1
|
Pulli K, Saarimäki-Vire J, Ahonen P, Liu X, Ibrahim H, Chandra V, Santambrogio A, Wang Y, Vaaralahti K, Iivonen AP, Känsäkoski J, Tommiska J, Kemkem Y, Varjosalo M, Vuoristo S, Andoniadou CL, Otonkoski T, Raivio T. A splice site variant in MADD affects hormone expression in pancreatic β cells and pituitary gonadotropes. JCI Insight 2024; 9:e167598. [PMID: 38775154 PMCID: PMC11141940 DOI: 10.1172/jci.insight.167598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of β cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human β cell line EndoC-βH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LβT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic β cells and pituitary gonadotropes.
Collapse
Affiliation(s)
- Kristiina Pulli
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Pekka Ahonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Anna-Pauliina Iivonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Johanna Känsäkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Johanna Tommiska
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Yasmine Kemkem
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Obstetrics and Gynecology; and
- HiLIFE, University of Helsinki, Helsinki, Finland
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| |
Collapse
|
2
|
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Scalez DCB, Nascimento AV, Santos DJA, Stefani G, Carvalho IS, Sandoval AF, Brito LF. Genetic parameters and genome-wide association studies for mozzarella and milk production traits, lactation length, and lactation persistency in Murrah buffaloes. J Dairy Sci 2024; 107:992-1021. [PMID: 37730179 DOI: 10.3168/jds.2023-23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Genetic and genomic analyses of longitudinal traits related to milk production efficiency are paramount for optimizing water buffaloes breeding schemes. Therefore, this study aimed to (1) compare single-trait random regression models under a single-step genomic BLUP setting based on alternative covariance functions (i.e., Wood, Wilmink, and Ali and Schaeffer) to describe milk (MY), fat (FY), protein (PY), and mozzarella (MZY) yields, fat-to-protein ratio (FPR), somatic cell score (SCS), lactation length (LL), and lactation persistency (LP) in Murrah dairy buffaloes (Bubalus bubalis); (2) combine the best functions for each trait under a multiple-trait framework; (3) estimate time-dependent SNP effects for all the studied longitudinal traits; and (4) identify the most likely candidate genes associated with the traits. A total of 323,140 test-day records from the first lactation of 4,588 Murrah buffaloes were made available for the study. The model included the average curve of the population nested within herd-year-season of calving, systematic effects of number of milkings per day, and age at first calving as linear and quadratic covariates, and additive genetic, permanent environment, and residual as random effects. The Wood model had the best goodness of fit based on the deviance information criterion and posterior model probabilities for all traits. Moderate heritabilities were estimated over time for most traits (0.30 ± 0.02 for MY; 0.26 ± 0.03 for FY; 0.45 ± 0.04 for PY; 0.28 ± 0.05 for MZY; 0.13 ± 0.02 for FPR; and 0.15 ± 0.03 for SCS). The heritability estimates for LP ranged from 0.38 ± 0.02 to 0.65 ± 0.03 depending on the trait definition used. Similarly, heritabilities estimated for LL ranged from 0.10 ± 0.01 to 0.14 ± 0.03. The genetic correlation estimates across days in milk (DIM) for all traits ranged from -0.06 (186-215 DIM for MY-SCS) to 0.78 (66-95 DIM for PY-MZY). The SNP effects calculated for the random regression model coefficients were used to estimate the SNP effects throughout the lactation curve (from 5 to 305 d). Numerous relevant genomic regions and candidate genes were identified for all traits, confirming their polygenic nature. The candidate genes identified contribute to a better understanding of the genetic background of milk-related traits in Murrah buffaloes and reinforce the value of incorporating genomic information in their breeding programs.
Collapse
Affiliation(s)
- Sirlene F Lázaro
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Humberto Tonhati
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alessandra A Silva
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Daiane C B Scalez
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - André V Nascimento
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | | | - Gabriela Stefani
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Isabella S Carvalho
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Amanda F Sandoval
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
3
|
Boukhalfa W, Jmel H, Kheriji N, Gouiza I, Dallali H, Hechmi M, Kefi R. Decoding the genetic relationship between Alzheimer's disease and type 2 diabetes: potential risk variants and future direction for North Africa. Front Aging Neurosci 2023; 15:1114810. [PMID: 37342358 PMCID: PMC10277480 DOI: 10.3389/fnagi.2023.1114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and Type 2 diabetes (T2D) are both age-associated diseases. Identification of shared genes could help develop early diagnosis and preventive strategies. Although genetic background plays a crucial role in these diseases, we noticed an underrepresentation tendency of North African populations in omics studies. Materials and methods First, we conducted a comprehensive review of genes and pathways shared between T2D and AD through PubMed. Then, the function of the identified genes and variants was investigated using annotation tools including PolyPhen2, RegulomeDB, and miRdSNP. Pathways enrichment analyses were performed with g:Profiler and EnrichmentMap. Next, we analyzed variant distributions in 16 worldwide populations using PLINK2, R, and STRUCTURE software. Finally, we performed an inter-ethnic comparison based on the minor allele frequency of T2D-AD common variants. Results A total of 59 eligible papers were included in our study. We found 231 variants and 363 genes shared between T2D and AD. Variant annotation revealed six single nucleotide polymorphisms (SNP) with a high pathogenic score, three SNPs with regulatory effects on the brain, and six SNPs with potential effects on miRNA-binding sites. The miRNAs affected were implicated in T2D, insulin signaling pathways, and AD. Moreover, replicated genes were significantly enriched in pathways related to plasma protein binding, positive regulation of amyloid fibril deposition, microglia activation, and cholesterol metabolism. Multidimensional screening performed based on the 363 shared genes showed that main North African populations are clustered together and are divergent from other worldwide populations. Interestingly, our results showed that 49 SNP associated with T2D and AD were present in North African populations. Among them, 11 variants located in DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, CST9, and PLCG1 genes display significant differences in risk allele frequencies between North African and other populations. Conclusion Our study highlighted the complexity and the unique molecular architecture of North African populations regarding T2D-AD shared genes. In conclusion, we emphasize the importance of T2D-AD shared genes and ethnicity-specific investigation studies for a better understanding of the link behind these diseases and to develop accurate diagnoses using personalized genetic biomarkers.
