1
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Rojas Chávez RA, Boyt D, Schwery N, Han C, Wu L, Haim H. Commonly Elicited Antibodies against the Base of the HIV-1 Env Trimer Guide the Population-Level Evolution of a Structure-Regulating Region in gp41. J Virol 2022; 96:e0040622. [PMID: 35658529 PMCID: PMC9278142 DOI: 10.1128/jvi.00406-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
The antibody response against the HIV-1 envelope glycoproteins (Envs) guides evolution of this protein within each host. Whether antibodies with similar target specificities are elicited in different individuals and affect the population-level evolution of Env is poorly understood. To address this question, we analyzed properties of emerging variants in the gp41 fusion peptide-proximal region (FPPR) that exhibit distinct evolutionary patterns in HIV-1 clade B. For positions 534, 536, and 539 in the FPPR, alanine was the major emerging variant. However, 534A and 536A show a constant frequency in the population between 1979 and 2016, whereas 539A is gradually increasing. To understand the basis for these differences, we introduced alanine substitutions in the FPPR of primary HIV-1 strains and examined their functional and antigenic properties. Evolutionary patterns could not be explained by fusion competence or structural stability of the emerging variants. Instead, 534A and 536A exhibited modest but significant increases in sensitivity to antibodies against the membrane-proximal external region (MPER) and gp120-gp41 interface. These Envs were also more sensitive to poorly neutralizing sera from HIV-1-infected individuals than the clade ancestral form or 539A variant. Competition binding assays confirmed for all sera tested the presence of antibodies against the base of the Env trimer that compete with monoclonal antibodies targeting the MPER and gp120-gp41 interface. Our findings suggest that weakly neutralizing antibodies against the trimer base are commonly elicited; they do not exert catastrophic population size reduction effects on emerging variants but, instead, determine their set point frequencies in the population and historical patterns of change. IMPORTANCE Infection by HIV-1 elicits formation of antibodies that target the viral Env proteins and can inactivate the virus. The specific targets of these antibodies vary among infected individuals. It is unclear whether some target specificities are shared among the antibody responses of different individuals. We observed that antibodies against the base of the Env protein are commonly elicited during infection. The selective pressure applied by such antibodies is weak. As a result, they do not completely eliminate the sensitive forms of the virus from the population, but maintain their frequency at a low level that has not increased since the beginning of the AIDS pandemic. Interestingly, the changes in Env do not occur at the sites targeted by the antibodies, but at a distinct region of Env, the fusion peptide-proximal region, which regulates their exposure.
Collapse
Affiliation(s)
- Roberth Anthony Rojas Chávez
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Devlin Boyt
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nathan Schwery
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Changze Han
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Kirschman J, Marin M, Chen YC, Chen J, Herschhorn A, Smith AB, Melikyan GB. SERINC5 Restricts HIV-1 Infectivity by Promoting Conformational Changes and Accelerating Functional Inactivation of Env. Viruses 2022; 14:1388. [PMID: 35891369 PMCID: PMC9323560 DOI: 10.3390/v14071388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/16/2022] Open
Abstract
SERINC5 incorporates into HIV-1 particles and inhibits the ability of Env glycoprotein to mediate virus-cell fusion. SERINC5-resistance maps to Env, with primary isolates generally showing greater resistance than laboratory-adapted strains. Here, we examined a relationship between the inhibition of HIV-1 infectivity and the rate of Env inactivation using a panel of SERINC5-resistant and -sensitive HIV-1 Envs. SERINC5 incorporation into pseudoviruses resulted in a faster inactivation of sensitive compared to resistant Env strains. A correlation between fold reduction in infectivity and the rate of inactivation was also observed for multiple Env mutants known to stabilize and destabilize the closed Env structure. Unexpectedly, most mutations disfavoring the closed Env conformation rendered HIV-1 less sensitive to SERINC5. In contrast, functional inactivation of SERINC5-containing viruses was significantly accelerated in the presence of a CD4-mimetic compound, suggesting that CD4 binding sensitizes Env to SERINC5. Using a small molecule inhibitor that selectively targets the closed Env structure, we found that, surprisingly, SERINC5 increases the potency of this compound against a laboratory-adapted Env which prefers a partially open conformation, indicating that SERINC5 may stabilize the closed trimeric Env structure. Our results reveal a complex effect of SERINC5 on Env conformational dynamics that promotes Env inactivation and is likely responsible for the observed restriction phenotype.
Collapse
Affiliation(s)
- Junghwa Kirschman
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (J.K.); (M.M.); (Y.-C.C.)
| | - Mariana Marin
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (J.K.); (M.M.); (Y.-C.C.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Yen-Cheng Chen
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (J.K.); (M.M.); (Y.-C.C.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Junhua Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.); (A.B.S.III)
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.); (A.B.S.III)
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (J.K.); (M.M.); (Y.-C.C.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Schapiro HM, Khasnis MD, Ahn K, Karagiaridi A, Hayden S, Cilento ME, Root MJ. Regulation of epitope exposure in the gp41 membrane-proximal external region through interactions at the apex of HIV-1 Env. PLoS Pathog 2022; 18:e1010531. [PMID: 35584191 PMCID: PMC9154124 DOI: 10.1371/journal.ppat.1010531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/31/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Glycoprotein Env of human immunodeficiency virus type 1 (HIV-1) mediates viral entry through membrane fusion. Composed of gp120 and gp41 subunits arranged as a trimer-of-heterodimers, Env adopts a metastable, highly dynamic conformation on the virion surface. This structural plasticity limits the temporospatial exposure of many highly conserved, neutralizing epitopes, contributing to the difficulty in developing effective HIV-1 vaccines. Here, we employed antibody neutralization of HIV-1 infectivity to investigate how inter- and intra-gp120 interactions mediated by variable loops V1/V2 and V3 at the Env apex regulate accessibility of the gp41 membrane-proximal external region (MPER) at the Env base. Swapping the V3 loop from EnvSF162 into the EnvHXB2 background shifted MPER exposure from the prefusogenic state to a functional intermediate conformation that was distinct from the prehairpin-intermediate state sensitive to gp41-targeted fusion inhibitors. The V3-loop swap had a profound impact on global protein dynamics, biasing the equilibrium to a closed conformation resistant to most anti-gp120 antibodies, stabilizing the protein to both cold- and soluble CD4-induced Env inactivation, and increasing the CD4 requirements for viral entry. Further dissection of the EnvHXB2 V3 loop revealed that residue 306 uniquely modulated epitope exposure and trimer stability. The R306S substitution substantially decreased sensitivity to antibodies targeting the gp41 MPER and, surprisingly, the gp120 V3-loop crown (residues 312-315), but had only modest effects on exposure of intervening gp120 epitopes. Furthermore, the point mutation reduced soluble CD4-induced inactivation, but had no impact on cold inactivation. The residue appeared to exert its effects by electrostatically modifying the strength of intra-subunit interactions between the V1/V2 and V3 loops. The distinct patterns of neutralization and stability pointed to a novel prefusogenic Env conformation along the receptor activation pathway and suggested that apical Env-regulation of gp41 MPER exposure can be decoupled from much of the dynamics of gp120 subunits.
