1
|
Marin-Castañeda LA, Gonzalez-Garibay G, Garcia-Quintana I, Pacheco-Aispuro G, Rubio C. Mechanisms of ozone-induced neurotoxicity in the development and progression of dementia: a brief review. Front Aging Neurosci 2024; 16:1494356. [PMID: 39529750 PMCID: PMC11552306 DOI: 10.3389/fnagi.2024.1494356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Dementia encompasses a spectrum of neurodegenerative disorders significantly impacting global health, with environmental factors increasingly recognized as crucial in their etiology. Among these, ozone, has been identified as a potential exacerbator of neurodegenerative processes, particularly in Alzheimer's disease (AD). Ozone exposure induces the production of reactive oxygen species (ROS), which penetrate the BBB, leading to oxidative damage in neuronal cells. This oxidative stress is closely linked with mitochondrial dysfunction and lipid peroxidation, processes that are foundational to the pathology observed in dementia, such as neuronal death and protein aggregation. Furthermore, ozone triggers chronic neuroinflammation, exacerbating these neurodegenerative processes and perpetuating a cycle of CNS damage. Recent studies highlight the role of peripheral biomarkers like High Mobility Group Box 1 (HMGB1) and Triggering Receptor Expressed on Myeloid cells 2 (TREM2) in mediating ozone's effects. Disruption of these and other identified proteins by ozone exposure impairs microglial function and response to amyloid plaques, suggesting a novel pathway through which ozone may influence AD pathology via immune dysregulation. This review discusses the concept of a bidirectional lung-brain axis, illustrating that systemic responses to air pollutants like ozone may reflect and contribute to neurodegenerative processes in the CNS. By delineating these mechanisms, we emphasize the critical need for integrating environmental health management into strategies for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Luis A. Marin-Castañeda
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| | - Guillermo Gonzalez-Garibay
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| | | | | | - Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “MVS”, Mexico City, Mexico
| |
Collapse
|
2
|
Koziol-White C, Gebski E, Cao G, Panettieri RA. Precision cut lung slices: an integrated ex vivo model for studying lung physiology, pharmacology, disease pathogenesis and drug discovery. Respir Res 2024; 25:231. [PMID: 38824592 PMCID: PMC11144351 DOI: 10.1186/s12931-024-02855-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024] Open
Abstract
Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.
Collapse
Affiliation(s)
- Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA.
| | - Eric Gebski
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Gaoyaun Cao
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Yang C, Shen Y, Zhang Y, Xiao H, Sun X, Liao J, Chen X, Zhang W, Yu L, Xia W, Xu S, Li Y. Air pollution exposure and plasma fatty acid profile in pregnant women: a cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108319-108329. [PMID: 37752390 DOI: 10.1007/s11356-023-29886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Air pollution exposure was known to result in body impairments by inducing inflammation and oxidation. But little is known about the associations of air pollutants with plasma fatty acid profile which may play important roles in the impairment of air pollutants based on the related mechanism, especially in pregnant women. This study aimed to explore the relationships of air pollution exposure with plasma fatty acid profile and the potential effect modification by pre-pregnancy body mass index (BMI). Based on a cohort in Wuhan, China, we measured concentrations of plasma fatty acids of 519 pregnant women enrolled from 2013 to 2016 by gas chromatography-mass spectrometry (GC-MS). Levels of exposure to air pollutants (fine particulate matter (PM2.5), inhalable particles (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO)) were estimated by using spatial-temporal land use regression models and calculated in three periods (average concentrations during 1 day, 1 week, and 1 month before the phlebotomizing day in the first trimester). Per interquartile range increment of the levels of air pollution exposure 1 day before phlebotomizing was related to 1.21-2.01% increment of omega-6 polyunsaturated fatty acids (n-6PUFA) and 0.63-1.74% decrement of omega-3 polyunsaturated fatty acids (n-3PUFA). Besides, relationships above were kept robust in the analysis during 1 week and 1 month before phlebotomizing. In women with normal BMI, plasma fatty acid profile was observed to be more sensitive to air pollutants. Our study demonstrated that increment of exposure to air pollutants was associated with higher plasma n-6PUFA known to be pro-inflammatory and lower plasma n-3PUFA known to be anti-inflammatory, which was more sensitive in pregnant women with normal BMI. Our findings suggested that changes in plasma fatty acid profile should cause concerns and may serve as biomarkers in the further studies. Future studies are needed to validate our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Chenhui Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ye Shen
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiong Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Jiaqiang Liao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xinmei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Feng Y, Liu X, Wang Y, Du R, Mao H. Delineating asthma according to inflammation phenotypes with a focus on paucigranulocytic asthma. Chin Med J (Engl) 2023:00029330-990000000-00572. [PMID: 37185590 DOI: 10.1097/cm9.0000000000002456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 05/17/2023] Open
Abstract
ABSTRACT Asthma is characterized by chronic airway inflammation and airway hyper-responsiveness. However, the differences in pathophysiology and phenotypic symptomology make a diagnosis of "asthma" too broad hindering individualized treatment. Four asthmatic inflammatory phenotypes have been identified based on inflammatory cell profiles in sputum: eosinophilic, neutrophilic, paucigranulocytic, and mixed-granulocytic. Paucigranulocytic asthma may be one of the most common phenotypes in stable asthmatic patients, yet it remains much less studied than the other inflammatory phenotypes. Understanding of paucigranulocytic asthma in terms of phenotypic discrimination, distribution, stability, surrogate biomarkers, underlying pathophysiology, clinical characteristics, and current therapies is fragmented, which impedes clinical management of patients. This review brings together existing knowledge and ongoing research about asthma phenotypes, with a focus on paucigranulocytic asthma, in order to present a comprehensive picture that may clarify specific inflammatory phenotypes and thus improve clinical diagnoses and disease management.
Collapse
Affiliation(s)
- Yinhe Feng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyin Liu
- West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yubin Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rao Du
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Mao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Akkenepally S, Yombo DJK, Yerubandi S, Geereddy BR, McCormack FX, Madala SK. Interleukin 31 receptor alpha augments muscarinic acetylcholine receptor 3-driven calcium signaling and airway hyperresponsiveness in asthma. RESEARCH SQUARE 2023:rs.3.rs-2564484. [PMID: 36824812 PMCID: PMC9949265 DOI: 10.21203/rs.3.rs-2564484/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness (AHR), inflammation, and goblet cell hyperplasia. Both Th1 and Th2 cytokines, including IFN-γ, IL-4, and IL-13 have been shown to induce asthma; however, the underlying mechanisms remain unclear. We observed a significant increase in the expression of IL-31RA, but not its cognate ligand IL-31 during allergic asthma. In support of this, IFN-γ and Th2 cytokines, IL-4 and IL-13, upregulated IL-31RA but not IL-31 in airway smooth muscle cells (ASMC). Importantly, the loss of IL-31RA attenuated AHR but had no effects on inflammation and goblet cell hyperplasia in allergic asthma or mice treated with IL-13 or IFN-γ. Mechanistically, we demonstrate that IL-31RA functions as a positive regulator of muscarinic acetylcholine receptor 3 expression and calcium signaling in ASMC. Together, these results identified a novel role for IL-31RA in AHR distinct from airway inflammation and goblet cell hyperplasia in asthma.
Collapse
Affiliation(s)
- Santoshi Akkenepally
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
- Division of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Dan JK Yombo
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio USA
| | - Sanjana Yerubandi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio USA
| | | | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio USA
| |
Collapse
|
6
|
Ling-Fei K, Xiao-Juan R, Pan Y, Tuo Q, Xiao-Hui Z, Yu-Tong K, Bo C, Wen-Ling S, Tian-Le G, Cai T. The influence of Hyssopus cuspidatus Boriss extract on lipid mediators metabolism network in asthmatic mice. Front Pharmacol 2023; 14:1066643. [PMID: 36937885 PMCID: PMC10017864 DOI: 10.3389/fphar.2023.1066643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Current drugs do not provide an absolute cure or modify the course of asthma. Hyssopus cuspidatus Boriss extract (SXCF) has been used as Uyghur medicine for several years to treat bronchial asthma. However, very limited research has been conducted on the therapeutic mechanisms of SXCF. Disruptions in the metabolic network of lipid mediators (LMs) are closely linked to the development of asthma. Here, we explored the therapeutic mechanism of SXCF in asthma based on the metabolic network of LMs, aiming to contribute to the understanding of SXCF in asthma treatment at the molecular level. The UHPLC-MRM strategy was used for the quantitative detection of LMs in the lung tissue and in the peripheral circulatory system (serum). ELISA was used to detect IgE in serum and cytokines in BALF. The lung tissue sections were stained with H&E to observe the infiltration of inflammatory cells, and behavioural changes in mice were observed and recorded throughout the animal experiment. In contrast to the asthma group, the opposite result was observed in the SXCF groups, where the perturbed LMs metabolic network was partly restored in a dose-dependent manner with a significant elevation of anti-inflammatory metabolites, while pro-inflammatory lipids were decreased. As significant downregulation of IgE and pro-inflammatory cytokines was observed, IgE and cytokines analysis also supported the anti-inflammatory effects of SXCF. It was also noticed that SXCF treatment reduced the number of coughs and decreased the inflammatory cell infiltration around the bronchus in mice. These results suggested that SXCF has a significant ameliorative effect on ovalbumin (OVA)-induced asthma. The modulation of LMs is a possible underlying mechanism of the SXCF effects.
