1
|
Jin S, Zhang M, Qiao X. Cyclophilin A: promising target in cancer therapy. Cancer Biol Ther 2024; 25:2425127. [PMID: 39513594 PMCID: PMC11552246 DOI: 10.1080/15384047.2024.2425127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.
Collapse
Affiliation(s)
- Shujuan Jin
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| | - Mengjiao Zhang
- Chenxi Women’s and Children’s Hospital, Huaihua, Hunan, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Molle J, Duponchel S, Rieusset J, Ovize M, Ivanov AV, Zoulim F, Bartosch B. Exploration of the Role of Cyclophilins in Established Hepatitis B and C Infections. Viruses 2024; 17:11. [PMID: 39861799 PMCID: PMC11768883 DOI: 10.3390/v17010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Cyclophilin (Cyp) inhibitors are of clinical interest in respect to their antiviral activities in the context of many viral infections including chronic hepatitis B and C. Cyps are a group of enzymes with peptidyl-prolyl isomerase activity (PPIase), known to be required for replication of diverse viruses including hepatitis B and C viruses (HBV and HCV). Amongst the Cyp family, the molecular mechanisms underlying the antiviral effects of CypA have been investigated in detail, but potential roles of other Cyps are less well studied in the context of viral hepatitis. Furthermore, most studies investigating the role of Cyps in viral hepatitis did not investigate the potential therapeutic effects of their inhibition in already-established infections but have rather been performed in the context of neo-infections. Here, we investigated the effects of genetically silencing Cyps on persistent HCV and HBV infections. We confirm antiviral effects of CypA and CypD knock down and demonstrate novel roles for CypG and CypH in HCV replication. We show, furthermore, that CypA silencing has a modest but reproducible impact on persistent HBV infections in cultured human hepatocytes.
Collapse
Affiliation(s)
- Jennifer Molle
- INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France; (J.M.); (S.D.); (F.Z.)
| | - Sarah Duponchel
- INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France; (J.M.); (S.D.); (F.Z.)
| | - Jennifer Rieusset
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon Hepatology Institute, 69007 Lyon, France; (J.R.); (M.O.)
| | - Michel Ovize
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon Hepatology Institute, 69007 Lyon, France; (J.R.); (M.O.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France; (J.M.); (S.D.); (F.Z.)
| | - Birke Bartosch
- INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France; (J.M.); (S.D.); (F.Z.)
| |
Collapse
|
3
|
Schäfer N, Rothhaar P, Heuss C, Neumann-Haefelin C, Thimme R, Dietz J, Sarrazin C, Schnitzler P, Merle U, Pérez-del-Pulgar S, Laketa V, Lohmann V. Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis. Viruses 2024; 16:1871. [PMID: 39772180 PMCID: PMC11680372 DOI: 10.3390/v16121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera. We used Huh7-Lunet cells ectopically expressing SEC14L2, CD81, and a GFP reporter with nuclear translocation upon cleavage by the HCV protease to study HCV replication, combined with a drug-based regimen for stimulation of non-modified wild-type isolates. RT-qPCR-based quantification of HCV infections using patient sera suffered from a high background in the daclatasvir-treated controls. We therefore established an automated image analysis pipeline based on imaging of whole wells and iterative training of a machine learning tool, using nuclear GFP localization as a readout for HCV infection. Upon visual validation of hits assigned by the automated image analysis, the method revealed no background in daclatasvir-treated samples. Thereby, infection events were found for 15 of 34 high titer HCV genotype (gt) 1b sera, revealing a significant correlation between serum titer and successful infection. We further show that transfection of viral RNA extracted from sera can be used in this model as well, albeit with so far limited efficiency. Overall, we generated a robust serum infection assay for gt1b isolates using semi-automated image analysis, which was superior to conventional RT-qPCR-based quantification of viral genomes.
Collapse
Affiliation(s)
- Noemi Schäfer
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany
| | - Paul Rothhaar
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany
| | - Christian Heuss
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Department of Gastroenterology and Hepatology, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Julia Dietz
- Department of Internal Medicine 1, University Hospital, Goethe University, 60596 Frankfurt, Germany
- German Center for Infection Research (DZIF), Partner Site Frankfurt, 60596 Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Internal Medicine 1, University Hospital, Goethe University, 60596 Frankfurt, Germany
- German Center for Infection Research (DZIF), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Medizinische Klinik 2, St. Josefs-Hospital, 65189 Wiesbaden, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Sofía Pérez-del-Pulgar
- Liver Unit, Hospital Clínic, IDIBAPS and CIBEREHD, University of Barcelona, 08036 Barcelona, Spain;
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Buchanan FJT, Chen S, Harris M, Herod MR. The hepatitis E virus ORF1 hypervariable region confers partial cyclophilin dependency. J Gen Virol 2023; 104:001919. [PMID: 37942835 PMCID: PMC10768694 DOI: 10.1099/jgv.0.001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging pathogen responsible for more than 20 million cases of acute hepatitis globally per annum. Healthy individuals typically have a self-limiting infection, but mortality rates in some populations such as pregnant women can reach 30 %. A detailed understanding of the virus lifecycle is lacking, mainly due to limitations in experimental systems. In this regard, the cyclophilins are an important family of proteins that have peptidyl-prolyl isomerase activity and play roles in the replication of a number of positive-sense RNA viruses, including hepatotropic viruses such as hepatitis C virus (HCV). Cyclophilins A and B (CypA/B) are the two most abundant Cyps in hepatocytes and are therefore potential targets for pan-viral therapeutics. Here, we investigated the importance of CypA and CypB for HEV genome replication using sub-genomic replicons. Using a combination of pharmacological inhibition by cyclosporine A (CsA), and silencing by small hairpin RNA we find that CypA and CypB are not essential for HEV replication. However, we find that silencing of CypB reduces replication of some HEV isolates in some cells. Furthermore, sensitivity to Cyp silencing appears to be partly conferred by the sequence within the hypervariable region of the viral polyprotein. These data suggest HEV is atypical in its requirements for cyclophilin for viral genome replication and that this phenomenon could be genotype- and sequence-specific.
Collapse
Affiliation(s)
- Frazer J. T. Buchanan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Shucheng Chen
- Department of Paediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Morgan R. Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Liu D, Ndongwe TP, Ji J, Huber AD, Michailidis E, Rice CM, Ralston R, Tedbury PR, Sarafianos SG. Mechanisms of Action of the Host-Targeting Agent Cyclosporin A and Direct-Acting Antiviral Agents against Hepatitis C Virus. Viruses 2023; 15:981. [PMID: 37112961 PMCID: PMC10143304 DOI: 10.3390/v15040981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Several direct-acting antivirals (DAAs) are available, providing interferon-free strategies for a hepatitis C cure. In contrast to DAAs, host-targeting agents (HTAs) interfere with host cellular factors that are essential in the viral replication cycle; as host genes, they are less likely to rapidly mutate under drug pressure, thus potentially exhibiting a high barrier to resistance, in addition to distinct mechanisms of action. We compared the effects of cyclosporin A (CsA), a HTA that targets cyclophilin A (CypA), to DAAs, including inhibitors of nonstructural protein 5A (NS5A), NS3/4A, and NS5B, in Huh7.5.1 cells. Our data show that CsA suppressed HCV infection as rapidly as the fastest-acting DAAs. CsA and inhibitors of NS5A and NS3/4A, but not of NS5B, suppressed the production and release of infectious HCV particles. Intriguingly, while CsA rapidly suppressed infectious extracellular virus levels, it had no significant effect on the intracellular infectious virus, suggesting that, unlike the DAAs tested here, it may block a post-assembly step in the viral replication cycle. Hence, our findings shed light on the biological processes involved in HCV replication and the role of CypA.
Collapse
Affiliation(s)
- Dandan Liu
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
| | - Tanya P. Ndongwe
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
| | - Juan Ji
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
| | - Andrew D. Huber
- CS Bond Life Sciences Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Robert Ralston
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
| | - Philip R. Tedbury
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
- Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Stefan G. Sarafianos
- CS Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65201, USA
- Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
7
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|
8
|
Bobardt M, Ramirez CM, Baum MM, Ure D, Foster R, Gallay PA. The combination of the NS5A and cyclophilin inhibitors results in an additive anti-HCV inhibition in humanized mice without development of resistance. PLoS One 2021; 16:e0251934. [PMID: 34014993 PMCID: PMC8136729 DOI: 10.1371/journal.pone.0251934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
We and others previously reported that the direct-acting agents (DAA) NS5A inhibitors (NS5Ai) and the host-targeting agents cyclophilin inhibitors (CypIs) inhibit HCV replication in vitro. In this study, we investigated whether the combination of NS5Ai and CypI offers a potent anti-HCV effect in vivo. A single administration of NS5Ai or CypI alone to HCV-infected humanized-mice inhibits HCV replication. The combination of NS5Ai with CypI suppresses HCV (GT1a, GT2a, GT3a and GT4a) replication in an additive manner. NS5Ai/CypI combinations provide a statistically more profound anti-HCV inhibition for GT2a and GT3a than GT1a and GT4a, leading to a fastest and deepest inhibition of GT2a and GT3a replications. Combining CypI with NS5Ai prevents the viral rebound normally observed in mice treated with NS5Ai alone. Results were confirmed in mice implanted with human hepatocytes from different donors. Therefore, the combination of NS5Ai with CypI may serve as a regimen for the treatment of HCV patients with specific genotypes and disorder conditions, which diminish sustain viral response levels to DAA, such as GT3a infection, cirrhosis, and DAA resistance associated with the selection of resistance-associated substitutions present at baseline or are acquired during treatment.