Collapse
Affiliation(s)
- Hannah M. Schapiro
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mukta D. Khasnis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Koree Ahn
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alexandra Karagiaridi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Stephanie Hayden
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Maria E. Cilento
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Root
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
5
|
Cook JD, Khondker A, Lee JE. Conformational plasticity of the HIV-1 gp41 immunodominant region is recognized by multiple non-neutralizing antibodies. Commun Biol 2022; 5:291. [PMID: 35361878 PMCID: PMC8971491 DOI: 10.1038/s42003-022-03235-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
The early humoral immune response to acute HIV-1 infection is largely non-neutralizing. The principal target of these antibodies is the primary immunodominant region (PID) on the gp41 fusion protein. The PID is a highly conserved 15-residue region displayed on the surface of HIV-1 virions. In this study, we analyzed the humoral determinants of HIV-1 gp41 PID binding using biophysical, structural, and computational methods. In complex with a patient-derived near-germline antibody fragment, the PID motif adopts an elongated random coil, whereas the PID bound to affinity-matured Fab adopts a strand-turn-helix conformation. Molecular dynamics simulations showed that the PID is structurally plastic suggesting that the PID can form an ensemble of structural states recognized by various non-neutralizing antibodies, facilitating HIV-1 immunodominance observed in acute and chronic HIV-1 infections. An improved understanding of how the HIV-1 gp41 PID misdirects the early humoral response should guide the development of an effective HIV-1 vaccine. The 15-amino-acid primary immunodominant (PID) region on HIV-1 gp41 adopts an ensemble of conformational states. This conformational plasticity is suggested to misdirect the early humoral immune response.
Collapse
Affiliation(s)
- Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adree Khondker
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
6
|
Membrane Env Liposomes Facilitate Immunization with Multivalent Full-Length HIV Spikes. J Virol 2021; 95:e0000521. [PMID: 33883221 DOI: 10.1128/jvi.00005-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A major goal of HIV vaccine design is to elicit broadly neutralizing antibodies (bNAbs). Such bNAbs target HIV's trimeric, membrane-embedded envelope glycoprotein spikes (mEnv). Soluble Env (sEnv) trimers have been used as vaccines, but engineering sEnvs for stability, multivalency, and desired antigenicity is problematic and deletes key neutralizing epitopes on glycoprotein 41 (gp41) while creating neoepitopes that elicit unwanted antibodies. Meanwhile, multivalent mEnv vaccines are challenging to develop due to trimer instability and low mEnv copy number amid other extraneous proteins on virus-like particles. Here, we describe a multivalent mEnv vaccine platform that does not require protein engineering or extraneous proteins. mEnv trimers were fixed, purified, and combined with naked liposomes in mild detergent. On removal of detergent, mEnv spikes were observed embedded in liposome particles (mean diameter, 133 nm) in correct orientation. These particles were recognized by HIV bNAbs and not non-NAbs and are designated mEnv liposomes (MELs). Following a sequential immunization scheme in rabbits, MELs elicited antibodies that neutralized tier 2 HIV isolates. Analysis of serum antibody specificities, including those to epitopes involving a missing conserved N-glycosylation site at position 197 near the CD4 binding site on two of the immunogens, provides clues on how NAb responses can be improved with modified immunogens. In sum, MELs are a biochemically defined platform that enables rational immunization strategies to elicit HIV bNAbs using multimerized mEnv. IMPORTANCE A vaccine that induced broadly neutralizing antibodies against HIV would likely end the AIDS pandemic. Such antibodies target membrane-embedded envelope glycoprotein spikes (mEnv) that HIV uses to enter cells. Due to HIV Env's low expression and instability, soluble stabilized Env trimers have been used as vaccine candidates, but these have an altered base that disrupts targets of HIV broadly neutralizing antibodies that bind near the membrane and are not available for all HIV isolates. Here, we describe membrane Env liposomes (MELs) that display a multivalent array of stable mEnvs on liposome particles. MELs showed the expected antibody recognition properties, including targeting parts of mEnv missing on soluble Envs. Immunization with MELs elicited antibodies that neutralized diverse HIV isolates. The MEL platform facilitates vaccine development with potentially any HIV Env at high valency, and a similar approach may be useful for eliciting antibodies to membrane-embedded targets of therapeutic interest.
Collapse
|
7
|
Moyo T, Guleid FH, Schomaker M, Williamson C, Dorfman JR. HIV-1 Subtype C Tier 3 Viruses Have Increased Infectivity Compared to Tier 2 Viruses. AIDS Res Hum Retroviruses 2020; 36:1010-1019. [PMID: 32935560 DOI: 10.1089/aid.2020.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A primary concern of an antibody-based HIV-1 therapy is the virus' ability to rapidly escape antibody responses. Therefore, we investigated the relationships between antibody neutralization sensitivity, viral phenotype, and infectivity in 13 subtype C viruses using a HeLa transfectant-based assay. We observed that the seven tier 3 viruses exhibited higher infectivity than the tier 2 viruses, suggesting that higher neutralization resistance did not have a substantial entry cost. There was no relationship between neutralization resistance and susceptibility to entry inhibitors Maraviroc, PSC RANTES, or the fusion inhibitor T20, indicating that neutralization resistance may not alter these inhibitor target sites. By analyzing glycosylation patterns in 82 subtype C viruses, we found that the presence of an N-linked glycan motif at position N413 and its absence at N332 were the most important predictors of neutralization resistance. In a set of 200 subtype C viruses, tier 3 strains were more resistant than tier 2 or 1B viruses to several broadly neutralizing monoclonal antibodies targeting three different epitopes. This suggests that it is unlikely that resistance to antibodies targeting a single epitope drives overall resistance. In the context of an antibody-based intervention, highly resistant viruses with increased infectivity, circulating in the population, could hinder HIV-1 control since entry of tier 3 viruses is not always selected against. Therefore, for any long-term antibody-based intervention to be globally relevant, it must elicit responses that limit the occurrence of resistance.
