, a second patient-derived allergen-specific antibody lacking the nonclassical binding site, and mutagenesis of the nonclassically recognized allergen epitope. The antibody dual reactivity and cross-linking mechanism not only have implications for understanding allergenicity and allergen potency but, importantly, also have broader relevance to antigen recognition by membrane Ig and cross-linking of the B cell receptor.
Collapse
|
19
|
Rib-Schmidt C, Riedl P, Meisinger V, Schwaben L, Schulenborg T, Reuter A, Schiller D, Seutter von Loetzen C, Rösch P. pH and Heat Resistance of the Major Celery Allergen Api g 1. Mol Nutr Food Res 2018; 62:e1700886. [PMID: 29800504 DOI: 10.1002/mnfr.201700886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/09/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The major celery allergen Api g 1 is a member of the pathogenesis-related 10 class protein family. This study aims to investigate the impact of heat and pH on the native protein conformation required for Immunoglobulin E (IgE) recognition. METHODS AND RESULTS Spectroscopic methods, MS and IgE-binding analyses are used to study the effects of pH and thermal treatment on Api g 1.0101. Heat processing results in a loss of the native protein fold via denaturation, oligomerization, and precipitation along with a subsequent reduction of IgE recognition. The induced effects and timescales are strongly pH dependent. While Api g 1 refolds partially into an IgE-binding conformation at physiological pH, acidic pH treatment leads to the formation of structurally heat-resistant, IgE-reactive oligomers. Thermal processing in the presence of a celery matrix or at pH conditions close to the isoelectric point (pI = 4.63) of Api g 1.0101 results in almost instant precipitation. CONCLUSION This study demonstrates that Api g 1.0101 is not intrinsically susceptible to heat treatment in vitro. However, the pH and the celery matrix strongly influence the stability of Api g 1.0101 and might be the main reasons for the observed temperature lability of this important food allergen.
Collapse
Affiliation(s)
- Carina Rib-Schmidt
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| | - Philipp Riedl
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| | - Veronika Meisinger
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| | - Luisa Schwaben
- Division of Allergology, Paul-Ehrlich-Institut, Langen, 63225, Germany
| | | | - Andreas Reuter
- Division of Allergology, Paul-Ehrlich-Institut, Langen, 63225, Germany
| | - Dirk Schiller
- Division of Allergology, Paul-Ehrlich-Institut, Langen, 63225, Germany
| | | | - Paul Rösch
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| |
Collapse
|
20
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
21
|
Ruethers T, Raith M, Sharp MF, Koeberl M, Stephen J, Nugraha R, Le TTK, Quirce S, Nguyen HXM, Kamath SD, Mehr SS, Campbell DE, Bridges CR, Taki AC, Swoboda I, Lopata AL. Characterization of Ras k 1 a novel major allergen in Indian mackerel and identification of parvalbumin as the major fish allergen in 33 Asia-Pacific fish species. Clin Exp Allergy 2018; 48:452-463. [DOI: 10.1111/cea.13069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 01/17/2023]
Affiliation(s)
- T. Ruethers
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - M. Raith
- Molecular Biotechnology Section; FH Campus Wien - University of Applied Sciences; Vienna Austria
| | - M. F. Sharp
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
| | - M. Koeberl
- Technical Development and Innovation Group; National Measurement Institute; Melbourne Australia
| | - J. N. Stephen
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
| | - R. Nugraha
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - T. T. K. Le
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - S. Quirce
- Department of Allergy; Hospital La Paz Institute for Health Research (IdiPAZ) and CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - H. X. M. Nguyen
- Department of Food Biochemistry; Faculty of Food Science and Technology; Nong Lam University; Ho Chi Minh City Vietnam
| | - S. D. Kamath
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - S. S. Mehr
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Department of Allergy and Immunology; Children's Hospital at Westmead; Sydney Australia
- Department of Allergy and Immunology; Royal Children's Hospital; Melbourne Australia
| | - D. E. Campbell
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Department of Allergy and Immunology; Children's Hospital at Westmead; Sydney Australia
- Discipline of Paediatrics and Child Health; University of Sydney; Sydney Australia
| | - C. R. Bridges
- Ecophysiology Group; Institute for Metabolic Physiology; Heinrich Heine University; Duesseldorf Germany
| | - A. C. Taki
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| | - I. Swoboda
- Molecular Biotechnology Section; FH Campus Wien - University of Applied Sciences; Vienna Austria
| | - A. L. Lopata
- Molecular Allergy Research Laboratory; Division of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Food and Allergy Research; Murdoch Childrens Research Institute; Melbourne Australia
- Centre for Biodiscovery and Molecular Development of Therapeutics; Australian Institute of Tropical Health and Medicine; James Cook University; Townsville Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture; Faculty of Science and Engineering; James Cook University; Townsville Australia
| |
Collapse
|
22
|
Ribeiro H, Costa C, Abreu I, Esteves da Silva JCG. Effect of O 3 and NO 2 atmospheric pollutants on Platanus x acerifolia pollen: Immunochemical and spectroscopic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:291-297. [PMID: 28477486 DOI: 10.1016/j.scitotenv.2017.04.206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the effects of two important oxidizing atmospheric pollutants (O3 and NO2) on the allergenic properties and chemical composition of Platanus x acerifolia pollen were studied. Pollen samples were subjected to O3 and/or NO2 under in vitro conditions for 6h at atmospheric concentration levels (O3: 0.061ppm; NO2: 0.025ppm and the mixture of O3 and NO2: 0.060 and 0.031ppm respectively). Immunoblotting (using Pla a 1 and Pla a 2 antibodies), infrared and X-ray photoelectron spectroscopy techniques were used. Immunochemical analysis showed that pollen allergenicity changes were different according to the pollutant tested (gas or mixture of gasses) and that the same pollutant gas may interact in a different manner with each specific allergen. The spectroscopy results showed modifications in the FTIR spectral features of bands assigned to proteins, lipids, and polysaccharides of the pollen exposed to the pollutants, as well as in the XPS spectra high-resolution components C 1s, N 1s, and O 1s. This indicates that while airborne, the pollen wall suffers further modifications of its components induced by air pollution, which can compromise the pollen function.
