1
|
Fu L, Yokus B, Gao B, Pacher P. An Update on IL-22 Therapies in Alcohol-Associated Liver Disease and Beyond. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00117-8. [PMID: 40254130 DOI: 10.1016/j.ajpath.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025]
Abstract
Excessive alcohol consumption drives the development of alcohol-associated liver disease (ALD), including steatohepatitis, cirrhosis, and hepatocellular carcinoma, and its associated complications, such as hepatorenal syndrome. Hepatocyte death, inflammation, and impaired liver regeneration are key processes implicated in the pathogenesis and progression of ALD. Despite extensive research, therapeutic options for ALD remain limited. IL-22 has emerged as a promising therapeutic target because of its hepatoprotective properties mediated through the activation of the STAT3 signaling pathway. IL-22 enhances hepatocyte survival by mitigating apoptosis, oxidative stress, and inflammation while simultaneously promoting liver regeneration through the proliferation of hepatocytes and hepatic progenitor cells and the up-regulation of growth factors. Additionally, IL-22 exerts protective effects on epithelial cells in various organs affected by ALD and its associated complications. Studies from preclinical models and early-phase clinical trials of IL-22 agonists, such as F-652 and UTTR1147A, have shown favorable safety profiles, good tolerability, and encouraging efficacy in reducing liver injury and promoting regeneration. However, the heterogeneity and multifactorial nature of ALD present ongoing challenges. Further research is needed to optimize IL-22-based therapies and clarify their roles within a comprehensive approach to ALD management. This review summarizes the current understanding of IL-22 biology and its role in ALD pathophysiology and ALD-associated complications along with therapeutic application of IL-22, potential benefits, and limitations.
Collapse
Affiliation(s)
- Lihong Fu
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Burhan Yokus
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
| |
Collapse
|
2
|
Liu X, Luo A, Yang M, Luo J, Li H, Chen X, Mao B, Jiang H, Liu W. Baicalin restores innate lymphoid immune imbalance during exacerbation of COPD. Immunol Res 2025; 73:71. [PMID: 40234295 PMCID: PMC12000166 DOI: 10.1007/s12026-025-09629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by immune dysregulation, including altered innate lymphoid cell (ILC) immune responses, particularly during exacerbations (ECOPD). Baicalin, a natural compound prevalent in various herbal medicines, has shown promise as a therapeutic candidate in ECOPD. However, its potential and molecular mechanism for addressing ILC immune imbalance during ECOPD remain poorly understood. First, this study conducted a cross-sectional analysis of ILC immune responses in stable COPD patients and those experiencing exacerbations. Then, clinical findings of skewed ILC immunity were validated in cigarette smoke and lipopolysaccharide-induced ECOPD mouse models. Lastly, the therapeutic effect of baicalin on restoring ILC immune homeostasis was investigated in experimental ECOPD mouse models. Significant downregulation of ILC2 immunity was observed during COPD exacerbations, accompanied by increased ILC1 and ILC3 responses, particularly in cases associated with bacterial infections. Notably, elevated IL-22 levels were observed in this group. Administration of recombinant IL-22 in ECOPD mouse models disrupted lung ILC homeostasis, specifically inhibiting the accumulation of ILC2. Proteomics and transcriptomics analyses suggested IL-22 as a mediator of type 2 immune suppression by creating a molecular environment that favors type 1 and type 3 immunity. Treatment with baicalin effectively restored ILC2 immunity by enhancing the recruitment and activation of lung ILC2 while suppressing ILC1 and ILC3 responses. Importantly, baicalin attenuated IL-22 production from lung ILC3, highlighting its potential as an IL-22 inhibitor. Baicalin demonstrates potential as a therapeutic strategy for addressing ILC immune imbalance in COPD exacerbations, particularly by restoring ILC2 immunity and partially inhibiting IL-22 production. Clinical registration The cross-sectional study was registered with the Chinese Clinical Trial Registry (ChiCTR2100050683).
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ai Luo
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Yang
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Pulmonary Medicine, Dazhou Second People's Hospital, Dazhou, China
| | - Jian Luo
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom
| | - Huifang Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, 1 Keyuansi Road, Chengdu, Sichuan, China
| | - Bing Mao
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongli Jiang
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Wei Liu
- Department of Internal Medicine, Division of Pulmonary Medicine, Institute of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Tamasauskiene L, Gradauskiene B. Profile of immune response during nasal challenge with dermatophagoides pteronyssinus in subjects with allergic airway diseases. J Inflamm (Lond) 2024; 21:41. [PMID: 39482718 PMCID: PMC11526524 DOI: 10.1186/s12950-024-00415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND T lymphocyte helper (Th) 2 plays the main role in pathogenesis of allergic airway diseases (AAD). Recent studies showed that interleukin (IL) 33, Th17 and Th22 also may be involved in allergic inflammation. The aim is to evaluate cytokine level before and after nasal challenge with Dermatophagoides pteronyssinus in patients with AAD. METHODS Patients with persistent allergic rhinitis (AR) with or without allergic asthma (AA) allergic to house dust mite and healthy individuals underwent nasal challenge with Dermatophagoides pteronyssinus. Measurements of IL-13, IL-17, IL-22 and IL-33 in serum and nasal lavage were performed before, 2 and 22 h after nasal challenge by ELISA. RESULTS . Ten patients with AR only, 6 patients with AR and AA and 7 healthy individuals were involved in the study. Serum IL-22 level significantly increased in patients with AR and AA and nasal lavage IL-22 tended to increase in patients with AAD after nasal challenge. Serum IL-13 level tended to increase in patients with AR and AA. IL-13 level in nasal lavage fluid decreased at 22 h after nasal challenge in patients with AR only. IL-17 level in serum and nasal lavage decreased in patients with AAD. Serum IL-33 tended to increase after nasal challenge whereas IL-33 in nasal lavage significantly decreased. CONCLUSION Cytokine profile differs between local and systemic compartments and between patients with allergic rhinitis only and patients with allergic rhinitis and asthma after nasal challenge.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, Lithuania.
| | - Brigita Gradauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
4
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Li L, Liu H, Yu J, Sun Z, Jiang M, Yu H, Wang C. Intestinal Microbiota and Metabolomics Reveal the Role of Auricularia delicate in Regulating Colitis-Associated Colorectal Cancer. Nutrients 2023; 15:5011. [PMID: 38068869 PMCID: PMC10708550 DOI: 10.3390/nu15235011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The edible fungus Auricularia delicate (ADe) is commonly employed in traditional medicine for intestinal disorders; however, its inhibitory effect on colitis-associated colorectal cancer (CAC) and the underlying mechanisms remain unexplored. (2) Methods: The inhibitory effect of ADe on CAC was investigated using a mouse model induced by azoxymethane/dextran sulfate sodium. RESULTS ADe effectively suppressed the growth and number of intestinal tumors in mice. Intestinal microbiota analyses revealed that ADe treatment increased Akkermansia and Parabacteroides while it decreased Clostridium, Turicibacter, Oscillospira, and Desulfovibrio. ADe regulated the levels of 2'-deoxyridine, creatinine, 1-palmitoyl lysophosphatidylcholine, and choline in serum. Furthermore, the levels of these metabolites were associated with the abundance of Oscillospira and Paraacteroides. ADe up-regulated the free fatty acid receptor 2 and β-Arrestin 2, inhibited the nuclear factor kappa B (NF-κB) pathway, and significantly attenuated the levels of inflammatory cytokines, thereby mitigating the inflammatory in CAC mice. CONCLUSIONS The protective effect of ADe in CAC mice is associated with the regulation of intestinal microbiota, which leads to the inhibition of NF-kB pathway and regulation of inflammation.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jinqi Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
6
|
Chua C, Sethi R, Ong J, Low JH, Yew YW, Tay A, Howland SW, Ginhoux F, Chen J, Common JEA, Andiappan AK. Late inflammatory monocytes define circulatory immune dysregulation observed in skin microbiome-stratified atopic dermatitis. J Dermatol Sci 2023; 112:158-161. [PMID: 37989666 DOI: 10.1016/j.jdermsci.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Affiliation(s)
- Celine Chua
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(⁎)STAR), Singapore
| | - Raman Sethi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(⁎)STAR), Singapore
| | - Jocelyn Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(⁎)STAR), Singapore
| | - Jing Hui Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(⁎)STAR), Singapore
| | - Yik W Yew
- National Skin Centre, Research Division, Singapore
| | - Alicia Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(⁎)STAR), Singapore
| | - Shanshan W Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(⁎)STAR), Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(⁎)STAR), Singapore; Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(⁎)STAR), Singapore
| | - John E A Common
- A(⁎)STAR Skin Research Labs (A(⁎)SRL), Agency for Science, Technology and Research (A(⁎)STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore.
| | - Anand K Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(⁎)STAR), Singapore.