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christina M. Ramirez
- Los Angeles (UCLA) Fielding School of Public Health, University of California, Center for Health Sciences, Los Angeles, CA, United States of America
| | - Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States of America
| | - Daren Ure
- Hepion Pharmaceuticals, Edison, New Jersey
| | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Structurally distinct cyclosporin and sanglifehrin analogs CRV431 and NV556 suppress established HCV infection in humanized-liver mice. PLoS One 2020; 15:e0237236. [PMID: 32764799 PMCID: PMC7413547 DOI: 10.1371/journal.pone.0237236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
We previously reported that the non-immunosuppressive cyclophilin inhibitors (CypIs)—cyclosporin A analog CRV431 and sanglifehrin analog NV556—efficiently inhibit HCV replication in vitro. In this study, we asked whether they can also reduce HCV replication in vivo. We found that a single oral administration of CRV431 and NV556 to HCV-infected humanized-liver mice drastically reduced HCV blood levels. The antiviral effect was observed when CRV431 or NV556 were each individually administered with HCV, 3, 6 weeks or even 3 months post-infection when viral replication is robust. These results were confirmed in chimeric mice implanted with human hepatocytes isolated from three distinct donors. Remarkably, no viral rebound was observed 5 months after a single dose administration of 50 mg/kg of CRV431 or NV556 four weeks post-HCV infection, indicating the possibility of suppression of an established viral infection. Since we recently demonstrated that both CRV431 and NV556 also inhibit the development of liver fibrosis and hepatocellular carcinoma in nonviral-induced non-alcoholic steatohepatitis mouse models, our present data suggest that the two entirely structurally different CypIs—CRV431 and NV556—derived from unrelated natural products, represent attractive partners to current direct-acting agent (DAA) regimens for the treatment of hepatitis C and liver diseases.
Collapse
|
10
|
Miyayama Y, Lee H, Song H, Abe-Chayama H, Miki D, Imamura M, Chayama K, Hijikata M. Comparative study on the replication of HCV1b genome between wild-type and cell culture-adaptive mutant in regard to sensitivities against anti-HCV drugs. Microbiol Immunol 2019; 64:296-303. [PMID: 31854467 DOI: 10.1111/1348-0421.12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/28/2022]
Abstract
The replicon system, which mimics viral genome replication in culture cells, has been widely used to analyze the genome replication of the hepatitis C virus (HCV). However, most HCV genomes used in the system include adaptive mutations (AMs) that are vital for replication in culture cells despite the nonexistence of such mutations in the genome of wild-type (WT) HCV in patients. In order to study the genome replications of WT HCV, new HCV subgenomic replicon (SGR) systems were established using Huh-7.5-derived cells producing Sec14-like protein 2 constitutively and SGR of KT9 (one of the HCV genotype 1b clones) with WT genome (SGR KT9WT) in this study. The replication efficiency and sensitivities of SGR KT9WT to anti-HCV drugs in the cloned cells permanently bearing replicon RNA, HS55-4 cells, were similar to those of reports using SGR, including AM. The SGR transient transfection system using SGR KT9WT and SGR KT9AM encoding secreted Nano-luciferase and HS55-4C cells established by the elimination of SGR KT9 RNA from HS55-4 cells, however, showed that the replication efficiency of SGR KT9WT was much lower than that of SGR KT9AM under a same condition. Furthermore, the sensitivities of SGR KT9WT to almost all tested anti-HCV reagents, except the inhibitor of miR-122, a cellular factor important for HCV replication, were quite low compared with SGR KT9AM. These results suggested that the new replicon systems might not only provide information about precise responses against new anti-HCV drugs but also reveal novel molecular mechanisms supporting negligent proliferation of HCV.
Collapse
Affiliation(s)
- Yohei Miyayama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Heini Lee
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - HoJoong Song
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiromi Abe-Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Makoto Hijikata
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Rolt A, O'Neill PM, Liang TJ, Stachulski AV. Synthesis of MeBmt and related derivatives via syn-selective ATH-DKR. RSC Adv 2019; 9:40336-40339. [PMID: 32864110 PMCID: PMC7437948 DOI: 10.1039/c9ra08256e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023] Open
Abstract
The unusual α-amino, β-hydroxy acid MeBmt is a key structural feature of cyclosporin A, an important naturally occurring immunosuppressant and antiviral agent. We present a convergent synthesis of MeBmt which relies on new aspects of dynamic kinetic resolution (DKR) to establish simultaneously the chirality at C(2) and C(3). We also show that this route is applicable to the synthesis of other derivatives.
Collapse
Affiliation(s)
- Adam Rolt
- Department of Biochemistry, University of Oxford, OX1 3QU, UK
| | - Paul M O'Neill
- The Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Andrew V Stachulski
- The Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| |
Collapse
|
12
|
Dujardin M, Madan V, Gandhi NS, Cantrelle FX, Launay H, Huvent I, Bartenschlager R, Lippens G, Hanoulle X. Cyclophilin A allows the allosteric regulation of a structural motif in the disordered domain 2 of NS5A and thereby fine-tunes HCV RNA replication. J Biol Chem 2019; 294:13171-13185. [PMID: 31315928 DOI: 10.1074/jbc.ra119.009537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Implicated in numerous human diseases, intrinsically disordered proteins (IDPs) are dynamic ensembles of interconverting conformers that often contain many proline residues. Whether and how proline conformation regulates the functional aspects of IDPs remains an open question, however. Here, we studied the disordered domain 2 of nonstructural protein 5A (NS5A-D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short structural motif (PW-turn) embedded in a proline-rich sequence, whose interaction with the human prolyl isomerase cyclophilin A (CypA) is essential for viral RNA replication. Using NMR, we show here that the PW-turn motif exists in a conformational equilibrium between folded and disordered states. We found that the fraction of conformers in the NS5A-D2 ensemble that adopt the structured motif is allosterically modulated both by the cis/trans isomerization of the surrounding prolines that are CypA substrates and by substitutions conferring resistance to cyclophilin inhibitor. Moreover, we noted that this fraction is directly correlated with HCV RNA replication efficiency. We conclude that CypA can fine-tune the dynamic ensemble of the disordered NS5A-D2, thereby regulating viral RNA replication efficiency.
Collapse
Affiliation(s)
- Marie Dujardin
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Vanesa Madan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - François-Xavier Cantrelle
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Hélène Launay
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Isabelle Huvent
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Guy Lippens
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France.
| |
Collapse
|
13
|
Gallay P, Ure D, Bobardt M, Chatterji U, Ou J, Trepanier D, Foster R. The cyclophilin inhibitor CRV431 inhibits liver HBV DNA and HBsAg in transgenic mice. PLoS One 2019; 14:e0217433. [PMID: 31181107 PMCID: PMC6557616 DOI: 10.1371/journal.pone.0217433] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major health burden worldwide with 240 million chronically infected individuals. Nucleos(t)ide analogs and interferons are the current standards of care due to their suppression of HBV replication, but the treatments rarely eradicate HBV from individuals. Similar to current treatments for human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV) patients, improved HBV therapies will require the combination of multiple drugs which target distinct steps of the HBV life cycle. In this study, we tested the potential of a cyclophilin inhibitor, CRV431, to affect HBV replication in transgenic mice. We found that oral treatment with CRV431 (50 mg/kg/day) for a period of 16 days significantly reduced liver HBV DNA levels and moderately decreased serum HBsAg levels. We observed an additive inhibitory effect on liver HBV DNA levels in mice treated with a combination of low doses of CRV431 (10 mg/kg/day) and the nucleotide prodrug, tenofovir exalidex (TXL), (5 mg/kg/day). No toxicity was observed in CRV431-treated mice. Although it is well known that CRV431 neutralizes the peptidyl-prolyl isomerase activity of cyclophilins, its anti-HBV mechanism(s) of action remains unknown. Nevertheless, this study provides the first demonstration of a beneficial effect of a cyclophilin inhibitor in vivo in an HBV transgenic mouse model. Altogether our data reveal the potential of CRV431 to be part of improved new therapies for HBV patients.
Collapse
Affiliation(s)
- Philippe Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daren Ure
- ContraVir Pharmaceuticals Inc., Edison, New Jersey, United States of America
| | - Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Daniel Trepanier
- ContraVir Pharmaceuticals Inc., Edison, New Jersey, United States of America
| | - Robert Foster
- ContraVir Pharmaceuticals Inc., Edison, New Jersey, United States of America
| |
Collapse
|
14
|
Stanciu C, Trifan A, Muzica C, Sfarti C. Efficacy and safety of alisporivir for the treatment of hepatitis C infection. Expert Opin Pharmacother 2019; 20:379-384. [PMID: 30576256 DOI: 10.1080/14656566.2018.1560424] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
Alisporivir (ALV) (previously known as Debio 025) is a potent, pangenotypic host-targeting antiviral oral agent acting on cyclophilin A, which is necessary for HCV replication. Areas covered: This article reviews the therapeutic efficacy and safety of ALV for the treatment of HCV infection. Expert opinion: Direct-acting antivirals (DAAs) have revolutionized the HCV antiviral treatment paradigm with success rates well above 95% for all HCV genotypes. However, challenges still remain in certain patient populations such as those who have developed resistance and have experienced multi-DAA failure. To cure HCV infection, a treatment regimen must combine antiviral potency and a high barrier to resistance. ALV fulfills this need as shown by the studies evaluating its clinical efficacy. Nevertheless, ALV missed the chance to be included in the HCV treatment armamentarium after the FDA halted clinical studies following reports of serious side effects (three cases of pancreatitis, one lethal). However, it is possible that ALV could still be considered for HCV-infected non-cirrhotic patients that are infected with a multiresistant virus or with HCV genotype 3, although it must be said that the drug industry would be reluctant to invest in new antivirals if the current clinical need is effectively met.