Collapse
Affiliation(s)
- Helena Ribeiro
- Earth Sciences Institute, Pole of the Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Célia Costa
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Ilda Abreu
- Earth Sciences Institute, Pole of the Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; Biology Department, Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Earth Sciences Institute, Pole of the Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; Centre of Investigation in Chemistry (CIQ-UP), University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
23
|
Franz-Oberdorf K, Langer A, Strasser R, Isono E, Ranftl QL, Wunschel C, Schwab W. Physical interaction between the strawberry allergen Fra a 1 and an associated partner FaAP: Interaction of Fra a 1 proteins and FaAP. Proteins 2017; 85:1891-1901. [DOI: 10.1002/prot.25343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Katrin Franz-Oberdorf
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan Technische Universität München; 85354 Freising Germany
| | - Andreas Langer
- Dynamic Biosensors GmbH; Lochhamerstr. 15 82152 Planegg Germany
| | - Ralf Strasser
- Dynamic Biosensors GmbH; Lochhamerstr. 15 82152 Planegg Germany
| | - Erika Isono
- Department of Plant Systems Biology; Technische Universität München; 85354 Freising Germany
| | - Quirin L. Ranftl
- Department of Plant Systems Biology; Technische Universität München; 85354 Freising Germany
| | - Christian Wunschel
- Department of Botany; Technische Universität München; 85354 Freising Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan Technische Universität München; 85354 Freising Germany
| |
Collapse
|
24
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
25
|
Narayanan M, Freidl R, Focke-Tejkl M, Baranyi U, Wekerle T, Valenta R, Linhart B. A B Cell Epitope Peptide Derived from the Major Grass Pollen Allergen Phl p 1 Boosts Allergen-Specific Secondary Antibody Responses without Allergen-Specific T Cell Help. THE JOURNAL OF IMMUNOLOGY 2017; 198:1685-1695. [PMID: 28093528 PMCID: PMC5292585 DOI: 10.4049/jimmunol.1501741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/27/2016] [Indexed: 11/19/2022]
Abstract
More than 40% of allergic patients suffer from grass pollen allergy. Phl p 1, the major timothy grass pollen allergen, belongs to the cross-reactive group 1 grass pollen allergens that are thought to initiate allergic sensitization to grass pollen. Repeated allergen encounter boosts allergen-specific IgE production and enhances clinical sensitivity in patients. To investigate immunological mechanisms underlying the boosting of allergen-specific secondary IgE Ab responses and the allergen epitopes involved, a murine model for Phl p 1 was established. A B cell epitope–derived peptide of Phl p 1 devoid of allergen-specific T cell epitopes, as recognized by BALB/c mice, was fused to an allergen-unrelated carrier in the form of a recombinant fusion protein and used for sensitization. This fusion protein allowed the induction of allergen-specific IgE Ab responses without allergen-specific T cell help. Allergen-specific Ab responses were subsequently boosted with molecules containing the B cell epitope–derived peptide without carrier or linked to other allergen-unrelated carriers. Oligomeric peptide bound to a carrier different from that which had been used for sensitization boosted allergen-specific secondary IgE responses without a detectable allergen-specific T cell response. Our results indicate that allergen-specific secondary IgE Ab responses can be boosted by repetitive B cell epitopes without allergen-specific T cell help by cross-linking of the B cell epitope receptor. This finding has important implications for the design of new allergy vaccines.
Collapse
Affiliation(s)
- Meena Narayanan
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, 1090 Vienna, Austria; and
| | - Raphaela Freidl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, 1090 Vienna, Austria; and
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, 1090 Vienna, Austria; and
| | - Ulrike Baranyi
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, 1090 Vienna, Austria; and
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, 1090 Vienna, Austria; and
| |
Collapse
|
26
|
Pali-Schöll I, Jensen-Jarolim E. The concept of allergen-associated molecular patterns (AAMP). Curr Opin Immunol 2016; 42:113-118. [PMID: 27619413 DOI: 10.1016/j.coi.2016.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/13/2023]
Abstract
For proteins to become allergenic, they need to acquire features enabling them to induce B cell activation and isotype switch to IgE production. Crosslinking of the B-cell receptor (BCR) is the most efficient way to productively activate B-cells. The IgE-crosslinking capability of allergens is equally crucial in the effector phase of immediate type allergy. Antigens, which acquire enhanced crosslinking capacity by oligomerization, aggregation, or the expression of repetitive epitopes may therefore gain allergenic potency. The accumulated evidence for repetitive epitope display by allergens suggests the existence of allergen-associated molecular patterns.