| |
Collapse
|
7
|
Wang X, Kong Y, Zheng B, Zhao X, Zhao M, Wang B, Liu C, Yan P. Tissue-resident innate lymphoid cells in asthma. J Physiol 2023; 601:3995-4012. [PMID: 37488944 DOI: 10.1113/jp284686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Asthma is a chronic airway inflammatory disease whose global incidence increases annually. The role of innate lymphoid cells (ILCs) is a crucial aspect of asthma research with respect to different endotypes of asthma. Based on its pathological and inflammatory features, asthma is divided into type 2 high and type 2 low endotypes. Type-2 high asthma is distinguished by the activation of type 2 immune cells, including T helper 2 (Th2) cells and ILC2s; the production of cytokines interleukin (IL)-4, IL-5 and IL-13; eosinophilic aggregation; and bronchial hyper-responsiveness. Type-2 low asthma represents a variety of endotypes other than type 2 high endotype such as the IL-1β/ILC3/neutrophil endotype and a paucigranulocytic asthma, which may be insensitive to corticosteroid treatment and/or associated with obesity. The complexity of asthma is due to the involvement of multiple cell types, including tissue-resident ILCs and other innate immune cells including bronchial epithelial cells, dendritic cells, macrophages and eosinophils, which provide immediate defence against viruses, pathogens and allergens. On this basis, innate immune cells and adaptive immune cells combine to induce the pathological condition of asthma. In addition, the plasticity of ILCs increases the heterogeneity of asthma. This review focuses on the phenotypes of tissue-resident ILCs and their roles in the different endotypes of asthma, as well as the mechanisms of tissue-resident ILCs and other immune cells. Based on the phenotypes, roles and mechanisms of immune cells, the therapeutic strategies for asthma are reviewed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue Kong
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bingqing Zheng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Zhao
- Department of traditional Chinese medicine, Shandong Traditional Chinese Medicine College, YanTai, China
| | - Mingzhe Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chang Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Mak ML, Reid KT, Crome SQ. Protective and pathogenic functions of innate lymphoid cells in transplantation. Clin Exp Immunol 2023; 213:23-39. [PMID: 37119279 PMCID: PMC10324558 DOI: 10.1093/cei/uxad050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a family of lymphocytes with essential roles in tissue homeostasis and immunity. Along with other tissue-resident immune populations, distinct subsets of ILCs have important roles in either promoting or inhibiting immune tolerance in a variety of contexts, including cancer and autoimmunity. In solid organ and hematopoietic stem cell transplantation, both donor and recipient-derived ILCs could contribute to immune tolerance or rejection, yet understanding of protective or pathogenic functions are only beginning to emerge. In addition to roles in directing or regulating immune responses, ILCs interface with parenchymal cells to support tissue homeostasis and even regeneration. Whether specific ILCs are tissue-protective or enhance ischemia reperfusion injury or fibrosis is of particular interest to the field of transplantation, beyond any roles in limiting or promoting allograft rejection or graft-versus host disease. Within this review, we discuss the current understanding of ILCs functions in promoting immune tolerance and tissue repair at homeostasis and in the context of transplantation and highlight where targeting or harnessing ILCs could have applications in novel transplant therapies.
Collapse
Affiliation(s)
- Martin L Mak
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Kyle T Reid
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| |
Collapse
|
9
|
Guo Y, Liu Y, Rui B, Lei Z, Ning X, Liu Y, Li M. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front Immunol 2023; 14:1171680. [PMID: 37304260 PMCID: PMC10249960 DOI: 10.3389/fimmu.2023.1171680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
The human gastrointestinal mucosa is colonized by thousands of microorganisms, which participate in a variety of physiological functions. Intestinal dysbiosis is closely associated with the pathogenesis of several human diseases. Innate lymphoid cells (ILCs), which include NK cells, ILC1s, ILC2s, ILC3s and LTi cells, are a type of innate immune cells. They are enriched in the mucosal tissues of the body, and have recently received extensive attention. The gut microbiota and its metabolites play important roles in various intestinal mucosal diseases, such as inflammatory bowel disease (IBD), allergic disease, and cancer. Therefore, studies on ILCs and their interaction with the gut microbiota have great clinical significance owing to their potential for identifying pharmacotherapy targets for multiple related diseases. This review expounds on the progress in research on ILCs differentiation and development, the biological functions of the intestinal microbiota, and its interaction with ILCs in disease conditions in order to provide novel ideas for disease treatment in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Li
- *Correspondence: Yinhui Liu, ; Ming Li,
| |
Collapse
|
10
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
11
|
Tamasauskiene L, Sitkauskiene B. Systemic and local cytokine profile and risk factors for persistent allergic airway inflammation in patients sensitised to house dust mite allergens. BMC Pulm Med 2021; 21:424. [PMID: 34930201 PMCID: PMC8690867 DOI: 10.1186/s12890-021-01798-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Objective To evaluate cytokine profile, vitamin D status, symptom score and quality of life in patients with persistent allergic airway diseases sensitised to house dust mites (HDM) in comparison with healthy individuals. Material and methods Patients sensitized to HDM with persistent AR and having symptoms for at least 2 years with or without AA were involved into the study. Measurements of vitamin D level in serum and IL-10, IL-13, IL-17, IL-22, IL-33 and IFN-gamma in serum and nasal lavage were performed by ELISA. Results Eighty-one subjects were involved into the study. Serum IL-10 concentration was higher in patients with AR than in patients with AR and AA (6.71 ± 1.73 vs. 1.98 ± 0.24, p < 0.05). IFN-gamma level in nasal lavage was higher in patients with AR and AA than in patients with AR (p < 0.01) and healthy individuals (p < 0.05) (7.50 ± 0.37 vs. 6.80 ± 0.99 vs. 6.50 ± 0.22). Serum IL-22 negatively correlated with IL-22 in nasal lavage, whereas serum IFN-gamma positively correlated with IFN-gamma in nasal lavage. Positive correlation between serum IL-17 and total IgE and negative correlation between IL-17 in nasal lavage and eosinophils in nasal smear were found in patients with AR and AA. Serum IFN-gamma decreased the risk of AR for healthy individuals. Serum IL-10 and vitamin D decreased risk for development of AA for patients with AR. IL-22 in serum and IL-10 and IL-33 in nasal lavage increased this risk. Conclusion Novel cytokines such as IL-22, IL-17 and IL-33 and vitamin D may be involved in pathogenesis of persistent airway inflammation in patients sensitized to HDM.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, Lithuania. .,Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009, Kaunas, Lithuania.
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas, Lithuania
| |
Collapse
|
12
|
Duan Z, Liu M, Yuan L, Du X, Wu M, Yang Y, Wang L, Zhou K, Yang M, Zou Y, Xiang Y, Qu X, Liu H, Qin X, Liu C. Innate lymphoid cells are double-edged swords under the mucosal barrier. J Cell Mol Med 2021; 25:8579-8587. [PMID: 34378306 PMCID: PMC8435454 DOI: 10.1111/jcmm.16856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022] Open
Abstract
As the direct contacting site for pathogens and allergens, the mucosal barrier plays a vital role in the lungs and intestines. Innate lymphoid cells (ILCs) are particularly resident in the mucosal barrier and participate in several pathophysiological processes, such as maintaining or disrupting barrier integrity, preventing various pathogenic invasions. In the pulmonary mucosae, ILCs sometimes aggravate inflammation and mucus hypersecretion but restore airway epithelial integrity and maintain lung tissue homeostasis at other times. In the intestinal mucosae, ILCs can increase epithelial permeability, leading to severe intestinal inflammation on the one hand, and assist mucosal barrier in resisting bacterial invasion on the other hand. In this review, we will illustrate the positive and negative roles of ILCs in mucosal barrier immunity.
Collapse
Affiliation(s)
- Zhen Duan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Mandie Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Mengping Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,China-Africa Infectious Diseases Research Center, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
13
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
The Anti-Inflammatory Effect of Aptamin C on House Dust Mite Extract-Induced Inflammation in Keratinocytes via Regulation of IL-22 and GDNF Production. Antioxidants (Basel) 2021; 10:antiox10060945. [PMID: 34208021 PMCID: PMC8230602 DOI: 10.3390/antiox10060945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease, is characterized by eczemous lesions on the skin that manifest as severe itching and last a long time. AD is thought to be a response to local allergens, including house dust mites (HDMs). Aptamin C is a modified form of vitamin C comprised of aptamers (DNA fragments) that bind specifically to vitamin C and inhibit its oxidation, thereby increasing its stability and antioxidant effects. It is already known that vitamin C shows an anti-inflammatory effect on skin inflammation. Oxidative stress is one of the major causes of inflammatory diseases, including HDM-induced skin inflammation, suggesting that the antioxidant activity of Aptamin C could regulate inflammatory responses to HDMs in the skin keratinocyte cell line HaCaT and primary skin keratinocytes. Aptamin C not only inhibited HDM-induced proliferation of both type of cells, but suppressed HDM-induced increases in interleukin (IL)-1α and IL-6 production by these cells. In addition, Aptamin C suppressed the production of IL-17 and IL-22 by T cells, which are closely associated with AD pathogenesis, as well as HDM-induced IL-22Rα expression. Aptamin C also reduced the production of thymus and activation-regulated chemokine (TARC) by suppressing the interaction between IL-22 and IL-22Rα, as well as reducing T cell migration. Although HDM treatment markedly increased the expression of glial cell line-derived neurotrophic factor (GDNF), which is associated with itching in AD skin lesions, this increase was reduced by Aptamin C treatment. Taken together, these results suggest that Aptamin C can effectively regulate inflammatory lesions, such as AD, by regulating the production of inflammatory cytokines and GDNF induced by HDM.