Collapse
Affiliation(s)
- Carol Stanciu
- a Department of Gastroenterology , Grigore T. Popa University of Medicine and Pharmacy , Iasi , Romania
- b Department of Gastroenterology , St. Spiridon, Emergency Clinical Hospital , Iasi , Romania
| | - Anca Trifan
- a Department of Gastroenterology , Grigore T. Popa University of Medicine and Pharmacy , Iasi , Romania
- b Department of Gastroenterology , St. Spiridon, Emergency Clinical Hospital , Iasi , Romania
| | - Cristina Muzica
- b Department of Gastroenterology , St. Spiridon, Emergency Clinical Hospital , Iasi , Romania
| | - Catalin Sfarti
- a Department of Gastroenterology , Grigore T. Popa University of Medicine and Pharmacy , Iasi , Romania
- b Department of Gastroenterology , St. Spiridon, Emergency Clinical Hospital , Iasi , Romania
| |
Collapse
|
15
|
Mackman RL, Steadman VA, Dean DK, Jansa P, Poullennec KG, Appleby T, Austin C, Blakemore CA, Cai R, Cannizzaro C, Chin G, Chiva JYC, Dunbar NA, Fliri H, Highton AJ, Hui H, Ji M, Jin H, Karki K, Keats AJ, Lazarides L, Lee YJ, Liclican A, Mish M, Murray B, Pettit SB, Pyun P, Sangi M, Santos R, Sanvoisin J, Schmitz U, Schrier A, Siegel D, Sperandio D, Stepan G, Tian Y, Watt GM, Yang H, Schultz BE. Discovery of a Potent and Orally Bioavailable Cyclophilin Inhibitor Derived from the Sanglifehrin Macrocycle. J Med Chem 2018; 61:9473-9499. [PMID: 30074795 DOI: 10.1021/acs.jmedchem.8b00802] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cyclophilins are a family of peptidyl-prolyl isomerases that are implicated in a wide range of diseases including hepatitis C. Our aim was to discover through total synthesis an orally bioavailable, non-immunosuppressive cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus (HCV) activity that could serve as part of an all oral antiviral combination therapy. An initial lead 2 derived from the sanglifehrin A macrocycle was optimized using structure based design to produce a potent and orally bioavailable inhibitor 3. The macrocycle ring size was reduced by one atom, and an internal hydrogen bond drove improved permeability and drug-like properties. 3 demonstrates potent Cyp inhibition ( Kd = 5 nM), potent anti-HCV 2a activity (EC50 = 98 nM), and high oral bioavailability in rat (100%) and dog (55%). The synthetic accessibility and properties of 3 support its potential as an anti-HCV agent and for interrogating the role of Cyp inhibition in a variety of diseases.
Collapse
Affiliation(s)
- Richard L Mackman
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Victoria A Steadman
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - David K Dean
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Petr Jansa
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Karine G Poullennec
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Todd Appleby
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Carol Austin
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Caroline A Blakemore
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Ruby Cai
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Carina Cannizzaro
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Gregory Chin
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Jean-Yves C Chiva
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Neil A Dunbar
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Hans Fliri
- Cypralis Ltd. , Babraham Research Campus, Cambridge CB22 3AT , United Kingdom
| | - Adrian J Highton
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Hon Hui
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Mingzhe Ji
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Haolun Jin
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Kapil Karki
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Andrew J Keats
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Linos Lazarides
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Yu-Jen Lee
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Albert Liclican
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Michael Mish
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Bernard Murray
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Simon B Pettit
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Peter Pyun
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Michael Sangi
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Rex Santos
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Jonathan Sanvoisin
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Uli Schmitz
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Adam Schrier
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Dustin Siegel
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - David Sperandio
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - George Stepan
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Yang Tian
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Gregory M Watt
- Selcia Ltd. , Fyfield Business and Research Park, Fyfield Road , Ongar , Essex CM5 0GS , United Kingdom
| | - Hai Yang
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| | - Brian E Schultz
- Gilead Sciences Inc. , 333 Lakeside Drive , Foster City , California 94404 , United States
| |
Collapse
|
16
|
de Wilde AH, Pham U, Posthuma CC, Snijder EJ. Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology 2018; 522:46-55. [PMID: 30014857 PMCID: PMC7112023 DOI: 10.1016/j.virol.2018.06.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Cyclophilins (Cyps) belong to the family of peptidyl-prolyl isomerases (PPIases). The PPIase activity of most Cyps is inhibited by the immunosuppressive drug cyclosporin A and several of its non-immunosuppressive analogs, which can also block the replication of nidoviruses (arteriviruses and coronaviruses). Cyclophilins have been reported to play an essential role in the replication of several other RNA viruses, including human immunodeficiency virus-1, hepatitis C virus, and influenza A virus. Likewise, the replication of various nidoviruses was reported to depend on Cyps or other PPIases. This review summarizes our current understanding of this class of nidovirus-host interactions, including the potential function of in particular CypA and the inhibitory effect of Cyp inhibitors. Also the involvement of the FK-506-binding proteins and parvulins is discussed. The nidovirus data are placed in a broader perspective by summarizing the most relevant data on Cyp interactions and Cyp inhibitors for other RNA viruses. Nidovirus replication is inhibited by cyclophilin inhibitors. Arterivirus replication depends on cyclophilin A. Cyclosporin A blocks arterivirus RNA synthesis. Using cyclophilin inhibitors against nidoviruses in vivo needs more investigation.
Collapse
Affiliation(s)
- Adriaan H de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Uyen Pham
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
17
|
Characterization of the Anti-Hepatitis C Virus Activity of New Nonpeptidic Small-Molecule Cyclophilin Inhibitors with the Potential for Broad Anti-Flaviviridae Activity. Antimicrob Agents Chemother 2018; 62:AAC.00126-18. [PMID: 29760125 PMCID: PMC6021681 DOI: 10.1128/aac.00126-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022] Open
Abstract
Although members of the Flaviviridae display high incidence, morbidity, and mortality rates, the development of specific antiviral drugs for each virus is unlikely. Cyclophilins, a family of host peptidyl-prolyl cis-trans isomerases (PPIases), play a pivotal role in the life cycles of many viruses and therefore represent an attractive target for broad-spectrum antiviral development. We report here the pangenotypic anti-hepatitis C virus (HCV) activity of a small-molecule cyclophilin inhibitor (SMCypI). Mechanistic and modeling studies revealed that the SMCypI bound to cyclophilin A in competition with cyclosporine (CsA), inhibited its PPIase activity, and disrupted the CypA-nonstructural protein 5A (NS5A) interaction. Resistance selection showed that the lead SMCypI hardly selected amino acid substitutions conferring low-level or no resistance in vitro. Interestingly, the SMCypI selected D320E and Y321H substitutions, located in domain II of the NS5A protein. These substitutions were previously associated with low-level resistance to cyclophilin inhibitors such as alisporivir. Finally, the SMCypI inhibited the replication of other members of the Flaviviridae family with higher 50% effective concentrations (EC50s) than for HCV. Thus, because of its chemical plasticity and simplicity of synthesis, our new family of SMCypIs represents a promising new class of drugs with the potential for broad-spectrum anti-Flaviviridae activity as well as an invaluable tool to explore the role of cyclophilins in viral life cycles.
Collapse
|
18
|
Postexposure prophylaxis after hepatitis C occupational exposure in the interferon-free era. Curr Opin Infect Dis 2018; 29:373-80. [PMID: 27306563 DOI: 10.1097/qco.0000000000000281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Healthcare personnel are at risk for occupational exposures to bloodborne pathogens. Primary prevention remains the first line of defense, but secondary prevention measures known to be effective should be implemented when percutaneous exposures occur. Hepatitis C virus (HCV) is a major infectious cause of liver-related morbidity and mortality. Chronic HCV treatment has changed dramatically, with many all-oral directly acting anti-HCV antiviral (DAA) regimens now available. Evidence for the use of DAAs as postexposure prophylaxis (PEP) after occupational exposures to HCV is summarized here. RECENT FINDINGS Little new evidence supports the use of antivirals in acute HCV infection. Several preliminary studies have examined the use of DAAs or host target agents in chronic HCV treatment. Effective HCV PEP requirements likely include pan-genotypic activity and a high barrier to resistance. One investigational DAA has shown promising results as an efficacious option for all genotypes in chronic HCV treatment and may ultimately represent a potential HCV PEP agent. SUMMARY Insufficient supporting data exist to endorse the use of DAAs for PEP after HCV occupational exposures; additional studies examining efficacy, duration, and cost-effectiveness are needed. Development of more oral drugs possessing a high barrier of resistance and equal activity against all HCV genotypes is anticipated.