Collapse
Affiliation(s)
- Thandeka Moyo
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Fatuma H. Guleid
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Michael Schomaker
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Jeffrey R. Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
8
|
A Rare Mutation in an Infant-Derived HIV-1 Envelope Glycoprotein Alters Interprotomer Stability and Susceptibility to Broadly Neutralizing Antibodies Targeting the Trimer Apex. J Virol 2020; 94:JVI.00814-20. [PMID: 32669335 DOI: 10.1128/jvi.00814-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 02/03/2023] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is the sole target of broadly neutralizing antibodies (bnAbs). Several mechanisms, such as the acquisition of mutations, variability of the loop length, and alterations in the glycan pattern, are employed by the virus to shield neutralizing epitopes on Env to sustain survival and infectivity within the host. The identification of mutations that lead to viral evasion of the host immune response is essential for the optimization and engineering of Env-based trimeric immunogens. Here, we report a rare leucine-to-phenylalanine escape mutation (L184F) at the base of hypervariable loop 2 (population frequency of 0.0045%) in a 9-month-old perinatally HIV-1-infected infant broad neutralizer. The L184F mutation altered the trimer conformation by modulating intramolecular interactions stabilizing the trimer apex and led to viral escape from autologous plasma bnAbs and known N160 glycan-targeted bnAbs. The L184F amino acid change led to the acquisition of a relatively open trimeric conformation, often associated with tier 1 HIV-1 isolates and increased susceptibility to neutralization by polyclonal plasma antibodies of weak neutralizers. While there was no impact of the L184F mutation on free virus transmission, a reduction in cell-to-cell transmission was observed. In conclusion, we report a naturally selected viral mutation, L184F, that influenced a change in the conformation of the Env trimer apex as a mechanism of escape from contemporaneous plasma V2 apex-targeted nAbs. Further studies should be undertaken to define viral mutations acquired during natural infection, to escape selection pressure exerted by bnAbs, to inform vaccine design and bnAb-based therapeutic strategies.IMPORTANCE The design of HIV-1 envelope-based immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is currently under active research. Some of the most potent bnAbs target the quaternary epitope at the V2 apex of the HIV-1 Env trimer. By studying naturally circulating viruses from a perinatally HIV-1-infected infant with plasma neutralizing antibodies targeted to the V2 apex, we identified a rare leucine-to-phenylalanine substitution, in two out of six functional viral clones, that destabilized the trimer apex. This single-amino-acid alteration impaired the interprotomeric interactions that stabilize the trimer apex, resulting in an open trimer conformation and escape from broadly neutralizing autologous plasma antibodies and known V2 apex-directed bnAbs, thereby favoring viral evasion of the early bnAb response of the infected host. Defining the mechanisms by which naturally occurring viral mutations influence the sensitivity of HIV-1 to bnAbs will provide information for the development of vaccines and bnAbs as anti-HIV-1 reagents.
Collapse
|
9
|
Identification of HIV-1 Envelope Mutations that Enhance Entry Using Macaque CD4 and CCR5. Viruses 2020; 12:v12020241. [PMID: 32098152 PMCID: PMC7077290 DOI: 10.3390/v12020241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022] Open
Abstract
Although Rhesus macaques are an important animal model for HIV-1 vaccine development research, most transmitted HIV-1 strains replicate poorly in macaque cells. A major genetic determinant of this species-specific restriction is a non-synonymous mutation in macaque CD4 that results in reduced HIV-1 Envelope (Env)-mediated viral entry compared to human CD4. Recent research efforts employing either laboratory evolution or structure-guided design strategies have uncovered several mutations in Env’s gp120 subunit that enhance binding of macaque CD4 by transmitted/founder HIV-1 viruses. In order to identify additional Env mutations that promote infection of macaque cells, we utilized deep mutational scanning to screen thousands of Env point mutants for those that enhance HIV-1 entry via macaque receptors. We identified many uncharacterized amino acid mutations in the N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) regions of gp41 that increased entry into cells bearing macaque receptors up to 9-fold. Many of these mutations also modestly increased infection of cells bearing human CD4 and CCR5 (up to 1.5-fold). NHR/CHR mutations identified by deep mutational scanning that enhanced entry also increased sensitivity to neutralizing antibodies targeting the MPER epitope, and to inactivation by cold-incubation, suggesting that they promote sampling of an intermediate trimer conformation between closed and receptor bound states. Identification of this set of mutations can inform future macaque model studies, and also further our understanding of the relationship between Env structure and function.
Collapse
|
10
|
Eggink D, Bontjer I, de Taeye SW, Langedijk JPM, Berkhout B, Sanders RW. HIV-1 anchor inhibitors and membrane fusion inhibitors target distinct but overlapping steps in virus entry. J Biol Chem 2019; 294:5736-5746. [PMID: 30696772 PMCID: PMC6463712 DOI: 10.1074/jbc.ra119.007360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/25/2019] [Indexed: 12/03/2022] Open
Abstract
HIV-1 entry into cells is mediated by the envelope glycoprotein (Env) and represents an attractive target for therapeutic intervention. Two drugs that inhibit HIV entry are approved for clinical use: the membrane fusion-inhibitor T20 (Fuzeon, enfuvirtide) and the C-C chemokine receptor type 5 (CCR5) blocker maraviroc (Selzentry). Another class of entry inhibitors supposedly target the fusion peptide (FP) and are termed anchor inhibitors. These include the VIRIP peptide and VIRIP derivatives such as VIR165, VIR353, and VIR576. Here, we investigated the mechanism of inhibition by VIR165. We show that substitutions within the FP modulate sensitivity to VIR165, consistent with the FP being the drug target. Our results also revealed that VIR165 acts during an intermediate post-CD4–binding entry step that is overlapping but not identical to the step inhibited by fusion inhibitors such as T20. We found that some but not all resistance mutations to heptad repeat 2 (HR2)-targeting fusion inhibitors can provide cross-resistance to VIR165. In contrast, resistance mutations in the HR1-binding site for the fusion inhibitors did not cause cross-resistance to VIR165. However, Env with mutations located outside this binding site and thought to affect fusion kinetics, exhibited decreased sensitivity to VIR165. Although we found a strong correlation between Env stability and resistance to HR2-based fusion inhibitors, such correlation was not observed for Env stability and VIR165 resistance. We conclude that VIRIP analogs target the FP during an intermediate, post-CD4–binding entry step that overlaps with but is distinct from the step(s) inhibited by HR2-based fusion inhibitors.
Collapse
Affiliation(s)
- Dirk Eggink
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers (Amsterdam UMC), Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ilja Bontjer
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers (Amsterdam UMC), Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Steven W de Taeye
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers (Amsterdam UMC), Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | - Ben Berkhout
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers (Amsterdam UMC), Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rogier W Sanders
- From the Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers (Amsterdam UMC), Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065.
| |
Collapse
|
11
|
Torrents de la Peña A, Sanders RW. Stabilizing HIV-1 envelope glycoprotein trimers to induce neutralizing antibodies. Retrovirology 2018; 15:63. [PMID: 30208933 PMCID: PMC6134781 DOI: 10.1186/s12977-018-0445-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023] Open
Abstract
An effective HIV-1 vaccine probably will need to be able to induce broadly neutralizing HIV-1 antibodies (bNAbs) in order to be efficacious. The many bNAbs that have been isolated from HIV-1 infected patients illustrate that the human immune system is able to elicit this type of antibodies. The elucidation of the structure of the HIV-1 envelope glycoprotein (Env) trimer has further fueled the search for Env immunogens that induce bNAbs, but while native Env trimer mimetics are often capable of inducing strain-specific neutralizing antibodies (NAbs) against the parental virus, they have not yet induced potent bNAb responses. To improve the performance of Env trimer immunogens, researchers have studied the immune responses that Env trimers have induced in animals; they have evaluated how to best use Env trimers in various immunization regimens; and they have engineered increasingly stabilized Env trimer variants. Here, we review the different approaches that have been used to increase the stability of HIV-1 Env trimer immunogens with the aim of improving the induction of NAbs. In particular, we draw parallels between the various approaches to stabilize Env trimers and ones that have been used by nature in extremophile microorganisms in order to survive in extreme environmental conditions.