Collapse
|
15
|
Hossein-Khannazer N, Zian Z, Bakkach J, Kamali AN, Hosseinzadeh R, Anka AU, Yazdani R, Azizi G. Features and roles of T helper 22 cells in immunological diseases and malignancies. Scand J Immunol 2021; 93:e13030. [PMID: 33576072 DOI: 10.1111/sji.13030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
T helper 22 (Th22) cell populations are a newly identified subset of CD4+ T cells that primarily mediate biological effects on the epithelial barrier through interleukin (IL)-22. Although, new studies showed that both Th22 and IL-22 are closely associated with the pathogenesis of inflammatory, autoimmune and allergic disease as well as malignancies. In this review, we aim to describe the development and characteristics of Th22 cells as well as their roles in the immunopathogenesis of immune-related disorders and cancer.
Collapse
Affiliation(s)
- Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Joaira Bakkach
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co, Alborz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
16
|
The diverse roles of myeloid derived suppressor cells in mucosal immunity. Cell Immunol 2021; 365:104361. [PMID: 33984533 DOI: 10.1016/j.cellimm.2021.104361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The mucosal immune system plays a vital role in protecting the host from the external environment. Its major challenge is to balance immune responses against harmful and harmless agents and serve as a 'homeostatic gate keeper'. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of undifferentiated cells that are characterized by an immunoregulatory and immunosuppressive phenotype. Herein we postulate that MDSCs may be involved in shaping immune responses related to mucosal immunity, due to their immunomodulatory and tissue remodeling functions. Until recently, MDSCs were investigated mainly in cancerous diseases, where they induce and contribute to an immunosuppressive and inflammatory environment that favors tumor development. However, it is now becoming clear that MDSCs participate in non-cancerous conditions such as chronic infections, autoimmune diseases, pregnancy, aging processes and immune tolerance to commensal microbiota at mucosal sites. Since MDSCs are found in the periphery only in small numbers under normal conditions, their role is highlighted during pathologies characterized by acute or chronic inflammation, when they accumulate and become activated. In this review, we describe several aspects of the current knowledge characterizing MDSCs and their involvement in the regulation of the mucosal epithelial barrier, their crosstalk with commensal microbiota and pathogenic microorganisms, and their complex interactions with a variety of surrounding regulatory and effector immune cells. Finally, we discuss the beneficial and harmful outcomes of the MDSC regulatory functions in diseases affecting mucosal tissues. We wish to illuminate the pivotal role of MDSCs in mucosal immunity, the limitations in our understanding of all the players and the intricate challenges stemming from the complex interactions of MDSCs with their environment.
Collapse
|
17
|
Xu Y, Bi M, Tan KS, Mi J, Hong H. Biologics in Treatment for Chronic Rhinosinusitis with Comorbid Asthma. CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-021-00282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Yang D, Guo X, Huang T, Liu C. The Role of Group 3 Innate Lymphoid Cells in Lung Infection and Immunity. Front Cell Infect Microbiol 2021; 11:586471. [PMID: 33718260 PMCID: PMC7947361 DOI: 10.3389/fcimb.2021.586471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
The lung is constantly exposed to environmental particulates such as aeroallergens, pollutants, or microorganisms and is protected by a poised immune response. Innate lymphoid cells (ILCs) are a population of immune cells found in a variety of tissue sites, particularly barrier surfaces such as the lung and the intestine. ILCs play a crucial role in the innate immune system, and they are involved in the maintenance of mucosal homeostasis, inflammation regulation, tissue remodeling, and pathogen clearance. In recent years, group 3 innate lymphoid cells (ILC3s) have emerged as key mediators of mucosal protection and repair during infection, mainly through IL-17 and IL-22 production. Although research on ILC3s has become focused on the intestinal immunity, the biology and function of pulmonary ILC3s in the pathogenesis of respiratory infections and in the development of chronic pulmonary inflammatory diseases remain elusive. In this review, we will mainly discuss how pulmonary ILC3s act on protection against pathogen challenge and pulmonary inflammation, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Dan Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Xinning Guo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Tingxuan Huang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Tamasauskiene L, Gintauskiene VM, Bastyte D, Sitkauskiene B. Role of IL-22 in persistent allergic airway diseases caused by house dust mite: a pilot study. BMC Pulm Med 2021; 21:36. [PMID: 33478443 PMCID: PMC7819229 DOI: 10.1186/s12890-021-01410-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Persistent allergic airway diseases cause a great burden worldwide. Their pathogenesis is not clear enough. There is evidence that one of the recently described cytokine interleukin (IL) 22 may be involved in the pathogenesis of these diseases. Scientists argue if this cytokine acts as proinflammatory or anti-inflammatory agent. The aim of this study was to investigate IL-22 level in patients with persistent allergic airway diseases caused by house dust mite (HDM) in comparison with healthy individuals and to evaluate its relationship with IL-13 and IL-10 level, symptoms score and quality of life. METHODS Patients with persistent allergic rhinitis caused by HDM and having symptoms for at least 2 years with or without allergic asthma were involved into the study. Measurements of IL-22, IL-13 and IL-10 and in serum and nasal lavage was performed by ELISA. Questionnaires assessing symptoms severity and quality of life were used. RESULTS A tendency was observed that IL-22 in serum and nasal lavage was higher in patients with allergic airway diseases compared to control group (14.86 pg/ml vs. 7.04 pg/ml and 2.67 pg/ml vs. 1.28 pg/ml, respectively). Positive statistically significant correlation was estimated between serum IL-22 and serum IL-10 (rs = 0.57, p < 0.01) and IL-13 (rs = 0.44, p < 0.05) level. Moreover, positive significant correlation was found between IL-22 in nasal lavage and IL-10 in nasal lavage (rs = 0.37, p < 0.05). There was a negative statistically significant correlation between serum IL-22 and Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) (rs = - 0.42, p < 0.05). CONCLUSION Our study showed a possible anti-inflammatory effect of IL-22 in patients with persistent allergic airway diseases caused by HDM.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| | - Vilte Marija Gintauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| | - Daina Bastyte
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50009 Kaunas, Lithuania
| |
Collapse
|
20
|
Zhou L, Zheng T, Zhu Z. Generation and Characterization of Inducible Lung and Skin-Specific IL-22 Transgenic Mice. Methods Mol Biol 2021; 2223:115-132. [PMID: 33226591 DOI: 10.1007/978-1-0716-1001-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
IL-22 is an IL-10 family cytokine that is increased in asthma and atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of allergic lung inflammation and AD in vivo has yet to be elucidated. We aimed to develop mouse models of allergic diseases in the lung and skin with inducible and tissue-specific expression of IL-22, using a tetracycline (Tet)-controlled system. In this chapter, we describe a series of protocols we have developed to generate a construct that contains the TRE-Tight promoter and mouse IL-22 cDNA based on this system. Furthermore, we describe how to generate TRE-Tight-IL-22 mice through pronuclear microinjection. In our approach, two Tet-on (CC10-rtTA or SPC-rtTA) and a Tet-off (K5-tTA) transgenic mouse lines are selected to crossbreed with TRE-Tight-IL-22 mice to generate inducible tissue-specific transgenic lines. The transgenic strains, CC10-rtTA/TRE-Tight-IL-22 (CC10-rtTA-IL-22) or SPC-rtTA/TRE-Tight-IL-22 (SPC-rtTA-IL-22) mice, do not produce detectable levels of IL-22 in their bronchoalveolar lavage (BAL) samples in the absence of doxycycline (Dox). However, oral Dox treatment of these mice induces IL-22 expression in the BAL, and the airway and lung epithelial cells. For K5-tTA/TRE-Tight-IL-22 (K5-tTA-IL-22) mice, to avoid potential IL-22 toxicity to mouse embryos, Dox is given starting at the time of breeding to suppress tTA and to keep the IL-22 transgene off until the K5-tTA-IL-22 mice are 6 weeks old. Experiments are then initiated by withdrawing Dox from the drinking water. In all cases, IL-22 protein can be detected by immunohistochemistry in the skin of Tg(+) animals, but not in the skin of Tg(-) animals. Utilizing transgenic technology based on the Tetracycline-controlled system, we have established inducible transgenic mouse models in which cytokine IL-22 can be expressed specifically in the lung or skin. These models are valuable for studies in vivo in a broad range of diseases involving IL-22 and will provide a new platform for research and for seeking novel therapeutics in the fields of inflammation, asthma, and allergic dermatitis.
Collapse
Affiliation(s)
- Li Zhou
- Animal Bio-Safety Level III Laboratory, State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, China
| | - Tao Zheng
- Department of Molecular Microbiology and Immunology and Department of Pediatrics, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Zhou Zhu
- Department of Molecular Microbiology and Immunology and Department of Pediatrics, Brown University Warren Alpert Medical School, Providence, RI, USA.
| |
Collapse
|
21
|
Moore EM, Maestas DR, Comeau HY, Elisseeff JH. The Immune System and Its Contribution to Variability in Regenerative Medicine. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:39-47. [PMID: 32635878 DOI: 10.1089/ten.teb.2019.0335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The immune system plays a critical role in directing tissue repair and regeneration outcomes. Tissue engineering technologies that are designed to promote new tissue growth will therefore be impacted by immune factors that are present in patients both locally at the site of intervention and systemically. The immune state of patients can be influenced by many factors, including infection, nutrition, and other disease comorbidities. As a result, the immune state is highly variable and may be a source of variability in tissue-engineered products in the clinic, which is not found in preclinical models. In this review, we will summarize key immune cells and evidence of their activity in tissue repair and potential in tissue engineering systems. We also discuss how clinical translation of tissue engineering strategies, in particular stem cells, helped elucidate the importance of the immune system. With increased understanding of the immune system's role in repair and tissue engineering systems, it will likely become a therapeutic target and component of future therapies.