Collapse
Affiliation(s)
- Isabella Pali-Schöll
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Inst of Pathophysiology and Allergy Research, Center of Physiology, Pathophysiology and Immunology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
27
|
Structural insights into the IgE mediated responses induced by the allergens Hev b 8 and Zea m 12 in their dimeric forms. Sci Rep 2016; 6:32552. [PMID: 27586352 PMCID: PMC5009318 DOI: 10.1038/srep32552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023] Open
Abstract
Oligomerization of allergens plays an important role in IgE-mediated reactions, as effective crosslinking of IgE- FcεRI complexes on the cell membrane is dependent on the number of exposed B-cell epitopes in a single allergen molecule or on the occurrence of identical epitopes in a symmetrical arrangement. Few studies have attempted to experimentally demonstrate the connection between allergen dimerization and the ability to trigger allergic reactions. Here we studied plant allergenic profilins rHev b 8 (rubber tree) and rZea m 12 (maize) because they represent an important example of cross-reactivity in the latex-pollen-food syndrome. Both allergens in their monomeric and dimeric states were isolated and characterized by exclusion chromatography and mass spectrometry and were used in immunological in vitro experiments. Their crystal structures were solved, and for Hev b 8 a disulfide-linked homodimer was found. Comparing the structures we established that the longest loop is relevant for recognition by IgE antibodies, whereas the conserved regions are important for cross-reactivity. We produced a novel monoclonal murine IgE (mAb 2F5), specific for rHev b 8, which was useful to provide evidence that profilin dimerization considerably increases the IgE-mediated degranulation in rat basophilic leukemia cells.
Collapse
|
28
|
Highlights on Hevea brasiliensis (pro)hevein proteins. Biochimie 2016; 127:258-70. [DOI: 10.1016/j.biochi.2016.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
|
29
|
Computational study of pH-dependent oligomerization and ligand binding in Alt a 1, a highly allergenic protein with a unique fold. J Comput Aided Mol Des 2016; 30:365-79. [DOI: 10.1007/s10822-016-9911-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
30
|
Berthelot K, Lecomte S, Coulary-Salin B, Bentaleb A, Peruch F. Hevea brasiliensis prohevein possesses a conserved C-terminal domain with amyloid-like properties in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:388-99. [DOI: 10.1016/j.bbapap.2016.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 11/30/2022]
|
31
|
Are fish tropomyosins allergens? Ann Allergy Asthma Immunol 2015; 116:74-76.e5. [PMID: 26507710 DOI: 10.1016/j.anai.2015.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/29/2015] [Accepted: 09/23/2015] [Indexed: 11/21/2022]
|
32
|
Kampf CJ, Liu F, Reinmuth-Selzle K, Berkemeier T, Meusel H, Shiraiwa M, Pöschl U. Protein Cross-Linking and Oligomerization through Dityrosine Formation upon Exposure to Ozone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10859-66. [PMID: 26287571 DOI: 10.1021/acs.est.5b02902] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Air pollution is a potential driver for the increasing prevalence of allergic disease, and post-translational modification by air pollutants can enhance the allergenic potential of proteins. Here, the kinetics and mechanism of protein oligomerization upon ozone (O3) exposure were studied in coated-wall flow tube experiments at environmentally relevant O3 concentrations, relative humidities and protein phase states (amorphous solid, semisolid, and liquid). We observed the formation of protein dimers, trimers, and higher oligomers, and attribute the cross-linking to the formation of covalent intermolecular dityrosine species. The oligomerization proceeds fast on the surface of protein films. In the bulk material, reaction rates are limited by diffusion depending on phase state and humidity. From the experimental data, we derive a chemical mechanism and rate equations for a kinetic multilayer model of surface and bulk reaction enabling the prediction of oligomer formation. Increasing levels of tropospheric O3 in the Anthropocene may promote the formation of protein oligomers with enhanced allergenicity and may thus contribute to the increasing prevalence of allergies.
Collapse
Affiliation(s)
- Christopher J Kampf
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz , 55128 Mainz, Germany
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | | | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Hannah Meusel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , 55128 Mainz, Germany
| |
Collapse
|
33
|
Abstract
Lipocalins are one of the most important groups of inhalant animal allergens. The analysis of structural features of these proteins is important to get insights into their allergenicity. We have determined two different dimeric crystal structures for bovine dander lipocalin Bos d 2, which was earlier described as a monomeric allergen. The crystal structure analysis of all other determined lipocalin allergens also revealed oligomeric structures which broadly utilize inherent structural features of the β-sheet in dimer formation. According to the moderate size of monomer-monomer interfaces, most of these dimers would be transient in solution. Native mass spectrometry was employed to characterize quantitatively transient dimerization of two lipocalin allergens, Bos d 2 and Bos d 5, in solution.
Collapse
|
34
|
Rytkönen-Nissinen M, Saarelainen S, Randell J, Häyrinen J, Kalkkinen N, Virtanen T. IgE Reactivity of the Dog Lipocalin Allergen Can f 4 and the Development of a Sandwich ELISA for Its Quantification. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:384-92. [PMID: 25749774 PMCID: PMC4446637 DOI: 10.4168/aair.2015.7.4.384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 11/24/2022]
Abstract
Purpose Divergent results on the IgE reactivity of dog-allergic subjects to Can f 4 have been reported. The aim of this study was to evaluate the significance of Can f 4 in dog allergy and to develop an immunochemical method for measuring Can f 4 content in environmental samples. Methods We purified the natural dog allergen Can f 4 from a dog dander extract by monoclonal antibody-based affinity chromatography and generated its variant in a recombinant form. Sixty-three dog-allergic patients and 12 nonallergic control subjects were recruited in the study. The IgE-binding capacity of natural Can f 4 and its recombinant variant was assessed by ELISA, immunoblotting, and skin prick tests (SPT). Results Eighty-one percent of the dog-allergic patients showed a positive result to the immunoaffinity-purified natural Can f 4 in IgE ELISA, but only 46% in IgE immunoblotting. Respective results with the recombinant Can f 4 variant were 54% and 49%. SPT results reflected those obtained in ELISA and immunoblotting. The overall IgE reactivity of the immunoaffinity-purified natural Can f 4 was found to depend strongly on the integrity of the allergen's conformation. A sandwich ELISA based on monoclonal antibodies was found to be functional for measuring Can f 4 in environmental samples. Conclusions Can f 4 is a major allergen of dog together with Can f 1 and Can f 5. In combination with other dog allergens, it improves the reliability of allergy tests in dog allergy.