Collapse
Affiliation(s)
- Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Mariem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
4
|
Broadaway KA, Yin X, Williamson A, Parsons VA, Wilson EP, Moxley AH, Vadlamudi S, Varshney A, Jackson AU, Ahuja V, Bornstein SR, Corbin LJ, Delgado GE, Dwivedi OP, Fernandes Silva L, Frayling TM, Grallert H, Gustafsson S, Hakaste L, Hammar U, Herder C, Herrmann S, Højlund K, Hughes DA, Kleber ME, Lindgren CM, Liu CT, Luan J, Malmberg A, Moissl AP, Morris AP, Perakakis N, Peters A, Petrie JR, Roden M, Schwarz PEH, Sharma S, Silveira A, Strawbridge RJ, Tuomi T, Wood AR, Wu P, Zethelius B, Baldassarre D, Eriksson JG, Fall T, Florez JC, Fritsche A, Gigante B, Hamsten A, Kajantie E, Laakso M, Lahti J, Lawlor DA, Lind L, März W, Meigs JB, Sundström J, Timpson NJ, Wagner R, Walker M, Wareham NJ, Watkins H, Barroso I, O'Rahilly S, Grarup N, Parker SC, Boehnke M, Langenberg C, Wheeler E, Mohlke KL. Loci for insulin processing and secretion provide insight into type 2 diabetes risk. Am J Hum Genet 2023; 110:284-299. [PMID: 36693378 PMCID: PMC9943750 DOI: 10.1016/j.ajhg.2023.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
Collapse
Affiliation(s)
- K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Xianyong Yin
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alice Williamson
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK; University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Victoria A Parsons
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emma P Wilson
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Anne H Moxley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Anne U Jackson
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Vasudha Ahuja
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Stefan R Bornstein
- Department of Internal Medicine, Metabolic and Vascular Medicine, MedicCal Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Laura J Corbin
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Om P Dwivedi
- University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | | | | | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Stefan Gustafsson
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Liisa Hakaste
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ulf Hammar
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christian Herder
- German Center for Diabetes Research, Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Herrmann
- Department of Internal Medicine, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - David A Hughes
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marcus E Kleber
- Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany; SYNLAB MVZ Humangenetik Mannheim, Mannheim, BW, Germany
| | - Cecilia M Lindgren
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Nuffield Department of Population Health, University of Oxford, Oxford, UK; Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK; Broad Institute, Cambridge, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anni Malmberg
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Angela P Moissl
- Institute of Nutritional Sciences, Friedrich-Schiller-University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health, Halle-Jena-Leipzig, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Nikolaos Perakakis
- Department of Internal Medicine, Metabolic and Vascular Medicine, MedicCal Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - John R Petrie
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Peter E H Schwarz
- Department of Internal Medicine, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Sapna Sharma
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Freising, Germany
| | - Angela Silveira
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden; Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, Mental Health and Wellbeing, University of Glasgow, Glasgow, UK; Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Endocrinology, Helsinki University Hospital, Helsinki, Finland
| | - Andrew R Wood
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Björn Zethelius
- Department of Geriatrics, Uppsala University, Uppsala, Sweden
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; Cardiovascular Prevention Area, Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Centre, Helsinki, Finland; Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andreas Fritsche
- Department of Internal Medicine, Diabetology, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Bruna Gigante
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Hamsten
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eero Kajantie
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Deborah A Lawlor
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Winfried März
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, BW, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany
| | - James B Meigs
- Department of Medicine, Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Johan Sundström
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert Wagner
- Department of Internal Medicine, Diabetology, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Mark Walker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK; Health Data Research UK, Gibbs Building, London, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research, Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Cj Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Boehnke
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK; Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
6
|
Wagner R. Das Diabetes-Kaleidoskop: auf dem Weg zur Präzisionsmedizin im Diabetes – Ferdinand Bertram-Preis 2021 – eine Kurzübersicht des Preisträgers Robert Wagner. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1664-5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Prasad RB, Kristensen K, Katsarou A, Shaat N. Association of single nucleotide polymorphisms with insulin secretion, insulin sensitivity, and diabetes in women with a history of gestational diabetes mellitus. BMC Med Genomics 2021; 14:274. [PMID: 34801028 PMCID: PMC8606068 DOI: 10.1186/s12920-021-01123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background This study investigated whether single nucleotide polymorphisms (SNPs) reported by previous genome-wide association studies (GWAS) to be associated with impaired insulin secretion, insulin resistance, and/or type 2 diabetes are associated with disposition index, the homeostasis model assessment of insulin resistance (HOMA-IR), and/or development of diabetes following a pregnancy complicated by gestational diabetes mellitus (GDM). Methods Seventy-two SNPs were genotyped in 374 women with previous GDM from Southern Sweden. An oral glucose tolerance test was performed 1–2 years postpartum, although data on the diagnosis of diabetes were accessible up to 5 years postpartum. HOMA-IR and disposition index were used to measure insulin resistance and secretion, respectively. Results The risk A-allele in the rs11708067 polymorphism of the adenylate cyclase 5 gene (ADCY5) was associated with decreased disposition index (beta = − 0.90, SE 0.38, p = 0.019). This polymorphism was an expression quantitative trait loci (eQTL) in islets for both ADCY5 and its antisense transcript. The risk C-allele in the rs2943641 polymorphism, near the insulin receptor substrate 1 gene (IRS1), showed a trend towards association with increased HOMA-IR (beta = 0.36, SE 0.18, p = 0.050), and the T-allele of the rs4607103 polymorphism, near the ADAM metallopeptidase with thrombospondin type 1 motif 9 gene (ADAMTS9), was associated with postpartum diabetes (OR = 2.12, SE 0.22, p = 0.00055). The genetic risk score (GRS) of the top four SNPs tested for association with the disposition index using equal weights was associated with the disposition index (beta = − 0.31, SE = 0.29, p = 0.00096). In addition, the GRS of the four SNPs studied for association with HOMA-IR using equal weights showed an association with HOMA-IR (beta = 1.13, SE = 0.48, p = 9.72874e−11). All analyses were adjusted for age, body mass index, and ethnicity. Conclusions This study demonstrated the genetic susceptibility of women with a history of GDM to impaired insulin secretion and sensitivity and, ultimately, to diabetes development.
Collapse
Affiliation(s)
- Rashmi B Prasad
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Karl Kristensen
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Obstetrics and Gynaecology, Skåne University Hospital, Malmö, Sweden
| | - Anastasia Katsarou
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Endocrinology, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Nael Shaat
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Department of Endocrinology, Skåne University Hospital, 205 02, Malmö, Sweden.
| |
Collapse
|
8
|
Aguilera-Venegas IG, Mora-Peña JDS, Velazquez-Villafaña M, Gonzalez-Dominguez MI, Barbosa-Sabanero G, Gomez-Zapata HM, Lazo-de-la-Vega-Monroy ML. Association of diabetes-related variants in ADCY5 and CDKAL1 with neonatal insulin, C-peptide, and birth weight. Endocrine 2021; 74:318-331. [PMID: 34169461 DOI: 10.1007/s12020-021-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE Neonates at the highest and lowest percentiles of birth weight present an increased risk of developing metabolic diseases in adult life. While environmental events in utero may play an important role in this association, some genetic variants are associated both with birth weight and type 2 diabetes mellitus (T2DM), suggesting a genetic link between intrauterine growth and metabolism in adult life. Variants rs11708067 in ADCY5 and rs7754840 in CDKAL1 are associated with low birth weight, risk of T2DM, and lower insulin secretion in adults. We aimed to investigate whether, besides birth weight, these polymorphisms were related to insulin secretion at birth. METHODS A cohort of 218 healthy term newborns from uncomplicated pregnancies were evaluated for anthropometric and biochemical variables. Cord blood insulin and C-peptide were analyzed by ELISA. Genotyping of rs11708067 in ADCY5 and rs7754840 in CDKAL1 was performed. RESULTS Newborns carrying the A allele of ADCY5 rs11708067 had lower cord blood insulin and C-peptide, even after adjusting by maternal glycemia, HbA1c, and pregestational BMI. Lower birth weight was found for AA-AG genotypes compared to GG, but no differences were seen in adjusted birth weight or z-score. Variant rs7754840 in CDKAL1 was not associated with birth weight, neonatal insulin, or C-peptide for any genotype or genetic model. CONCLUSIONS The variant rs11708067 in ADCY5 is associated with lower neonatal insulin and C-peptide concentrations. Our results suggest that the genetic influence on insulin secretion may be evident from birth, even in healthy newborns, independently of maternal glycemia and BMI.
Collapse
Affiliation(s)
| | | | | | - Martha-Isabel Gonzalez-Dominguez
- Universidad de la Cienega del Estado de Michoacan de Ocampo, Trayectoria de Ingenieria en Nanotecnologia, Sahuayo, Michoacan, Mexico
| | - Gloria Barbosa-Sabanero
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Guanajuato, Mexico
| | | | | |
Collapse
|
9
|
Polymorphisms in GLIS3 and susceptibility to diabetes mellitus: A systematic review and meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
10
|
Dommel S, Hoffmann A, Berger C, Kern M, Klöting N, Kannt A, Blüher M. Effects of Whole-Body Adenylyl Cyclase 5 ( Adcy5) Deficiency on Systemic Insulin Sensitivity and Adipose Tissue. Int J Mol Sci 2021; 22:4353. [PMID: 33919448 PMCID: PMC8122634 DOI: 10.3390/ijms22094353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies have identified adenylyl cyclase type 5 (ADCY5) as candidate gene for diabetes-related quantitative traits and an increased risk of type 2 diabetes. Mice with a whole-body deletion of Adcy5 (Adcy5-/-) do not develop obesity, glucose intolerance and insulin resistance, have improved cardiac function and increased longevity. Here, we investigated Adcy5 knockout mice (Adcy5-/-) to test the hypothesis that changes in adipose tissue (AT) may contribute to the reported healthier phenotype. In contrast to previous reports, we found that deletion of Adcy5 did not confer any physiological or biochemical benefits. However, this unexpected finding allowed us to investigate the effects of Adcy5 depletion on AT independently of lower body weight and a metabolically healthier phenotype. Adcy5-/- mice exhibited an increased number of smaller adipocytes, lower mean adipocyte size and a distinct AT gene expression pattern with midline 1 (Mid1) as the most significantly downregulated gene compared to control mice. Our Adcy5-/- model challenges previously described beneficial effects of Adcy5 deficiency and suggests that targeting Adcy5 does not improve insulin sensitivity and may therefore limit the relevance of ADCY5 as potential drug target.