Collapse
|
19
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
20
|
Badillo A, Receveur-Brechot V, Sarrazin S, Cantrelle FX, Delolme F, Fogeron ML, Molle J, Montserret R, Bockmann A, Bartenschlager R, Lohmann V, Lippens G, Ricard-Blum S, Hanoulle X, Penin F. Overall Structural Model of NS5A Protein from Hepatitis C Virus and Modulation by Mutations Confering Resistance of Virus Replication to Cyclosporin A. Biochemistry 2017; 56:3029-3048. [PMID: 28535337 DOI: 10.1021/acs.biochem.7b00212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a RNA-binding phosphoprotein composed of a N-terminal membrane anchor (AH), a structured domain 1 (D1), and two intrinsically disordered domains (D2 and D3). The knowledge of the functional architecture of this multifunctional protein remains limited. We report here that NS5A-D1D2D3 produced in a wheat germ cell-free system is obtained under a highly phosphorylated state. Its NMR analysis revealed that these phosphorylations do not change the disordered nature of D2 and D3 domains but increase the number of conformers due to partial phosphorylations. By combining NMR and small angle X-ray scattering, we performed a comparative structural characterization of unphosphorylated recombinant D2 domains of JFH1 (genotype 2a) and the Con1 (genotype 1b) strains produced in Escherichia coli. These analyses highlighted a higher intrinsic folding of the latter, revealing the variability of intrinsic conformations in HCV genotypes. We also investigated the effect of D2 mutations conferring resistance of HCV replication to cyclophilin A (CypA) inhibitors on the structure of the recombinant D2 Con1 mutants and their binding to CypA. Although resistance mutations D320E and R318W could induce some local and/or global folding perturbation, which could thus affect the kinetics of conformer interconversions, they do not significantly affect the kinetics of CypA/D2 interaction measured by surface plasmon resonance (SPR). The combination of all our data led us to build a model of the overall structure of NS5A, which provides a useful template for further investigations of the structural and functional features of this enigmatic protein.
Collapse
Affiliation(s)
- Aurelie Badillo
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | | | - Stéphane Sarrazin
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - François-Xavier Cantrelle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Frédéric Delolme
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Jennifer Molle
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Anja Bockmann
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg , Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg , Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Guy Lippens
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| |
Collapse
|
21
|
Gnarra M, De Simone C, Garcovich M, Garcovich S. Low-Dose Cyclosporine A in the Treatment of Severe Atopic Dermatitis Complicated by Chronic Hepatitis C Virus Infection. Pediatr Dermatol 2017; 34:374-376. [PMID: 28382768 DOI: 10.1111/pde.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atopic dermatitis (AD) is the most frequent chronic inflammatory skin disorder in children and is usually accompanied by genetic and environmental factors. Effective management and treatment of AD is challenging and often requires systemic immunosuppressive therapy when refractory to topical treatments. We report a rare association between chronic hepatitis C virus (HCV) and severe AD, management of which required systemic cyclosporine because of its favorable effects on inflammatory and viral-related clinical outcomes.
Collapse
Affiliation(s)
- Maria Gnarra
- Department of Dermatology, Columbia University Medical Center, New York
| | - Clara De Simone
- Institute of Dermatology, Policlinico A. Gemelli, Catholic University, Rome, Italy
| | - Matteo Garcovich
- Division of Gastroenterology, Department of Internal Medicine, Policlinico A. Gemelli, Catholic University, Rome, Italy
| | - Simone Garcovich
- Institute of Dermatology, Policlinico A. Gemelli, Catholic University, Rome, Italy
| |
Collapse
|
22
|
Barsoum RS, William EA, Khalil SS. Hepatitis C and kidney disease: A narrative review. J Adv Res 2017; 8:113-130. [PMID: 28149647 PMCID: PMC5272932 DOI: 10.1016/j.jare.2016.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/07/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis-C (HCV) infection can induce kidney injury, mostly due to formation of immune-complexes and cryoglobulins, and possibly to a direct cytopathic effect. It may cause acute kidney injury (AKI) as a part of systemic vasculitis, and augments the risk of AKI due to other etiologies. It is responsible for mesangiocapillary or membranous glomerulonephritis, and accelerates the progression of chronic kidney disease due to other causes. HCV infection increases cardiovascular and liver-related mortality in patients on regular dialysis. HCV-infected patients are at increased risk of acute post-transplant complications. Long-term graft survival is compromised by recurrent or de novo glomerulonephritis, or chronic transplant glomerulopathy. Patient survival is challenged by increased incidence of diabetes, sepsis, post-transplant lymphoproliferative disease, and liver failure. Effective and safe directly acting antiviral agents (DAAs) are currently available for treatment at different stages of kidney disease. However, the relative shortage of DAAs in countries where HCV is highly endemic imposes a need for treatment-prioritization, for which a scoring system is proposed in this review. It is concluded that the thoughtful use of DAAs, will result in a significant change in the epidemiology and clinical profiles of kidney disease, as well as improvement of dialysis and transplant outcomes, in endemic areas.
Collapse
Affiliation(s)
- Rashad S. Barsoum
- Kasr-El-Aini Medical School, Cairo University, Cairo, Egypt
- The Cairo Kidney Center, Cairo, Egypt
| | - Emad A. William
- The Cairo Kidney Center, Cairo, Egypt
- National Research Centre, Cairo, Egypt
| | | |
Collapse
|
23
|
Steadman VA, Pettit SB, Poullennec KG, Lazarides L, Keats AJ, Dean DK, Stanway SJ, Austin CA, Sanvoisin JA, Watt GM, Fliri HG, Liclican AC, Jin D, Wong MH, Leavitt SA, Lee YJ, Tian Y, Frey CR, Appleby TC, Schmitz U, Jansa P, Mackman RL, Schultz BE. Discovery of Potent Cyclophilin Inhibitors Based on the Structural Simplification of Sanglifehrin A. J Med Chem 2017; 60:1000-1017. [DOI: 10.1021/acs.jmedchem.6b01329] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Victoria A. Steadman
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Simon B. Pettit
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Karine G. Poullennec
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Linos Lazarides
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Andrew J. Keats
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - David K. Dean
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Steven J. Stanway
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Carol A. Austin
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Jonathan A. Sanvoisin
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Gregory M. Watt
- Selcia Ltd., Fyfield Business & Research Park, Fyfield Road, Ongar, Essex CM5 0GS, United Kingdom
| | - Hans G. Fliri
- Cypralis Ltd., Babraham Research
Campus, Cambridge CB22
3AT, United Kingdom
| | - Albert C. Liclican
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Debi Jin
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Melanie H. Wong
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Stephanie A. Leavitt
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Yu-Jen Lee
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Yang Tian
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Christian R. Frey
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Todd C. Appleby
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Uli Schmitz
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Petr Jansa
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Richard L. Mackman
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Brian E. Schultz
- Gilead Sciences, 333 Lakeside
Drive, Foster City, California 94404, United States
| |
Collapse
|
24
|
Ngure M, Issur M, Shkriabai N, Liu HW, Cosa G, Kvaratskhelia M, Götte M. Interactions of the Disordered Domain II of Hepatitis C Virus NS5A with Cyclophilin A, NS5B, and Viral RNA Show Extensive Overlap. ACS Infect Dis 2016; 2:839-851. [PMID: 27676132 DOI: 10.1021/acsinfecdis.6b00143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Domain II of the nonstructural protein 5 (NS5A) of the hepatitis C virus (HCV) is involved in intermolecular interactions with the viral RNA genome, the RNA-dependent RNA polymerase NS5B, and the host factor cyclophilin A (CypA). However, domain II of NS5A (NS5ADII) is largely disordered, which makes it difficult to characterize the protein-protein or protein-nucleic acid interfaces. Here we utilized a mass spectrometry-based protein footprinting approach in attempts to characterize regions forming contacts between NS5ADII and its binding partners. In particular, we compared surface topologies of lysine and arginine residues in the context of free and bound NS5ADII. These experiments have led to the identification of an RNA binding motif (305RSRKFPR311) in an arginine-rich region of NS5ADII. Furthermore, we show that K308 is indispensable for both RNA and NS5B binding, whereas W316, further downstream, is essential for protein-protein interactions with CypA and NS5B. Most importantly, NS5ADII binding to NS5B involves a region associated with RNA binding within NS5B. This interaction down-regulated RNA synthesis by NS5B, suggesting that NS5ADII modulates the activity of NS5B and potentially regulates HCV replication.
Collapse
Affiliation(s)
- Marianne Ngure
- Department of Medical Microbiology and
Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Moheshwarnath Issur
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Nikoloz Shkriabai
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hsiao-Wei Liu
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Gonzalo Cosa
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 0B8, Canada
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthias Götte
- Department of Medical Microbiology and
Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montréal, Quebec H3G 1Y6, Canada
| |
Collapse
|
25
|
Cyclophilin Inhibitors Remodel the Endoplasmic Reticulum of HCV-Infected Cells in a Unique Pattern Rendering Cells Impervious to a Reinfection. PLoS One 2016; 11:e0159511. [PMID: 27442520 PMCID: PMC4956074 DOI: 10.1371/journal.pone.0159511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/05/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms of action by which cyclophilin inhibitors (CypI) interfere with the HCV life cycle remain poorly understood. We reported that CypI and NS5A inhibitors (NS5Ai), but not other classes of anti-HCV agents, prevent assembly of double membrane vesicles (DMVs), which protect replication complexes. We demonstrated that both NS5A and the isomerase cyclophilin A (CypA) are required for DMV formation. Here, we examined whether CypI mediate an additional antiviral effect that could further explain the high efficacy of CypI. We identified a unique action of CypI. CypI remodel the organization of the endoplasmic reticulum (ER) of HCV-infected cells, but not of uninfected cells. This effect is specific since it was not observed for other classes of anti-HCV agents including NS5Ai, and has no effect on the viability of CypI-treated cells. Since ER serves as platform for the establishment of HCV replication complexes, we asked whether the ER reorganization by CypI would prevent cells from being newly infected. Remarkably, CypI-treated HCV-pre-infected cells remain totally impervious to a reinfection, suggesting that the CypI-mediated ER reorganization prevents a reinfection. This block is not due to residual CypI since CypI-resistant HCV variants also fail to infect these cells. The ER reorganization by CypI is rapid and reversible. This study provides the first evidence that CypI trigger a unique ER reorganization of infected cells, rendering cells transiently impervious to a reinfection. This study further suggests that the HCV-induced ER rearrangement represents a key target for the development of new therapies.