Collapse
Affiliation(s)
- Marja Rytkönen-Nissinen
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, Finland.; Institute of Dentistry, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland.
| | - Soili Saarelainen
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, Finland
| | - Jukka Randell
- Department of Pulmonary Diseases, Kuopio University Hospital, Kuopio, Finland
| | - Jukka Häyrinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Nisse Kalkkinen
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | - Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, Finland
| |
Collapse
|
35
|
González-Fernández J, Daschner A, Nieuwenhuizen NE, Lopata AL, Frutos CD, Valls A, Cuéllar C. Haemoglobin, a new major allergen of Anisakis simplex. Int J Parasitol 2015; 45:399-407. [PMID: 25683373 DOI: 10.1016/j.ijpara.2015.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/01/2023]
Abstract
Gastro-allergic anisakiasis and Anisakis sensitisation associated chronic urticaria are diseases which differ in their IgE and IgG4 responses against both crude extract and specific allergens. Anisakis and Ascaris are closely related nematodes that usually cause problems with specificity in immunodiagnostics. In this study we measured IgE and IgG4 antibodies against Anisakis simplex sensu lato (s. l.) and Ascaris suum haemoglobins in sera of 21 gastro-allergic anisakiasis and 23 chronic urticaria patients. We used a capture ELISA with the anti-Anisakis haemoglobin monoclonal antibody 4E8g, which also recognises Ascaris haemoglobin. In addition, we determined specific IgE and IgG4 to both nematodes by indirect ELISA and immunoblotting. Anti-A. simplex s. l. haemoglobin IgE and IgG4 levels were higher in gastro-allergic anisakiasis than in chronic urticaria patients (P=0.002 and 0.026, respectively). Surprisingly, no patient had detectable IgE levels against A. suum haemoglobin. Finally, we carried out an in silico study of the B-cell epitopes of both haemoglobin molecules. Five epitopes were predicted in Anisakis pegreffii and four in A. suum haemoglobin. The epitope propensity values of Anisakis haemoglobin in the equivalent IgE binding region of the allergenic haemoglobin Chi t 1 from Chironomus thummi, were higher those of the Ascaris haemoglobin. In conclusion, we describe A. simplex haemoglobin as a new major allergen (Ani s 13), being recognised by a large number (64.3%) of sensitised patients and up to 80.9% in patients with gastro-allergic anisakiasis. The presence of a specific epitope and the different values of epitope propensity between Anisakis and Ascaris haemoglobin could explain the lack of cross-reactivity between the two molecules. The absence of IgE reactivity to Ascaris haemoglobin in Anisakis patients makes Anisakis haemoglobin (Ani s 13) a potential candidate for developing more specific diagnosis tools.
Collapse
Affiliation(s)
- Juan González-Fernández
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| | - Alvaro Daschner
- Servicio de Alergia, Instituto de Investigación Sanitaria-Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Natalie E Nieuwenhuizen
- Department of Immunology, Max Planck Institut für Infektionsbiologie, Chariteplatz 1, 10117 Berlin, Germany
| | - Andreas L Lopata
- Department of Molecular and Cell Biology, Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, 4811, Australia
| | - Consolación De Frutos
- Servicio de Alergia, Instituto de Investigación Sanitaria-Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Ana Valls
- Servicio de Alergia, Instituto de Investigación Sanitaria-Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
36
|
Crameri R. Structural aspects of fungal allergens. Semin Immunopathol 2014; 37:117-21. [PMID: 25413498 DOI: 10.1007/s00281-014-0458-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022]
Abstract
Despite the increasing number of solved crystal structures of allergens, the key question why some proteins are allergenic and the vast majority is not remains unanswered. The situation is not different for fungal allergens which cover a wide variety of proteins with different chemical properties and biological functions. They cover enzymes, cell wall, secreted, and intracellular proteins which, except cross-reactive allergens, does not show any evidence for structural similarities at least at the three-dimensional level. However, from a diagnostic point of view, pure allergens biotechnologically produced by recombinant technology can provide us, in contrast to fungal extracts which are hardly producible as standardized reagents, with highly pure perfectly standardized diagnostic reagents.
Collapse
Affiliation(s)
- Reto Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland,
| |
Collapse
|
37
|
Wagner GE, Gutfreund S, Fauland K, Keller W, Valenta R, Zangger K. Backbone resonance assignment of Alt a 1, a unique β-barrel protein and the major allergen of Alternaria alternata. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:229-231. [PMID: 23715812 PMCID: PMC6597350 DOI: 10.1007/s12104-013-9489-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
Alt a 1 is the major allergen of the fungus Alternaria alternata and can be found in the cell wall of its spores. It is a cysteine linked homodimeric protein with a unique β-barrel fold as recently revealed by X-ray crystallography. Despite the elucidation of its structure, its biological function remains unknown. For Alternaria-sensitized patients, contact leads to respiratory allergy and in severe cases to asthma-related death. Here we report the sequence-specific Alt a 1 backbone (1)H, (15)N and (13)C chemical shift assignment.