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021 USA
| |
Collapse
|
12
|
Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex. J Virol 2017; 91:JVI.01216-17. [PMID: 28978711 DOI: 10.1128/jvi.01216-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023] Open
Abstract
The trimeric envelope glycoprotein spike (Env) of HIV-1 is the target of vaccine development to elicit broadly neutralizing antibodies (bnAbs). Env trimer instability and heterogeneity in principle make subunit interfaces inconsistent targets for the immune response. Here, we investigate how functional stability of Env relates to neutralization sensitivity to V2 bnAbs and V3 crown antibodies that engage subunit interfaces upon binding to unliganded Env. Env heterogeneity was inferred when antibodies neutralized a mutant Env with a plateau of less than 100% neutralization. A statistically significant correlation was found between the stability of mutant Envs and the MPN of V2 bnAb, PG9, as well as an inverse correlation between stability of Env and neutralization by V3 crown antibody, 447-52D. A number of Env-stabilizing mutations and V2 bnAb-enhancing mutations were identified in Env, but they did not always overlap, indicating distinct requirements of functional stabilization versus antibody recognition. Blocking complex glycosylation of Env affected V2 bnAb recognition, as previously described, but also notably increased functional stability of Env. This study shows how instability and heterogeneity affect antibody sensitivity of HIV-1 Env, which is relevant to vaccine design involving its dynamic apex.IMPORTANCE The Env trimer is the only viral protein on the surface of HIV-1 and is the target of neutralizing antibodies that reduce viral infectivity. Quaternary epitopes at the apex of the spike are recognized by some of the most potent and broadly neutralizing antibodies to date. Being that their glycan-protein hybrid epitopes are at subunit interfaces, the resulting heterogeneity can lead to partial neutralization. Here, we screened for mutations in Env that allowed for complete neutralization by the bnAbs. We found that when mutations outside V2 increased V2 bnAb recognition, they often also increased Env stability-of-function and decreased binding by narrowly neutralizing antibodies to the V3 crown. Three mutations together increased neutralization by V2 bnAb and eliminated binding by V3 crown antibodies. These results may aid the design of immunogens that elicit antibodies to the trimer apex.
Collapse
|
13
|
Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States. J Virol 2017; 91:JVI.00174-17. [PMID: 28490588 DOI: 10.1128/jvi.00174-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023] Open
Abstract
The envelope glycoproteins (Envs) on the surfaces of HIV-1 particles are targeted by host antibodies. Primary HIV-1 isolates demonstrate different global sensitivities to antibody neutralization; tier-1 isolates are sensitive, whereas tier-2 isolates are more resistant. Single-site mutations in Env can convert tier-2 into tier-1-like viruses. We hypothesized that such global change in neutralization sensitivity results from weakening of intramolecular interactions that maintain Env integrity. Three strategies commonly applied to perturb protein structure were tested for their effects on global neutralization sensitivity: exposure to low temperature, Env-activating ligands, and a chaotropic agent. A large panel of diverse tier-2 isolates from clades B and C was analyzed. Incubation at 0°C, which globally weakens hydrophobic interactions, causes gradual and reversible exposure of the coreceptor-binding site. In the cold-induced state, Envs progress at isolate-specific rates to unstable forms that are sensitive to antibody neutralization and then gradually lose function. Agents that mimic the effects of CD4 (CD4Ms) also induce reversible structural changes to states that exhibit isolate-specific stabilities. The chaotropic agent urea (at low concentrations) does not affect the structure or function of native Env. However, urea efficiently perturbs metastable states induced by cold and CD4Ms and increases their sensitivity to antibody neutralization and their inactivation rates Therefore, chemical and physical agents can guide Env from the stable native state to perturbation-sensitive forms and modulate their stability to bestow tier-1-like properties on primary tier-2 strains. These concepts can be applied to enhance the potency of vaccine-elicited antibodies and microbicides at mucosal sites of HIV-1 transmission.IMPORTANCE An effective vaccine to prevent transmission of HIV-1 is a primary goal of the scientific and health care communities. Vaccine-elicited antibodies target the viral envelope glycoproteins (Envs) and can potentially inhibit infection. However, the potency of such antibodies is generally low. Single-site mutations in Env can enhance the global sensitivity of HIV-1 to neutralization by antibodies. We found that such a hypersensitivity phenotype can also be induced by agents that destabilize protein structure. Exposure to 0°C or low concentrations of Env-activating ligands gradually guides Env to metastable forms that expose cryptic epitopes and that are highly sensitive to neutralization. Low concentrations of the chaotropic agent urea do not affect native Env but destabilize perturbed states induced by cold or CD4Ms and increase their neutralization. The concept of enhancing antibody sensitivity by chemical agents that affect the structural stability of proteins can be applied to increase the potency of topical microbicides and vaccine-elicited antibodies.
Collapse
|
14
|
Nguyen HT, Madani N, Ding H, Elder E, Princiotto A, Gu C, Darby P, Alin J, Herschhorn A, Kappes JC, Mao Y, Sodroski JG. Evaluation of the contribution of the transmembrane region to the ectodomain conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein. Virol J 2017; 14:33. [PMID: 28209172 PMCID: PMC5314615 DOI: 10.1186/s12985-017-0704-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 12/26/2022] Open
Abstract
Background The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env), a Type 1 transmembrane protein, assembles into a trimeric spike complex that mediates virus entry into host cells. The high potential energy of the metastable, unliganded Env trimer is maintained by multiple non-covalent contacts among the gp120 exterior and gp41 transmembrane Env subunits. Structural studies suggest that the gp41 transmembrane region forms a left-handed coiled coil that contributes to the Env trimer interprotomer contacts. Here we evaluate the contribution of the gp41 transmembrane region to the folding and stability of Env trimers. Methods Multiple polar/charged amino acid residues, which hypothetically disrupt the stop-transfer signal, were introduced in the proposed lipid-interactive face of the transmembrane coiled coil, allowing release of soluble cleavage-negative Envs containing the modified transmembrane region (TMmod). We also examined effects of cleavage, the cytoplasmic tail and a C-terminal fibritin trimerization (FT) motif on oligomerization, antigenicity and functionality of soluble and membrane-bound Envs. Results The introduction of polar/charged amino acids into the transmembrane region resulted in the secretion of soluble Envs from the cell. However, these TMmod Envs primarily formed dimers. By contrast, control cleavage-negative sgp140 Envs lacking the transmembrane region formed soluble trimers, dimers and monomers. TMmod and sgp140 trimers were stabilized by the addition of a C-terminal FT sequence, but still exhibited carbohydrate and antigenic signatures of a flexible ectodomain structure. On the other hand, detergent-solubilized cleaved and uncleaved Envs isolated from the membranes of expressing cells exhibited "tighter” ectodomain structures, based on carbohydrate modifications. These trimers were found to be unstable in detergent solutions, but could be stabilized by the addition of a C-terminal FT moiety. The C-terminal FT domain decreased Env cleavage and syncytium-forming ability by approximately three-fold; alteration of the FT trimerization interface restored Env cleavage and syncytium formation to near-wild-type levels. Conclusion The modified transmembrane region was not conducive to trimerization of soluble Envs. However, for HIV-1 Env ectodomains that are minimally modified, membrane-anchored Envs exhibit the most native structures and can be stabilized by appropriately positioned FT domains.