Collapse
|
26
|
Culley S, Towers GJ, Selwood DL, Henriques R, Grove J. Infection Counter: Automated Quantification of in Vitro Virus Replication by Fluorescence Microscopy. Viruses 2016; 8:v8070201. [PMID: 27455304 PMCID: PMC4974536 DOI: 10.3390/v8070201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 01/24/2023] Open
Abstract
The ability to accurately and reliably quantify viral infection is essential to basic and translational virology research. Here, we describe a simple and robust automated method for using fluorescence microscopy to estimate the proportion of virally infected cells in a monolayer. We provide details of the automated analysis workflow along with a freely available open-source ImageJ plugin, Infection Counter, for performing image quantification. Using hepatitis C virus (HCV) as an example, we have experimentally verified our method, demonstrating that it is equivalent, if not better, than the established focus-forming assay. Finally, we used Infection Counter to assess the anti-HCV activity of SMBz-CsA, a non-immunosuppressive cyclosporine analogue.
Collapse
Affiliation(s)
- Siân Culley
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| | - David L Selwood
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | - Joe Grove
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
27
|
MacDonald MJ, Hasan NM, Ansari IUH, Longacre MJ, Kendrick MA, Stoker SW. Discovery of a Genetic Metabolic Cause for Mauriac Syndrome in Type 1 Diabetes. Diabetes 2016; 65:2051-9. [PMID: 27207549 DOI: 10.2337/db16-0099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
A mechanistic cause for Mauriac syndrome, a syndrome of growth failure and delayed puberty associated with massive liver enlargement from glycogen deposition in children with poorly controlled type 1 diabetes, is unknown. We discovered a mutation in the catalytic subunit of liver glycogen phosphorylase kinase in a patient with Mauriac syndrome whose liver extended into his pelvis. Glycogen phosphorylase kinase activates glycogen phosphorylase, the enzyme that catalyzes the first step in glycogen breakdown. We show that the mutant subunit acts in a dominant manner to completely inhibit glycogen phosphorylase kinase enzyme activity and that this interferes with glycogenolysis causing increased levels of glycogen in human liver cells. It is known that even normal blood glucose levels physiologically inhibit glycogen phosphorylase to diminish glucose release from the liver when glycogenolysis is not needed. The patient's mother possessed the same mutant glycogen phosphorylase kinase subunit, but did not have diabetes or hepatomegaly. His father had childhood type 1 diabetes in poor glycemic control, but lacked the mutation and had neither hepatomegaly nor growth failure. This case proves that the effect of a mutant enzyme of glycogen metabolism can combine with hyperglycemia to directly hyperinhibit glycogen phosphorylase, in turn blocking glycogenolysis causing the massive liver in Mauriac disease.
Collapse
Affiliation(s)
- Michael J MacDonald
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Noaman M Hasan
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Israr-Ul H Ansari
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Melissa J Longacre
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mindy A Kendrick
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Scott W Stoker
- Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
28
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
29
|
Kazakov T, Yang F, Ramanathan HN, Kohlway A, Diamond MS, Lindenbach BD. Hepatitis C virus RNA replication depends on specific cis- and trans-acting activities of viral nonstructural proteins. PLoS Pathog 2015; 11:e1004817. [PMID: 25875808 PMCID: PMC4395149 DOI: 10.1371/journal.ppat.1004817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 02/07/2023] Open
Abstract
Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.
Collapse
Affiliation(s)
- Teymur Kazakov
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Feng Yang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Harish N. Ramanathan
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
30
|
Cyclophilin and NS5A inhibitors, but not other anti-hepatitis C virus (HCV) agents, preclude HCV-mediated formation of double-membrane-vesicle viral factories. Antimicrob Agents Chemother 2015; 59:2496-507. [PMID: 25666154 DOI: 10.1128/aac.04958-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/02/2015] [Indexed: 12/14/2022] Open
Abstract
Although the mechanisms of action (MoA) of nonstructural protein 3 inhibitors (NS3i) and NS5B inhibitors (NS5Bi) are well understood, the MoA of cyclophilin inhibitors (CypI) and NS5A inhibitors (NS5Ai) are not fully defined. In this study, we examined whether CypI and NS5Ai interfere with hepatitis C virus (HCV) RNA synthesis of replication complexes (RCs) or with an earlier step of HCV RNA replication, the creation of double-membrane vesicles (DMVs) essential for HCV RNA replication. In contrast to NS5Bi, both CypI and NS5Ai do not block HCV RNA synthesis by way of RCs, suggesting that they exert their antiviral activity prior to the establishment of enzymatically active RCs. We found that viral replication is not a precondition for DMV formation, since the NS3-NS5B polyprotein or NS5A suffices to create DMVs. Importantly, only CypI and NS5Ai, but not NS5Bi, mir-122, or phosphatidylinositol-4 kinase IIIα (PI4KIIIα) inhibitors, prevent NS3-NS5B-mediated DMV formation. NS3-NS5B was unable to create DMVs in cyclophilin A (CypA) knockdown (KD) cells. We also found that the isomerase activity of CypA is absolutely required for DMV formation. This not only suggests that NS5A and CypA act in concert to build membranous viral factories but that CypI and NS5Ai mediate their early anti-HCV effects by preventing the formation of organelles, where HCV replication is normally initiated. This is the first investigation to examine the effect of a large panel of anti-HCV agents on DMV formation, and the results reveal that CypI and NS5Ai act at the same membranous web biogenesis step of HCV RNA replication, thus indicating a new therapeutic target of chronic hepatitis C.
Collapse
|
31
|
Shah M, Shankar A, Gee I, Nash K, Hoare M, Gibbs P, Davies S, Alexander GJM. A retrospective 15-year review: survival advantage after switching to sirolimus in hepatitis C virus infected liver graft recipients. Aliment Pharmacol Ther 2015; 41:379-92. [PMID: 25496225 DOI: 10.1111/apt.13049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/05/2014] [Accepted: 11/21/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The use of sirolimus-based immune suppression in liver transplantation, particularly in hepatitis C virus (HCV)-infected recipients, remains contentious. There is some evidence that sirolimus retards hepatic fibrosis, is renal sparing and may be of benefit in preventing hepatocellular carcinoma (HCC) recurrence. Sirolimus has not been adopted by many transplant centres because of persistent concerns regarding an increased risk of hepatic artery thrombosis, graft loss and death with de novo sirolimus. AIM To review the impact of switching to sirolimus monotherapy in HCV-infected liver recipients with respect to survival, graft loss and hepatic fibrosis. METHODS A retrospective review of 190 patients from a single centre undergoing first liver transplantation for HCV over 15 years. 113 patients were switched from calcineurin inhibitor (CNI)-based therapy to low-dose sirolimus monotherapy at a median of 15 months after transplantation for HCV-related fibrosis (72%), renal impairment (14%) or high-risk HCC (5%). RESULTS Patients switched to sirolimus had improved survival (P < 0.001) and slower progression to cirrhosis (P = 0.001). In patients with HCC (n = 91), sirolimus duration rather than strategy was an independent predictor of survival (P = 0.001) and extended time to HCC recurrence (33 vs. 16 months). Patients switched for renal dysfunction showed improvement in serum creatinine (140-108 μmol/L, P = 0.001). Those remaining on CNI-therapy were more likely to develop post-transplant diabetes (P = 0.03). CONCLUSION These data suggest selective switching to low-dose sirolimus monotherapy in HCV-positive liver recipients improves clinical outcome.
Collapse
Affiliation(s)
- M Shah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge University Hospitals, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Striker R, Mehle A. Inhibitors of peptidyl proline isomerases as antivirals in hepatitis C and other viruses. PLoS Pathog 2014; 10:e1004428. [PMID: 25375953 PMCID: PMC4223064 DOI: 10.1371/journal.ppat.1004428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rob Striker
- Department of Medicine, W. S. Middleton Memorial Veteran's Association, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
33
|
Lim PJ, Gallay PA. Hepatitis C NS5A protein: two drug targets within the same protein with different mechanisms of resistance. Curr Opin Virol 2014; 8:30-7. [PMID: 24879295 PMCID: PMC4195798 DOI: 10.1016/j.coviro.2014.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
The era of interferon-free antiviral treatments for hepatitis C virus infection has arrived. With increasing numbers of approved antivirals, evaluating all parameters that may influence response is necessary to choose optimal combinations for treatment success. Targeting NS5A has become integral in antiviral combinations in clinical development. Daclatasvir and ledipasvir belong to the NS5A inhibitor class, which directly target the NS5A protein. Alisporivir, a host-targeting antiviral, is a cyclophilin inhibitor that indirectly targets NS5A by blocking NS5A/cyclophilin A interaction. Resistance to daclatasvir and ledipasvir differs from alisporivir, with mutations arising in NS5A domains I and II, respectively. Combining these two classes acting on distinct NS5A domains represents an attractive strategy for potentially effective interferon-free treatments for chronic hepatitis C infection.