Collapse
Affiliation(s)
- Gabriel E Wagner
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | | | | | | | | | | |
Collapse
|
38
|
Levin M, Davies AM, Liljekvist M, Carlsson F, Gould HJ, Sutton BJ, Ohlin M. Human IgE against the major allergen Bet v 1--defining an epitope with limited cross-reactivity between different PR-10 family proteins. Clin Exp Allergy 2014; 44:288-99. [PMID: 24447087 PMCID: PMC4215112 DOI: 10.1111/cea.12230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/24/2013] [Accepted: 10/25/2013] [Indexed: 02/05/2023]
Abstract
Background The interaction between IgE and allergen is a key event at the initiation of an allergic response, and its characteristics have substantial effects on the clinical manifestation. Despite this, the molecular details of the interaction between human IgE and the major birch allergen Bet v 1, one of the most potent tree allergens, still remain poorly investigated. Objective To isolate Bet v 1-specific human monoclonal IgE and characterize their interaction with the allergen. Methods Recombinant human IgE were isolated from a combinatorial antibody fragment library and their interaction with Bet v 1 assessed using various immunological assays. The structure of one such IgE in the single-chain fragment variable format was determined using X-ray crystallography. Results We present four novel Bet v 1-specific IgE, for one of which we solve the structure, all with their genetic origin in the IGHV5 germline gene, and demonstrate that they target two non-overlapping epitopes on the surface of Bet v 1, thereby fulfilling the basic criteria for FcεRI cross-linkage. We further define these epitopes and for one epitope pinpoint single amino acid residues important for the interaction with human IgE. This provides a potential explanation, at the molecular level, for the differences in recognition of isoforms of Bet v 1 and other allergens in the PR-10 protein family displayed by IgE targeting this epitope. Finally, we present the first high-resolution structure of a human allergen-specific IgE fragment in the single-chain fragment variable (scFv) format. Conclusions and Clinical Relevance We here display the usefulness of allergen-specific human monoclonal IgE as a tool in studies of the crucial molecular interaction taking place at the initiation of an allergic response. Such studies may aid us in development of better diagnostic tools and guide us in the development of new therapeutic compounds.
Collapse
Affiliation(s)
- M Levin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Garrido-Arandia M, Gómez-Casado C, Díaz-Perales A, Pacios LF. Molecular Dynamics of Major Allergens from Alternaria, Birch Pollen and Peach. Mol Inform 2014; 33:682-94. [PMID: 27485303 DOI: 10.1002/minf.201400057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/29/2014] [Indexed: 11/08/2022]
Abstract
In the search for factors that make a protein allergenic (an issue that remains so far elusive) some common features of allergens such as small size, high stability and lipid binding are recognized in spite of their structural diversity. Other relevant but still poorly understood feature is their capability to form homodimers. We investigated by means of Molecular Dynamics (MD) calculations the stability in solution of several dimers of three major allergens from Alternaria mold, birch pollen, and peach fruit known to play essential roles in allergic disease. By running 20 ns MD simulations we found essential properties on solution that provide information of interest on their dimerization, stability of their epitopes and dynamical features of ligand binding cavities. Our results show that three essential allergen proteins display a distinct behavior on their trends to form homodimers in solution.
Collapse
Affiliation(s)
- María Garrido-Arandia
- Departamento de Biotecnología y Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, 28040 Madrid, Spain tel. 34 91 3364297
| | - Cristina Gómez-Casado
- Departamento de Biotecnología y Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, 28040 Madrid, Spain tel. 34 91 3364297
| | - Araceli Díaz-Perales
- Departamento de Biotecnología y Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, 28040 Madrid, Spain tel. 34 91 3364297
| | - Luis F Pacios
- Departamento de Biotecnología y Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, 28040 Madrid, Spain tel. 34 91 3364297.
| |
Collapse
|
40
|
Knipping K, Simons PJ, Buelens-Sleumer LS, Cox L, den Hartog M, de Jong N, Teshima R, Garssen J, Boon L, Knippels LMJ. Development of β-lactoglobulin-specific chimeric human IgEκ monoclonal antibodies for in vitro safety assessment of whey hydrolysates. PLoS One 2014; 9:e106025. [PMID: 25153680 PMCID: PMC4143325 DOI: 10.1371/journal.pone.0106025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/31/2014] [Indexed: 01/12/2023] Open
Abstract
Background Cow’s milk-derived whey hydrolysates are nutritional substitutes for allergic infants. Safety or residual allergenicity assessment of these whey hydrolysates is crucial. Currently, rat basophilic leukemia RBL-2H3 cells expressing the human IgE receptor α-chain (huFcεRIα-RBL-2H3), sensitized with serum IgE from cow’s milk allergic children, are being employed to assess in vitro residual allergenicity of these whey hydrolysates. However, limited availability and inter-lot variation of these allergic sera impede standardization of whey hydrolysate safety testing in degranulation assays. Objective An oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (a major allergen in whey) was generated to increase sensitivity, specificity, and reproducibility of existing degranulation assays. Methods Mice were immunized with bovine β-lactoglobulin, and subsequently the variable domains of dissimilar anti-β-lactoglobulin mouse IgG antibodies were cloned and sequenced. Six chimeric antibodies were generated comprising mouse variable domains and human constant IgE/κ domains. Results After sensitization with this pool of anti-β-lactoglobulin chuIgEs, huFcεRIα-expressing RBL-2H3 cells demonstrated degranulation upon cross-linking with whey, native 18 kDa β-lactoglobulin, and 5–10 kDa whey hydrolysates, whereas a 3 kDa whey hydrolysate and cow’s milk powder (mainly casein) showed no degranulation. In parallel, allergic serum IgEs were less sensitive. In addition, our pool anti-β-lactoglobulin chuIgEs recognized multiple allergenic immunodominant regions on β-lactoglobulin, which were also recognized by serum IgEs from cow’s milk allergic children. Conclusion Usage of our ‘unlimited’ source and well-defined pool of β-lactoglobulin-specific recombinant chuIgEs to sensitize huFcεRIα on RBL-2H3 cells showed to be a relevant and sensitive alternative for serum IgEs from cow’s milk allergic patients to assess safety of whey-based non-allergic hydrolyzed formula.