Collapse
Affiliation(s)
- Erika M Moore
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hannah Y Comeau
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Abstract
Although, as the major organ of gas exchange, the lung is considered a nonlymphoid organ, an interconnected network of lung-resident innate cells, including epithelial cells, dendritic cells, macrophages, and natural killer cells is crucial for its protection. These cells provide defense against a daily assault by airborne bacteria, viruses, and fungi, as well as prevent the development of cancer, allergy, and the outgrowth of commensals. Our understanding of this innate immune environment has recently changed with the discovery of a family of innate lymphoid cells (ILCs): ILC1s, ILC2s, and ILC3s. All lack adaptive antigen receptors but can provide a substantial and rapid source of IFN-γ, IL-5 and IL-13, and IL-17A or IL-22, respectively. Their ability to afford immediate protection to the lung and to influence subsequent adaptive immune responses highlights the importance of understanding ILC-regulated immunity for the design of future therapeutic interventions.
Collapse
Affiliation(s)
- Jillian L Barlow
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge University, Cambridgeshire CB2 0QH, United Kingdom;
| |
Collapse
|
23
|
Kumar V. Innate lymphoid cell and adaptive immune cell cross-talk: A talk meant not to forget. J Leukoc Biol 2020; 108:397-417. [PMID: 32557732 DOI: 10.1002/jlb.4mir0420-500rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a relatively new class of innate immune cells with phenotypical characters of lymphocytes but genotypically or functionally behave as typical innate immune cells. They have been classically divided into 3 groups (group 1 ILCs or ILC1s, group 2 ILCs or ILC2s, and group 3 ILCs or ILC3s). They serve as the first line of defense against invading pathogens and allergens at mucosal surfaces. The adaptive immune response works effectively in association with innate immunity as innate immune cells serve as APCs to directly stimulate the adaptive immune cells (various sets of T and B cells). Additionally, innate immune cells also secrete various effector molecules, including cytokines or chemokines impacting the function, differentiation, proliferation, and reprogramming among adaptive immune cells to maintain immune homeostasis. Only superantigens do not require their processing by innate immune cells as they are recognized directly by T cells and B cells. Thus, a major emphasis of the current article is to describe the cross-talk between different ILCs and adaptive immune cells during different conditions varying from normal physiological situations to different infectious diseases to allergic asthma.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Tanaka S, Gauthier JM, Fuchs A, Li W, Tong AY, Harrison MS, Higashikubo R, Terada Y, Hachem RR, Ruiz-Perez D, Ritter JH, Cella M, Colonna M, Turnbull IR, Krupnick AS, Gelman AE, Kreisel D. IL-22 is required for the induction of bronchus-associated lymphoid tissue in tolerant lung allografts. Am J Transplant 2020; 20:1251-1261. [PMID: 31721409 PMCID: PMC7183893 DOI: 10.1111/ajt.15701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 01/25/2023]
Abstract
Long-term survival after lung transplantation remains profoundly limited by graft rejection. Recent work has shown that bronchus-associated lymphoid tissue (BALT), characterized by the development of peripheral nodal addressin (PNAd)-expressing high endothelial venules and enriched in B and Foxp3+ T cells, is important for the maintenance of allograft tolerance. Mechanisms underlying BALT induction in tolerant pulmonary allografts, however, remain poorly understood. Here, we show that the development of PNAd-expressing high endothelial venules within intragraft lymphoid follicles and the recruitment of B cells, but not Foxp3+ cells depends on IL-22. We identify graft-infiltrating gamma-delta (γδ) T cells and Type 3 innate lymphoid cells (ILC3s) as important producers of IL-22. Reconstitution of IL-22 at late time points through retransplantation into wildtype hosts mediates B cell recruitment into lymphoid follicles within the allograft, resulting in a significant increase in their size, but does not induce PNAd expression. Our work has identified cellular and molecular requirements for the induction of BALT in pulmonary allografts during tolerance induction and may provide a platform for the development of new therapies for lung transplant patients.
Collapse
Affiliation(s)
- Satona Tanaka
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Jason M. Gauthier
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Anja Fuchs
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University, Saint Louis, Missouri
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Alice Y. Tong
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - M. Shea Harrison
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Ryuji Higashikubo
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Yuriko Terada
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Ramsey R. Hachem
- Department of Medicine, Washington University, Saint Louis, Missouri
| | - Daniel Ruiz-Perez
- Department of Pathology & Immunology, Washington University, Saint Louis, Missouri
| | - Jon H. Ritter
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Marina Cella
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Marco Colonna
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Isaiah R. Turnbull
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University, Saint Louis, Missouri
| | - Alexander S. Krupnick
- Division of Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia
| | - Andrew E. Gelman
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
25
|
Xuan X, Zhou J, Tian Z, Lin Y, Song J, Ruan Z, Ni B, Zhao H, Yang W. ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling. Clin Transl Oncol 2020; 22:563-575. [PMID: 31203574 DOI: 10.1007/s12094-019-02160-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Type 3 innate lymphocytes (ILC3s) are reported to be involved in lung cancer, possibly by producing interleukin-22 (IL-22). However, whether ILC3s and their secreted IL-22 molecules contribute to the pathogenesis of pancreatic cancer (PC) remains unclear. To this end, in this study, we investigated the effects and possible mechanisms of ILC3s on PC pathogenesis. METHOD The IL-22 and IL-2i2R levels and the ILC3s' frequency in cancer tissues from PC patients and in peripheral blood from PC patients and healthy controls were analyzed by flow cytometry, immunochemistry, or immunofluorescence. The effects of IL-22-induced AKT signaling on the proliferation, invasion, and migration of PC cells were examined by co-culturing PC cell lines with ILC3s isolated from PC tissues, with or without the addition of neutralizing IL-22 antibody, IL-22R antibody or AKT inhibitor. RESULTS Our results showed that IL-22 and ILC3s were significantly upregulated in the PBMCs and cancer tissues of PC patients, and the IL-22R level was increased in PC cells. The increased frequency of ILC3s was positively correlated with the clinical features of PC patients. Co-culture experiments indicated that ILC3s promoted the proliferation, invasion, and migration of PC cell lines by secreting IL-22 to activate AKT signaling because IL-22/IL-22R or AKT blockage markedly counteracted such effects on PC cells. CONCLUSION Our data demonstrated that ILC3s may promote PC pathogenesis through IL-22/IL-22R-AKT signaling, suggesting a potential intervention target for PC treatment in the future.
Collapse
Affiliation(s)
- X Xuan
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
- Department of Kidney, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China
| | - J Zhou
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Z Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Y Lin
- Bellevue Christian High School, 1601 98th Ave NE, Bellevue, WA, 98004, USA
| | - J Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX, 77843, USA
| | - Z Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - B Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - H Zhao
- Department of Kidney, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan Street, District Shapingba, Chongqing, 400038, China.