Collapse
Affiliation(s)
- Sebastian Dommel
- Medical Center, Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04103 Leipzig, Germany; (S.D.); (C.B.); (N.K.)
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany; (A.H.); (M.K.)
| | - Claudia Berger
- Medical Center, Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04103 Leipzig, Germany; (S.D.); (C.B.); (N.K.)
| | - Matthias Kern
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany; (A.H.); (M.K.)
| | - Nora Klöting
- Medical Center, Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04103 Leipzig, Germany; (S.D.); (C.B.); (N.K.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany; (A.H.); (M.K.)
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
- Experimental Pharmacology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Sanofi Diabetes Research and Development, 60596 Frankfurt am Main, Germany
| | - Matthias Blüher
- Medical Center, Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig, 04103 Leipzig, Germany; (S.D.); (C.B.); (N.K.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany; (A.H.); (M.K.)
| |
Collapse
|
11
|
Huang LO, Rauch A, Mazzaferro E, Preuss M, Carobbio S, Bayrak CS, Chami N, Wang Z, Schick UM, Yang N, Itan Y, Vidal-Puig A, den Hoed M, Mandrup S, Kilpeläinen TO, Loos RJF. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat Metab 2021; 3:228-243. [PMID: 33619380 DOI: 10.1038/s42255-021-00346-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023]
Abstract
Obesity is a major risk factor for cardiometabolic diseases. Nevertheless, a substantial proportion of individuals with obesity do not suffer cardiometabolic comorbidities. The mechanisms that uncouple adiposity from its cardiometabolic complications are not fully understood. Here, we identify 62 loci of which the same allele is significantly associated with both higher adiposity and lower cardiometabolic risk. Functional analyses show that the 62 loci are enriched for genes expressed in adipose tissue, and for regulatory variants that influence nearby genes that affect adipocyte differentiation. Genes prioritized in each locus support a key role of fat distribution (FAM13A, IRS1 and PPARG) and adipocyte function (ALDH2, CCDC92, DNAH10, ESR1, FAM13A, MTOR, PIK3R1 and VEGFB). Several additional mechanisms are involved as well, such as insulin-glucose signalling (ADCY5, ARAP1, CREBBP, FAM13A, MTOR, PEPD, RAC1 and SH2B3), energy expenditure and fatty acid oxidation (IGF2BP2), browning of white adipose tissue (CSK, VEGFA, VEGFB and SLC22A3) and inflammation (SH2B3, DAGLB and ADCY9). Some of these genes may represent therapeutic targets to reduce cardiometabolic risk linked to excess adiposity.
Collapse
Affiliation(s)
- Lam O Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Alexander Rauch
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Molecular Endocrinology & Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital and Steno Diabetes Center Odense and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eugenia Mazzaferro
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Stefania Carobbio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Cigdem S Bayrak
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Nancy Yang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Marcel den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Susanne Mandrup
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA.
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA.
| |
Collapse
|
12
|
Scoville DW, Kang HS, Jetten AM. Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism, pancreatic beta cells and diabetes. Pharmacol Ther 2020; 215:107632. [PMID: 32693112 PMCID: PMC7606550 DOI: 10.1016/j.pharmthera.2020.107632] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
GLI-Similar 3 (GLIS3) is a member of the GLIS subfamily of Krüppel-like zinc finger transcription factors that functions as an activator or repressor of gene expression. Study of GLIS3-deficiency in mice and humans revealed that GLIS3 plays a critical role in the regulation of several biological processes and is implicated in the development of various diseases, including hypothyroidism and diabetes. This was supported by genome-wide association studies that identified significant associations of common variants in GLIS3 with increased risk of these pathologies. To obtain insights into the causal mechanisms underlying these diseases, it is imperative to understand the mechanisms by which this protein regulates the development of these pathologies. Recent studies of genes regulated by GLIS3 led to the identification of a number of target genes and have provided important molecular insights by which GLIS3 controls cellular processes. These studies revealed that GLIS3 is essential for thyroid hormone biosynthesis and identified a critical function for GLIS3 in the generation of pancreatic β cells and insulin gene transcription. These observations raised the possibility that the GLIS3 signaling pathway might provide a potential therapeutic target in the management of diabetes, hypothyroidism, and other diseases. To develop such strategies, it will be critical to understand the upstream signaling pathways that regulate the activity, expression and function of GLIS3. Here, we review the recent progress on the molecular mechanisms by which GLIS3 controls key functions in thyroid follicular and pancreatic β cells and how this causally relates to the development of hypothyroidism and diabetes.
Collapse
Affiliation(s)
- David W Scoville
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
13
|
Hu M, Cherkaoui I, Misra S, Rutter GA. Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research. Front Endocrinol (Lausanne) 2020; 11:576632. [PMID: 33162936 PMCID: PMC7580382 DOI: 10.3389/fendo.2020.576632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
The inheritance of variants that lead to coding changes in, or the mis-expression of, genes critical to pancreatic beta cell function can lead to alterations in insulin secretion and increase the risk of both type 1 and type 2 diabetes. Recently developed clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene editing tools provide a powerful means of understanding the impact of identified variants on cell function, growth, and survival and might ultimately provide a means, most likely after the transplantation of genetically "corrected" cells, of treating the disease. Here, we review some of the disease-associated genes and variants whose roles have been probed up to now. Next, we survey recent exciting developments in CRISPR/Cas9 technology and their possible exploitation for β cell functional genomics. Finally, we will provide a perspective as to how CRISPR/Cas9 technology may find clinical application in patients with diabetes.
Collapse
Affiliation(s)
- Ming Hu
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ines Cherkaoui
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shivani Misra
- Metabolic Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Common genetic variants in ADCY5 and gestational glycemic traits. PLoS One 2020; 15:e0230032. [PMID: 32163478 PMCID: PMC7067392 DOI: 10.1371/journal.pone.0230032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/19/2020] [Indexed: 01/04/2023] Open
Abstract
Two meta-analysis of genome wide association studies identified two variants at adenylate cyclase 5 (ADCY5) associated with type 2 diabetes mellitus, fasting and 2-hour glucose in non-pregnant individuals of European descent. The objective of our study was to explore the role of common variants in ADCY5 on gestational glycemic traits, including plasma glucose, insulin values, β cell function and insulin resistance in the fasted state as well as plasma glucose 1 hour after a 50-gram glucose challenge test among Chinese Han women. Homoeostasis model assessment (HOMA) was used to quantify β cell function (HOMA1-β and HOMA2-β) and insulin resistance (HOMA1-IR and HOMA2-IR). Thirty-five single nucleotide polymorphisms (SNPs) in ADCY5 were genotyped in 929 unrelated Chinese Han women with singleton pregnancies. Three SNPs (rs6797915, rs9856662 and rs9875803) displayed evidence for association with plasma glucose 1 hour after a 50-gram glucose challenge test (P = 0.042, 0.018 and 0.018, respectively), one (rs6777397) displayed evidence for association with HOMA1-β (P = 0.014), and one (rs6762009) displayed evidence for association with HOMA1-IR (P = 0.033). These results provide additional insight into the effects of genetic variation within ADCY5 in glucose metabolism, especially during pregnancy and in non-European descent populations.