Collapse
Affiliation(s)
- Karen Knipping
- Nutricia Research B.V., Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- * E-mail: (KK); (PS)
| | - Peter J. Simons
- Bioceros Holding B.V., Utrecht, The Netherlands
- * E-mail: (KK); (PS)
| | | | - Linda Cox
- Bioceros Holding B.V., Utrecht, The Netherlands
| | | | | | - Reiko Teshima
- Division of Foods, National Institute of Health Sciences, Tokyo, Japan
| | - Johan Garssen
- Nutricia Research B.V., Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Louis Boon
- Bioceros Holding B.V., Utrecht, The Netherlands
| | - Léon M. J. Knippels
- Nutricia Research B.V., Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
41
|
Niemi MH, Rytkönen-Nissinen M, Jänis J, Virtanen T, Rouvinen J. Structural aspects of dog allergies: the crystal structure of a dog dander allergen Can f 4. Mol Immunol 2014; 61:7-15. [PMID: 24859823 DOI: 10.1016/j.molimm.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
Four out of six officially recognized dog allergens are members of the lipocalin protein family. So far, a three-dimensional structure has been determined for only one dog allergen, Can f 2, which is a lipocalin protein. We present here the crystal structure of a second lipocalin allergen from dog, a variant of Can f 4. Moreover, we have compared and analyzed the structures of these two weakly homologous (amino acid identity 21%) dog allergens. The size and the amino acid composition of the ligand-binding pocket indicate that Can f 4 is capable of binding only relatively small hydrophobic molecules which are different from those that Can f 2 is able to bind. The crystal structure of Can f 4 contained both monomeric and dimeric forms of the allergen, suggesting that Can f 4 is able to form transient (weak) dimers. The existence of transient dimers in solution was confirmed by use of native mass spectrometry. The dimeric structure of Can f 4 is formed when the ends of four β-strands are packed against the same strands from the second monomer. The residues in the interface are mainly hydrophobic and the formation of the dimer is similar to the major horse allergen Equ c 1. Interestingly, the crystal structure of dog Can f 2 has been reported to show a different type of dimer formation. The capability of these allergens to form dimers may be important for the development of immediate allergic reaction (mast cell activation) because oligomeric allergens can effectively present multivalent epitopes.
Collapse
Affiliation(s)
- Merja H Niemi
- Department of Chemistry and Biocenter Kuopio, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Marja Rytkönen-Nissinen
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland; Institute of Dentistry, School of Medicine, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Janne Jänis
- Department of Chemistry and Biocenter Kuopio, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine and Biocenter Kuopio, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Juha Rouvinen
- Department of Chemistry and Biocenter Kuopio, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland.
| |
Collapse
|
42
|
Rodríguez-Romero A, Hernández-Santoyo A, Fuentes-Silva D, Palomares LA, Muñoz-Cruz S, Yépez-Mulia L, Orozco-Martínez S. Structural analysis of the endogenous glycoallergen Hev b 2 (endo-β-1,3-glucanase) from Hevea brasiliensis and its recognition by human basophils. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:329-41. [PMID: 24531467 PMCID: PMC3940204 DOI: 10.1107/s1399004713027673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022]
Abstract
Endogenous glycosylated Hev b 2 (endo-β-1,3-glucanase) from Hevea brasiliensis is an important latex allergen that is recognized by IgE antibodies from patients who suffer from latex allergy. The carbohydrate moieties of Hev b 2 constitute a potentially important IgE-binding epitope that could be responsible for its cross-reactivity. Here, the structure of the endogenous isoform II of Hev b 2 that exhibits three post-translational modifications, including an N-terminal pyroglutamate and two glycosylation sites at Asn27 and at Asn314, is reported from two crystal polymorphs. These modifications form a patch on the surface of the molecule that is proposed to be one of the binding sites for IgE. A structure is also proposed for the most important N-glycan present in this protein as determined by digestion with specific enzymes. To analyze the role of the carbohydrate moieties in IgE antibody binding and in human basophil activation, the glycoallergen was enzymatically deglycosylated and evaluated. Time-lapse automated video microscopy of basophils stimulated with glycosylated Hev b 2 revealed basophil activation and degranulation. Immunological studies suggested that carbohydrates on Hev b 2 represent an allergenic IgE epitope. In addition, a dimer was found in each asymmetric unit that may reflect a regulatory mechanism of this plant defence protein.