Collapse
Affiliation(s)
- Kong Ling-Fei
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Rong Xiao-Juan
- Xinjiang Institute of Material Medica, Urumqi, China
- *Correspondence: Rong Xiao-Juan, ; Tie Cai,
| | - Yan Pan
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Qin Tuo
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Zhang Xiao-Hui
- State Key laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Kang Yu-Tong
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Cheng Bo
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Su Wen-Ling
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Gao Tian-Le
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tie Cai
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
- *Correspondence: Rong Xiao-Juan, ; Tie Cai,
| |
Collapse
|
7
|
Asthma with Fixed Airflow Obstruction: From Fixed to Personalized Approach. J Pers Med 2022; 12:jpm12030333. [PMID: 35330333 PMCID: PMC8953236 DOI: 10.3390/jpm12030333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Asthma is generally characterized by variable symptoms such as dyspnea and wheezing and variable airflow obstruction. This review focuses on a subset of patients suffering from asthma with persistent airflow limitation that is not fully reversible (asthma with fixed airflow obstruction, FAO). The pathophysiology, the risk factors and the clinical outcomes associated with FAO are presented, as well as the distinct clinical entity of severe asthma and its inflammatory subtypes (T2 and non-T2). The current strategies for the treatment of these endotypes and treatment of the distinct Asthma/COPD overlap (ACO) phenotype are described. Management and medical interventions in FAO and/or ACO patients demand a holistic approach, which is not yet clearly established in guidelines worldwide. Finally, a treatment algorithm that includes FAO/ACO management based on pharmacological and non-pharmacological treatment, guideline-based management for specific co-morbidities, and modification of the risk factors is proposed.
Collapse
|
8
|
Basoalto R, Damiani LF, Bachmann MC, Fonseca M, Barros M, Soto D, Araos J, Jalil Y, Dubo S, Retamal J, Bugedo G, Henriquez M, Bruhn A. Acute lung injury secondary to hydrochloric acid instillation induces small airway hyperresponsiveness. Am J Transl Res 2021; 13:12734-12741. [PMID: 34956488 PMCID: PMC8661233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure characterized by altered lung mechanics and poor oxygenation. Bronchial hyperresponsiveness has been reported in ARDS survivors and animal models of acute lung injury. Whether this hyperreactivity occurs at the small airways or not is unknown. OBJECTIVE To determine ex-vivo small airway reactivity in a rat model of acute lung injury (ALI) by hydrochloric acid (HCl) instillation. METHODS Twelve anesthetized rats were connected to mechanical ventilation for 4-hour, and randomly allocated to either ALI group (HCl intratracheal instillation; n=6) or Sham (intratracheal instillation of 0.9% NaCl; n=6). Oxygenation was assessed by arterial blood gases. After euthanasia, tissue samples from the right lung were harvested for histologic analysis and wet-dry weight ratio assessment. Precision cut lung slice technique (100-200 μm diameter) was applied in the left lung to evaluate ex vivo small airway constriction in response to histamine and carbachol stimulation, using phase-contrast video microscopy. RESULTS Rats from the ALI group exhibited hypoxemia, worse histologic lung injury, and increased lung wet-dry weight ratio as compared with the sham group. The bronchoconstrictor responsiveness was significantly higher in the ALI group, both for carbachol (maximal contraction of 84.5±2.5% versus 61.4±4.2% in the Sham group, P<0.05), and for histamine (maximal contraction of 78.6±5.3% versus 49.6±5.3% in the Sham group, P<0.05). CONCLUSION In an animal model of acute lung injury secondary to HCL instillation, small airway hyperresponsiveness to carbachol and histamine is present. These results may provide further insight into the pathophysiology of ARDS.
Collapse
Affiliation(s)
- Roque Basoalto
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
- Doctoral Program in Medical Sciences, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
| | - L Felipe Damiani
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Maria Consuelo Bachmann
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
- Doctoral Program in Medical Sciences, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Marcelo Fonseca
- Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Marisol Barros
- Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Dagoberto Soto
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Joaquín Araos
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, New York, USA
| | - Yorschua Jalil
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
- Doctoral Program in Medical Sciences, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Sebastián Dubo
- Department of Kinesiology, Universidad de ConcepciónConcepción, Chile
| | - Jaime Retamal
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Guillermo Bugedo
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Mauricio Henriquez
- Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de ChileSantiago, Chile
- Network for The Study of High-Lethality Cardiopulmonary Diseases (REECPAL), Universidad de ChileSantiago, Chile
| | - Alejandro Bruhn
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
9
|
Dong YN, Hsu FC, Koziol-White CJ, Stepanova V, Jude J, Gritsiuta A, Rue R, Mott R, Coulter DA, Panettieri RA, Krymskaya VP, Takano H, Goncharova EA, Goncharov DA, Cines DB, Lynch DR. Functional NMDA receptors are expressed by human pulmonary artery smooth muscle cells. Sci Rep 2021; 11:8205. [PMID: 33859248 PMCID: PMC8050278 DOI: 10.1038/s41598-021-87667-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2021] [Indexed: 11/08/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are widely expressed in the central nervous system. However, their presence and function at extraneuronal sites is less well characterized. In the present study, we examined the expression of NMDA receptor subunit mRNA and protein in human pulmonary artery (HPA) by quantitative polymerase chain reaction (PCR), immunohistochemistry and immunoblotting. We demonstrate that both GluN1 and GluN2 subunit mRNAs are expressed in HPA. In addition, GluN1 and GluN2 (A-D) subunit proteins are expressed by human pulmonary artery smooth muscle cells (HPASMCs) in vitro and in vivo. These subunits localize on the surface of HPASMCs and form functional ion channels as evidenced by whole-cell patch-clamp electrophysiology and reduced phenylephrine-induced contractile responsiveness of human pulmonary artery by the NMDA receptor antagonist MK801 under hypoxic condition. HPASMCs also express high levels of serine racemase and vesicular glutamate transporter 1, suggesting a potential source of endogenous agonists for NMDA receptor activation. Our findings show HPASMCs express functional NMDA receptors in line with their effect on pulmonary vasoconstriction, and thereby suggest a novel therapeutic target for pharmacological modulations in settings associated with pulmonary vascular dysfunction.
Collapse
Affiliation(s)
- Yi Na Dong
- Department of Pediatrics and Neurology, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fu-Chun Hsu
- Department of Pediatrics and Neurology, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine & Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Victoria Stepanova
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Andrei Gritsiuta
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryan Rue
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rosalind Mott
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas A Coulter
- Department of Pediatrics and Neurology, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine & Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Vera P Krymskaya
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hajime Takano
- Department of Pediatrics and Neurology, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elena A Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Dmitry A Goncharov
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David R Lynch
- Department of Pediatrics and Neurology, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021; 7:00309-2020. [PMID: 34109244 PMCID: PMC8181790 DOI: 10.1183/23120541.00309-2020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Currently, and based on the development of relevant biologic therapies, T2-high is the most well-defined endotype of asthma. Although much progress has been made in elucidating T2-high inflammation pathways, no specific clinically applicable biomarkers for T2-low asthma have been identified. The therapeutic approach of T2-low asthma is a problem urgently needing resolution, firstly because these patients have poor response to steroids, and secondly because they are not candidates for the newer targeted biologic agents. Thus, there is an unmet need for the identification of biomarkers that can help the diagnosis and endotyping of T2-low asthma. Ongoing investigation is focusing on neutrophilic airway inflammation mediators as therapeutic targets, including interleukin (IL)-8, IL-17, IL-1, IL-6, IL-23 and tumour necrosis factor-α; molecules that target restoration of corticosteroid sensitivity, mainly mitogen-activated protein kinase inhibitors, tyrosine kinase inhibitors and phosphatidylinositol 3-kinase inhibitors; phosphodiesterase (PDE)3 inhibitors that act as bronchodilators and PDE4 inhibitors that have an anti-inflammatory effect; and airway smooth muscle mass attenuation therapies, mainly for patients with paucigranulocytic inflammation. This article aims to review the evidence for noneosinophilic inflammation being a target for therapy in asthma; discuss current and potential future therapeutic approaches, such as novel molecules and biologic agents; and assess clinical trials of licensed drugs in the treatment of T2-low asthma.