Collapse
Affiliation(s)
- Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Emerald Elder
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Amy Princiotto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Christopher Gu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Patrice Darby
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - James Alin
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, 35233, USA
| | - Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, 450 Brookline Avenue, CLS 1010, Boston, MA, 02215, USA. .,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Sood C, Marin M, Chande A, Pizzato M, Melikyan GB. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. J Biol Chem 2017; 292:6014-6026. [PMID: 28179429 DOI: 10.1074/jbc.m117.777714] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
The host proteins, SERINC3 and SERINC5, have been recently shown to incorporate into HIV-1 particles and compromise their ability to fuse with target cells, an effect that is antagonized by the viral Nef protein. Envelope (Env) glycoproteins from different HIV-1 isolates exhibit a broad range of sensitivity to SERINC-mediated restriction, and the mechanism by which SERINCs interfere with HIV-1 fusion remains unclear. Here, we show that incorporation of SERINC5 into virions in the absence of Nef inhibits the formation of small fusion pores between viruses and cells. Strikingly, we found that SERINC5 promotes spontaneous functional inactivation of sensitive but not resistant Env glycoproteins. Although SERINC5-Env interaction was not detected by co-immunoprecipitation, incorporation of this protein enhanced the exposure of the conserved gp41 domains and sensitized the virus to neutralizing antibodies and gp41-derived inhibitory peptides. These results imply that SERINC5 restricts HIV-1 fusion at a step prior to small pore formation by selectively inactivating sensitive Env glycoproteins, likely through altering their conformation. The increased HIV-1 sensitivity to anti-gp41 antibodies and peptides suggests that SER5 also delays refolding of the remaining fusion-competent Env trimers.
Collapse
Affiliation(s)
- Chetan Sood
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| | - Mariana Marin
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| | - Ajit Chande
- the Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Massimo Pizzato
- the Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Gregory B Melikyan
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| |
Collapse
|
16
|
HIV-1 Escape from a Peptidic Anchor Inhibitor through Stabilization of the Envelope Glycoprotein Spike. J Virol 2016; 90:10587-10599. [PMID: 27654295 DOI: 10.1128/jvi.01616-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022] Open
Abstract
The trimeric HIV-1 envelope glycoprotein spike (Env) mediates viral entry into cells by using a spring-loaded mechanism that allows for the controlled insertion of the Env fusion peptide into the target membrane, followed by membrane fusion. Env is the focus of vaccine research aimed at inducing protective immunity by antibodies as well as efforts to develop drugs that inhibit the viral entry process. The molecular factors contributing to Env stability and decay need to be understood better in order to optimally design vaccines and therapeutics. We generated viruses with resistance to VIR165, a peptidic inhibitor that binds the fusion peptide of the gp41 subunit and prevents its insertion into the target membrane. Interestingly, a number of escape viruses acquired substitutions in the C1 domain of the gp120 subunit (A60E, E64K, and H66R) that rendered these viruses dependent on the inhibitor. These viruses could infect target cells only when VIR165 was present after CD4 binding. Furthermore, the VIR165-dependent viruses were resistant to soluble CD4-induced Env destabilization and decay. These data suggest that VIR165-dependent Env proteins are kinetically trapped in the unliganded state and require the drug to negotiate CD4-induced conformational changes. These studies provide mechanistic insight into the action of the gp41 fusion peptide and its inhibitors and provide new ways to stabilize Env trimer vaccines. IMPORTANCE Because of the rapid development of HIV-1 drug resistance, new drug targets need to be explored continuously. The fusion peptide of the envelope glycoprotein can be targeted by anchor inhibitors. Here we describe virus escape from the anchor inhibitor VIR165. Interestingly, some escape viruses became dependent on the inhibitor for cell entry. We show that the identified escape mutations stabilize the ground state of the envelope glycoprotein and should thus be useful in the design of stabilized envelope-based HIV vaccines.
Collapse
|
17
|
Frauenfeld J, Löving R, Armache JP, Sonnen AFP, Guettou F, Moberg P, Zhu L, Jegerschöld C, Flayhan A, Briggs JAG, Garoff H, Löw C, Cheng Y, Nordlund P. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 2016; 13:345-51. [PMID: 26950744 PMCID: PMC4894539 DOI: 10.1038/nmeth.3801] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Abstract
A limiting factor in membrane protein research is the ability to solubilize and stabilize such proteins. Detergents are used most often for solubilizing membrane proteins, but they are associated with protein instability and poor compatibility with structural and biophysical studies. Here we present a saposin-lipoprotein nanoparticle system, Salipro, which allows for the reconstitution of membrane proteins in a lipid environment that is stabilized by a scaffold of saposin proteins. We demonstrate the applicability of the method on two purified membrane protein complexes as well as by the direct solubilization and nanoparticle incorporation of a viral membrane protein complex from the virus membrane. Our approach facilitated high-resolution structural studies of the bacterial peptide transporter PeptTSo2 by single-particle cryo-electron microscopy (cryo-EM) and allowed us to stabilize the HIV envelope glycoprotein in a functional state.