Collapse
|
15
|
Gan Q, Li Y, Liu Q, Lund M, Su G, Liang X. Genome-wide association studies for the concentrations of insulin, triiodothyronine, and thyroxine in Chinese Holstein cattle. Trop Anim Health Prod 2019; 52:1655-1660. [PMID: 31853785 DOI: 10.1007/s11250-019-02170-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
To further understand the genetic structure that is associated with insulin (INS) and thyroid hormones (TH), including triiodothyronine (T3) and thyroxine (T4), in Chinese Holstein cows, we conducted a genome-wide association study (GWAS) of thyroid hormones and insulin in cows. We conducted GWAS analysis on 1217 Chinese Holstein cows raised in southern China and found 19 significant single nucleotide polymorphisms (SNPs) in this study: 10 SNPs were associated with INS, 5 SNPs were associated with T3, and 4 SNPs were associated with T4. In our study, the GWAS method was used for preliminary screening on related genes of traits, and due to insufficient relevant literature, a functional analysis of genes could only be based on human studies. We observed that DGKB from Bos taurus chromosome (BTA)4 is strongly associated with insulin secretion. We found that EXOC4 gene was significantly correlated with T3 and T4 traits. Another significant SNP was located in the CYP7A1 gene, which has been confirmed to be affected by thyroid hormones.
Collapse
Affiliation(s)
- QianFu Gan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - YiRan Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - QingHua Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - M Lund
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| | - GuoSheng Su
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| | - XueWu Liang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
16
|
Systematic analysis of genes and diseases using PheWAS-Associated networks. Comput Biol Med 2019; 109:311-321. [PMID: 31128465 DOI: 10.1016/j.compbiomed.2019.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 02/08/2023]
|
17
|
Adamska-Patruno E, Godzien J, Ciborowski M, Samczuk P, Bauer W, Siewko K, Gorska M, Barbas C, Kretowski A. The Type 2 Diabetes Susceptibility PROX1 Gene Variants Are Associated with Postprandial Plasma Metabolites Profile in Non-Diabetic Men. Nutrients 2019; 11:nu11040882. [PMID: 31010169 PMCID: PMC6520869 DOI: 10.3390/nu11040882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The prospero homeobox 1 (PROX1) gene may show pleiotropic effects on metabolism. We evaluated postprandial metabolic alterations dependently on the rs340874 genotypes, and 28 non-diabetic men were divided into two groups: high-risk (HR)-genotype (CC-genotype carriers, n = 12, 35.3 ± 9.5 years old) and low-risk (LR)-genotype (allele T carriers, n = 16, 36.3 ± 7.0 years old). Subjects participated in two meal-challenge-tests with high-carbohydrate (HC, carbohydrates 89%) and normo-carbohydrate (NC, carbohydrates 45%) meal intake. Fasting and 30, 60, 120, and 180 min after meal intake plasma samples were fingerprinted by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In HR-genotype men, the area under the curve (AUC) of acetylcarnitine levels was higher after the HC-meal [+92%, variable importance in the projection (VIP) = 2.88] and the NC-meal (+55%, VIP = 2.00) intake. After the NC-meal, the HR-risk genotype carriers presented lower AUCs of oxidized fatty acids (−81–66%, VIP = 1.43–3.16) and higher linoleic acid (+80%, VIP = 2.29), while after the HC-meal, they presented lower AUCs of ornithine (−45%, VIP = 1.83), sphingosine (−48%, VIP = 2.78), linoleamide (−45%, VIP = 1.51), and several lysophospholipids (−40–56%, VIP = 1.72–2.16). Moreover, lower AUC (−59%, VIP = 2.43) of taurocholate after the HC-meal and higher (+70%, VIP = 1.42) glycodeoxycholate levels after the NC-meal were observed. Our results revealed differences in postprandial metabolites from inflammatory and oxidative stress pathways, bile acids signaling, and lipid metabolism in PROX1 HR-genotype men. Further investigations of diet–genes interactions by which PROX1 may promote T2DM development are needed.
Collapse
Affiliation(s)
- Edyta Adamska-Patruno
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Joanna Godzien
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Witold Bauer
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Universidad CEU San Pablo, 28003 Madrid, Spain.
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland.
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.
| |
Collapse
|
18
|
Zhu Z, Lin Y, Li X, Driver JA, Liang L. Shared genetic architecture between metabolic traits and Alzheimer's disease: a large-scale genome-wide cross-trait analysis. Hum Genet 2019; 138:271-285. [PMID: 30805717 PMCID: PMC7193309 DOI: 10.1007/s00439-019-01988-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
A growing number of studies clearly demonstrate a substantial link between metabolic dysfunction and the risk of Alzheimer's disease (AD), especially glucose-related dysfunction; one hypothesis for this comorbidity is the presence of a common genetic etiology. We conducted a large-scale cross-trait GWAS to investigate the genetic overlap between AD and ten metabolic traits. Among all the metabolic traits, fasting glucose, fasting insulin and HDL were found to be genetically associated with AD. Local genetic covariance analysis found that 19q13 region had strong local genetic correlation between AD and T2D (P = 6.78 × 10- 22), LDL (P = 1.74 × 10- 253) and HDL (P = 7.94 × 10- 18). Cross-trait meta-analysis identified 4 loci that were associated with AD and fasting glucose, 3 loci that were associated with AD and fasting insulin, and 20 loci that were associated with AD and HDL (Pmeta < 1.6 × 10- 8, single trait P < 0.05). Functional analysis revealed that the shared genes are enriched in amyloid metabolic process, lipoprotein remodeling and other related biological pathways; also in pancreas, liver, blood and other tissues. Our work identifies common genetic architectures shared between AD and fasting glucose, fasting insulin and HDL, and sheds light on molecular mechanisms underlying the association between metabolic dysregulation and AD.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yifei Lin
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jane A Driver
- Geriatric Research Education and Clinical Center and Massachusetts Veterans Epidemiology Research and Information Center, VA Medical Center, Boston, MA, USA
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
19
|
Jetten AM. GLIS1-3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cell Mol Life Sci 2018; 75:3473-3494. [PMID: 29779043 PMCID: PMC6123274 DOI: 10.1007/s00018-018-2841-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Krüppel-like zinc finger proteins form one of the largest families of transcription factors. They function as key regulators of embryonic development and a wide range of other physiological processes, and are implicated in a variety of pathologies. GLI-similar 1-3 (GLIS1-3) constitute a subfamily of Krüppel-like zinc finger proteins that act either as activators or repressors of gene transcription. GLIS3 plays a critical role in the regulation of multiple biological processes and is a key regulator of pancreatic β cell generation and maturation, insulin gene expression, thyroid hormone biosynthesis, spermatogenesis, and the maintenance of normal kidney functions. Loss of GLIS3 function in humans and mice leads to the development of several pathologies, including neonatal diabetes and congenital hypothyroidism, polycystic kidney disease, and infertility. Single nucleotide polymorphisms in GLIS3 genes have been associated with increased risk of several diseases, including type 1 and type 2 diabetes, glaucoma, and neurological disorders. GLIS2 plays a critical role in the kidney and GLIS2 dysfunction leads to nephronophthisis, an end-stage, cystic renal disease. In addition, GLIS1-3 have regulatory functions in several stem/progenitor cell populations. GLIS1 and GLIS3 greatly enhance reprogramming efficiency of somatic cells into induced embryonic stem cells, while GLIS2 inhibits reprogramming. Recent studies have obtained substantial mechanistic insights into several physiological processes regulated by GLIS2 and GLIS3, while a little is still known about the physiological functions of GLIS1. The localization of some GLIS proteins to the primary cilium suggests that their activity may be regulated by a downstream primary cilium-associated signaling pathway. Insights into the upstream GLIS signaling pathway may provide opportunities for the development of new therapeutic strategies for diabetes, hypothyroidism, and other diseases.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
20
|
Roman TS, Cannon ME, Vadlamudi S, Buchkovich ML, Wolford BN, Welch RP, Morken MA, Kwon GJ, Varshney A, Kursawe R, Wu Y, Jackson AU, Erdos MR, Kuusisto J, Laakso M, Scott LJ, Boehnke M, Collins FS, Parker SCJ, Stitzel ML, Mohlke KL. A Type 2 Diabetes-Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the ADCY5 Locus. Diabetes 2017; 66:2521-2530. [PMID: 28684635 PMCID: PMC5860374 DOI: 10.2337/db17-0464] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
Abstract
Molecular mechanisms remain unknown for most type 2 diabetes genome-wide association study identified loci. Variants associated with type 2 diabetes and fasting glucose levels reside in introns of ADCY5, a gene that encodes adenylate cyclase 5. Adenylate cyclase 5 catalyzes the production of cyclic AMP, which is a second messenger molecule involved in cell signaling and pancreatic β-cell insulin secretion. We demonstrated that type 2 diabetes risk alleles are associated with decreased ADCY5 expression in human islets and examined candidate variants for regulatory function. rs11708067 overlaps a predicted enhancer region in pancreatic islets. The type 2 diabetes risk rs11708067-A allele showed fewer H3K27ac ChIP-seq reads in human islets, lower transcriptional activity in reporter assays in rodent β-cells (rat 832/13 and mouse MIN6), and increased nuclear protein binding compared with the rs11708067-G allele. Homozygous deletion of the orthologous enhancer region in 832/13 cells resulted in a 64% reduction in expression level of Adcy5, but not adjacent gene Sec22a, and a 39% reduction in insulin secretion. Together, these data suggest that rs11708067-A risk allele contributes to type 2 diabetes by disrupting an islet enhancer, which results in reduced ADCY5 expression and impaired insulin secretion.