Collapse
Affiliation(s)
- Chris Kyriakopoulos
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Konstantinos Kostikas
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
11
|
He L, Lin Y, Wang X, Liu XL, Wang Y, Qin J, Wang X, Day D, Xiang J, Mo J, Zhang Y, Zhang JJ. Associations of ozone exposure with urinary metabolites of arachidonic acid. ENVIRONMENT INTERNATIONAL 2020; 145:106154. [PMID: 33038623 DOI: 10.1016/j.envint.2020.106154] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ozone (O3) exposure has been associated with biomarkers of platelet activation and oxidative stress. The metabolism of arachidonic acid (AA) plays an important role in platelet activation and oxidative stress. However, AA metabolic pathways have not been examined in relation to O3 and other air pollutants. METHODS Early morning urine and fasting blood were longitudinally collected up to four times from 89 healthy adults (22-52 years old, 25 women) in Changsha City, China. We measured three urinary AA metabolites, namely 11-dehydro-Thromboxane B2 (11-dhTXB2) produced from the arachidonic cyclooxygenase pathway, 20-hydroxyeicosatetraenoic acid (20-HETE) from the CYPs pathway, and 8-isoprostane from the non-enzymatic pathway. Urinary malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured as indicators of oxidative damage to lipids and DNA, respectively. We measured soluble P-selectin (sCD62p) concentrations in plasma as an indicator of platelet activation. Indoor and outdoor air pollutants were measured and combined with participants' time-activity pattern to calculate personal exposure to O3, PM2.5, NO2, and SO2 averaged over 12-hour, 24-hour, 1-week, and 2-week periods prior to biospecimen collection, respectively. Linear mixed-effects models were used to examine the relationships of AA metabolites with air pollutant exposures, plasma sCD62p, and urinary MDA & 8-OHdG. RESULTS We found that a 10% increase in 12 h and 24 h O3 exposure were associated with increases in urinary11-dhTXB2 by 1.4% (95%, 0.1% to 2.6%) and 1.3% (0.05% to 2.5%), respectively. These associations remained robust after adjusting for co-pollutant exposures. No significant associations were observed between 11-dhTXB2 and other pollutants or between O3 exposures and other AA metabolites. All the three AA metabolites were significantly and positively associated with urinary MDA and 8-OHdG, whereas only urinary 11-dhTXB2 was significantly and positively associated with plasma sCD62p. CONCLUSIONS A metabolite of AA from the cyclooxygenase pathway was positively associated with short-term O3 exposure, and with a plasma marker of platelet activation and two urinary markers of oxidative stress. The results suggest that O3 exposure may contribute to increased platelet activation and oxidative damages via altering the metabolism of AA.
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, NC 27705, USA; Global Health Institute, Duke University, Durham, NC 27708, USA
| | - Yan Lin
- Nicholas School of the Environment, Duke University, Durham, NC 27705, USA; Global Health Institute, Duke University, Durham, NC 27708, USA
| | - Xiangtian Wang
- Nicholas School of the Environment, Duke University, Durham, NC 27705, USA
| | - Xing Lucy Liu
- Global Health Institute, Duke University, Durham, NC 27708, USA
| | - Yang Wang
- Nicholas School of the Environment, Duke University, Durham, NC 27705, USA
| | - Jian Qin
- Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Xiaoli Wang
- Tianjin University of Technology, Tianjin 300384, China
| | - Drew Day
- Seattle Children's Research Institute, Seattle, WA 98121, United States
| | - Jianbang Xiang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China.
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC 27705, USA; Global Health Institute, Duke University, Durham, NC 27708, USA; Duke Kunshan University, Kunshan City, Jiangsu Province 215316, China.
| |
Collapse
|
12
|
Cytochrome 450 metabolites of arachidonic acid (20-HETE, 11,12-EET and 14,15-EET) promote pheochromocytoma cell growth and tumor associated angiogenesis. Biochimie 2020; 171-172:147-157. [PMID: 32105813 DOI: 10.1016/j.biochi.2020.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/20/2020] [Indexed: 01/05/2023]
Abstract
The importance of cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites, 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) as tumor growth promotors has already been described in several cancer types. The aim of this study was to evaluate the role of these compounds in the biology of pheochromocytoma/paraganglioma. These tumors originate from chromaffin cells derived from adrenal medulla (pheochromocytomas) or extra-adrenal autonomic paraganglia (paragangliomas), and they represent the most common hereditary endocrine neoplasia. According to mutations in the driver genes, these tumors are divided in two clusters: pseudo-hypoxic and kinase-signaling EETs, but not 20-HETE, exhibited a potent ability to sustain growth in a murine pheochromocytoma cell line (MPC) in vitro, EETs promoted an increase in cell proliferation and a decrease in cell apoptosis. In a mouse model of pheochromocytoma, the inhibition of CYP-mediated AA metabolism using 1-aminobenzotriazol resulted in slower tumor growth, a decreased vascularization, and a lower final volume. Also, the expression of AA-metabolizing CYP monooxygenases was detected in tumor samples from human origin, being their apparent abundance and the production of both metabolites higher in tumors from the kinase-signaling cluster. This is the first evidence of the importance of CYP- derived AA metabolites in the biology and development of pheochromocytoma/paraganglioma tumors.
Collapse
|
13
|
Kan M, Koziol-White C, Shumyatcher M, Johnson M, Jester W, Panettieri RA, Himes BE. Airway Smooth Muscle-Specific Transcriptomic Signatures of Glucocorticoid Exposure. Am J Respir Cell Mol Biol 2020; 61:110-120. [PMID: 30694689 PMCID: PMC6604213 DOI: 10.1165/rcmb.2018-0385oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoids, commonly used asthma controller medications, decrease symptoms in most patients, but some remain symptomatic despite high-dose treatment. The physiological basis underlying the glucocorticoid response, especially in asthma patients with severe, refractory disease, is not fully understood. We sought to identify differences between the transcriptomic response of airway smooth muscle (ASM) cells derived from donors with fatal asthma and donors without asthma to glucocorticoid exposure and to compare ASM-specific changes with those observed in other cell types. In cells derived from nine donors with fatal asthma and eight donors without asthma, RNA sequencing was used to measure ASM transcriptome changes after exposure to budesonide (100 nM 24 h) or control vehicle (DMSO). Differential expression results were obtained for this dataset, as well as 13 publicly available glucocorticoid-response transcriptomic datasets corresponding to seven cell types. Specific genes were differentially expressed in response to glucocorticoid exposure (7,835 and 6,957 in ASM cells derived from donors with fatal asthma and donors without asthma, respectively; adjusted P value < 0.05). Transcriptomic changes in response to glucocorticoid exposure were similar in ASM derived from donors with fatal asthma and donors without asthma, with enriched ontological pathways that included cytokine- and chemokine-related categories. A comparison of glucocorticoid-induced changes in the nonasthma ASM transcriptome with those observed in six other cell types showed that ASM has a distinct glucocorticoid-response signature that is also present in ASM cells from donors with fatal asthma.