Collapse
Affiliation(s)
- Jens Frauenfeld
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Robin Löving
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jean-Paul Armache
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Andreas F-P Sonnen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Fatma Guettou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Per Moberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lin Zhu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Technology and Health, Royal Institute of Technology, Novum, Huddinge, Sweden
| | - Caroline Jegerschöld
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Technology and Health, Royal Institute of Technology, Novum, Huddinge, Sweden
| | | | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Henrik Garoff
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Christian Löw
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,EMBL Hamburg, Hamburg, Germany
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, USA
| | - Pär Nordlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Stieh DJ, King DF, Klein K, Aldon Y, McKay PF, Shattock RJ. Discrete partitioning of HIV-1 Env forms revealed by viral capture. Retrovirology 2015; 12:81. [PMID: 26399966 PMCID: PMC4581120 DOI: 10.1186/s12977-015-0207-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Background The structure of HIV-1 envelope glycoprotein (Env) is flexible and heterogeneous on whole virions. Although functional Env complexes are thought to require trimerization of cleaved gp41/gp120 heterodimers, variable processing can result in the potential incorporation of non-functional uncleaved proteins (gp160), non-trimeric arrangements of gp41/gp120 heterodimers, and gp120 depleted gp41 stumps. The potential distribution of functional and non-functional Env forms across replication-competent viral populations may have important implications for neutralizing and non-neutralizing antibody functions. This study applied an immuno-bead viral capture assay (VCA) to interrogate the potential distribution (heterologous vs homologous) of functional and non-functional forms of virion associated Env. Results The VCA revealed a significant association between depletion of infectious virions and virion Env incorporation, but not between infectivity and p24-gag. Three distinct subpopulations of virions were identified within pools of genetically homogenous viral particles. Critically, a significant subpopulation of infectious virions were exclusively captured by neutralizing antibodies (nAbs) indicative of a homologous distribution of functional trimeric Env forms. A second infectious subpopulation bound both neutralizing and non-neutralizing antibodies (nnAbs) representative of a heterologous distribution of Env forms, while a third non-infectious subpopulation was predominantly bound by nnAbs recognizing gp41 stumps. Conclusions The observation that a distinct and significant subpopulation of infectious virions is exclusively captured by neutralizing antibodies has important implications for understanding antibody binding and neutralization, as well as other antibody effector functions. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel J Stieh
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Deborah F King
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Katja Klein
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Yoann Aldon
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Paul F McKay
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| | - Robin J Shattock
- Mucosal Infection and Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
19
|
Phenotypic Correlates of HIV-1 Macrophage Tropism. J Virol 2015; 89:11294-311. [PMID: 26339058 DOI: 10.1128/jvi.00946-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HIV-1 is typically CCR5 using (R5) and T cell tropic (T-tropic), targeting memory CD4(+) T cells throughout acute and chronic infections. However, viruses can expand into alternative cells types. Macrophage-tropic (M-tropic) HIV-1 variants have evolved to infect macrophages, which have only low levels of surface CD4. Most M-tropic variants have been isolated from the central nervous system during late-stage chronic infection. We used the HIV-1 env genes of well-defined, subject-matched M-tropic and T-tropic viruses to characterize the phenotypic features of the M-tropic Env protein. We found that, compared to T-tropic viruses, M-tropic viruses infect monocyte-derived macrophages (MDMs) on average 28-fold more efficiently, use low-density CD4 more efficiently, have increased sensitivity to soluble CD4 (sCD4), and show trends toward sensitivity to some CD4 binding site antibodies but no difference in sensitivity to antibodies targeting the CD4-bound conformation. M-tropic viruses also displayed a trend toward resistance to neutralization by monoclonal antibodies targeting the V1/V2 region of Env, suggesting subtle changes in Env protein conformation. The paired M- and T-tropic viruses did not differ in autologous serum neutralization, temperature sensitivity, entry kinetics, intrinsic infectivity, or Env protein incorporation. We also examined viruses with modestly increased CD4 usage. These variants have significant sensitivity to sCD4 and may represent evolutionary intermediates. CD4 usage is strongly correlated with infectivity of MDMs over a wide range of CD4 entry phenotypes. These data suggest that emergence of M-tropic HIV-1 includes multiple steps in which a phenotype of increased sensitivity to sCD4 and enhanced CD4 usage accompany subtle changes in Env conformation. IMPORTANCE HIV-1 typically replicates in CD4(+) T cells. However, HIV-1 can evolve to infect macrophages, especially within the brain. Understanding how CCR5-using macrophage-tropic viruses evolve and differ from CCR5-using T cell-tropic viruses may provide insights into viral evolution and pathogenesis within the central nervous system. We characterized the HIV-1 env viral entry gene from subject-matched macrophage-tropic and T cell-tropic viruses to identify entry features of macrophage-tropic viruses. We observed several differences between T cell-tropic and macrophage-tropic Env proteins, including functional differences with host CD4 receptor engagement and possible changes in the CD4 binding site and V1/V2 region. We also identified viruses with phenotypes between that of "true" macrophage-tropic and T cell-tropic viruses, which may represent evolutionary intermediates in a multistep process to macrophage tropism.
Collapse
|
20
|
Bagaya BS, Vega JF, Tian M, Nickel GC, Li Y, Krebs KC, Arts EJ, Gao Y. Functional bottlenecks for generation of HIV-1 intersubtype Env recombinants. Retrovirology 2015; 12:44. [PMID: 25997955 PMCID: PMC4445978 DOI: 10.1186/s12977-015-0170-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 11/13/2022] Open
Abstract
Background Intersubtype recombination is a powerful driving force for HIV evolution, impacting both HIV-1 diversity within an infected individual and within the global epidemic. This study examines if viral protein function/fitness is the major constraint shaping selection of recombination hotspots in replication-competent HIV-1 progeny. A better understanding of the interplay between viral protein structure-function and recombination may provide insights into both vaccine design and drug development. Results In vitro HIV-1 dual infections were used to recombine subtypes A and D isolates and examine breakpoints in the Env glycoproteins. The entire env genes of 21 A/D recombinants with breakpoints in gp120 were non-functional when cloned into the laboratory strain, NL4-3. Likewise, cloning of A/D gp120 coding regions also produced dead viruses with non-functional Envs. 4/9 replication-competent viruses with functional Env’s were obtained when just the V1-V5 regions of these same A/D recombinants (i.e. same A/D breakpoints as above) were cloned into NL4-3. Conclusion These findings on functional A/D Env recombinants combined with structural models of Env suggest a conserved interplay between the C1 domain with C5 domain of gp120 and extracellular domain of gp41. Models also reveal a co-evolution within C1, C5, and ecto-gp41 domains which might explain the paucity of intersubtype recombination in the gp120 V1-V5 regions, despite their hypervariability. At least HIV-1 A/D intersubtype recombination in gp120 may result in a C1 from one subtype incompatible with a C5/gp41 from another subtype.
Collapse
Affiliation(s)
- Bernard S Bagaya
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - José F Vega
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - Meijuan Tian
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| | - Gabrielle C Nickel
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - Yuejin Li
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - Kendall C Krebs
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - Eric J Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| | - Yong Gao
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA. .,Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes. J Virol 2015; 89:6725-45. [PMID: 25878116 DOI: 10.1128/jvi.03738-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/11/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED HIV-1 envelope glycoprotein (Env) spikes are prime vaccine candidates, at least in principle, but suffer from instability, molecular heterogeneity and a low copy number on virions. We anticipated that chemical cross-linking of HIV-1 would allow purification and molecular characterization of trimeric Env spikes, as well as high copy number immunization. Broadly neutralizing antibodies bound tightly to all major quaternary epitopes on cross-linked spikes. Covalent cross-linking of the trimer also stabilized broadly neutralizing epitopes, although surprisingly some individual epitopes were still somewhat sensitive to heat or reducing agent. Immunodepletion using non-neutralizing antibodies to gp120 and gp41 was an effective method for removing non-native-like Env. Cross-linked spikes, purified via an engineered C-terminal tag, were shown by negative stain EM to have well-ordered, trilobed structure. An immunization was performed comparing a boost with Env spikes on virions to spikes cross-linked and captured onto nanoparticles, each following a gp160 DNA prime. Although differences in neutralization did not reach statistical significance, cross-linked Env spikes elicited a more diverse and sporadically neutralizing antibody response against Tier 1b and 2 isolates when displayed on nanoparticles, despite attenuated binding titers to gp120 and V3 crown peptides. Our study demonstrates display of cross-linked trimeric Env spikes on nanoparticles, while showing a level of control over antigenicity, purity and density of virion-associated Env, which may have relevance for Env based vaccine strategies for HIV-1. IMPORTANCE The envelope spike (Env) is the target of HIV-1 neutralizing antibodies, which a successful vaccine will need to elicit. However, native Env on virions is innately labile, as well as heterogeneously and sparsely displayed. We therefore stabilized Env spikes using a chemical cross-linker and removed non-native Env by immunodepletion with non-neutralizing antibodies. Fixed native spikes were recognized by all classes of known broadly neutralizing antibodies but not by non-neutralizing antibodies and displayed on nanoparticles in high copy number. An immunization experiment in rabbits revealed that cross-linking Env reduced its overall immunogenicity; however, high-copy display on nanoparticles enabled boosting of antibodies that sporadically neutralized some relatively resistant HIV-1 isolates, albeit at a low titer. This study describes the purification of stable and antigenically correct Env spikes from virions that can be used as immunogens.