| | - W Yang
- Department of Dermatology, The 181th Hospital of PLA, No. 1 Xinqiaoyuan Road, Guilin, 541002, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
26
|
Tamasauskiene L, Sitkauskiene B. Interleukin-22 in Allergic Airway Diseases: A Systematic Review. J Interferon Cytokine Res 2020; 40:125-130. [PMID: 31895598 DOI: 10.1089/jir.2019.0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The immune system plays an important role in the pathogenesis of many disorders, including allergic airway diseases. There are studies suggesting that interleukin (IL)-22 can be important in the development of these diseases. However, it is not known if this cytokine acts as proinflammatory or anti-inflammatory agent. This systematic review aimed to analyze level and role of IL-22 in patients with allergic airway diseases in comparison with healthy individuals. Systematic review included only observational studies with patients having allergic rhinitis and/or allergic asthma. The primary outcome measure was IL-22 level in patients with allergic asthma and/or allergic rhinitis. A total of 95 articles were found. Overall, 6 articles were included in systematic review. Five of these studies showed that IL-22 was increased in patients with allergic airway diseases compared with control group. Majority of studies revealed relation between IL-22 level and severity of allergic asthma and allergic rhinitis. Some studies showed positive relation between IL-22 level and total immunoglobulin E (IgE), specific IgE, and eosinophil count in nasal mucosa. IL-22 level is increased in children and adults with allergic airway diseases and is likely to be associated with proinflammatory features.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
27
|
Yang H, Han L, Zhou Y, Ding J, Cai Y, Hong R, Hao Y, Zhu D, Shen X, Guan Y. Lower serum interleukin-22 and interleukin-35 levels are associated with disease status in neuromyelitis optica spectrum disorders. CNS Neurosci Ther 2020; 26:251-259. [PMID: 31342670 PMCID: PMC6978267 DOI: 10.1111/cns.13198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS The exact pathogenesis of neuromyelitis optica spectrum disorder (NMOSD) remains unclear. A variety of cytokines are involved, but few studies have been performed to explore the novel roles of interleukin-22 (IL-22) and interleukin-35 (IL-35) in NMOSD. Therefore, this study was designed to investigate serum levels of IL-22 and IL-35, and their correlations with clinical and laboratory characteristics in NMOSD. METHODS We performed a cross-section study, 18 patients with acute NMOSD, 23 patients with remission NMOSD, and 36 healthy controls were consecutively enrolled. Serum levels of IL-22 and IL-35 were measured by enzyme-linked immunosorbent assay (ELISA). The correlations between serum IL-22 and IL-35 levels and clinical and laboratory characteristics were evaluated by Spearman's rank or Pearson's correlation coefficient. RESULTS The serum levels of IL-22 and IL-35 were significantly lower in patients with acute NMOSD and remission NMOSD than in healthy controls (IL-22: 76.96 ± 13.62 pg/mL, 87.30 ± 12.79 pg/mL, and 94.02 ± 8.52 pg/mL, respectively, P < .0001; IL-35: 45.52 ± 7.04 pg/mL, 57.07 ± 7.68 pg/mL, and 60.05 ± 20.181 pg/mL, respectively, P < .0001). Serum levels of IL-35 were negatively correlated with EDSS scores and cerebrospinal fluid protein levels (r = -.5438, P = .0002 and r = -.3523, P = .0258, respectively) in all patients. CONCLUSIONS Lower serum levels of IL-22 and IL-35 are associated with disease status in NMOSD. Additionally, lower serum levels of IL-35 are associated with disease severity in NMOSD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Neurology, The First Rehabilitation Hospital of Shanghai, School of MedicineTong Ji UniversityShanghaiChina
| | - Lu Han
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yun‐Jia Zhou
- Department of Neurology, The First Rehabilitation Hospital of Shanghai, School of MedicineTong Ji UniversityShanghaiChina
| | - Jie Ding
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yu Cai
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Rong‐Hua Hong
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yong Hao
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - De‐Sheng Zhu
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xia‐Feng Shen
- Department of Neurology, The First Rehabilitation Hospital of Shanghai, School of MedicineTong Ji UniversityShanghaiChina
| | - Yang‐Tai Guan
- Department of Neurology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
28
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
29
|
Borger JG, Lau M, Hibbs ML. The Influence of Innate Lymphoid Cells and Unconventional T Cells in Chronic Inflammatory Lung Disease. Front Immunol 2019; 10:1597. [PMID: 31354734 PMCID: PMC6637857 DOI: 10.3389/fimmu.2019.01597] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
The lungs are continuously subjected to environmental insults making them susceptible to infection and injury. They are protected by the respiratory epithelium, which not only serves as a physical barrier but also a reactive one that can release cytokines, chemokines, and other defense proteins in response to danger signals, and can undergo conversion to protective mucus-producing goblet cells. The lungs are also guarded by a complex network of highly specialized immune cells and their mediators to support tissue homeostasis and resolve integrity deviation. This review focuses on specialized innate-like lymphocytes present in the lung that act as key sensors of lung insults and direct the pulmonary immune response. Included amongst these tissue-resident lymphocytes are innate lymphoid cells (ILCs), which are classified into five distinct subsets (natural killer, ILC1, ILC2, ILC3, lymphoid tissue-inducer cells), and unconventional T cells including natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ-T cells. While ILCs and unconventional T cells together comprise only a small proportion of the total immune cells in the lung, they have been found to promote lung homeostasis and are emerging as contributors to a variety of chronic lung diseases including pulmonary fibrosis, allergic airway inflammation, and chronic obstructive pulmonary disease (COPD). A particularly intriguing trait of ILCs that has recently emerged is their plasticity and ability to alter their gene expression profiles and adapt their function in response to environmental cues. The malleable nature of these cells may aid in rapid responses to pathogen but may also have downstream pathological consequences. The role of ILC2s in Th2 allergic airway responses is becoming apparent but the contribution of other ILCs and unconventional T cells during chronic lung inflammation is poorly described. This review presents an overview of our current understanding of the involvement of ILCs and unconventional T cells in chronic pulmonary diseases.
Collapse
Affiliation(s)
- Jessica G Borger
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Maverick Lau
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, Lung Health Research Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Kandikattu HK, Upparahalli Venkateshaiah S, Mishra A. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev 2019; 47:83-98. [PMID: 31126874 PMCID: PMC6781864 DOI: 10.1016/j.cytogfr.2019.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Eosinophils are circulating granulocytes that have pleiotropic effects in response to inflammatory signals in the body. In response to allergens or pathogens, exposure eosinophils are recruited in various organs that execute pathological immune responses. IL-5 plays a key role in the differentiation, development, and survival of eosinophils. Eosinophils are involved in a variety of allergic diseases including asthma, dermatitis and various gastrointestinal disorders (EGID). IL-5 signal transduction involves JAK-STAT-p38MAPK-NFκB activation and executes extracellular matrix remodeling, EMT transition and immune responses in allergic diseases. IL-18 is a classical cytokine also involved in immune responses and has a critical role in inflammasome pathway. We recently identified the IL-18 role in the generation, transformation, and maturation of (CD101+CD274+) pathogenic eosinophils. In, addition, several other cytokines like IL-2, IL-4, IL-13, IL-21, and IL-33 also contribute in advancing eosinophils associated immune responses in innate and adaptive immunity. This review discusses with a major focus (1) Eosinophils and its constituents, (2) Role of IL-5 and IL-18 in eosinophils development, transformation, maturation, signal transduction of IL-5 and IL-18, (3) The role of eosinophils in allergic disorders and (4) The role of several other associated cytokines in promoting eosinophils mediated allergic diseases.
Collapse
Affiliation(s)
- Hemanth Kumar Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States.
| |
Collapse
|
31
|
Hildreth AD, O'Sullivan TE. Tissue-Resident Innate and Innate-Like Lymphocyte Responses to Viral Infection. Viruses 2019; 11:v11030272. [PMID: 30893756 PMCID: PMC6466361 DOI: 10.3390/v11030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Recent discoveries have demonstrated that tissue-resident lymphocyte subsets, comprised of innate lymphoid cells (ILCs) and unconventional T cells, have vital roles in the initiation of primary antiviral responses. Via direct and indirect mechanisms, ILCs and unconventional T cell subsets play a critical role in the ability of the immune system to mount an effective antiviral response through potent early cytokine production. In this review, we will summarize the current knowledge of tissue-resident lymphocytes during initial viral infection and evaluate their redundant or nonredundant contributions to host protection or virus-induced pathology.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
32
|
Tait Wojno ED, Beamer CA. Isolation and Identification of Innate Lymphoid Cells (ILCs) for Immunotoxicity Testing. Methods Mol Biol 2019; 1803:353-370. [PMID: 29882149 DOI: 10.1007/978-1-4939-8549-4_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Innate lymphoid cells (ILCs) comprise a family of innate immune cells that orchestrate mucosal immune responses: initiating, sustaining, and even curbing immune responses. ILCs are relatively rare (≤1% of lymphocytes in mucosal tissues), lack classical cell-surface markers, and can be divided into three subsets (type 1-3 ILCs) based on differences in cytokine production, phenotype, and developmental pathway. Because ILCs can only be identified by combinations of cell-surface markers and cytokine production, multicolor flow cytometry is the most reliable method to purify, characterize, and assess the functionality of ILCs. Here, we describe the methods for cell preparation, flow cytometric analysis, and purification of murine ILCs from the lung.
Collapse
Affiliation(s)
- Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Celine A Beamer
- Department of Biomedical and Pharmaceutical Sciences, Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, MT, USA.
| |
Collapse
|
33
|
Leyva-Castillo JM, Yoon J, Geha RS. IL-22 promotes allergic airway inflammation in epicutaneously sensitized mice. J Allergy Clin Immunol 2019; 143:619-630.e7. [PMID: 29920352 PMCID: PMC6298864 DOI: 10.1016/j.jaci.2018.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/09/2018] [Accepted: 05/29/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Serum IL-22 levels are increased in patients with atopic dermatitis, which commonly precedes asthma in the atopic march. Epicutaneous sensitization in mice results in TH2-dominated skin inflammation that mimics atopic dermatitis and sensitizes the airways for antigen challenge-induced allergic inflammation characterized by the presence of both eosinophils and neutrophils. Epicutaneous sensitization results in increased serum levels of IL-22. OBJECTIVE We sought to determine the role of IL-22 in antigen-driven airway allergic inflammation after inhalation challenge in epicutaneously sensitized mice. METHODS Wild-type (WT) and Il22-/- mice were sensitized epicutaneously or immunized intraperitoneally with ovalbumin (OVA) and challenged intranasally with antigen. OVA T-cell receptor-specific T cells were TH22 polarized in vitro. Airway inflammation, mRNA levels in the lungs, and airway hyperresponsiveness (AHR) were examined. RESULTS Epicutaneous sensitization preferentially elicited an IL-22 response compared with intraperitoneal immunization. Intranasal challenge of mice epicutaneously sensitized with OVA elicited in the lungs Il22 mRNA expression, IL-22 production, and accumulation of CD3+CD4+IL-22+ T cells that coexpressed IL-17A and TNF-α. Epicutaneously sensitized Il22-/- mice exhibited diminished eosinophil and neutrophil airway infiltration and decreased AHR after intranasal OVA challenge. Production of IL-13, IL-17A, and TNF-α was normal, but IFN-γ production was increased in lung cells from airway-challenged and epicutaneously sensitized Il22-/- mice. Intranasal instillation of IFN-γ-neutralizing antibody partially reversed the defect in eosinophil recruitment. WT recipients of TH22-polarized WT, but not IL-22-deficient, T-cell receptor OVA-specific T cells, which secrete both IL-17A and TNF-α, had neutrophil-dominated airway inflammation and AHR on intranasal OVA challenge. Intranasal instillation of IL-22 with TNF-α, but not IL-17A, elicited neutrophil-dominated airway inflammation and AHR in WT mice, suggesting that loss of IL-22 synergy with TNF-α contributed to defective recruitment of neutrophils into the airways of Il22-/- mice. TNF-α, but not IL-22, blockade at the time of antigen inhalation challenge inhibited airway inflammation in epicutaneously sensitized mice. CONCLUSION Epicutaneous sensitization promotes generation of antigen-specific IL-22-producing T cells that promote airway inflammation and AHR after antigen challenge, suggesting that IL-22 plays an important role in the atopic march.