Collapse
Affiliation(s)
- Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04310 Coyoacán, DF, Mexico
| | - Alejandra Hernández-Santoyo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04310 Coyoacán, DF, Mexico
| | - Deyanira Fuentes-Silva
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04310 Coyoacán, DF, Mexico
| | - Laura A. Palomares
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, MOR, Mexico
| | - Samira Muñoz-Cruz
- UMAE–Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Avenida Cuauhtémoc 330, Colonia Doctores, Mexico, DF, Mexico
| | - Lilian Yépez-Mulia
- UMAE–Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Avenida Cuauhtémoc 330, Colonia Doctores, Mexico, DF, Mexico
| | | |
Collapse
|
43
|
Kamath SD, Rahman AMA, Voskamp A, Komoda T, Rolland JM, O'Hehir RE, Lopata AL. Effect of heat processing on antibody reactivity to allergen variants and fragments of black tiger prawn: A comprehensive allergenomic approach. Mol Nutr Food Res 2014; 58:1144-55. [PMID: 24420734 DOI: 10.1002/mnfr.201300584] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/07/2013] [Accepted: 11/27/2013] [Indexed: 11/08/2022]
Abstract
SCOPE Prawn allergy is one of the leading causes of IgE-mediated hypersensitivity to food. Alterations of IgE-antibody reactivity to prawn allergens due to thermal processing are not fully understood. The aim of this study was to analyze the impact of heating on prawn allergens using a comprehensive allergenomic approach. METHODS AND RESULTS Proteins from raw and heat-processed black tiger prawn (Penaeus monodon) extracts as well as recombinant tropomyosin (rPen m1) were analyzed by SDS-PAGE and immunoblotting using sera from 16 shellfish allergic patients. IgE antibody binding proteins were identified by advanced mass spectroscopy, characterized by molecular structure analysis and their IgE reactivity compared among the prepared black tiger prawn extracts. Heat processing enhanced the overall patient IgE binding to prawn extracts and increased recognition of a number of allergen variants and fragments of prawn allergens. Allergens identified were tropomyosin, myosin light chain, sarcoplasmic calcium binding protein, and putative novel allergens including triose phosphate isomerase, aldolase, and titin. CONCLUSION Seven allergenic proteins are present in prawns, which are mostly heat-stable and form dimers or oligomers. Thermal treatment enhanced antibody reactivity to prawn allergens as well as fragments and should be considered in the diagnosis of prawn allergy and detection of crustacean allergens in processed food.
Collapse
Affiliation(s)
- Sandip D Kamath
- School of Pharmacy and Molecular Science, Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Ribeiro H, Duque L, Sousa R, Cruz A, Gomes C, da Silva JE, Abreu I. Changes in the IgE-reacting protein profiles of Acer negundo, Platanus x acerifolia and Quercus robur pollen in response to ozone treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 24:515-27. [PMID: 24382092 DOI: 10.1080/09603123.2013.865716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study aims to investigate the effects of O3 in protein content and immunoglobulin E (IgE)-binding profiles of Acer negundo, Platanus x acerifolia and Quercus robur pollen. Pollen was exposed to O3 in an environmental chamber, at half, equal and four times the limit value for the human health protection in Europe. Pollen total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by SDS-PAGE and immunological techniques using patients' sera. O3 exposure affected total soluble protein content and some protein species within the SDS-PAGE protein profiles. Most of the sera revealed increased IgE reactivity to proteins of A. negundo and Q. robur pollen exposed to the pollutant compared with the non-exposed one, while the opposite was observed in P. x acerifolia pollen. So, the modifications seem to be species dependent, but do not necessarily imply that increase allergenicity would occur in atopic individuals.
Collapse
Affiliation(s)
- Helena Ribeiro
- a Geology Centre of University of Porto , Porto , Portugal
| | | | | | | | | | | | | |
Collapse
|
45
|
Sharquie IK, Al-Ghouleh A, Fitton P, Clark MR, Armour KL, Sewell HF, Shakib F, Ghaemmaghami AM. An investigation into IgE-facilitated allergen recognition and presentation by human dendritic cells. BMC Immunol 2013; 14:54. [PMID: 24330349 PMCID: PMC3883479 DOI: 10.1186/1471-2172-14-54] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023] Open
Abstract
Background Allergen recognition by dendritic cells (DCs) is a key event in the allergic cascade leading to production of IgE antibodies. C-type lectins, such as the mannose receptor and DC-SIGN, were recently shown to play an important role in the uptake of the house dust mite glycoallergen Der p 1 by DCs. In addition to mannose receptor (MR) and DC-SIGN the high and low affinity IgE receptors, namely FcϵRI and FcϵRII (CD23), respectively, have been shown to be involved in allergen uptake and presentation by DCs. Objectives This study aims at understanding the extent to which IgE- and IgG-facilitated Der p 1 uptake by DCs influence T cell polarisation and in particular potential bias in favour of Th2. We have addressed this issue by using two chimaeric monoclonal antibodies produced in our laboratory and directed against a previously defined epitope on Der p 1, namely human IgE 2C7 and IgG1 2C7. Results Flow cytometry was used to establish the expression patterns of IgE (FcϵRI and FcϵRII) and IgG (FcγRI) receptors in relation to MR on DCs. The impact of FcϵRI, FcϵRII, FcγRI and mannose receptor mediated allergen uptake on Th1/Th2 cell differentiation was investigated using DC/T cell co-culture experiments. Myeloid DCs showed high levels of FcϵRI and FcγRI expression, but low levels of CD23 and MR, and this has therefore enabled us to assess the role of IgE and IgG-facilitated allergen presentation in T cell polarisation with minimal interference by CD23 and MR. Our data demonstrate that DCs that have taken up Der p 1 via surface IgE support a Th2 response. However, no such effect was demonstrable via surface IgG. Conclusions IgE bound to its high affinity receptor plays an important role in Der p 1 uptake and processing by peripheral blood DCs and in Th2 polarisation of T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amir M Ghaemmaghami
- Faculty of Medicine and Health Sciences, Division of Immunology, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| |
Collapse
|
46
|
Kofler S, Ackaert C, Samonig M, Asam C, Briza P, Horejs-Hoeck J, Cabrele C, Ferreira F, Duschl A, Huber C, Brandstetter H. Stabilization of the dimeric birch pollen allergen Bet v 1 impacts its immunological properties. J Biol Chem 2013; 289:540-51. [PMID: 24253036 PMCID: PMC3879576 DOI: 10.1074/jbc.m113.518795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.