Collapse
|
22
|
Klasse PJ. Molecular determinants of the ratio of inert to infectious virus particles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:285-326. [PMID: 25595808 DOI: 10.1016/bs.pmbts.2014.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ratio of virus particles to infectious units is a classic measurement in virology and ranges widely from several million to below 10 for different viruses. Much evidence suggests a distinction be made between infectious and infecting particles or virions: out of many potentially infectious virions, few infect under regular experimental conditions, largely because of diffusion barriers. Still, some virions are inert from the start; others become defective through decay. And with increasing cell- and molecular-biological knowledge of each step in the replicative cycle for different viruses, it emerges that many processes entail considerable losses of potential viral infectivity. Furthermore, all-or-nothing assumptions about virion infectivity are flawed and should be replaced by descriptions that allow for spectra of infectious propensities. A more realistic understanding of the infectivity of individual virions has both practical and theoretical implications for virus neutralization, vaccine research, antiviral therapy, and the use of viral vectors.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA.
| |
Collapse
|
23
|
Kim AS, Leaman DP, Zwick MB. Antibody to gp41 MPER alters functional properties of HIV-1 Env without complete neutralization. PLoS Pathog 2014; 10:e1004271. [PMID: 25058619 PMCID: PMC4110039 DOI: 10.1371/journal.ppat.1004271] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/11/2014] [Indexed: 01/08/2023] Open
Abstract
Human antibody 10E8 targets the conserved membrane proximal external region (MPER) of envelope glycoprotein (Env) subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design.
Collapse
Affiliation(s)
- Arthur S. Kim
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Immunogen design for HIV-1 and influenza. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1891-1906. [PMID: 24892211 DOI: 10.1016/j.bbapap.2014.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022]
Abstract
Vaccines provide the most cost effective defense against pathogens. Although vaccines have been designed for a number of viral diseases, a vaccine against HIV-1 still remains elusive. In contrast, while there are excellent influenza vaccines, these need to be changed every few years because of antigenic drift and shift. The recent discovery of a large number of broadly neutralizing antibodies (bNAbs) and structural characterization of the conserved epitopes targeted by them presents an opportunity for structure based HIV-1 and influenza A vaccine design. We discuss strategies to design immunogens either targeting a particular antigenic region or focusing on native structure stabilization. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
|
25
|
Kinlock BL, Wang Y, Turner TM, Wang C, Liu B. Transcytosis of HIV-1 through vaginal epithelial cells is dependent on trafficking to the endocytic recycling pathway. PLoS One 2014; 9:e96760. [PMID: 24830293 PMCID: PMC4022679 DOI: 10.1371/journal.pone.0096760] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/21/2014] [Indexed: 01/03/2023] Open
Abstract
Background While it is accepted that viruses can enter epithelial cells by endocytosis, the lack of an established biological mechanism for the trafficking of infectious virions through vaginal epithelial cells and their release from the plasma membrane has contributed to ongoing controversy about whether endocytosis is a mere artifact of some cell culture systems and whether squamous vaginal epithelial cells are even relevant as it pertains to HIV-1 transmission. Methodology/Principal Findings In this study, we investigated the intracellular trafficking pathway that HIV-1 exploits to transcytose vaginal epithelial cells. The reduction of endosome tubulation by recycling endosome inhibitors blocked transcytosis of HIV-1 in a cell culture and transwell system. In addition, we demonstrate that although heat-inactivated virus was endocytosed as efficiently as native virus, heat-inactivated virus was trafficked exclusively to the lysosomal pathway for degradation following endocytosis. Lysosomal protease-specific inhibitors blocked the degradation of inactivated virions. Immunofluorescence analysis not only demonstrated that HIV-1 was inside the cells but the different colocalization pattern of native vs. heat inactivated virus with transferrin provided conclusive evidence that HIV-1 uses the recycling pathway to get across vaginal epithelial cells. Conclusions/Significance Altogether, our findings demonstrate the precise intracellular trafficking pathway utilized by HIV-1 in epithelial cells, confirms that HIV-1 transcytosis through vaginal epithelial cells is a biological phenomenon and brings to light the differential intracellular trafficking of native vs heat-inactivated HIV-1 which with further exploration could prove to provide valuable insights that could be used in the prevention of transcytosis/transmission of HIV-1 across the mucosal epithelia.
Collapse
Affiliation(s)
- Ballington L. Kinlock
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Yudi Wang
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Tiffany M. Turner
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Chenliang Wang
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Institute of Gastroenterology and Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, Peoples of Republic of China
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
26
|
Tong T, Crooks ET, Osawa K, Robinson JE, Barnes M, Apetrei C, Binley JM. Multi-Parameter Exploration of HIV-1 Virus-Like Particles as Neutralizing Antibody Immunogens in Guinea Pigs, Rabbits and Macaques. Virology 2014; 456-457:55-69. [PMID: 24882891 PMCID: PMC4037872 DOI: 10.1016/j.virol.2014.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022]
Abstract
Virus-like particles (VLPs) offer a platform to test the hypothesis that, since antibody binding to native envelope glycoprotein (Env) trimers results in HIV-1 neutralization, that native Env trimers presented in membranes may be useful for inducing neutralizing antibodies (nAbs) in a vaccine setting. So far, VLPs have not fulfilled this potential. Here, using a "shotgun" approach, we evaluated a wide cross-section of variables in a series of VLP immunizations. We identified 3 tentative leads. First, that VLP doses may not have been sufficient for optimal nAb induction. Second, that dampening the antigenicity of non-functional Env (for example uncleaved gp160) using either protease digests or IgG masking may be useful. Third, that guinea pig sera preferentially target non-conserved epitopes and exhibit relatively high background activity, suggesting that rabbits may be preferable as small animal vaccine models. Recent immunogenicity studies in rabbits appear to bear out all 3 of these leads.
Collapse
Affiliation(s)
- Tommy Tong
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | - Ema T. Crooks
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | - Keiko Osawa
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | | | - Mary Barnes
- Tulane National Primate Research Center, 18703 Three Rivers Rd, Covington, LA 70433, USA
| | - Cristian Apetrei
- Tulane National Primate Research Center, 18703 Three Rivers Rd, Covington, LA 70433, USA
| | - James M. Binley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| |
Collapse
|
27
|
Schiffner T, Sattentau QJ, Dorrell L. Development of prophylactic vaccines against HIV-1. Retrovirology 2013; 10:72. [PMID: 23866844 PMCID: PMC3722125 DOI: 10.1186/1742-4690-10-72] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/11/2013] [Indexed: 01/12/2023] Open
Abstract
The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions.