Collapse
Affiliation(s)
- Mengyuan Kan
- 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Cynthia Koziol-White
- 2 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Maya Shumyatcher
- 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Martin Johnson
- 2 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - William Jester
- 2 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Reynold A Panettieri
- 2 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Blanca E Himes
- 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
14
|
Mumby S, Chung KF, Adcock IM. Transcriptional Effects of Ozone and Impact on Airway Inflammation. Front Immunol 2019; 10:1610. [PMID: 31354743 PMCID: PMC6635463 DOI: 10.3389/fimmu.2019.01610] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological and challenge studies in healthy subjects and in individuals with asthma highlight the health impact of environmental ozone even at levels considered safe. Acute ozone exposure in man results in sputum neutrophilia in 30% of subjects particularly young children, females, and those with ongoing cardiopulmonary disease. This may be associated with systemic inflammation although not in all cases. Chronic exposure amplifies these effects and can result in the formation of asthma-like symptoms and immunopathology. Asthmatic patients who respond to ozone (responders) induce a greater number of genes in bronchoalveolar (BAL) macrophages than healthy responders with up-regulation of inflammatory and immune pathways under the control of cytokines and chemokines and the enhanced expression of remodeling and repair programmes including those associated with protease imbalances and cell-cell adhesion. These pathways are under the control of several key transcription regulatory factors including nuclear factor (NF)-κB, anti-oxidant factors such as nuclear factor (erythroid-derived 2)-like 2 NRF2, the p38 mitogen activated protein kinase (MAPK), and priming of the immune system by up-regulating toll-like receptor (TLR) expression. Murine and cellular models of acute and chronic ozone exposure recapitulate the inflammatory effects seen in humans and enable the elucidation of key transcriptional pathways. These studies emphasize the importance of distinct transcriptional networks in driving the detrimental effects of ozone. Studies indicate the critical role of mediators including IL-1, IL-17, and IL-33 in driving ozone effects on airway inflammation, remodeling and hyperresponsiveness. Transcription analysis and proof of mechanisms studies will enable the development of drugs to ameliorate the effects of ozone exposure in susceptible individuals.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Tliba O, Panettieri RA. Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol 2018; 143:1287-1294. [PMID: 29928921 DOI: 10.1016/j.jaci.2018.06.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/17/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
Abstract
Among patients with asthma, heterogeneity exists regarding the pattern of airway inflammation and response to treatment, prompting the necessity of recognizing specific phenotypes. Based on the analysis of inflammatory cell counts in induced sputum, asthmatic patients can be classified into 4 unique phenotypes: eosinophilic asthma, neutrophilic asthma, mixed granulocytic asthma, and paucigranulocytic asthma (PGA). PGA is an asthma phenotype with no evidence of increased numbers of eosinophils or neutrophils in sputum or blood and in which anti-inflammatory therapies are ineffective at controlling symptoms. Although underinvestigated, PGA is the most common asthma phenotype in patients with stable asthma. However, PGA is sometimes underestimated because of the exclusive reliance on induced sputum cell counts, which are variable among cohorts of studies, prompting the necessity of developing improved biomarkers. Importantly, investigators have reported that inhaled corticosteroids had a limited effect on airway inflammatory markers in patients with PGA and therefore defining PGA as a potentially "steroid-insensitive" phenotype that requires exploration of alternative therapies. PGA manifests as an uncoupling of airway obstruction from airway inflammation that can be driven by structural changes within the airways, such as airway smooth muscle tissue hypertrophy. Animal models provide evidence that processes evoking airway hyperresponsiveness and airway smooth muscle thickening occur independent from inflammation and might be a consequence of a loss of negative homeostatic processes. Collectively, further understanding of PGA with a focus on the characterization, prevalence, clinical significance, and pathobiology derived from animal studies will likely provide precision therapies that will improve PGA clinical outcomes.
Collapse
Affiliation(s)
- Omar Tliba
- Rutgers Institute for Translational Medicine & Science, Robert Wood Johnson School of Medicine, Rutgers, State University of New Jersey, New Brunswick, NJ
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine & Science, Robert Wood Johnson School of Medicine, Rutgers, State University of New Jersey, New Brunswick, NJ.
| |
Collapse
|
16
|
Johnstone TB, Smith KH, Koziol-White CJ, Li F, Kazarian AG, Corpuz ML, Shumyatcher M, Ehlert FJ, Himes BE, Panettieri RA, Ostrom RS. PDE8 Is Expressed in Human Airway Smooth Muscle and Selectively Regulates cAMP Signaling by β 2-Adrenergic Receptors and Adenylyl Cyclase 6. Am J Respir Cell Mol Biol 2018; 58:530-541. [PMID: 29262264 PMCID: PMC5894499 DOI: 10.1165/rcmb.2017-0294oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Two cAMP signaling compartments centered on adenylyl cyclase (AC) exist in human airway smooth muscle (HASM) cells, one containing β2-adrenergic receptor AC6 and another containing E prostanoid receptor AC2. We hypothesized that different PDE isozymes selectively regulate cAMP signaling in each compartment. According to RNA-sequencing data, 18 of 24 PDE genes were expressed in primary HASM cells derived from age- and sex-matched donors with and without asthma. PDE8A was the third most abundant of the cAMP-degrading PDE genes, after PDE4A and PDE1A. Knockdown of PDE8A using shRNA evoked twofold greater cAMP responses to 1 μM forskolin in the presence of 3-isobutyl-1-methylxanthine. Overexpression of AC2 did not alter this response, but overexpression of AC6 increased cAMP responses an additional 80%. We examined cAMP dynamics in live HASM cells using a fluorescence sensor. PF-04957325, a PDE8-selective inhibitor, increased basal cAMP concentrations by itself, indicating a significant basal level of cAMP synthesis. In the presence of an AC inhibitor to reduce basal signaling, PF-04957325 accelerated cAMP production and increased the inhibition of cell proliferation induced by isoproterenol, but it had no effect on cAMP concentrations or cell proliferation regulated by prostaglandin E2. Lipid raft fractionation of HASM cells revealed PDE8A immunoreactivity in buoyant fractions containing caveolin-1 and AC5/6 immunoreactivity. Thus, PDE8 is expressed in lipid rafts of HASM cells, where it specifically regulates β2-adrenergic receptor AC6 signaling without effects on signaling by the E prostanoid receptors 2/4-AC2 complex. In airway diseases such as asthma and chronic obstructive pulmonary disease, PDE8 may represent a novel therapeutic target to modulate HASM responsiveness and airway remodeling.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Airway Remodeling
- Asthma/enzymology
- Asthma/genetics
- Asthma/pathology
- Asthma/physiopathology
- Case-Control Studies
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP/metabolism
- Humans
- Membrane Microdomains/enzymology
- Membrane Microdomains/pathology
- Muscle, Smooth/enzymology
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Respiratory System/enzymology
- Respiratory System/pathology
- Respiratory System/physiopathology
- Second Messenger Systems
- Time Factors
Collapse
Affiliation(s)
- Timothy B. Johnstone
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Kaitlyn H. Smith
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Cynthia J. Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Fengying Li
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Austin G. Kazarian
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Maia L. Corpuz
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Frederick J. Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
17
|
de Montellano PRO. 1-Aminobenzotriazole: A Mechanism-Based Cytochrome P450 Inhibitor and Probe of Cytochrome P450 Biology. Med Chem 2018; 8:038. [PMID: 30221034 PMCID: PMC6137267 DOI: 10.4172/2161-0444.1000495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1-Aminobenzotriazole (1-ABT) is a pan-specific, mechanism-based inactivator of the xenobiotic metabolizing forms of cytochrome P450 in animals, plants, insects, and microorganisms. It has been widely used to investigate the biological roles of cytochrome P450 enzymes, their participation in the metabolism of both endobiotics and xenobiotics, and their contributions to the metabolism-dependent toxicity of drugs and chemicals. This review is a comprehensive evaluation of the chemistry, discovery, and use of 1-aminobenzotriazole in these contexts from its introduction in 1981 to the present.
Collapse
|
18
|
Mazaleuskaya LL, Salamatipour A, Sarantopoulou D, Weng L, FitzGerald GA, Blair IA, Mesaros C. Analysis of HETEs in human whole blood by chiral UHPLC-ECAPCI/HRMS. J Lipid Res 2018; 59:564-575. [PMID: 29301865 PMCID: PMC5832923 DOI: 10.1194/jlr.d081414] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/03/2018] [Indexed: 12/30/2022] Open
Abstract
The biosynthesis of eicosanoids occurs enzymatically via lipoxygenases, cyclooxygenases, and cytochrome P450, or through nonenzymatic free radical reactions. The enzymatic routes are highly enantiospecific. Chiral separation and high-sensitivity detection methods are required to differentiate and quantify enantioselective HETEs in complex biological fluids. We report here a targeted chiral lipidomics analysis of human blood using ultra-HPLC-electron capture (EC) atmospheric pressure chemical ionization/high-resolution MS. Monitoring the high-resolution ions formed by the fragmentation of pentafluorobenzyl derivatives of oxidized lipids during the dissociative EC, followed by in-trap fragmentation, increased sensitivity by an order of magnitude when compared with the unit resolution MS. The 12(S)-HETE, 12(S)-hydroxy-(5Z,8E,10E)-heptadecatrienoic acid [12(S)-HHT], and 15(S)-HETE were the major hydroxylated nonesterified chiral lipids in serum. Stimulation of whole blood with zymosan and lipopolysaccharide (LPS) resulted in stimulus- and time-dependent effects. An acute exposure to zymosan induced ∼80% of the chiral plasma lipids, including 12(S)-HHT, 5(S)-HETE, 15(R)-HETE, and 15(S)-HETE, while a maximum response to LPS was achieved after a long-term stimulation. The reported method allows for a rapid quantification with high sensitivity and specificity of enantiospecific responses to in vitro stimulation or coagulation of human blood.