Collapse
Affiliation(s)
- Juan Manuel Leyva-Castillo
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Juhan Yoon
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
34
|
Warner K, Ohashi PS. ILC regulation of T cell responses in inflammatory diseases and cancer. Semin Immunol 2019; 41:101284. [DOI: 10.1016/j.smim.2019.101284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 01/04/2023]
|
35
|
Ardain A, Porterfield JZ, Kløverpris HN, Leslie A. Type 3 ILCs in Lung Disease. Front Immunol 2019; 10:92. [PMID: 30761149 PMCID: PMC6361816 DOI: 10.3389/fimmu.2019.00092] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
The lungs represent a complex immune setting, balancing external environmental signals with a poised immune response that must protect from infection, mediate tissue repair, and maintain lung function. Innate lymphoid cells (ILCs) play a central role in tissue repair and homeostasis, and mediate protective immunity in a variety of mucosal tissues, including the lung. All three ILC subsets are present in the airways of both mice and humans; and ILC2s shown to have pivotal roles in asthma, airway hyper-responsiveness, and parasitic worm infection. The involvement of ILC3s in respiratory diseases is less well-defined, but they are known to be critical in homeostasis, infection and inflammation at other mucosal barriers, such as the gut. Moreover, they are important players in the IL17/IL22 axis, which is key to lung health. In this review, we discuss the emerging role of ILC3s in the context of infectious and inflammatory lung diseases, with a focus on data from human subjects.
Collapse
Affiliation(s)
- Amanda Ardain
- Africa Health Research Institute, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Zachary Porterfield
- Africa Health Research Institute, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infection and Immunity, University College London, London, United Kingdom
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
36
|
Ito T, Hirose K, Nakajima H. Bidirectional roles of IL-22 in the pathogenesis of allergic airway inflammation. Allergol Int 2019; 68:4-8. [PMID: 30424940 DOI: 10.1016/j.alit.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Asthma is the most prevalent allergic disease of the airway, which is characterized by eosinophilic inflammation, mucus hyperproduction, and airway hyper-responsiveness. Although these pathognomonic features are mainly mediated by antigen-specific Th2 cells and their cytokines, such as IL-4, IL-5, and IL-13, recent studies have revealed that other inflammatory cells, including Th17 cells and innate lymphoid cells (ILCs), also play a critical role in the pathogenesis of asthma. IL-22, one of the cytokines produced by Th17 cells and type 3 ILCs, has distinct functional properties, as IL-22 exclusively acts on non-hematopoietic cells including epithelial cells of mucosal surface and exhibits a broad range of action in regeneration and host protection. In accordance with the fact that lung epithelial cells play a critical role in the pathogenesis of asthma, we and other groups have shown that IL-22 is involved in the regulation of allergic airway inflammation. In this review, we discuss recent advances in the biology of IL-22 and its involvement in the pathogenesis of allergic airway inflammation.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Rheumatology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
37
|
Kwon KW, Kim SJ, Kim H, Kim WS, Kang SM, Choi E, Ha SJ, Yoon JH, Shin SJ. IL-15 Generates IFN-γ-producing Cells Reciprocally Expressing Lymphoid-Myeloid Markers during Dendritic Cell Differentiation. Int J Biol Sci 2019; 15:464-480. [PMID: 30745835 PMCID: PMC6367559 DOI: 10.7150/ijbs.25743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/02/2018] [Indexed: 11/23/2022] Open
Abstract
Recently, interest in IL-15-differentiated cells has increased; however, the phenotypic definition of IL-15-differentiated bone marrow-derived cells (IL-15-DBMCs) is still under debate, particularly the generation of IFN-γ-producing innate cells such as premature NK (pre-mNK) cells, natural killer dendritic cells (NKDCs), interferon-producing killer dendritic cells (IKDCs), and type 1 innate lymphoid cells (ILC1s), all of which are IL-15-dependent. Here, we revisited the immunophenotypic characteristics of IFN-γ-producing IL-15-DBMCs and their functional role in the control of intracellular Mycobacterium tuberculosis (Mtb) infection. When comparing the cytokine levels between bone marrow-derived dendritic cells (BMDCs) and IL-15-DBMCs upon stimulation with various TLR agonists, only the CD11cint population of IL-15-DBMCs produced significant levels of IFN-γ, decreased levels of MHC-II, and increased levels of B220. Neither BMDCs nor IL-15-DBMCs were found to express DX5 or NK1.1, which are representative markers for the NK cell lineage and IKDCs. When the CD11cintB220+ population of IL-15-DBMCs was enriched, the Thy1.2+Sca-1+ population showed a marked increase in IFN-γ production. In addition, while depletion of the B220+ and Thy1.2+ populations of IL-15-DBMCs, but not the CD19+ population, inhibited IFN-γ production, enrichment of these cell populations increased IFN-γ. Ultimately, co-culture of sorted IFN-γ-producing B220+Thy1.2+ IL-15-DBMCs with Mtb-infected macrophages resulted in control of the intracellular growth of Mtb via the IFN-γ-nitric oxide axis in a donor cell number-dependent manner. Taken together, the results indicate that IFN-γ-producing IL-15-DBMCs could be redefined as CD11cintB220+Thy1.2+Sca-1+ cells, which phenotypically resemble both IKDCs and ILC1s, and may have therapeutic potential for controlling infectious intracellular bacteria such as Mtb.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Myung Kang
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, and Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Hirose K, Ito T, Nakajima H. Roles of IL-22 in allergic airway inflammation in mice and humans. Int Immunol 2018; 30:413-418. [PMID: 29394345 DOI: 10.1093/intimm/dxy010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/28/2018] [Indexed: 12/17/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways that is characterized by eosinophilic inflammation, mucus hypersecretion and airway remodeling that leads to airway obstruction. Although these pathognomonic features of asthma are primarily mediated by allergen-specific T helper type 2 cells (Th2 cells) and their cytokines, recent studies have revealed critical roles of lung epithelial cells in the pathogenesis of asthma. Lung epithelial cells not only form physical barriers by covering the surfaces of the airways but also sense inhaled allergens and initiate communication between the environment and the immune system. The causative involvement of lung epithelium in the pathogenesis of asthma suggests that some molecules that modulate epithelial function have a regulatory role in asthma. IL-22, an IL-10-family cytokine produced by IL-17A-producing T helper cells (Th17 cells), γδ T cells and group 3 innate lymphoid cells (ILC3s), primarily targets epithelial cells and promotes their proliferation. In addition, IL-22 has been shown to induce epithelial production of various molecules that regulate local immune responses. These findings indicate that IL-22 plays crucial roles in the pathogenesis of asthma by regulating epithelial function. Here, we review the current understanding of the molecular and cellular mechanisms underlying IL-22-mediated regulation of airway inflammation in asthma.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Department of Rheumatology, School of Medicine, International University of Health and Welfare, Narita City, Chiba, Japan
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
39
|
Tamasauskiene L, Sitkauskiene B. Role of Th22 and IL-22 in pathogenesis of allergic airway diseases: Pro-inflammatory or anti-inflammatory effect? Pediatr Neonatol 2018; 59:339-344. [PMID: 29292068 DOI: 10.1016/j.pedneo.2017.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/07/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
A new population of T cells known as Th22 was described for the first time in 2009. These cells are usually identified by the production of IL-22. However, this cytokine is also secreted by other cells such as Th1, Th2, Th17, natural killers, and innate lymphoid cells. Th22 is known as a pro-inflammatory agent in allergic skin diseases. Recently, more evidence has emerged showing associations between these cells and other diseases. The role of Th22 in asthma and allergic rhinitis is controversial: some authors suggest that Th22 has a pro-inflammatory effect, while others state that Th22 has anti-inflammatory properties. The aim of this article was to review the role of Th22 and IL-22 in allergic airway diseases based on the most recent literature. This review suggests that Th22 plays a significant role in the pathogenesis of allergic airway diseases and has predominantly anti-inflammatory properties. More studies are needed to clarify the role of Th22 in more detail.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
40
|
Alabbas SY, Begun J, Florin TH, Oancea I. The role of IL-22 in the resolution of sterile and nonsterile inflammation. Clin Transl Immunology 2018; 7:e1017. [PMID: 29713472 PMCID: PMC5905349 DOI: 10.1002/cti2.1017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
In a broad sense, inflammation can be conveniently characterised by two phases: the first phase, which is a pro-inflammatory, has evolved to clear infection and/or injured tissue; and the second phase concerns regeneration of normal tissue and restitution of normal physiology. Innate immune cell-derived pro-inflammatory cytokines and chemokines activate and recruit nonresident immune cells to the site of infection, thereby amplifying the inflammatory responses to clear infection or injury. This phase is followed by a cytokine milieu that promotes tissue regeneration. There is no absolute temporal distinction between these two phases, and cytokines may have dual pleiotropic effects depending on the timing of release, inflammatory microenvironment or concentrations. IL-22 is a cytokine with reported pro- and anti-inflammatory roles; in this review, we contend that this protein has primarily a function in restitution of normal tissue and physiology.