Collapse
Affiliation(s)
- Tamara S Roman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Maren E Cannon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Martin L Buchkovich
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brooke N Wolford
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Ryan P Welch
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Mario A Morken
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Grace J Kwon
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Department of Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT
| | - Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Ying Wu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI
| | | | - Michael R Erdos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Johanna Kuusisto
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Stephen C J Parker
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
21
|
Lakbakbi El Yaagoubi F, Charoute H, Morjane I, Sefri H, Rouba H, Ainahi A, Kandil M, Benrahma H, Barakat A. Association analysis of genetic variants with metabolic syndrome components in the Moroccan population. Curr Res Transl Med 2017; 65:121-125. [DOI: 10.1016/j.retram.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/17/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022]
|
22
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
23
|
Abstract
This article describes phenotypes observed in a prediabetic population (i.e. a population with increased risk for type 2 diabetes) from data collected at the University hospital of Tübingen. We discuss the impact of genetic variation on insulin secretion, in particular the effect on compensatory hypersecretion, and the incretin-resistant phenotype of carriers of the gene variant TCF7L2 is described. Imaging studies used to characterise subphenotypes of fat distribution, metabolically healthy obesity and metabolically unhealthy obesity are described. Also discussed are ectopic fat stores in liver and pancreas that determine the phenotype of metabolically healthy and unhealthy fatty liver and the recently recognised phenotype of fatty pancreas. The metabolic impact of perivascular adipose tissue and pancreatic fat is discussed. The role of hepatokines, particularly that of fetuin-A, in the crosstalk between these organs is described. Finally, the role of brain insulin resistance in the development of the different prediabetes phenotypes is discussed.
Collapse
Affiliation(s)
- Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases (IDM), University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
24
|
Ho D, Zhao X, Yan L, Yuan C, Zong H, Vatner DE, Pessin JE, Vatner SF. Adenylyl Cyclase Type 5 Deficiency Protects Against Diet-Induced Obesity and Insulin Resistance. Diabetes 2015; 64:2636-45. [PMID: 25732192 PMCID: PMC4477357 DOI: 10.2337/db14-0494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Adenylyl cyclase type 5 knockout (AC5KO) mice have increased longevity and share a similar phenotype with calorie-restricted wild-type (WT) mice. To determine the in vivo metabolic properties of AC5 deficiency, we compared the effects of standard diet (SD) and high-fat diet (HFD) on obesity, energy balance, glucose regulation, and insulin sensitivity. AC5KO mice on SD had reduced body weight and adiposity compared with WT mice. Blood cholesterol and triglyceride levels were also significantly reduced in AC5KO mice. Indirect calorimetry demonstrated increased oxygen consumption, respiratory exchange ratio, and energy expenditure in AC5KO compared with WT mice on both SD and HFD. AC5KO mice also displayed improved glucose tolerance and increased whole-body insulin sensitivity, accompanied by decreased liver glycogen stores. Euglycemic-hyperinsulinemic clamp studies confirmed the marked improvement of glucose homeostasis and insulin sensitivity in AC5KO mice primarily through increased insulin sensitivity in skeletal muscle. Moreover, the genes involved in mitochondrial biogenesis and function were significantly increased in AC5KO skeletal muscle. These data demonstrate that deficiency of AC5 protects against obesity, glucose intolerance, and insulin resistance, supporting AC5 as a potential novel therapeutic target for treatment of obesity and diabetes.
Collapse
Affiliation(s)
- David Ho
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Xin Zhao
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Lin Yan
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Chujun Yuan
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Haihong Zong
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Dorothy E Vatner
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Jeffery E Pessin
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Stephen F Vatner
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| |
Collapse
|
25
|
Knigge A, Klöting N, Schön MR, Dietrich A, Fasshauer M, Gärtner D, Lohmann T, Dreßler M, Stumvoll M, Kovacs P, Blüher M. ADCY5 gene expression in adipose tissue is related to obesity in men and mice. PLoS One 2015; 10:e0120742. [PMID: 25793868 PMCID: PMC4368112 DOI: 10.1371/journal.pone.0120742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/26/2015] [Indexed: 11/20/2022] Open
Abstract
Genome wide association studies revealed an association of the single nucleotide polymorphism rs11708067 within the ADCY5 gene—encoding adenylate cyclase 5—with increased type 2 diabetes (T2D) risk and higher fasting glucose. However, it remains unclear whether the association between ADCY5 variants and glycemic traits may involve adipose tissue (AT) related mechanisms. We therefore tested the hypothesis that ADCY5 mRNA expression in human and mouse AT is related to obesity, fat distribution, T2D in humans and high fat diet (HFD) in mice. We measured ADCY5 mRNA expression in paired samples of visceral and subcutaneous adipose tissue from 244 individuals with a wide range of body weight and parameters of hyperglycemia, which have been genotyped for rs11708067. In addition, AT ADCY5 mRNA was assessed in C57BL/6NTac which underwent a 10 weeks standard chow (n = 6) or high fat diet (HFD, n = 6). In humans, visceral ADCY5 expression is significantly higher in obese compared to lean individuals. ADCY5 expression correlates with BMI, body fat mass, circulating leptin, fat distribution, waist and hip circumference, but not with fasting plasma glucose and HbA1c. Adcy5 expression in mouse AT is significantly higher after a HFD compared to chow (p<0.05). Importantly, rs11708067 is not associated with ADCY5 mRNA expression levels in either fat depot in any of the genetic models tested. Our results suggest that changes in AT ADCY5 expression are related to obesity and fat distribution, but not with impaired glucose metabolism and T2D. However, altered ADCY5 expression in AT does not seem to be the mechanism underlying the association between rs11708067 and increased T2D risk.