Collapse
Affiliation(s)
- Precious J Lim
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philippe A Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Increased replicative fitness can lead to decreased drug sensitivity of hepatitis C virus. J Virol 2014; 88:12098-111. [PMID: 25122776 DOI: 10.1128/jvi.01860-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Passage of hepatitis C virus (HCV) in human hepatoma cells resulted in populations that displayed partial resistance to alpha interferon (IFN-α), telaprevir, daclatasvir, cyclosporine, and ribavirin, despite no prior exposure to these drugs. Mutant spectrum analyses and kinetics of virus production in the absence and presence of drugs indicate that resistance is not due to the presence of drug resistance mutations in the mutant spectrum of the initial or passaged populations but to increased replicative fitness acquired during passage. Fitness increases did not alter host factors that lead to shutoff of general host cell protein synthesis and preferential translation of HCV RNA. The results imply that viral replicative fitness is a mechanism of multidrug resistance in HCV. Importance: Viral drug resistance is usually attributed to the presence of amino acid substitutions in the protein targeted by the drug. In the present study with HCV, we show that high viral replicative fitness can confer a general drug resistance phenotype to the virus. The results exclude the possibility that genomes with drug resistance mutations are responsible for the observed phenotype. The fact that replicative fitness can be a determinant of multidrug resistance may explain why the virus is less sensitive to drug treatments in prolonged chronic HCV infections that favor increases in replicative fitness.
Collapse
|
35
|
Chamoun-Emanuelli AM, Pécheur EI, Chen Z. Benzhydrylpiperazine compounds inhibit cholesterol-dependent cellular entry of hepatitis C virus. Antiviral Res 2014; 109:141-8. [PMID: 25019406 DOI: 10.1016/j.antiviral.2014.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) remains a serious global health problem that lacks an effective cure. Although the introduction of protease inhibitors to the current standard-of-care interferon/ribavirin therapy for HCV infection has improved sustained virological response of genotype 1-infected patients, these inhibitors exacerbate already problematic side effects. Thus, new HCV antivirals are urgently needed. Using a cell-protection screen previously developed in our laboratory, we evaluated 30,426 compounds for inhibitors of potentially any stage of the HCV life cycle and identified 49 new HCV inhibitors. The two most potent hits, hydroxyzine and chlorcyclizine, belong to the family of benzhydrylpiperazines and were found to inhibit the entry of cell culture-produced HCV with IC50 values of 19 and 2.3 nM, respectively, and therapeutic indices of >500 and >6500. Both compounds block HCV entry at a late stage of entry prior to viral fusion and their inhibitory activities are highly dependent on the host's cholesterol content. Both compounds are currently used in the clinic for treating allergy-related disorders and the reported peak plasma level (160 nM) and estimated liver concentration (1.7 μM) of hydroxyzine in humans are much higher than the molecule's anti-HCV IC90 in cell culture (64 nM). Further studies are therefore justified to evaluate the use of these molecules in an anti-HCV therapeutic regimen.
Collapse
Affiliation(s)
- Ana M Chamoun-Emanuelli
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | - Zhilei Chen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
36
|
Hong Z, Yang X, Yang G, Zhang L. Hepatitis C virus NS5A competes with PI4KB for binding to ACBD3 in a genotype-dependent manner. Antiviral Res 2014; 107:50-55. [PMID: 24792752 DOI: 10.1016/j.antiviral.2014.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/11/2023]
Abstract
Although genotype-dependency of PI4KB involved in HCV replication has been reported, the mechanism underlying that is unknown. In this study, we found that NS5A and PI4KB competed for association of acyl-coenzyme A binding domain containing protein 3 (ACBD3), which inhibited HCV replication. ACBD3 bind to GT1b NS5A with a higher affinity than to GT2a NS5A, which was consistent with higher co-localization between PI4KB and phosphatidylinositol 4-phosphate (PI4P) in GT1b HCV-infected cells than that in GT2a HCV-infected cells. These results suggested that NS5A could rob the preexisting ACBD3/PI4KB complex to form NS5A/ACBD3 complex and PI4KB could relocate to the viral RNA replication sites to facilitate HCV replication. Our findings not only revealed the anti-HCV function of ACBD3, but also shed mechanistic light on how ACBD3 was manipulated by NS5A from different GT of HCV.
Collapse
Affiliation(s)
- Zhi Hong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China
| | - Xiaojie Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China
| | - Guangbo Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China
| | - Leiliang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China.
| |
Collapse
|
37
|
Bobardt M, Chatterji U, Lim P, Gawlik K, Gallay P. Both Cyclophilin Inhibitors and Direct-Acting Antivirals Prevent PKR Activation in HCV-Infected Cells. Open Virol J 2014; 8:1-8. [PMID: 24799968 PMCID: PMC4009744 DOI: 10.2174/1874357901408010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/20/2023] Open
Abstract
We and others demonstrated that the contact between NS5A and the host factor CypA is critical for HCV replication. CypI, by disrupting NS5A-CypA complexes, block HCV replication both in vitro and in patients. Since NS5A also binds to PKR, a central component of the IFN response, we investigated the possibility of a relationship between CypA, NS5A and PKR in the IFN response to HCV. HCV-infected cells treated with CypI, DAAs or IFN were analyzed for the expression and activation of various components of the innate response. We found that CypI (cyclosporine A, alisporivir, NIM811 and sanglifehrins), drastically prevented the activation/phosphorylation, but not the expression of IFN-induced PKR in HCV-infected cells. CypI had no effect on the expression or phosphorylation of other components of the innate response such as eiF2, NF-kB, IRF3, IRF9, STAT1 and STAT2, suggesting a specific effect on PKR. No significant activation of IFN-induced PKR was observed in the absence of HCV. Importantly, we found that several classes of DAAs such as NS3/4A protease, NS5B polymerase and NS5A inhibitors also prevented PKR activation. Furthermore, we found that PKR activation by the dsRNA mimic poly I:C cannot be prevented by CypI or DAAs. Our findings suggest that CypI do not have a unique effect on PKR activation, but rather the suppression of HCV replication by any anti-HCV inhibitor, abrogates PKR activation induced by IFN. Moreover, they suggest that the accumulation of dsRNA intermediates allows HCV to exploit the activation of PKR to counteract the IFN response.
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Udayan Chatterji
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Precious Lim
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Katarzyna Gawlik
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Philippe Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
38
|
Carbajo-Lozoya J, Ma-Lauer Y, Malešević M, Theuerkorn M, Kahlert V, Prell E, von Brunn B, Muth D, Baumert TF, Drosten C, Fischer G, von Brunn A. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Virus Res 2014; 184:44-53. [PMID: 24566223 PMCID: PMC7114444 DOI: 10.1016/j.virusres.2014.02.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Abstract
Cyclophilin A (CypA) is a host factor for human coronavirus NL63 replication. CypA is a target for anti-coronaviral therapy. Non-immunosuppressive CsA derivatives (Alisporivir, NIM811) inhibit CoV replication. New classes of non-immunosuppressive CsA/FK506 derivatives inhibit CoV replication.
Until recently, there were no effective drugs available blocking coronavirus (CoV) infection in humans and animals. We have shown before that CsA and FK506 inhibit coronavirus replication (Carbajo-Lozoya, J., Müller, M.A., Kallies, S., Thiel, V., Drosten, C., von Brunn, A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 2012; Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C., Müller, M.A., Stellberger, T., von Dall’Armi, E., Herzog, P., Kallies, S., Niemeyer, D., Ditt, V., Kuri, T., Züst, R., Schwarz, F., Zimmer, R., Steffen, I., Weber, F., Thiel, V., Herrler, G., Thiel, H.-J., Schwegmann-Weßels, C., Pöhlmann, S., Haas, J., Drosten, C. and von Brunn, A. The SARS-Coronavirus-host interactome: identification of cyclophilins as target for pan-Coronavirus inhibitors. PLoS Pathog., 2011). Here we demonstrate that CsD Alisporivir, NIM811 as well as novel non-immunosuppressive derivatives of CsA and FK506 strongly inhibit the growth of human coronavirus HCoV-NL63 at low micromolar, non-cytotoxic concentrations in cell culture. We show by qPCR analysis that virus replication is diminished up to four orders of magnitude to background levels. Knockdown of the cellular Cyclophilin A (CypA/PPIA) gene in Caco-2 cells prevents replication of HCoV-NL63, suggesting that CypA is required for virus replication. Collectively, our results uncover Cyclophilin A as a host target for CoV infection and provide new strategies for urgently needed therapeutic approaches.