Collapse
Affiliation(s)
- Liudmila L Mazaleuskaya
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Ashkan Salamatipour
- Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Liwei Weng
- Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Ian A Blair
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160.,Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Clementina Mesaros
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160 .,Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| |
Collapse
|
19
|
McKnight CG, Jude JA, Zhu Z, Panettieri RA, Finkelman FD. House Dust Mite-Induced Allergic Airway Disease Is Independent of IgE and FcεRIα. Am J Respir Cell Mol Biol 2017; 57:674-682. [PMID: 28700253 DOI: 10.1165/rcmb.2016-0356oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
IgE contributes to disease exacerbations but not to baseline airway hyperresponsiveness (AHR) in human asthma. In rodent allergic airway disease (AAD), mast cell and IgE dependence for the induction of AHR has only been observed when mice are immunized with a relatively weak allergen without adjuvant. To evaluate the role of IgE in murine AAD that is induced by a potent allergen, we inoculated BALB/c and FVB/N background wild-type and IgE- or FcεRIα-deficient mice intratracheally with large or limiting doses of house dust mite extract (HDM) and evaluated AHR, pulmonary eosinophilia, goblet cell metaplasia, serum IgE, and lung mastocytosis. We found that neither IgE nor FcεRIα contributed to AAD, even in mice inoculated with the lowest dose of HDM, which readily induced detectable disease, but did not increase serum IgE or pulmonary mast cell levels. In contrast, high doses of HDM strikingly increased serum IgE and pulmonary mast cells, although both AHR and airway mast cell degranulation were equally elevated in wild-type and IgE-deficient mice. Surprisingly, allergen challenge of mice with severe AAD and pulmonary mastocytosis failed to acutely increase airway resistance, lung Newtonian resistance, or hysteresis. Overall, this study shows that, although mice may not reliably model acute asthma exacerbations, mechanisms that are IgE and FcεRIα independent are responsible for AHR and airway inflammation when low doses of a potent allergen are inhaled repetitively.
Collapse
Affiliation(s)
- Christopher G McKnight
- 1 Department of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, Ohio.,2 Medical Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Joseph A Jude
- 3 Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey.,4 Child Health Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, New Jersey
| | - Zhenqi Zhu
- 1 Department of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, Ohio
| | - Reynold A Panettieri
- 4 Child Health Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, New Jersey.,5 Rutgers Robert Wood Johnson Medical School, Medicine, Piscataway, New Jersey; and
| | - Fred D Finkelman
- 1 Department of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, Ohio.,2 Medical Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio.,6 Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
20
|
Erickson MA, Jude J, Zhao H, Rhea EM, Salameh TS, Jester W, Pu S, Harrowitz J, Nguyen N, Banks WA, Panettieri RA, Jordan-Sciutto KL. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis. FASEB J 2017; 31:3950-3965. [PMID: 28533327 DOI: 10.1096/fj.201600857rrr] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
Abstract
Accumulating evidence suggests that O3 exposure may contribute to CNS dysfunction. Here, we posit that inflammatory and acute-phase proteins in the circulation increase after O3 exposure and systemically convey signals of O3 exposure to the CNS. To model acute O3 exposure, female Balb/c mice were exposed to 3 ppm O3 or forced air for 2 h and were studied after 6 or 24 h. Of 23 cytokines and chemokines, only KC/CXCL1 was increased in blood 6 h after O3 exposure. The acute-phase protein serum amyloid A (A-SAA) was significantly increased by 24 h, whereas C-reactive protein was unchanged. A-SAA in blood correlated with total leukocytes, macrophages, and neutrophils in bronchoalveolar lavage from O3-exposed mice. A-SAA mRNA and protein were increased in the liver. We found that both isoforms of A-SAA completely crossed the intact blood-brain barrier, although the rate of SAA2.1 influx was approximately 5 times faster than that of SAA1.1. Finally, A-SAA protein, but not mRNA, was increased in the CNS 24 h post-O3 exposure. Our findings suggest that A-SAA is functionally linked to pulmonary inflammation in our O3 exposure model and that A-SAA could be an important systemic signal of O3 exposure to the CNS.-Erickson, M. A., Jude, J., Zhao, H., Rhea, E. M., Salameh, T. S., Jester, W., Pu, S., Harrowitz, J., Nguyen, N., Banks, W. A., Panettieri, R. A., Jr., Jordan-Sciutto, K. L. Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Joseph Jude
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hengjiang Zhao
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth M Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Therese S Salameh
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - William Jester
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shelley Pu
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jenna Harrowitz
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ngan Nguyen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Reynold A Panettieri
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Fischer GJ, Bacon W, Yang J, Palmer JM, Dagenais T, Hammock BD, Keller NP. Lipoxygenase Activity Accelerates Programmed Spore Germination in Aspergillus fumigatus. Front Microbiol 2017; 8:831. [PMID: 28536571 PMCID: PMC5422543 DOI: 10.3389/fmicb.2017.00831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
The opportunistic human pathogen Aspergillus fumigatus initiates invasive growth through a programmed germination process that progresses from dormant spore to swollen spore (SS) to germling (GL) and ultimately invasive hyphal growth. We find a lipoxygenase with considerable homology to human Alox5 and Alox15, LoxB, that impacts the transitions of programmed spore germination. Overexpression of loxB (OE::loxB) increases germination with rapid advance to the GL stage. However, deletion of loxB (ΔloxB) or its signal peptide only delays progression to the SS stage in the presence of arachidonic acid (AA); no delay is observed in minimal media. This delay is remediated by the addition of the oxygenated AA oxylipin 5-hydroxyeicosatetraenoic acid (5-HETE) that is a product of human Alox5. We propose that A. fumigatus acquisition of LoxB (found in few fungi) enhances germination rates in polyunsaturated fatty acid-rich environments.
Collapse
Affiliation(s)
- Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, MadisonWI, USA
| | - William Bacon
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, MadisonWI, USA
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, DavisCA, USA
| | - Jonathan M Palmer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, MadisonWI, USA
| | - Taylor Dagenais
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, MadisonWI, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, DavisCA, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, MadisonWI, USA
| |
Collapse
|
22
|
Elshenawy OH, Shoieb SM, Mohamed A, El-Kadi AOS. Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain: An Emerging Therapeutic Target. Pharmaceutics 2017; 9:pharmaceutics9010009. [PMID: 28230738 PMCID: PMC5374375 DOI: 10.3390/pharmaceutics9010009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450-mediated metabolism of arachidonic acid (AA) is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal ischemia/reperfusion (I/R) injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%-75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future.
Collapse
Affiliation(s)
- Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Anwar Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
23
|
Koziol-White CJ, Jia Y, Baltus GA, Cooper PR, Zaller DM, Crackower MA, Sirkowski EE, Smock S, Northrup AB, Himes BE, Alves SE, Panettieri RA. Inhibition of spleen tyrosine kinase attenuates IgE-mediated airway contraction and mediator release in human precision cut lung slices. Br J Pharmacol 2016; 173:3080-3087. [PMID: 27417329 DOI: 10.1111/bph.13550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma presents as a heterogeneous syndrome characterized by airway obstruction, inflammation and hyper-reactivity (AHR). Spleen tyrosine kinase (Syk) mediates allergen-induced mast cell degranulation, a central component of allergen-induced inflammation and AHR. However, the role of Syk in IgE-mediated constriction of human small airways remains unknown. In this study, we addressed whether selective inhibition of Syk attenuates IgE-mediated constriction and mast cell mediator release in human small airways. EXPERIMENTAL APPROACH Human precision cut lung slices (hPCLS) ex vivo derived from non-asthmatic donors were incubated overnight with human IgE, dexamethasone, montelukast, antihistamines or a selective Syk inhibitor (SYKi). High-affinity IgE receptor (FcεRI) activation by anti-IgE cross-linking was performed, and constriction and mediator release measured. Airway constriction was normalized to that induced by maximal carbachol stimulation. Syk expression (determined by qPCR and immunoblot) was also evaluated in human primary airway smooth muscle (HASM) cells to determine whether Syk directly modulates HASM function. KEY RESULTS While dexamethasone had little effect on FcεR-mediated contraction, montelukast or antihistamines partially attenuated the response. SYKi abolished anti-IgE-mediated contraction and suppressed the release of mast cell or basophil mediators from the IgE-treated hPCLS. In contrast, SYKi had little effect on the non-allergic contraction induced by carbachol. Syk mRNA and protein were undetectable in HASM cells. CONCLUSIONS AND IMPLICATIONS A selective Syk inhibitor, but not corticosteroids, abolished FcεR-mediated contraction in human small airways ex vivo. The mechanism involved FcεRI receptor activation on mast cells or basophils that degranulate causing airway constriction, rather than direct actions on HASM.