Collapse
Affiliation(s)
- Anja Knigge
- Department of Medicine, Dermatology und Neurology, Department of Endocrinology und Nephrology, University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Department of Medicine, Dermatology und Neurology, Department of Endocrinology und Nephrology, University of Leipzig, Leipzig, Germany; Junior Research Group 2 "Animal models of obesity", Integriertes Forschungs- und Behandlungszentrum (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Michael R Schön
- Clinic of Visceral Surgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Arne Dietrich
- Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Mathias Fasshauer
- Department of Medicine, Dermatology und Neurology, Department of Endocrinology und Nephrology, University of Leipzig, Leipzig, Germany
| | - Daniel Gärtner
- Clinic of Visceral Surgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | | | - Michael Stumvoll
- Department of Medicine, Dermatology und Neurology, Department of Endocrinology und Nephrology, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Integriertes Forschungs- und Behandlungszentrum (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, Dermatology und Neurology, Department of Endocrinology und Nephrology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
Rutter GA, Hodson DJ. Beta cell connectivity in pancreatic islets: a type 2 diabetes target? Cell Mol Life Sci 2015; 72:453-467. [PMID: 25323131 PMCID: PMC11113448 DOI: 10.1007/s00018-014-1755-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Beta cell connectivity describes the phenomenon whereby the islet context improves insulin secretion by providing a three-dimensional platform for intercellular signaling processes. Thus, the precise flow of information through homotypically interconnected beta cells leads to the large-scale organization of hormone release activities, influencing cell responses to glucose and other secretagogues. Although a phenomenon whose importance has arguably been underappreciated in islet biology until recently, a growing number of studies suggest that such cell-cell communication is a fundamental property of this micro-organ. Hence, connectivity may plausibly be targeted by both environmental and genetic factors in type 2 diabetes mellitus (T2DM) to perturb normal beta cell function and insulin release. Here, we review the mechanisms that contribute to beta cell connectivity, discuss how these may fail during T2DM, and examine approaches to restore insulin secretion by boosting cell communication.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - David J Hodson
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
27
|
Welter M, Frigeri HR, Réa RR, Souza EMD, Alberton D, Picheth G, Rego FGDM. The rs10885122 polymorphism of the adrenoceptor alpha 2A (ADRA2A) gene in Euro-Brazilians with type 2 diabetes mellitus. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:29-33. [DOI: 10.1590/2359-3997000000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/10/2014] [Indexed: 11/21/2022]
|
28
|
Kretowski A, Adamska E, Maliszewska K, Wawrusiewicz-Kurylonek N, Citko A, Goscik J, Bauer W, Wilk J, Golonko A, Waszczeniuk M, Lipinska D, Hryniewicka J, Niemira M, Paczkowska M, Ciborowski M, Gorska M. The rs340874 PROX1 type 2 diabetes mellitus risk variant is associated with visceral fat accumulation and alterations in postprandial glucose and lipid metabolism. GENES AND NUTRITION 2015; 10:4. [PMID: 25601634 PMCID: PMC4298567 DOI: 10.1007/s12263-015-0454-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023]
Abstract
Large-scale meta-analyses of genome-wide association studies have recently confirmed that the rs340874 single-nucleotide polymorphism in PROX1 gene is associated with fasting glycemia and type 2 diabetes mellitus; however, the mechanism of this link was not well established. The aim of our study was to evaluate the functional/phenotypic differences related to rs340874 PROX1 variants. The study group comprised 945 subjects of Polish origin (including 634 with BMI > 25) without previously known dysglycemia. We analyzed behavioral patterns (diet, physical activity), body fat distribution and glucose/fat metabolism after standardized meals and during the oral glucose tolerance test. We found that the carriers of the rs340874 PROX1 CC genotype had higher nonesterified fatty acids levels after high-fat meal (p = 0.035) and lower glucose oxidation (p = 0.014) after high-carbohydrate meal in comparison with subjects with other PROX1 genotypes. Moreover, in subjects with CC variant, we found higher accumulation of visceral fat (p < 0.02), but surprisingly lower daily food consumption (p < 0.001). We hypothesize that lipid metabolism alterations in subjects with the PROX1 CC genotype may be a primary cause of higher glucose levels after glucose load, since the fatty acids can inhibit insulin-stimulated glucose uptake by decreasing carbohydrate oxidation. Our observations suggest that the PROX1 variants have pleiotropic effect on disease pathways and it seem to be a very interesting goal of research on prevention of obesity and type 2 diabetes mellitus. The study may help to understand the mechanisms of visceral obesity and type 2 diabetes mellitus risk development.
Collapse
Affiliation(s)
- Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Edyta Adamska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Natalia Wawrusiewicz-Kurylonek
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Anna Citko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Goscik
- Centre for Experimental Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Witold Bauer
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Juliusz Wilk
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Anna Golonko
- Department of Dietetics and Nutrition, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Waszczeniuk
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland.,Department of Dietetics and Nutrition, Medical University of Bialystok, Bialystok, Poland
| | - Danuta Lipinska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Justyna Hryniewicka
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | | | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
29
|
Wang L, Liu Y, Yang J, Zhao H, Ke J, Tian Q, Zhang L, Wen J, Wei R, Hong T. GLP-1 analog liraglutide enhances proinsulin processing in pancreatic β-cells via a PKA-dependent pathway. Endocrinology 2014; 155:3817-28. [PMID: 25051441 DOI: 10.1210/en.2014-1218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hyperproinsulinemia has gained increasing attention in the development of type 2 diabetes. Clinical studies have demonstrated that glucagon-like peptide-1 (GLP-1)-based therapies significantly decrease plasma proinsulin/insulin ratio in patients with type 2 diabetes. However, the underlying mechanism remains unclear. Prohormone convertase (PC)-1/3 and PC2 are primarily responsible for processing proinsulin to insulin in pancreatic β-cells. We have recently reported that Pax6 mutation down-regulated PC1/3 and PC2 expression, resulting in defective proinsulin processing in Pax6 heterozygous mutant (Pax6(m/+)) mice. In this study, we investigated whether and how liraglutide, a novel GLP-1 analog, modulated proinsulin processing. Our results showed that liraglutide significantly up-regulated PC1/3 expression and decreased the proinsulin to insulin ratio in both Pax6(m/+) and db/db diabetic mice. In the cultured mouse pancreatic β-cell line, Min6, liraglutide stimulated PC1/3 and PC2 expression and lowered the proinsulin to insulin ratio in a dose- and time-dependent manner. Moreover, the beneficial effects of liraglutide on PC1/3 and PC2 expression and proinsulin processing were dependent on the GLP-1 receptor-mediated cAMP/protein kinase A signaling pathway. The same mechanism was recapitulated in isolated mouse islets. In conclusion, liraglutide enhanced PC1/3- and PC2-dependent proinsulin processing in pancreatic β-cells through the activation of the GLP-1 receptor/cAMP/protein kinase A signaling pathway. Our study provides a new mechanism for improvement of pancreatic β-cell function by the GLP-1-based therapy.
Collapse
Affiliation(s)
- Liang Wang
- Department of Endocrinology and Metabolism (L.W., Y.L., J.Y., H.Z., J.K., Q.T., L.Z., R.W., T.H.), Peking University Third Hospital, and Peking University Stem Cell Research Center (J.W., T.H.), Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hodson DJ, Mitchell RK, Marselli L, Pullen TJ, Gimeno Brias S, Semplici F, Everett KL, Cooper DMF, Bugliani M, Marchetti P, Lavallard V, Bosco D, Piemonti L, Johnson PR, Hughes SJ, Li D, Li WH, Shapiro AMJ, Rutter GA. ADCY5 couples glucose to insulin secretion in human islets. Diabetes 2014; 63:3009-21. [PMID: 24740569 PMCID: PMC4141364 DOI: 10.2337/db13-1607] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/10/2014] [Indexed: 01/10/2023]
Abstract
Single nucleotide polymorphisms (SNPs) within the ADCY5 gene, encoding adenylate cyclase 5, are associated with elevated fasting glucose and increased type 2 diabetes (T2D) risk. Despite this, the mechanisms underlying the effects of these polymorphic variants at the level of pancreatic β-cells remain unclear. Here, we show firstly that ADCY5 mRNA expression in islets is lowered by the possession of risk alleles at rs11708067. Next, we demonstrate that ADCY5 is indispensable for coupling glucose, but not GLP-1, to insulin secretion in human islets. Assessed by in situ imaging of recombinant probes, ADCY5 silencing impaired glucose-induced cAMP increases and blocked glucose metabolism toward ATP at concentrations of the sugar >8 mmol/L. However, calcium transient generation and functional connectivity between individual human β-cells were sharply inhibited at all glucose concentrations tested, implying additional, metabolism-independent roles for ADCY5. In contrast, calcium rises were unaffected in ADCY5-depleted islets exposed to GLP-1. Alterations in β-cell ADCY5 expression and impaired glucose signaling thus provide a likely route through which ADCY5 gene polymorphisms influence fasting glucose levels and T2D risk, while exerting more minor effects on incretin action.