Collapse
Affiliation(s)
- Saleh Y Alabbas
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Jakob Begun
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Timothy H Florin
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Iulia Oancea
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
41
|
O'Konek JJ, Landers JJ, Janczak KW, Goel RR, Mondrusov AM, Wong PT, Baker JR. Nanoemulsion adjuvant-driven redirection of T H2 immunity inhibits allergic reactions in murine models of peanut allergy. J Allergy Clin Immunol 2018; 141:2121-2131. [PMID: 29655584 DOI: 10.1016/j.jaci.2018.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/17/2018] [Accepted: 01/27/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Immunotherapy for food allergies involves progressive increased exposures to food that result in desensitization to food allergens in some subjects but not tolerance to the food. Therefore new approaches to suppress allergic immunity to food are necessary. Previously, we demonstrated that intranasal immunization with a nanoemulsion (NE) adjuvant induces robust mucosal antibody and TH17-polarized immunity, as well as systemic TH1-biased cellular immunity with suppression of pre-existing TH2-biased immunity. OBJECTIVE We hypothesized that immunization with food in conjunction with the nanoemulsion adjuvant could lead to modulation of allergic reactions in food allergy by altering pre-existing allergic immunity and enhancing mucosal immunity. METHODS Mice were sensitized to peanut with aluminum hydroxide or cholera toxin. The animals were then administered 3 monthly intranasal immunizations with peanut in the nanoemulsion adjuvant or saline. Mice were then challenged with peanut to examine allergen reactivity. RESULTS The NE intranasal immunizations resulted in marked decreases in TH2 cytokine, IgG1, and IgE levels, whereas TH1 and mucosal TH17 immune responses were increased. After allergen challenge, these mice showed significant reductions in allergic hypersensitivity. Additionally, the NE immunizations significantly increased antigen-specific IL-10 production and regulatory T-cell counts, and the protection induced by NE was dependent in part on IL-10. Control animals immunized with intranasal peanut in saline had no modulation of their allergic response. CONCLUSIONS NE adjuvant-mediated induction of mucosal TH17 and systemic TH1-biased immunity can suppress TH2-mediated allergy through multiple mechanisms and protect against anaphylaxis. These results suggest the potential therapeutic utility of this approach in the setting of food allergy.
Collapse
Affiliation(s)
- Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| | - Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | | | - Rishi R Goel
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Anna M Mondrusov
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Pamela T Wong
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - James R Baker
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
42
|
Hirose K, Iwata A, Tamachi T, Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev 2018; 278:145-161. [PMID: 28658544 DOI: 10.1111/imr.12540] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic asthma is characterized by eosinophilic airway inflammation, mucus hyperproduction, and airway hyperreactivity, causing reversible airway obstruction. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. However, over the past decade, the understanding of asthma pathogenesis has made a significant shift from a Th2 cell-dependent, IgE-mediated disease to a more complicated heterogeneous disease. Recent studies clearly show that not only Th2 cytokines but also other T cell-related cytokines such as IL-17A and IL-22 as well as epithelial cell cytokines such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are involved in the pathogenesis of asthma. In this review, we focus on the roles of these players beyond Th2 pathways in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
43
|
Saetang J, Sangkhathat S. Role of innate lymphoid cells in obesity and metabolic disease (Review). Mol Med Rep 2018; 17:1403-1412. [PMID: 29138853 PMCID: PMC5780078 DOI: 10.3892/mmr.2017.8038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022] Open
Abstract
The immune system has previously been demonstrated to be associated with the pathophysiological development of metabolic abnormalities. However, the mechanisms linking immunity to metabolic disease remain to be fully elucidated. It has previously been suggested that innate lymphoid cells (ILCs) may be involved in the progression of numerous types of metabolic diseases as these cells act as suppressors and promoters for obesity and associated conditions, and are particularly involved in adipose tissue inflammation, which is a major feature of metabolic imbalance. Group 2 ILCs (ILC2s) have been revealed as anti‑obese immune regulators by secreting anti‑inflammatory cytokines and promoting the polarization of M2 macrophages, whereas group 1 ILCs (ILC1s), including natural killer cells, may promote adipose tissue inflammation via production of interferon‑γ, which in turn polarizes macrophages toward the M1 type. The majority of studies to date have demonstrated the pathological association between ILCs and obesity in the context of adipose tissue inflammation, whereas the roles of ILCs in other organs which participate in obesity development have not been fully characterized. Therefore, identifying the roles of all types of ILCs as central components mediating obesity‑associated inflammation, is of primary concern, and may lead to the discovery of novel preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Jirakrit Saetang
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Surasak Sangkhathat
- Tumor Biology Research Unit, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
44
|
Ito T, Hirose K, Saku A, Kono K, Takatori H, Tamachi T, Goto Y, Renauld JC, Kiyono H, Nakajima H. IL-22 induces Reg3γ and inhibits allergic inflammation in house dust mite-induced asthma models. J Exp Med 2017; 214:3037-3050. [PMID: 28811323 PMCID: PMC5626396 DOI: 10.1084/jem.20162108] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that IL-22, one of the Th17 cell-related cytokines, plays multiple roles in regulating allergic airway inflammation caused by antigen-specific Th2 cells; however, the underlying mechanism remains unclear. Here, we show that allergic airway inflammation and Th2 and Th17 cytokine production upon intratracheal administration of house dust mite (HDM) extract, a representative allergen, were exacerbated in IL-22-deficient mice. We also found that IL-22 induces Reg3γ production from lung epithelial cells through STAT3 activation and that neutralization of Reg3γ significantly exacerbates HDM-induced eosinophilic airway inflammation and Th2 cytokine induction. Moreover, exostatin-like 3 (EXTL3), a functional Reg3γ binding protein, is expressed in lung epithelial cells, and intratracheal administration of recombinant Reg3γ suppresses HDM-induced thymic stromal lymphopoietin and IL-33 expression and accumulation of type 2 innate lymphoid cells in the lung. Collectively, these results suggest that IL-22 induces Reg3γ production from lung epithelial cells and inhibits the development of HDM-induced allergic airway inflammation, possibly by inhibiting cytokine production from lung epithelial cells.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aiko Saku
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenta Kono
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Takatori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiyuki Goto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Hiroshi Kiyono
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
45
|
Głobińska A, Kowalski ML. Innate lymphoid cells: the role in respiratory infections and lung tissue damage. Expert Rev Clin Immunol 2017; 13:991-999. [DOI: 10.1080/1744666x.2017.1366314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna Głobińska
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
46
|
Lee YT, Wu CT, Sun HL, Ko JL, Lue KH. Fungal immunomodulatory protein-fve could modulate airway remodel through by affect IL17 cytokine. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:598-607. [PMID: 28709839 DOI: 10.1016/j.jmii.2017.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Asthma is one of the most common allergic diseases. Our previous studies have reported that FIP-fve in acute allergic mouse model can reduce inflammation, improve the balance of the Th1/Th2 system. However, the effects of reducing airway remodeling on FIP-fve is still unknown. OBJECTIVE We hypothesized that orally administrated FIP-fve should be able to reduce airway remodeling in chronic allergic models. METHODS The chronic asthma animal model was established with 6-8 weeks female Balb/c mice. After intranasal challenges with OVA, the airway inflammation and AHR were determined by a BUXCO system. BALF was analyzed with Liu's stain and ELISA assay. Lung histopathologic changes and Collagen deposition were assayed with H&E, Masson's trichrome and IHC stain. RESULTS FIP-fve significantly decreased the number of infiltrating inflammatory cells and Th2 cytokines and increased Th1 cytokines in BALF and serum compared with the OVA sensitized mice. FIP-fve had a better effect than corticosteroid could reduce infiltrating cells in lung especially neutrophils and eosinophils. We also found that the oral FIP-fve group suppressed IL-17 and enhanced IL-22 in the serum and BALF. In addition, oral FIP-fve decreased MMP9 expression, collagen expression and airway remodeling in lung tissues. CONCLUSION FIP-fve had anti-inflammatory effects on OVA-induced airway inflammation and an effect to inhibited Th17 cells to reduced airway remodeling and collagen expression. Moreover, FIP-fve might be a potential alternative therapy for allergic airway diseases.