Collapse
Affiliation(s)
- Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, Canada
| | - Yanlin Jia
- Merck Research Laboratories, Boston, MA, USA
| | | | - Philip R Cooper
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, Canada
| | | | | | | | | | | | - Blanca E Himes
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, Canada.
| |
Collapse
|
24
|
Zemski Berry KA, Murphy RC. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages. Chem Res Toxicol 2016; 29:1355-64. [PMID: 27448436 DOI: 10.1021/acs.chemrestox.6b00193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Department of Pharmacology, University of Colorado Denver , 12801 E. 17th Avenue, Mail Stop 8303, Aurora, Colorado 80045, United States
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver , 12801 E. 17th Avenue, Mail Stop 8303, Aurora, Colorado 80045, United States
| |
Collapse
|
25
|
Fischer GJ, Keller NP. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity. J Microbiol 2016; 54:254-64. [PMID: 26920885 DOI: 10.1007/s12275-016-5620-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/05/2016] [Indexed: 01/05/2023]
Abstract
Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.
Collapse
Affiliation(s)
- Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
26
|
Himes BE, Koziol-White C, Johnson M, Nikolos C, Jester W, Klanderman B, Litonjua AA, Tantisira KG, Truskowski K, MacDonald K, Panettieri RA, Weiss ST. Vitamin D Modulates Expression of the Airway Smooth Muscle Transcriptome in Fatal Asthma. PLoS One 2015; 10:e0134057. [PMID: 26207385 PMCID: PMC4514847 DOI: 10.1371/journal.pone.0134057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/03/2015] [Indexed: 01/20/2023] Open
Abstract
Globally, asthma is a chronic inflammatory respiratory disease affecting over 300 million people. Some asthma patients remain poorly controlled by conventional therapies and experience more life-threatening exacerbations. Vitamin D, as an adjunct therapy, may improve disease control in severe asthma patients since vitamin D enhances glucocorticoid responsiveness and mitigates airway smooth muscle (ASM) hyperplasia. We sought to characterize differences in transcriptome responsiveness to vitamin D between fatal asthma- and non-asthma-derived ASM by using RNA-Seq to measure ASM transcript expression in five donors with fatal asthma and ten non-asthma-derived donors at baseline and with vitamin D treatment. Based on a Benjamini-Hochberg corrected p-value <0.05, 838 genes were differentially expressed in fatal asthma vs. non-asthma-derived ASM at baseline, and vitamin D treatment compared to baseline conditions induced differential expression of 711 and 867 genes in fatal asthma- and non-asthma-derived ASM, respectively. Functional gene categories that were highly represented in all groups included extracellular matrix, and responses to steroid hormone stimuli and wounding. Genes differentially expressed by vitamin D also included cytokine and chemokine activity categories. Follow-up qPCR and individual analyte ELISA experiments were conducted for four cytokines (i.e. CCL2, CCL13, CXCL12, IL8) to measure TNFα-induced changes by asthma status and vitamin D treatment. Vitamin D inhibited TNFα-induced IL8 protein secretion levels to a comparable degree in fatal asthma- and non-asthma-derived ASM even though IL8 had significantly higher baseline levels in fatal asthma-derived ASM. Our findings identify vitamin D-specific gene targets and provide transcriptomic data to explore differences in the ASM of fatal asthma- and non-asthma-derived donors.
Collapse
Affiliation(s)
- Blanca E. Himes
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cynthia Koziol-White
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Martin Johnson
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Christina Nikolos
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - William Jester
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | - Augusto A. Litonjua
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kevin Truskowski
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kevin MacDonald
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Reynold A. Panettieri
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Scott T. Weiss
- Partners Personalized Medicine, Boston, MA, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
27
|
Carr R, Du Y, Quoyer J, Panettieri RA, Janz JM, Bouvier M, Kobilka BK, Benovic JL. Development and characterization of pepducins as Gs-biased allosteric agonists. J Biol Chem 2014; 289:35668-84. [PMID: 25395624 DOI: 10.1074/jbc.m114.618819] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The β2-adrenergic receptor (β2AR) is a prototypical G protein-coupled receptor that mediates many hormonal responses, including cardiovascular and pulmonary function. β-Agonists used to combat hypercontractility in airway smooth muscle stimulate β2AR-dependent cAMP production that ultimately promotes airway relaxation. Chronic stimulation of the β2AR by long acting β-agonists used in the treatment of asthma can promote attenuated responsiveness to agonists and an increased frequency of fatal asthmatic attacks. β2AR desensitization to β-agonists is primarily mediated by G protein-coupled receptor kinases and β-arrestins that attenuate receptor-Gs coupling and promote β2AR internalization and degradation. A biased agonist that can selectively stimulate Gs signaling without promoting receptor interaction with G protein-coupled receptor kinases and β-arrestins should serve as an advantageous asthma therapeutic. To identify such molecules, we screened ∼50 lipidated peptides derived from the intracellular loops of the β2AR, known as pepducins. This screen revealed two classes of Gs-biased pepducins, receptor-independent and receptor-dependent, as well as several β-arrestin-biased pepducins. The receptor-independent Gs-biased pepducins operate by directly stimulating G protein activation. In contrast, receptor-dependent Gs-biased pepducins appear to stabilize a Gs-biased conformation of the β2AR that couples to Gs but does not undergo G protein-coupled receptor kinase-mediated phosphorylation or β-arrestin-mediated internalization. Functional studies in primary human airway smooth muscle cells demonstrate that Gs-biased pepducins are not subject to conventional desensitization and thus may be good candidates for the development of next generation asthma therapeutics. Our study reports the first Gs-biased activator of the β2AR and provides valuable tools for the study of β2AR function.
Collapse
Affiliation(s)
- Richard Carr
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yang Du
- the Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Julie Quoyer
- the Department of Biochemistry and Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Reynold A Panettieri
- the Department of Medicine, Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Jay M Janz
- Anchor Therapeutics, Cambridge, Massachusetts 02139
| | - Michel Bouvier
- the Department of Biochemistry and Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Brian K Kobilka
- the Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Jeffrey L Benovic
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| |
Collapse
|
28
|
Balenga NA, Jester W, Jiang M, Panettieri RA, Druey KM. Loss of regulator of G protein signaling 5 promotes airway hyperresponsiveness in the absence of allergic inflammation. J Allergy Clin Immunol 2014; 134:451-9. [PMID: 24666695 PMCID: PMC4119844 DOI: 10.1016/j.jaci.2014.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although eosinophilic inflammation typifies allergic asthma, it is not a prerequisite for airway hyperresponsiveness (AHR), suggesting that underlying abnormalities in structural cells, such as airway smooth muscle (ASM), contribute to the asthmatic diathesis. Dysregulation of procontractile G protein-coupled receptor (GPCR) signaling in ASM could mediate enhanced contractility. OBJECTIVE We explored the role of a regulator of procontractile GPCR signaling, regulator of G protein signaling 5 (RGS5), in unprovoked and allergen-induced AHR. METHODS We evaluated GPCR-evoked Ca(2+) signaling, precision-cut lung slice (PCLS) contraction, and lung inflammation in naive and Aspergillus fumigatus-challenged wild-type and Rgs5(-/-) mice. We analyzed lung resistance and dynamic compliance in live anesthetized mice using invasive plethysmography. RESULTS Loss of RGS5 promoted constitutive AHR because of enhanced GPCR-induced Ca(2+) mobilization in ASM. PCLSs from naive Rgs5(-/-) mice contracted maximally at baseline independently of allergen challenge. RGS5 deficiency had little effect on the parameters of allergic inflammation, including cell counts in bronchoalveolar lavage fluid, mucin production, ASM mass, and subepithelial collagen deposition. Unexpectedly, induced IL-13 and IL-33 levels were much lower in challenged lungs from Rgs5(-/-) mice relative to those seen in wild-type mice. CONCLUSION Loss of RGS5 confers spontaneous AHR in mice in the absence of allergic inflammation. Because it is selectively expressed in ASM within the lung and does not promote inflammation, RGS5 might be a therapeutic target for asthma.
Collapse
Affiliation(s)
- Nariman A Balenga
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Md
| | - William Jester
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pa
| | - Meiqi Jiang
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pa
| | - Reynold A Panettieri
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pa
| | - Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Md.
| |
Collapse
|
29
|
Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B, Whitaker RM, Duan Q, Lasky-Su J, Nikolos C, Jester W, Johnson M, Panettieri RA, Tantisira KG, Weiss ST, Lu Q. RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PLoS One 2014; 9:e99625. [PMID: 24926665 PMCID: PMC4057123 DOI: 10.1371/journal.pone.0099625] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/17/2014] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic inflammatory respiratory disease that affects over 300 million people worldwide. Glucocorticoids are a mainstay therapy for asthma because they exert anti-inflammatory effects in multiple lung tissues, including the airway smooth muscle (ASM). However, the mechanism by which glucocorticoids suppress inflammation in ASM remains poorly understood. Using RNA-Seq, a high-throughput sequencing method, we characterized transcriptomic changes in four primary human ASM cell lines that were treated with dexamethasone--a potent synthetic glucocorticoid (1 µM for 18 hours). Based on a Benjamini-Hochberg corrected p-value <0.05, we identified 316 differentially expressed genes, including both well known (DUSP1, KLF15, PER1, TSC22D3) and less investigated (C7, CCDC69, CRISPLD2) glucocorticoid-responsive genes. CRISPLD2, which encodes a secreted protein previously implicated in lung development and endotoxin regulation, was found to have SNPs that were moderately associated with inhaled corticosteroid resistance and bronchodilator response among asthma patients in two previously conducted genome-wide association studies. Quantitative RT-PCR and Western blotting showed that dexamethasone treatment significantly increased CRISPLD2 mRNA and protein expression in ASM cells. CRISPLD2 expression was also induced by the inflammatory cytokine IL1β, and small interfering RNA-mediated knockdown of CRISPLD2 further increased IL1β-induced expression of IL6 and IL8. Our findings offer a comprehensive view of the effect of a glucocorticoid on the ASM transcriptome and identify CRISPLD2 as an asthma pharmacogenetics candidate gene that regulates anti-inflammatory effects of glucocorticoids in the ASM.