Collapse
Affiliation(s)
| | - Yue Ma-Lauer
- Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität, München, Germany
| | - Miroslav Malešević
- Martin-Luther-Universität Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Division of Enzymology, Halle, Germany
| | - Martin Theuerkorn
- Max-Planck-Institute of Biophysical Chemistry Göttingen, BO Halle (Saale), Germany
| | - Viktoria Kahlert
- Max-Planck-Institute of Biophysical Chemistry Göttingen, BO Halle (Saale), Germany
| | - Erik Prell
- Max-Planck-Institute of Biophysical Chemistry Göttingen, BO Halle (Saale), Germany
| | - Brigitte von Brunn
- Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität, München, Germany
| | - Doreen Muth
- Institut für Virologie, Universität Bonn, Bonn, Germany
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Strasbourg, France
| | | | - Gunter Fischer
- Max-Planck-Institute of Biophysical Chemistry Göttingen, BO Halle (Saale), Germany
| | - Albrecht von Brunn
- Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität, München, Germany.
| |
Collapse
|
39
|
Lee J. Cyclophilin A as a New Therapeutic Target for Hepatitis C Virus-induced Hepatocellular Carcinoma. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:375-83. [PMID: 24227937 PMCID: PMC3823949 DOI: 10.4196/kjpp.2013.17.5.375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) related to hepatitis B virus (HBV) and hepatitis C virus (HCV) infections is thought to account for more than 80% of primary liver cancers. Both HBV and HCV can establish chronic liver inflammatory infections, altering hepatocyte and liver physiology with potential liver disease progression and HCC development. Cyclophilin A (CypA) has been identified as an essential host factor for the HCV replication by physically interacting with the HCV non structural protein NS5A that in turn interacts with RNA-dependent RNA polymerase NS5B. CypA, a cytosolic binding protein of the immunosuppressive drug cyclosporine A, is overexpressed in many cancer types and often associated with malignant transformation. Therefore, CypA can be a good target for molecular cancer therapy. Because of antiviral activity, the CypA inhibitors have been tested for the treatment of chronic hepatitis C. Nonimmunosuppressive Cyp inhibitors such as NIM811, SCY-635, and Alisporivir have attracted more interests for appropriating CypA for antiviral chemotherapeutic target on HCV infection. This review describes CypA inhibitors as a potential HCC treatment tool that is contrived by their obstructing chronic HCV infection and summarizes roles of CypA in cancer development.
Collapse
Affiliation(s)
- Jinhwa Lee
- Department of Clinical Lab Science, School of Health Science, Dongseo University, Busan 617-716, Korea
| |
Collapse
|
40
|
Baugh JM, Garcia-Rivera JA, Gallay PA. Host-targeting agents in the treatment of hepatitis C: a beginning and an end? Antiviral Res 2013; 100:555-61. [PMID: 24091203 DOI: 10.1016/j.antiviral.2013.09.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/08/2013] [Accepted: 09/23/2013] [Indexed: 02/06/2023]
Abstract
The development of two distinct classes of hepatitis C antiviral agents, direct-acting antivirals (DAAs) and host-targeting antivirals (HTAs), have distinctly impacted the hepatitis C virus (HCV) field by generating higher sustained virological response (SVR) rates within infected patients, via reductions in both adverse side effects and duration of treatment when compared to the old standard of care. Today DAAs are actively incorporated into the standard of care and continue to receive the most advanced clinical trial analysis. With a multitude of innovative and potent second-generation DAA compounds currently being tested in clinical trials, it is clear that the future of DAAs looks very bright. In comparison to the other class of compounds, HTAs have been slightly less impactful, despite the fact that primary treatment regimens for HCV began with the use of an HTA - interferon alpha (IFNα). The compound was advantageous in that it provided a broad-reaching antiviral response; however deleterious side effects and viral/patient resistance has since made the compound outdated. HTA research has since moved onward to target a number of cellular host factors that are required for HCV viral entry and replication such as scavenger receptor-BI (SR-BI), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoA reductase), cyclophilin A (CypA), fatty acid synthase (FASN) and miRNA-122. The rationale behind pursuing these HTAs is based upon the extremely low mutational rate that occurs within eukaryotic cells, thereby creating a high genetic barrier to drug resistance for anti-HCV compounds, as well as pan-genotypic coverage to all HCV genotypes and serotypes. As the end appears near for HCV, it becomes important to ask if the development of novel HTAs should also be analyzed in combination with other DAAs, in order to address potential hard-to-treat HCV patient populations. Since the treatment regimens for HCV began with the use of a global HTA, could one end the field as well?
Collapse
Affiliation(s)
- James M Baugh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
41
|
Cyclophilins as modulators of viral replication. Viruses 2013; 5:1684-701. [PMID: 23852270 PMCID: PMC3738956 DOI: 10.3390/v5071684] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 01/11/2023] Open
Abstract
Cyclophilins are peptidyl‐prolyl cis/trans isomerases important in the proper folding of certain proteins. Mounting evidence supports varied roles of cyclophilins, either positive or negative, in the life cycles of diverse viruses, but the nature and mechanisms of these roles are yet to be defined. The potential for cyclophilins to serve as a drug target for antiviral therapy is evidenced by the success of non-immunosuppressive cyclophilin inhibitors (CPIs), including Alisporivir, in clinical trials targeting hepatitis C virus infection. In addition, as cyclophilins are implicated in the predisposition to, or severity of, various diseases, the ability to specifically and effectively modulate their function will prove increasingly useful for disease intervention. In this review, we will summarize the evidence of cyclophilins as key mediators of viral infection and prospective drug targets.
Collapse
|
42
|
Ansari IUH, Striker R. Subtype specific differences in NS5A domain II reveals involvement of proline at position 310 in cyclosporine susceptibility of hepatitis C virus. Viruses 2013; 4:3303-15. [PMID: 23342381 PMCID: PMC3528267 DOI: 10.3390/v4123303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is susceptible to cyclosporine (CsA) and other cyclophilin (CypA) inhibitors, but the genetic basis of susceptibility is controversial. Whether genetic variation in NS5A alters cell culture susceptibility of HCV to CypA inhibition is unclear. We constructed replicons containing NS5A chimeras from genotypes 1a, 2a and 4a to test how variation in carboxy terminal regions of NS5A altered the genotype 1b CsA susceptibility. All chimeric replicons including genotype 1b Con1LN-wt replicon exhibited some cell culture sensitivity to CsA with genotype 4a being most sensitive and 1a the least. The CypA binding pattern of truncated NS5A genotypes correlated with the susceptibility of these replicons to CsA. The Con1LN-wt replicon showed increased susceptibility towards CsA when proline at position 310P was mutated to either threonine or alanine. Furthermore, a 15 amino acid long peptide fused N terminally to GFP coding sequences confirmed involvement of proline at 310 in CypA binding. Our findings are consistent with CypA acting on multiple prolines outside of the previously identified CypA binding sites. These results suggest multiple specific genetic variants between genotype 1a and 1b in the C-terminus of NS5A alter the CsA susceptibility of replicons, and some variants may oppose the effects of others.
Collapse
Affiliation(s)
| | - Rob Striker
- Department of Medicine, University of Wisconsin-Madison, WI 53706, USA;
- W. S. Middleton Memorial Veteran’s Hospital, Madison, WI 53706, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-608-263-5794; Fax: +1-608-262-8418
| |
Collapse
|
43
|
Baugh J, Gallay P. Cyclophilin involvement in the replication of hepatitis C virus and other viruses. Biol Chem 2013; 393:579-87. [PMID: 22944661 DOI: 10.1515/hsz-2012-0151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/10/2012] [Indexed: 02/07/2023]
Abstract
In recent months, there has been a wealth of promising clinical data suggesting that a more effective treatment regimen, and potentially a cure, for hepatitis C virus (HCV) infection is close at hand. Leading this push are direct-acting antivirals (DAAs), currently comprising inhibitors that target the HCV protease NS3, the viral polymerase NS5B, and the non-structural protein NS5A. In combination with one another, along with the traditional standard-of-care ribavirin and PEGylated-IFNα, these compounds have proven to afford tremendous efficacy to treatment-naíve patients, as well as to prior non-responders. Nevertheless, by targeting viral components, the possibility of selecting for breakthrough and treatment-resistant virus strains remains a concern. Host-targeting antivirals are a distinct class of anti-HCV compounds that is emerging as a complementary set of tools to combat the disease. Cyclophilin (Cyp) inhibitors are one such group in this category. In contrast to DAAs, Cyp inhibitors target a host protein, CypA, and have also demonstrated remarkable antiviral efficiency in clinical trials, without the generation of viral escape mutants. This review serves to summarize the current literature on Cyps and their relation to the HCV viral life cycle, as well as other viruses.
Collapse
Affiliation(s)
- James Baugh
- Department of Immunology and Microbial Science, IMM-9, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
44
|
Kim CW, Chang KM. Hepatitis C virus: virology and life cycle. Clin Mol Hepatol 2013; 19:17-25. [PMID: 23593605 PMCID: PMC3622851 DOI: 10.3350/cmh.2013.19.1.17] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive sense, single-stranded RNA virus in the Flaviviridae family. It causes acute hepatitis with a high propensity for chronic infection. Chronic HCV infection can progress to severe liver disease including cirrhosis and hepatocellular carcinoma. In the last decade, our basic understanding of HCV virology and life cycle has advanced greatly with the development of HCV cell culture and replication systems. Our ability to treat HCV infection has also been improved with the combined use of interferon, ribavirin and small molecule inhibitors of the virally encoded NS3/4A protease, although better therapeutic options are needed with greater antiviral efficacy and less toxicity. In this article, we review various aspects of HCV life cycle including viral attachment, entry, fusion, viral RNA translation, posttranslational processing, HCV replication, viral assembly and release. Each of these steps provides potential targets for novel antiviral therapeutics to cure HCV infection and prevent the adverse consequences of progressive liver disease.