Collapse
Affiliation(s)
- David J Hodson
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K.
| | - Ryan K Mitchell
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Timothy J Pullen
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Silvia Gimeno Brias
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Francesca Semplici
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K
| | - Katy L Everett
- Department of Pharmacology, University of Cambridge, Cambridge, U.K
| | | | - Marco Bugliani
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Vanessa Lavallard
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Paul R Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, U.K. Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, U.K. National Institute of Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Stephen J Hughes
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, U.K. Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, U.K. National Institute of Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Daliang Li
- University of Texas Southwestern Medical Center, Dallas, TX
| | - Wen-Hong Li
- University of Texas Southwestern Medical Center, Dallas, TX
| | - A M James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, U.K.
| |
Collapse
|
31
|
Dimas AS, Lagou V, Barker A, Knowles JW, Mägi R, Hivert MF, Benazzo A, Rybin D, Jackson AU, Stringham HM, Song C, Fischer-Rosinsky A, Boesgaard TW, Grarup N, Abbasi FA, Assimes TL, Hao K, Yang X, Lecoeur C, Barroso I, Bonnycastle LL, Böttcher Y, Bumpstead S, Chines PS, Erdos MR, Graessler J, Kovacs P, Morken MA, Narisu N, Payne F, Stancakova A, Swift AJ, Tönjes A, Bornstein SR, Cauchi S, Froguel P, Meyre D, Schwarz PE, Häring HU, Smith U, Boehnke M, Bergman RN, Collins FS, Mohlke KL, Tuomilehto J, Quertemous T, Lind L, Hansen T, Pedersen O, Walker M, Pfeiffer AF, Spranger J, Stumvoll M, Meigs JB, Wareham NJ, Kuusisto J, Laakso M, Langenberg C, Dupuis J, Watanabe RM, Florez JC, Ingelsson E, McCarthy MI, Prokopenko I, on behalf of the MAGIC Investigators. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 2014; 63:2158-71. [PMID: 24296717 PMCID: PMC4030103 DOI: 10.2337/db13-0949] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patients with established type 2 diabetes display both β-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
Collapse
Affiliation(s)
- Antigone S. Dimas
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Alexander Fleming, Biomedical Sciences Research Center, Vari, Athens, Greece
| | - Vasiliki Lagou
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, U.K
| | - Adam Barker
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Joshua W. Knowles
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Reedik Mägi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, U.K
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Marie-France Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
- General Medicine Division, Massachusetts General Hospital, Boston, MA
| | - Andrea Benazzo
- Department of Biology and Evolution, University of Ferrara, Ferrara, Italy
| | - Denis Rybin
- Boston University Data Coordinating Center, Boston, MA
| | - Anne U. Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Heather M. Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Ci Song
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Antje Fischer-Rosinsky
- Charité-Universitätsmedizin Berlin, Department of Endocrinology and Metabolism, Berlin, Germany
| | | | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fahim A. Abbasi
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Themistocles L. Assimes
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, NY
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
| | - Cécile Lecoeur
- CNRS UMR8199-Institute of Biology, Pasteur Institute, Lille 2-Droit et Santé University, Lille, France
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Hinxton, U.K
- University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Lori L. Bonnycastle
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD
| | - Yvonne Böttcher
- IFB AdiposityDiseases, Leipzig University Medical Center, Leipzig, Germany
| | | | - Peter S. Chines
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD
| | - Michael R. Erdos
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD
| | - Jurgen Graessler
- Department of Medicine III, Division of Prevention and Care of Diabetes, University of Dresden, Dresden, Germany
| | - Peter Kovacs
- Interdisciplinary Center for Clinical Research Leipzig, Leipzig, Germany
| | - Mario A. Morken
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD
| | - Narisu Narisu
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD
| | | | - Alena Stancakova
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Amy J. Swift
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD
| | - Anke Tönjes
- IFB AdiposityDiseases, Leipzig University Medical Center, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Stefan R. Bornstein
- Department of Medicine III, Division of Prevention and Care of Diabetes, University of Dresden, Dresden, Germany
| | - Stéphane Cauchi
- CNRS UMR8199-Institute of Biology, Pasteur Institute, Lille 2-Droit et Santé University, Lille, France
| | - Philippe Froguel
- CNRS UMR8199-Institute of Biology, Pasteur Institute, Lille 2-Droit et Santé University, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, U.K
| | - David Meyre
- CNRS UMR8199-Institute of Biology, Pasteur Institute, Lille 2-Droit et Santé University, Lille, France
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Peter E.H. Schwarz
- Department of Medicine III, Division of Prevention and Care of Diabetes, University of Dresden, Dresden, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Center of Excellence for Metabolic and Cardiovascular Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Richard N. Bergman
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Francis S. Collins
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD
| | - Karen L. Mohlke
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jaakko Tuomilehto
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- Centre for Vascular Prevention, Danube University Krems, Krems, Austria
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thomas Quertemous
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
| | - Lars Lind
- Department of Medical Sciences, Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Hagedorn Research Institute, Copenhagen, Denmark
- Institute of Biomedical Science, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K
| | - Andreas F.H. Pfeiffer
- Charité-Universitätsmedizin Berlin, Department of Endocrinology and Metabolism, Berlin, Germany
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Department of Endocrinology and Metabolism, Berlin, Germany
| | - Michael Stumvoll
- IFB AdiposityDiseases, Leipzig University Medical Center, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - James B. Meigs
- General Medicine Division, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Nicholas J. Wareham
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Claudia Langenberg
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA
| | - Richard M. Watanabe
- Departments of Preventive Medicine and Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jose C. Florez
- Department of Medicine, Harvard Medical School, Boston, MA
- Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Erik Ingelsson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, U.K
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Inga Prokopenko
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, U.K
- Department of Genomics of Common Disease, Imperial College London, London, U.K
| | | |
Collapse
|
32
|
Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein eIF4G1 in pancreatic β cells. Proc Natl Acad Sci U S A 2014; 111:E2319-28. [PMID: 24843127 DOI: 10.1073/pnas.1323066111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insulin resistance, hyperinsulinemia, and hyperproinsulinemia occur early in the pathogenesis of type 2 diabetes (T2D). Elevated levels of proinsulin and proinsulin intermediates are markers of β-cell dysfunction and are strongly associated with development of T2D in humans. However, the mechanism(s) underlying β-cell dysfunction leading to hyperproinsulinemia is poorly understood. Here, we show that disruption of insulin receptor (IR) expression in β cells has a direct impact on the expression of the convertase enzyme carboxypeptidase E (CPE) by inhibition of the eukaryotic translation initiation factor 4 gamma 1 translation initiation complex scaffolding protein that is mediated by the key transcription factors pancreatic and duodenal homeobox 1 and sterol regulatory element-binding protein 1, together leading to poor proinsulin processing. Reexpression of IR or restoring CPE expression each independently reverses the phenotype. Our results reveal the identity of key players that establish a previously unknown link between insulin signaling, translation initiation, and proinsulin processing, and provide previously unidentified mechanistic insight into the development of hyperproinsulinemia in insulin-resistant states.