Collapse
Affiliation(s)
- Blanca E. Himes
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Partners HealthCare Personalized Medicine, Boston, Massachusetts, United States of America
- Children's Hospital Informatics Program, Boston, Massachusetts, United States of America
| | - Xiaofeng Jiang
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Peter Wagner
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Ruoxi Hu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Qiyu Wang
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Barbara Klanderman
- Partners HealthCare Personalized Medicine, Boston, Massachusetts, United States of America
| | - Reid M. Whitaker
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qingling Duan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christina Nikolos
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - William Jester
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Martin Johnson
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Reynold A. Panettieri
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Partners HealthCare Personalized Medicine, Boston, Massachusetts, United States of America
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
30
|
Kim WK, Jain D, Sánchez MD, Koziol-White CJ, Matthews K, Ge MQ, Haczku A, Panettieri RA, Frieman MB, López CB. Deficiency of melanoma differentiation-associated protein 5 results in exacerbated chronic postviral lung inflammation. Am J Respir Crit Care Med 2014; 189:437-48. [PMID: 24417465 DOI: 10.1164/rccm.201307-1338oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Respiratory viral infections can result in the establishment of chronic lung diseases. Understanding the early innate immune mechanisms that participate in the development of chronic postviral lung disease may reveal new targets for therapeutic intervention. The intracellular viral sensor protein melanoma differentiation-associated protein 5 (MDA5) sustains the acute immune response to Sendai virus, a mouse pathogen that causes chronic lung inflammation, but its role in the development of postviral chronic lung disease is unknown. OBJECTIVES To establish the role of MDA5 in the development of chronic lung disease. METHODS MDA5-deficient or control mice were infected with Sendai virus. The acute inflammatory response was evaluated by profiling chemokine and cytokine expression and by characterizing the composition of the cellular infiltrate. The impact of MDA5 on chronic lung pathology and function was evaluated through histological studies, degree of oxygen saturation, and responsiveness to carbachol. MEASUREMENTS AND MAIN RESULTS MDA5 deficiency resulted in normal virus replication and in a distinct profile of chemokines and cytokines that associated with acute lung neutropenia and enhanced accumulation of alternatively activated macrophages. Diminished expression of neutrophil-recruiting chemokines was also observed in cells infected with influenza virus, suggesting a key role of MDA5 in driving the early accumulation of neutrophils at the infection site. The biased acute inflammatory response of MDA5-deficient mice led to an enhanced chronic lung inflammation, epithelial cell hyperplasia, airway hyperreactivity, and diminished blood oxygen saturation. CONCLUSIONS MDA5 modulates the development of chronic lung inflammation by regulating the early inflammatory response in the lung.
Collapse
Affiliation(s)
- Won-Keun Kim
- 1 Department of Pathobiology, School of Veterinary Medicine, and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mishra A, Yao X, Levine SJ. From bedside to bench to clinic trials: identifying new treatments for severe asthma. Dis Model Mech 2013; 6:877-88. [PMID: 23828644 PMCID: PMC3701207 DOI: 10.1242/dmm.012070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asthmatics with a severe form of the disease are frequently refractory to standard medications such as inhaled corticosteroids, underlining the need for new treatments to prevent the occurrence of potentially life-threatening episodes. A major obstacle in the development of new treatments for severe asthma is the heterogeneous pathogenesis of the disease, which involves multiple mechanisms and cell types. Furthermore, new therapies might need to be targeted to subgroups of patients whose disease pathogenesis is mediated by a specific pathway. One approach to solving the challenge of developing new treatments for severe asthma is to use experimental mouse models of asthma to address clinically relevant questions regarding disease pathogenesis. The mechanistic insights gained from mouse studies can be translated back to the clinic as potential treatment approaches that require evaluation in clinical trials to validate their effectiveness and safety in human subjects. Here, we will review how mouse models have advanced our understanding of severe asthma pathogenesis. Mouse studies have helped us to uncover the underlying inflammatory mechanisms (mediated by multiple immune cell types that produce Th1, Th2 or Th17 cytokines) and non-inflammatory pathways, in addition to shedding light on asthma that is associated with obesity or steroid unresponsiveness. We propose that the strategy of using mouse models to address clinically relevant questions remains an attractive and productive research approach for identifying mechanistic pathways that can be developed into novel treatments for severe asthma.
Collapse
Affiliation(s)
- Amarjit Mishra
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | | | | |
Collapse
|
32
|
Exacerbated airway toxicity of environmental oxidant ozone in mice deficient in Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:254069. [PMID: 23766849 PMCID: PMC3665255 DOI: 10.1155/2013/254069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/29/2013] [Indexed: 12/20/2022]
Abstract
Ozone (O3) is a strong oxidant in air pollution that has harmful effects on airways and exacerbates respiratory disorders. The transcription factor Nrf2 protects airways from oxidative stress through antioxidant response element-bearing defense gene induction. The present study was designed to determine the role of Nrf2 in airway toxicity caused by inhaled O3 in mice. For this purpose, Nrf2-deficient (Nrf2(-/-)) and wild-type (Nrf2(+/+)) mice received acute and subacute exposures to O3. Lung injury was determined by bronchoalveolar lavage and histopathologic analyses. Oxidation markers and mucus hypersecretion were determined by ELISA, and Nrf2 and its downstream effectors were determined by RT-PCR and/or Western blotting. Acute and sub-acute O3 exposures heightened pulmonary inflammation, edema, and cell death more severely in Nrf2(-/-) mice than in Nrf2(+/+) mice. O3 caused bronchiolar and terminal bronchiolar proliferation in both genotypes of mice, while the intensity of compensatory epithelial proliferation, bronchial mucous cell hyperplasia, and mucus hypersecretion was greater in Nrf2(-/-) mice than in Nrf2(+/+) mice. Relative to Nrf2(+/+), O3 augmented lung protein and lipid oxidation more highly in Nrf2(-/-) mice. Results suggest that Nrf2 deficiency exacerbates oxidative stress and airway injury caused by the environmental pollutant O3.
Collapse
|
33
|
Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases. Prostaglandins Other Lipid Mediat 2012; 99:57-67. [PMID: 23064030 DOI: 10.1016/j.prostaglandins.2012.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/14/2022]
|
34
|
Li Z, Tighe RM, Feng F, Ledford JG, Hollingsworth JW. Genes of innate immunity and the biological response to inhaled ozone. J Biochem Mol Toxicol 2012; 27:3-16. [PMID: 23169704 DOI: 10.1002/jbt.21453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/28/2012] [Accepted: 10/07/2012] [Indexed: 12/31/2022]
Abstract
Ambient ozone has a significant impact on human health. We have made considerable progress in understanding the fundamental mechanisms that regulate the biological response to ozone. It is increasingly clear that genes of innate immunity play a central role in both infectious and noninfectious lung disease. The biological response to ambient ozone provides a clinically relevant environmental exposure that allows us to better understand the role of innate immunity in noninfectious airways disease. In this brief review, we focus on (1) specific cell types in the lung modified by ozone, (2) ozone and oxidative stress, (3) the relationship between genes of innate immunity and ozone, (4) the role of extracellular matrix in reactive airways disease, and (5) the effect of ozone on the adaptive immune system. We summarize recent advances in understanding the mechanisms that ozone contributes to environmental airways disease.