Collapse
Affiliation(s)
- Chang Wook Kim
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Kyong-Mi Chang
- GI/Hepatology Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Ansari IUH, Allen T, Berical A, Stock PG, Barin B, Striker R. Phenotypic analysis of NS5A variant from liver transplant patient with increased cyclosporine susceptibility. Virology 2013; 436:268-73. [PMID: 23290631 PMCID: PMC3761804 DOI: 10.1016/j.virol.2012.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/16/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) replication is limited by cyclophilin inhibitors but it remains unclear how viral genetic variations influence susceptibility to cyclosporine (cyclosporine A, CsA), a cyclophilin inhibitor. In this study HCV from liver transplant patients was sequenced before and after CsA exposure. Phenotypic analysis of NS5A sequence was performed by using HCV sub genomic replicon to determine CsA susceptibility. The data indicates an atypical proline at position 328 in NS5A causes increases CsA sensitivity both in the context of genotype 1a and 1b residues. Point mutants mimicking other naturally occurring residues at this position also increased (Ala) or decreased (Arg) replicon sensitivity to CsA relative to the typical threonine (genotype 1a) or serine (genotype 1b) at this position. This work has implications for treatment of HCV by cyclophilin inhibitors.
Collapse
Affiliation(s)
| | - Todd Allen
- Massachusetts General Hospital, Boston, MA, United States
| | - Andrew Berical
- Massachusetts General Hospital, Boston, MA, United States
| | - Peter G. Stock
- University of California, San Francisco, CA, United States
| | - Burc Barin
- The EMMES Corporation, Rockville, MD, United States
| | - Rob Striker
- W. S. Middleton Memorial Veteran's Hospital, Madison, WI 53726, United States
- University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
46
|
Gallay PA, Lin K. Profile of alisporivir and its potential in the treatment of hepatitis C. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:105-15. [PMID: 23440335 PMCID: PMC3578503 DOI: 10.2147/dddt.s30946] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 01/06/2023]
Abstract
Two classes of hepatitis C antiviral agents currently exist, ie, direct-acting antivirals and host-targeting antivirals. Direct-acting antivirals target viral proteins including NS3/NS4A protease, NS5B polymerase and NS5A protein, while host-targeting antivirals target various host proteins critical for replication of the hepatitis C virus (HCV). Alisporivir is the most advanced host-targeting antiviral in clinical development. Alisporivir blocks HCV replication by neutralizing the peptidyl-prolyl isomerase activity of the abundant host cytosolic protein, cyclophilin A. Due to its unique mechanism of antiviral action, alisporivir is pangenotypic, provides a high barrier for development of viral resistance, and does not permit cross-resistance to direct-acting antivirals. Alisporivir has an excellent pharmacokinetic and safety profile. Phase I and II clinical studies have demonstrated that alisporivir causes a dramatic reduction in viral loads in HCV-infected patients. Alisporivir was shown to be highly potent in treatment-naïve and treatment-experienced patients with genotype 1 as well as in those with genotypes 2 or 3. Low viral breakthrough rates were observed and the most frequent clinical and laboratory adverse events associated with alisporivir in combination with pegylated interferon-alpha and ribavirin were similar to those associated with pegylated interferon-alpha and ribavirin used alone. A laboratory abnormality observed in some patients receiving alisporivir is hyperbilirubinemia, which is related to transporter inhibition and not to liver toxicity. The most recent clinical results suggest that alisporivir plus other direct-acting antivirals should provide a successful treatment option for difficult-to-treat populations, such as nonresponders to prior interferon-alpha therapy and patients with cirrhosis. In conclusion, alisporivir represents an attractive candidate component of future interferon-free regimens.
Collapse
Affiliation(s)
- Philippe A Gallay
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| | | |
Collapse
|
47
|
Abstract
This article highlights a unique time in the history of hepatitis C therapy. In the last few years new families of direct-acting antivirals have emerged, that block different viral proteins to interrupt viral replication, such as protease, NS5A inhibitors, and NS5B inhibitors. There are few host-targeted agents in development; currently cyclophilin inhibitors are the only host-targeted agents in advanced development. One of these new agents has now progressed to phase 3 clinical trials; in this review article their potential role as a future therapy to cure hepatitis C is discussed.
Collapse
|
48
|
Wasilenko ST, Montano-Loza AJ, Mason AL. Is there a role for cyclophilin inhibitors in the management of primary biliary cirrhosis? Viruses 2013; 5:423-38. [PMID: 23348060 PMCID: PMC3640509 DOI: 10.3390/v5020423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/17/2022] Open
Abstract
Autoimmune hepatitis (AIH) and primary biliary cirrhosis (PBC) are poorly understood autoimmune liver diseases. Immunosuppression is used to treat AIH and ursodeoxycholic acid is used to slow the progression of PBC. Nevertheless, a proportion of patients with both disorders progress to liver failure. Following liver transplantation, up to a third of patients with PBC experience recurrent disease. Moreover a syndrome referred to as "de novo AIH" occurs in a proportion of patients regardless of maintenance immunosuppression, who have been transplanted for disorders unrelated to AIH. Of note, the use of cyclosporine A appears to protect against the development of recurrent PBC and de novo AIH even though it is a less potent immunosuppressive compared to tacrolimus. The reason why cyclosporine A is protective has not been determined. However, a virus resembling mouse mammary tumor virus (MMTV) has been characterized in patients with PBC and AIH. Accordingly, we hypothesized that the protective effect of cyclosporine A in liver transplant recipients may be mediated by the antiviral activity of this cyclophilin inhibitor. Treatment of the MMTV producing MM5MT cells with different antivirals and immunosuppressive agents showed that both cyclosporine A and the analogue NIM811 inhibited MMTV production from the producer cells. Herein, we discuss the evidence supporting the role of MMTV-like human betaretrovirus in the development of PBC and de novo AIH and speculate on the possibility that the agent may be associated with disease following transplantation. We also review the mechanisms of how both cyclosporine A and NIM811 may inhibit betaretrovirus production in vitro.
Collapse
Affiliation(s)
- Shawn T Wasilenko
- Department of Medicine, Zeidler Ledcor Centre, University of Alberta Hospital, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
49
|
Bobardt M, Hopkins S, Baugh J, Chatterji U, Hernandez F, Hiscott J, Sluder A, Lin K, Gallay PA. HCV NS5A and IRF9 compete for CypA binding. J Hepatol 2013; 58:16-23. [PMID: 22902549 PMCID: PMC3527675 DOI: 10.1016/j.jhep.2012.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/19/2012] [Accepted: 08/06/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND & AIMS Cyclophilin A (CypA) is vital for HCV replication. Cyp inhibitors successfully decrease viral loads in HCV-infected patients. However, their mechanisms of action remain unknown. Since interferon (IFN) can also suppress HCV replication, we asked whether a link between CypA and the IFN response exists. METHODS We used cellular and recombinant pulldown approaches to investigate the possibility of a specific association of CypA with host ligands. RESULTS We found for the first time that CypA binds to a major component of the IFN response - the IFN regulatory factor 9 (IRF9). IRF9 is the DNA-binding component of the transcriptional IFN-stimulated gene factor 3 (ISGF3). CypA binds directly to IRF9 via its peptidyl-prolyl isomerase (PPIase) pocket. Cyp inhibitors such as cyclosporine A (CsA) or non-immunosuppressive derivates such as alisporivir and SCY-635, prevent IRF9-CypA complex formation. CypA binds to the C-terminal IRF-association-domain (IAD), but not to the DNA-binding or linker domains of IRF9. Remarkably, CypA associates with the multimeric ISGF3 complex. We also obtained evidence that CypA neutralization enhances IFN-induced transcription. Interestingly, the hepatitis C virus (HCV) non-structural 5A (NS5A) protein, which is known to modulate the IFN response, competes with IRF9 for CypA binding and can prevent the formation of IRF9-CypA complexes. CONCLUSIONS This study demonstrates for the first time that CypA binds specifically to a component of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, IRF9. This study also reveals a novel opportunity of HCV to modulate the IFN response via NS5A.
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sam Hopkins
- SCYNEXIS, Inc., Durham, North Carolina 27713, USA
| | - James Baugh
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Udayan Chatterji
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Felicia Hernandez
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John Hiscott
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida 34987, USA
| | - Ann Sluder
- SCYNEXIS, Inc., Durham, North Carolina 27713, USA
| | - Kai Lin
- Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts 02139, USA
| | - Philippe A. Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
50
|
Brennan DC, Aguado JM, Potena L, Jardine AG, Legendre C, Säemann MD, Mueller NJ, Merville P, Emery V, Nashan B. Effect of maintenance immunosuppressive drugs on virus pathobiology: evidence and potential mechanisms. Rev Med Virol 2012; 23:97-125. [PMID: 23165654 DOI: 10.1002/rmv.1733] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 12/11/2022]
Abstract
Recent evidence suggesting a potential anti-CMV effect of mTORis is of great interest to the transplant community. However, the concept of an immunosuppressant with antiviral properties is not new, with many accounts of the antiviral properties of several agents over the years. Despite these reports, to date, there has been little effort to collate the evidence into a fuller picture. This manuscript was developed to gather the evidence of antiviral activity of the agents that comprise a typical immunosuppressive regimen against viruses that commonly reactivate following transplant (HHV1 and 2, VZV, EBV, CMV and HHV6, 7, and 8, HCV, HBV, BKV, HIV, HPV, and parvovirus). Appropriate immunosuppressive regimens posttransplant that avoid acute rejection while reducing risk of viral reactivation are also reviewed. The existing literature was disparate in nature, although indicating a possible stimulatory effect of tacrolimus on BKV, potentiation of viral reactivation by steroids, and a potential advantage of mammalian target of rapamycin (mTOR) inhibition in several viral infections, including BKV, HPV, and several herpesviruses.
Collapse
|