Collapse
Affiliation(s)
- Yu-Tzu Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Chia-Ta Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hai-Lun Sun
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ko-Haung Lue
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
47
|
Andersson CK, Adams A, Nagakumar P, Bossley C, Gupta A, De Vries D, Adnan A, Bush A, Saglani S, Lloyd CM. Intraepithelial neutrophils in pediatric severe asthma are associated with better lung function. J Allergy Clin Immunol 2017; 139:1819-1829.e11. [PMID: 27746241 PMCID: PMC5457125 DOI: 10.1016/j.jaci.2016.09.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/04/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Neutrophils and IL-17A have been linked mechanistically in models of allergic airways disease and have been associated with asthma severity. However, their role in pediatric asthma is unknown. OBJECTIVES We sought to investigate the role of neutrophils and the IL-17A pathway in mediating pediatric severe therapy-resistant asthma (STRA). METHODS Children with STRA (n = 51; age, 12.6 years; range, 6-16.3 years) and controls without asthma (n = 15; age, 4.75 years; range, 1.6-16 years) underwent clinically indicated fiberoptic bronchoscopy, bronchoalveolar lavage (BAL), endobronchial brushings, and biopsy. Neutrophils, IL-17A, and IL-17RA-expressing cells and levels of IL-17A and IL-22 were quantified in BAL and biopsies and related to clinical features. Primary bronchial epithelial cells were stimulated with IL-17A and/or IL-22, with and without budesonide. RESULTS Children with STRA had increased intraepithelial neutrophils, which positively correlated with FEV1 %predicted (r = 0.43; P = .008). Neutrophilhigh patients also had better symptom control, despite lower dose maintenance inhaled steroids. Submucosal neutrophils were not increased in children with STRA. Submucosal and epithelial IL-17A-positive cells and BAL IL-17A and IL-22 levels were similar in children with STRA and controls. However, there were significantly more IL-17RA-positive cells in the submucosa and epithelium in children with STRA compared with controls (P = .001). Stimulation of primary bronchial epithelial cells with IL-17A enhanced mRNA expression of IL-17RA and increased release of IL-8, even in the presence of budesonide. CONCLUSIONS A proportion of children with STRA exhibit increased intraepithelial airway neutrophilia that correlated with better lung function. STRA was also characterized by increased airway IL-17RA expression. These data suggest a potential beneficial rather than adverse role for neutrophils in pediatric severe asthma pathophysiology.
Collapse
Affiliation(s)
- Cecilia K Andersson
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Alexandra Adams
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, United Kingdom; Respiratory Paediatrics, the Royal Brompton and Harefield NHS Trust, Sydney Street, London, United Kingdom
| | - Prasad Nagakumar
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, United Kingdom; Respiratory Paediatrics, the Royal Brompton and Harefield NHS Trust, Sydney Street, London, United Kingdom
| | - Cara Bossley
- Respiratory Paediatrics, the Royal Brompton and Harefield NHS Trust, Sydney Street, London, United Kingdom
| | - Atul Gupta
- Respiratory Paediatrics, the Royal Brompton and Harefield NHS Trust, Sydney Street, London, United Kingdom
| | - Daphne De Vries
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Afiqah Adnan
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew Bush
- Respiratory Paediatrics, the Royal Brompton and Harefield NHS Trust, Sydney Street, London, United Kingdom
| | - Sejal Saglani
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, United Kingdom; Respiratory Paediatrics, the Royal Brompton and Harefield NHS Trust, Sydney Street, London, United Kingdom.
| | - Clare M Lloyd
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|
48
|
Wu Z, Hu Z, Cai X, Ren W, Dai F, Liu H, Chang J, Li B. Interleukin 22 attenuated angiotensin II induced acute lung injury through inhibiting the apoptosis of pulmonary microvascular endothelial cells. Sci Rep 2017; 7:2210. [PMID: 28526849 PMCID: PMC5438354 DOI: 10.1038/s41598-017-02056-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/06/2017] [Indexed: 01/30/2023] Open
Abstract
Apoptosis of pulmonary microvascular endothelial cells (PMVECs) was considered to be closely related to the pathogenesis of acute lung injury (ALI). We aim to investigate whether IL-22 plays protective roles in lung injury through inhibiting the apoptosis of PMVECs. ALI model was induced through subcutaneous infusion of angiotensin II (Ang II). Lung injury and infiltration of inflammatory cells were evaluated by determining the PaO2/FiO2, calculation of dry to weight ratio in lung, and immunohistochemisty analysis. Apoptosis of PMVECs was determined using TUNEL assay and flow cytometry, respectively. Immunofluorescence and Western blot analysis were used to determine the expression and localization of STAT3, as well as the nucleus transmission of STAT3 from cytoplasm after IL22 treatment. Pathological findings showed ALI was induced 1 week after AngII infusion. IL22 inhibited the AngII-induced ALI, attenuated the edema in lung and the infiltration of inflammatory cells. Also, it contributed to the apoptosis of PMVECs induced by AngII. Meanwhile, significant increase was noticed in the expression of STAT3, phosphorylation of Y705-STAT3, and migration from cytoplasm to the nucleus after IL-22 treatment (P < 0.05). The activation of STAT3 by IL22 showed significant attenuation after AG490 treatment. Our data indicated that IL22 showed protective effects on lung injury through inhibiting the AngII-induced PMVECs apoptosis and PMVEC barrier injury by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Xin Cai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Wei Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Feifeng Dai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Huagang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Jinxing Chang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| |
Collapse
|
49
|
Thiriou D, Morianos I, Xanthou G, Samitas K. Innate immunity as the orchestrator of allergic airway inflammation and resolution in asthma. Int Immunopharmacol 2017; 48:43-54. [PMID: 28463786 DOI: 10.1016/j.intimp.2017.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/15/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
The respiratory system is constantly in direct contact with the environment and, has therefore, developed strong innate and adaptive immune responses to combat pathogens. Unlike adaptive immunity which is mounted later in the course of the immune response and is naive at the outset, innate immunity provides the first line of defense against microbial agents, while also promoting resolution of inflammation. In the airways, innate immune effector cells mainly consist of eosinophils, neutrophils, mast cells, basophils, macrophages/monocytes, dendritic cells and innate lymphoid cells, which attack pathogens directly or indirectly through the release of inflammatory cytokines and antimicrobial peptides, and coordinate T and B cell-mediated adaptive immunity. Airway epithelial cells are also critically involved in shaping both the innate and adaptive arms of the immune response. Chronic allergic airway inflammation and linked asthmatic disease is often considered a result of aberrant activation of type 2 T helper cells (Th2) towards innocuous environmental allergens; however, innate immune cells are increasingly recognized as key players responsible for the initiation and the perpetuation of allergic responses. Moreover, innate cells participate in immune response regulation through the release of anti-inflammatory mediators, and guide tissue repair and the maintenance of airway homeostasis. The scope of this review is to outline existing knowledge on innate immune responses involved in allergic airway inflammation, highlight current gaps in our understanding of the underlying molecular and cellular mechanisms and discuss the potential use of innate effector cells in new therapeutic avenues.
Collapse
Affiliation(s)
- Despoina Thiriou
- 2(nd) Respiratory Medicine Dept., Athens Chest Hospital "Sotiria", Athens, Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Konstantinos Samitas
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Greece; 7(th) Respiratory Medicine Dept. and Asthma Center, Athens Chest Hospital "Sotiria", Athens, Greece.
| |
Collapse
|
50
|
Ishimori A, Harada N, Chiba A, Harada S, Matsuno K, Makino F, Ito J, Ohta S, Ono J, Atsuta R, Izuhara K, Takahashi K, Miyake S. Circulating activated innate lymphoid cells and mucosal-associated invariant T cells are associated with airflow limitation in patients with asthma. Allergol Int 2017; 66:302-309. [PMID: 27575652 DOI: 10.1016/j.alit.2016.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/20/2016] [Accepted: 07/04/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND A variety of innate subsets of lymphoid cells such as natural killer (NK) cells, several populations of innate lymphoid cells (ILCs), and mucosal-associated invariant T (MAIT) cells as innate-like T lymphocytes are involved in asthma and may have important effector functions in asthmatic immune responses. In the present study, we investigated whether NK cells, ILCs, and MAIT cells in the peripheral blood of patients with asthma would be associated with clinical asthma parameters. METHODS We recruited 75 adult patients with mild to severe asthma. The peripheral blood mononuclear cells in peripheral venous blood samples from the patients were purified and stained with different combinations of appropriate antibodies. The cells were analyzed by flow cytometry. RESULTS The percentage of activated (i.e., CD69+) NK cells in the total NK cell population was negatively correlated with FEV1% which is calculated by the forced expiratory volume in 1 s (FEV1)/the forced vital capacity (FVC). The percentages of CD69+ ILC1s and ILC2s were negatively correlated with FEV1% and %FEV1. The percentage of CD69+ ILC3s was positively correlated with BMI, and the percentage of CD69+ MAIT cells was negatively correlated with FEV1%. Moreover, the percentage of CD69+ NK cells, ILC1s, ILC2s, ILC3s, and MAIT cells were positively correlated with each other. CONCLUSIONS For the first time, our data showed that activated NK cells, ILC1s, ILC2s, ILC3s, and MAIT cells were positively correlated with each other and may be associated with airflow limitation in patients with asthma.
Collapse
Affiliation(s)
- Ayako Ishimori
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | - Asako Chiba
- Department of Immunology, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Sonoko Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Kei Matsuno
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Fumihiko Makino
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Jun Ito
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Shoichiro Ohta
- Department of Laboratory Medicine, Saga Medical School, Saga, Japan
| | - Junya Ono
- Shino-Test Corporation, Kanagawa, Japan
| | - Ryo Atsuta
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|