Collapse
Affiliation(s)
- Zhuowei Li
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
35
|
Himes BE, Jiang X, Hu R, Wu AC, Lasky-Su JA, Klanderman BJ, Ziniti J, Senter-Sylvia J, Lima JJ, Irvin CG, Peters SP, Meyers DA, Bleecker ER, Kubo M, Tamari M, Nakamura Y, Szefler SJ, Lemanske RF, Zeiger RS, Strunk RC, Martinez FD, Hanrahan JP, Koppelman GH, Postma DS, Nieuwenhuis MAE, Vonk JM, Panettieri RA, Markezich A, Israel E, Carey VJ, Tantisira KG, Litonjua AA, Lu Q, Weiss ST. Genome-wide association analysis in asthma subjects identifies SPATS2L as a novel bronchodilator response gene. PLoS Genet 2012; 8:e1002824. [PMID: 22792082 PMCID: PMC3390407 DOI: 10.1371/journal.pgen.1002824] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/24/2012] [Indexed: 01/25/2023] Open
Abstract
Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function (i.e. FEV1) before and after the administration of a short-acting β2-agonist, the most common rescue medications used for the treatment of asthma. BDR also serves as a test of β2-agonist efficacy. BDR is a complex trait that is partly under genetic control. A genome-wide association study (GWAS) of BDR, quantified as percent change in baseline FEV1 after administration of a β2-agonist, was performed with 1,644 non-Hispanic white asthmatic subjects from six drug clinical trials: CAMP, LOCCS, LODO, a medication trial conducted by Sepracor, CARE, and ACRN. Data for 469,884 single-nucleotide polymorphisms (SNPs) were used to measure the association of SNPs with BDR using a linear regression model, while adjusting for age, sex, and height. Replication of primary P-values was attempted in 501 white subjects from SARP and 550 white subjects from DAG. Experimental evidence supporting the top gene was obtained via siRNA knockdown and Western blotting analyses. The lowest overall combined P-value was 9.7E-07 for SNP rs295137, near the SPATS2L gene. Among subjects in the primary analysis, those with rs295137 TT genotype had a median BDR of 16.0 (IQR = [6.2, 32.4]), while those with CC or TC genotypes had a median BDR of 10.9 (IQR = [5.0, 22.2]). SPATS2L mRNA knockdown resulted in increased β2-adrenergic receptor levels. Our results suggest that SPATS2L may be an important regulator of β2-adrenergic receptor down-regulation and that there is promise in gaining a better understanding of the biological mechanisms of differential response to β2-agonists through GWAS. Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function before and after the administration of short-acting β2-agonists, common medications used for asthma treatment. We performed a genome-wide association study of BDR with 1,644 white asthmatic subjects from six drug clinical trials and attempted to replicate these findings in 1,051 white subjects from two independent cohorts. The most significant associated variant was near the SPATS2L gene. We knocked down SPATS2L mRNA in human airway smooth muscle cells and found that β2-adrenergic receptor levels increased, suggesting that SPATS2L may be a regulator of BDR. Our results highlight the promise of pursuing GWAS results that do not necessarily reach genome-wide significance and are an example of how results from pharmacogenetic GWAS can be studied functionally.
Collapse
Affiliation(s)
- Blanca E Himes
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Koziol-White CJ, Damera G, Panettieri RA. Targeting airway smooth muscle in airways diseases: an old concept with new twists. Expert Rev Respir Med 2011; 5:767-77. [PMID: 22082163 PMCID: PMC3276206 DOI: 10.1586/ers.11.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Airway smooth muscle (ASM) manifests a hyper-responsive phenotype in airway disorders such as asthma. ASM also modulates immune responses by secreting mediators and expressing cell-surface molecules that promote recruitment of inflammatory cells to the lungs. The aim of the current article is to highlight therapeutics that may modulate ASM responses in airway disorders and exacerbations.
Collapse
Affiliation(s)
- Cynthia J Koziol-White
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, PA 19104-3413, USA
| | - Gautam Damera
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, PA 19104-3413, USA
| | - Reynold A Panettieri
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, PA 19104-3413, USA
| |
Collapse
|
37
|
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602, USA.
| | | | | | | | | |
Collapse
|
38
|
Koziol-White CJ, Panettieri RA. Airway smooth muscle and immunomodulation in acute exacerbations of airway disease. Immunol Rev 2011; 242:178-85. [PMID: 21682745 DOI: 10.1111/j.1600-065x.2011.01022.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Airway smooth muscle (ASM) manifests a hyperresponsive phenotype in airway disorders such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Current evidence also suggests that ASM modulates immune responses by secreting mediators and expressing cell surface molecules. Such processes amplify or dampen inflammation by inflammatory cells in the airways or by altering cellular responses to viruses, bacteria, or pathogens known to exacerbate airways diseases.
Collapse
Affiliation(s)
- Cynthia J Koziol-White
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-3413, USA
| | | |
Collapse
|
39
|
Yang Z, Cooper PR, Damera G, Mukhopadhyay I, Cho H, Kehrl JH, Panettieri RA, Druey KM. Beta-agonist-associated reduction in RGS5 expression promotes airway smooth muscle hyper-responsiveness. J Biol Chem 2011; 286:11444-55. [PMID: 21278382 PMCID: PMC3064200 DOI: 10.1074/jbc.m110.212480] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/25/2011] [Indexed: 12/20/2022] Open
Abstract
Although short-acting and long-acting inhaled β(2)-adrenergic receptor agonists (SABA and LABA, respectively) relieve asthma symptoms, use of either agent alone without concomitant anti-inflammatory drugs (corticosteroids) may increase the risk of disease exacerbation in some patients. We found previously that pretreatment of human precision-cut lung slices (PCLS) with SABA impaired subsequent β(2)-agonist-induced bronchodilation, which occurred independently of changes in receptor quantities. Here we provide evidence that prolonged exposure of cultured human airway smooth muscle (HuASM) cells to β(2)-agonists directly augments procontractile signaling pathways elicited by several compounds including thrombin, bradykinin, and histamine. Such treatment did not increase surface receptor amounts or expression of G proteins and downstream effectors (phospholipase Cβ and myosin light chain). In contrast, β-agonists decreased expression of regulator of G protein signaling 5 (RGS5), which is an inhibitor of G-protein-coupled receptor (GPCR) activity. RGS5 knockdown in HuASM increased agonist-evoked intracellular calcium flux and myosin light chain (MLC) phosphorylation, which are prerequisites for contraction. PCLS from Rgs5(-/-) mice contracted more to carbachol than those from WT mice, indicating that RGS5 negatively regulates bronchial smooth muscle contraction. Repetitive β(2)-agonist use may not only lead to reduced bronchoprotection but also to sensitization of excitation-contraction signaling pathways as a result of reduced RGS5 expression.
Collapse
Affiliation(s)
- Zhao Yang
- From the Molecular Signal Transduction Section, Laboratory of Allergic Diseases and
| | - Philip R. Cooper
- the Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gautam Damera
- the Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Hyeseon Cho
- the B Cell Molecular Immunology Section, Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892 and
| | - John H. Kehrl
- the B Cell Molecular Immunology Section, Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Reynold A. Panettieri
- the Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kirk M. Druey
- From the Molecular Signal Transduction Section, Laboratory of Allergic Diseases and
| |
Collapse
|
40
|
Wang M, Cooper PR, Jiang M, Zhao H, Hui Y, Yao Y, Tate JC, Damera G, Lawson JA, Jester WF, Haczku A, Panettieri RA, FitzGerald GA. Deletion of microsomal prostaglandin E synthase-1 does not alter ozone-induced airway hyper-responsiveness. J Pharmacol Exp Ther 2010; 334:63-8. [PMID: 20371706 PMCID: PMC2912039 DOI: 10.1124/jpet.110.166678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/02/2010] [Indexed: 12/18/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs ameliorate pain and fever by inhibiting cyclooxygenase (COX) and suppressing prostanoid formation. Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes formation of PGE(2) from the COX product PGH(2) and has emerged as a therapeutic target. Inhibition of mPGES-1, however, renders the PGH(2) substrate available for diversion to other PG synthases. To address the possibility that substrate diversion augments formation of PGs that might modulate bronchial tone, we assessed the impact of mPGES-1 deletion in a mouse model of ozone-induced airway hyper-responsiveness. Ozone exposure increased total lung resistance to inhaled methacholine in wild-type mice. Deletion of mPGES-1 had little effect on total lung resistance in either naive or ozone-exposed animals. The carbachol-induced narrowing of luminal diameter in intrapulmonary airways of lung slices from acute ozone-exposed mice was also unaltered by mPGES-1 deletion. Likewise, although concentrations of PGE(2) were reduced in bronchoalveolar lavage fluid, whereas 6-keto-PGF(1alpha), PGD(2), and PGF(2alpha), all were increased, deletion of mPGES-1 failed to influence cell trafficking into the airways of either naive or ozone-exposed animals. Despite biochemical evidence of PGH(2) substrate diversion to potential bronchomodulator PGs, deletion of mPGES-1 had little effect on ozone-induced airway inflammation or airway hyper-responsiveness. Pharmacologically targeting mPGES-1 may not predispose patients at risk to airway dysfunction.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|