Collapse
Affiliation(s)
- Stefan Kofler
- From the Structural Biology Group, Department of Molecular Biology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakatochi M, Katayama M, Kato R, Okochi M, Takase T, Yoshida Y, Kawase M, Honda H. Comprehensive Combination Analysis for Screening of Significant Peptide Epitopes Using a Slide Glass Type-Exclusive Peptide Array from Milk Protein. KAGAKU KOGAKU RONBUN 2013. [DOI: 10.1252/kakoronbunshu.39.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masahiro Nakatochi
- Department of Biotechnology, Graduate School of Engineering, Nagoya University
| | - Makoto Katayama
- Department of Biotechnology, Graduate School of Engineering, Nagoya University
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Mina Okochi
- Department of Biotechnology, Graduate School of Engineering, Nagoya University
| | | | - Yasuko Yoshida
- R&D Center, NGK Insulators, Ltd
- Innovative Research Center for Preventative Medical Engineering, Nagoya University
| | | | - Hiroyuki Honda
- Innovative Research Center for Preventative Medical Engineering, Nagoya University
- Department of Biotechnology, Graduate School of Engineering, Nagoya University
| |
Collapse
|
48
|
Mas S, Barderas R, Colás C, Quiralte J, Rodríguez R, Villalba M. The natural profilin from Russian thistle (Salsola kali ) contains a low IgE-binding ability isoform - molecular and immunological characterization. FEBS J 2012; 279:4338-49. [DOI: 10.1111/febs.12024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/14/2012] [Accepted: 10/05/2012] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Carlos Colás
- Hospital Clínico Universitario ‘Lozano Blesa’; Zaragoza; Spain
| | | | | | | |
Collapse
|
49
|
Stanic-Vucinic D, Stojadinovic M, Atanaskovic-Markovic M, Ognjenovic J, Grönlund H, van Hage M, Lantto R, Sancho AI, Velickovic TC. Structural changes and allergenic properties of β-lactoglobulin upon exposure to high-intensity ultrasound. Mol Nutr Food Res 2012; 56:1894-905. [DOI: 10.1002/mnfr.201200179] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/19/2012] [Accepted: 08/16/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Dragana Stanic-Vucinic
- Faculty of Chemistry; Department of Biochemistry; University of Belgrade; Belgrade; Serbia
| | - Marija Stojadinovic
- Faculty of Chemistry; Department of Biochemistry; University of Belgrade; Belgrade; Serbia
| | | | - Jana Ognjenovic
- Faculty of Chemistry; Department of Biochemistry; University of Belgrade; Belgrade; Serbia
| | - Hans Grönlund
- Clinical Immunology and Allergy Unit; Department of Medicine; Karolinska Institute, Karolinska University Hospital; Stockholm; Sweden
| | - Marianne van Hage
- Clinical Immunology and Allergy Unit; Department of Medicine; Karolinska Institute, Karolinska University Hospital; Stockholm; Sweden
| | | | | | | |
Collapse
|
50
|
Laitaoja M, Sankhala RS, Swamy MJ, Jänis J. Top-down mass spectrometry reveals new sequence variants of the major bovine seminal plasma protein PDC-109. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:853-859. [PMID: 22791252 DOI: 10.1002/jms.3032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The major protein of bovine seminal plasma, PDC-109, is a 109-residue polypeptide that exists as a polydisperse aggregate under native conditions. The oligomeric state of this aggregate varies with ionic strength and the presence of lipids. Binding of PDC-109 to choline phospholipids on the sperm plasma membrane results in an efflux of cholesterol and choline phospholipids, which is an important step in sperm capacitation. In this study, Fourier transform ion cyclotron resonance mass spectrometry was used to analyze PDC-109 purified from bovine seminal plasma. In addition to the previously known PDC-109 variants, four new sequence variants were identified by top-down mass spectrometry. For example, a protein variant containing point mutations P10L and G14R was identified along with another form having a 14-residue truncation in the N-terminal region. Two other minor variants could also be identified from the affinity-purified PDC-109. These results demonstrate that PDC-109 is naturally produced as a mixture of several protein forms, most of which have not been detected in previous studies. Native mass spectrometry revealed that PDC-109 is exclusively monomeric at low protein concentrations, suggesting that the protein oligomers are weakly bound and can easily be disrupted. Ligand binding to PDC-109 was also investigated, and it was observed that two molecules of O-phosphorylcholine bind to each PDC-109 monomer, consistent with previous reports.
Collapse
Affiliation(s)
- Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, FI-80101, Joensuu, Finland
| | | | | | | |
Collapse
|