Collapse
Affiliation(s)
- Torben Schiffner
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
28
|
Topological analysis of HIV-1 glycoproteins expressed in situ on virus surfaces reveals tighter packing but greater conformational flexibility than for soluble gp120. J Virol 2013; 87:9233-49. [PMID: 23740975 DOI: 10.1128/jvi.01145-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In natural infection, antibodies interact with HIV-1 primarily through nonfunctional forms of envelope glycoproteins (Env), including uncleaved (UNC) gp160 and gp41 stumps. These antigens are important to fully characterize, as they may be decoys that promote nonneutralizing responses and may also be targets for nonneutralizing effector responses. In this study, we compared the antigenic properties of Env expressed in situ on pseudovirion virus-like particle (VLP) surfaces and soluble gp120 using harmonized enzyme-linked immunosorbent assays (ELISAs) and a panel of 51 monoclonal antibodies (MAbs). Only 32 of 46 soluble gp120-reactive MAbs recognized the primary UNC gp160 antigen of VLPs. Indeed, many epitopes were poorly exposed (C1, V2, C1-C4, C4, C4-V3, CD4 induced [CD4i], and PGT group 3) or obscured (C2, C5, and C1-C5) on VLPs. In further studies, VLP Env exhibited an increased degree of inter-MAb competition, the epicenter of which was the base of the V3 loop, where PGT, 2G12, V3, and CD4 binding site specificities competed. UNC gp160 also underwent more drastic soluble CD4 (sCD4)-induced conformational changes than soluble gp120, exposing CD4i, C1-C4, and V2 epitopes. A greater propensity of UNC gp160 to undergo conformational changes was also suggested by the induction of CD4i MAb binding to VLPs by a V3 MAb as well as by soluble CD4. The same effect was not observed for soluble gp120. Taken together, our data suggest that membrane-expressed UNC gp160 exists in a less "triggered" conformational state than soluble gp120 and that MAb binding to UNC gp160 tends to have greater conformational consequences.
Collapse
|
29
|
Leaman DP, Zwick MB. Increased functional stability and homogeneity of viral envelope spikes through directed evolution. PLoS Pathog 2013; 9:e1003184. [PMID: 23468626 PMCID: PMC3585149 DOI: 10.1371/journal.ppat.1003184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
The functional HIV-1 envelope glycoprotein (Env) trimer, the target of anti-HIV-1 neutralizing antibodies (Abs), is innately labile and coexists with non-native forms of Env. This lability and heterogeneity in Env has been associated with its tendency to elicit non-neutralizing Abs. Here, we use directed evolution to overcome instability and heterogeneity of a primary Env spike. HIV-1 virions were subjected to iterative cycles of destabilization followed by replication to select for Envs with enhanced stability. Two separate pools of stable Env variants with distinct sequence changes were selected using this method. Clones isolated from these viral pools could withstand heat, denaturants and other destabilizing conditions. Seven mutations in Env were associated with increased trimer stability, primarily in the heptad repeat regions of gp41, but also in V1 of gp120. Combining the seven mutations generated a variant Env with superior homogeneity and stability. This variant spike moreover showed resistance to proteolysis and to dissociation by detergent. Heterogeneity within the functional population of hyper-stable Envs was also reduced, as evidenced by a relative decrease in a proportion of virus that is resistant to the neutralizing Ab, PG9. The latter result may reflect a change in glycans on the stabilized Envs. The stabilizing mutations also increased the proportion of secreted gp140 existing in a trimeric conformation. Finally, several Env-stabilizing substitutions could stabilize Env spikes from HIV-1 clades A, B and C. Spike stabilizing mutations may be useful in the development of Env immunogens that stably retain native, trimeric structure. A vaccine is needed to prevent HIV/AIDS but eliciting potent neutralizing antibodies (Abs) against primary isolates has been a major stumbling block. The target of HIV-1 neutralizing antibodies is the native envelope glycoprotein (Env) trimer that is displayed on the surface of the virus. Virion associated Env typically elicits antibodies that cannot neutralize primary viruses. However, because native Env trimers can dissociate and coexist with non-fusogenic forms of Env interpreting these results are difficult. Here, we used directed evolution to select for virions that display native Env with increased stability and homogeneity. HIV-1 virions were subjected to increasingly harsh treatments that destabilize Env trimers, and the variants that survived each treatment were expanded. We could identify seven different mutations in Env that increased its stability of function in the face of multiple destabilizing treatments. When these mutations were combined, the resulting mutant Env trimers were far more stable than the original Env protein. Incorporating trimer-stabilizing mutations into Env-based immunogens should facilitate vaccine research by mitigating the confounding effects of non-native byproducts of Env decay. A similar approach may be used on other pathogens with potential vaccine targets that are difficult to isolate and maintain in a native form.
Collapse
Affiliation(s)
- Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
HIV-1 virus-like particles bearing pure env trimers expose neutralizing epitopes but occlude nonneutralizing epitopes. J Virol 2012; 86:3574-87. [PMID: 22301141 DOI: 10.1128/jvi.06938-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypothetically, since native HIV-1 Env trimers are exclusively recognized by neutralizing antibodies, they might induce the neutralizing antibodies in a vaccine setting. This idea has not been evaluated due to the difficulty of separating trimers from nonfunctional Env (uncleaved gp160 and gp41 stumps). The latter are immunodominant and induce nonneutralizing antibodies. We previously showed that nonfunctional Env can be selectively cleared from virus-like particle (VLP) surfaces by enzyme digests (E. T. Crooks, T. Tong(,) K. Osawa, and J. M. Binley, J.Virol. 85:5825, 2011). Here, we investigated the effects of these digests on the antigenicity of VLPs and their sensitivity to neutralization. Before digestion, WT VLPs (bearing wild-type Env) and UNC VLPs (bearing uncleaved gp160) were recognized by various Env-specific monoclonal antibodies (MAbs), irrespective of their neutralizing activity, a result which is consistent with the presence of nonfunctional Env. After digestion, only neutralizing MAbs recognized WT VLPs, consistent with selective removal of nonfunctional Env (i.e., "trimer VLPs"). Digests eliminated the binding of all MAbs to UNC VLPs, again consistent with removal of nonfunctional Env. An exception was MAb 2F5, which weakly bound to digested UNC VLPs and bald VLPs (bearing no Env), perhaps due to lipid cross-reactivity. Trimer VLPs were infectious, and their neutralization sensitivity was largely comparable to that of undigested WT VLPs. However, they were ∼100-fold more sensitive to the MAbs 4E10 and Z13e1, suggesting increased exposure of the gp41 base. Importantly, a scatterplot analysis revealed a strong correlation between MAb binding and neutralization of trimer VLPs. This suggests that trimer VLPs bear essentially pure native trimer that should allow its unfettered evaluation in a vaccine setting.
Collapse
|