Collapse
|
33
|
Li LC, Wang Y, Carr R, Haddad CS, Li Z, Qian L, Oberholzer J, Maker AV, Wang Q, Prabhakar BS. IG20/MADD plays a critical role in glucose-induced insulin secretion. Diabetes 2014; 63:1612-23. [PMID: 24379354 PMCID: PMC3994957 DOI: 10.2337/db13-0707] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell dysfunction is a common feature of type 2 diabetes. Earlier, we had cloned IG20 cDNA from a human insulinoma and had shown that IG20/MADD can encode six different splice isoforms that are differentially expressed and have unique functions, but its role in β-cell function was unexplored. To investigate the role of IG20/MADD in β-cell function, we generated conditional knockout (KMA1ko) mice. Deletion of IG20/MADD in β-cells resulted in hyperglycemia and glucose intolerance associated with reduced and delayed glucose-induced insulin production. KMA1ko β-cells were able to process insulin normally but had increased insulin accumulation and showed a severe defect in glucose-induced insulin release. These findings indicated that IG20/MADD plays a critical role in glucose-induced insulin release from β-cells and that its functional disruption can cause type 2 diabetes. The clinical relevance of these findings is highlighted by recent reports of very strong association of the rs7944584 single nucleotide polymorphism (SNP) of IG20/MADD with fasting hyperglycemia/diabetes. Thus, IG20/MADD could be a therapeutic target for type 2 diabetes, particularly in those with the rs7944584 SNP.
Collapse
Affiliation(s)
- Liang-cheng Li
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
- School of Pharmaceutical Sciences, Xiamen University at Xiang'an, Xiamen, Fujian, China
| | - Yong Wang
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ryan Carr
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Christine Samir Haddad
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ze Li
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Lixia Qian
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jose Oberholzer
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ajay V. Maker
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Qian Wang
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
- Corresponding author: Bellur S. Prabhakar,
| |
Collapse
|
34
|
Wagner R, Staiger H, Ullrich S, Stefan N, Fritsche A, Häring HU. Untangling the interplay of genetic and metabolic influences on beta-cell function: Examples of potential therapeutic implications involving TCF7L2 and FFAR1. Mol Metab 2014; 3:261-7. [PMID: 24749055 PMCID: PMC3986492 DOI: 10.1016/j.molmet.2014.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 12/24/2022] Open
Abstract
Deteriorating beta-cell function is a common feature of type 2 diabetes. In this review, we briefly address the regulation of beta-cell function, and discuss some of the main determinants of beta-cell failure. We will focus on the role of interactions between the genetic background and metabolic environment (insulin resistance, fuel supply and flux as well as metabolic signaling). We present data on the function of the strongest common diabetes risk variant, the single nucleotide polymorphism (SNP) rs7903146 in TCF7L2. As also mirrored by its interaction with glycemia on insulin secretion, this SNP in large part confers resistance against the incretin effect. Genetic influence on insulin secretion also interacts with free fatty acids, as evidenced by data on rs1573611 in FFAR1. Several medications marketed by now or currently under development for diabetes treatment engage these pathways, and therapeutic implications from these findings are soon to be expected.
Collapse
Affiliation(s)
- Robert Wagner
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Vascular Disease and Clinical Chemistry, University Hospital of the Eberhard Karls University, Tübingen, Germany ; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Harald Staiger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Vascular Disease and Clinical Chemistry, University Hospital of the Eberhard Karls University, Tübingen, Germany ; Institute for Diabetes Research and Metabolic Diseases of the Helmholz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany ; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanne Ullrich
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Vascular Disease and Clinical Chemistry, University Hospital of the Eberhard Karls University, Tübingen, Germany ; Institute for Diabetes Research and Metabolic Diseases of the Helmholz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany ; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Norbert Stefan
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Vascular Disease and Clinical Chemistry, University Hospital of the Eberhard Karls University, Tübingen, Germany ; Institute for Diabetes Research and Metabolic Diseases of the Helmholz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany ; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Vascular Disease and Clinical Chemistry, University Hospital of the Eberhard Karls University, Tübingen, Germany ; Institute for Diabetes Research and Metabolic Diseases of the Helmholz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany ; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Vascular Disease and Clinical Chemistry, University Hospital of the Eberhard Karls University, Tübingen, Germany ; Institute for Diabetes Research and Metabolic Diseases of the Helmholz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany ; German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
35
|
Large scale meta-analyses of fasting plasma glucose raising variants in GCK, GCKR, MTNR1B and G6PC2 and their impacts on type 2 diabetes mellitus risk. PLoS One 2013; 8:e67665. [PMID: 23840762 PMCID: PMC3695948 DOI: 10.1371/journal.pone.0067665] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/22/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The evidence that the variants GCK rs1799884, GCKR rs780094, MTNR1B rs10830963 and G6PC2 rs560887, which are related to fasting plasma glucose levels, increase the risk of type 2 diabetes mellitus (T2DM) is contradictory. We therefore performed a meta-analysis to derive a more precise estimation of the association between these polymorphisms and T2DM. METHODS All the publications examining the associations of these variants with risk of T2DM were retrieved from the MEDLINE and EMBASE databases. Using the data from the retrieved articles, we computed summary estimates of the associations of the four variants with T2DM risk. We also examined the studies for heterogeneity, as well as for bias of the publications. RESULTS A total of 113,025 T2DM patients and 199,997 controls from 38 articles were included in the meta-analysis. Overall, the pooled results indicated that GCK (rs1799884), GCKR (rs780094) and MTNR1B (rs10830963) were significantly associated with T2DM susceptibility (OR, 1.04; 95%CI, 1.01-1.08; OR, 1.08; 95%CI, 1.05-1.12 and OR, 1.05; 95%CI, 1.02-1.08, respectively). After stratification by ethnicity, significant associations for the GCK, MTNR1B and G6PC2 variants were detected only in Caucasians (OR, 1.09; 95%CI, 1.02-1.16; OR, 1.10; 95%CI, 1.08-1.13 and OR, 0.97; 95%CI, 0.95-0.99, respectively), but not in Asians (OR, 1.02, 95% CI 0.98-1.05; OR, 1.01; 95%CI, 0.98-1.04 and OR, 1.12; 95%CI, 0.91-1.32, respectively). CONCLUSIONS Our meta-analyses demonstrated that GCKR rs780094 variant confers high cross-ethnicity risk for the development of T2DM, while significant associations between GCK, MTNR1B and G6PC2 variants and T2DM risk are limited to Caucasians.
Collapse
|
36
|
Lecompte S, Pasquetti G, Hermant X, Grenier-Boley B, Gonzalez-Gross M, De Henauw S, Molnar D, Stehle P, Béghin L, Moreno LA, Amouyel P, Dallongeville J, Meirhaeghe A. Genetic and molecular insights into the role of PROX1 in glucose metabolism. Diabetes 2013; 62:1738-45. [PMID: 23274905 PMCID: PMC3636631 DOI: 10.2337/db12-0864] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies have shown that the rs340874 single nucleotide polymorphism (SNP) in PROX1 is a genetic susceptibility factor for type 2 diabetes. We conducted genetic and molecular studies to better understand the role of PROX1 in type 2 diabetes. We assessed the impact of the whole common genetic variability of PROX1 (80 SNPs) on type 2 diabetes-related biochemical traits in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study (n = 1,155). Three SNPs (rs340838, rs340837, and rs340836) were significantly associated with fasting plasma insulin levels (P ≤ 0.00295). We evaluated the impact of nine PROX1 SNPs (the three insulin-associated SNPs plus six SNPs in strong linkage disequilibrium) on luciferase reporter gene expression. The insulin-lowering alleles of rs340874, rs340873, and rs340835 were associated with lower luciferase activity in MIN6 and HepG2 cells (except for rs340874, which was in HepG2 cells only). Electrophoretic mobility shift assays indicated that specific nuclear protein bindings occur at the three SNPs in HepG2 cells, with allele-binding differences for rs340874. We also showed that the knockdown of Prox1 expression by small interfering RNAs in INS-1E cells resulted in a 1.7-fold reduction in glucose-stimulated insulin secretion. All together, we propose that reduced expression of PROX1 by cis-regulatory variants results in altered β-cell insulin secretion and thereby confers susceptibility to type 2 diabetes.
Collapse
Affiliation(s)
- Sophie Lecompte
- INSERM U744, Institut Pasteur de Lille, Université Lille Nord de France, UDSL, Lille, France
| | - Gianni Pasquetti
- INSERM U744, Institut Pasteur de Lille, Université Lille Nord de France, UDSL, Lille, France
| | - Xavier Hermant
- INSERM U744, Institut Pasteur de Lille, Université Lille Nord de France, UDSL, Lille, France
| | - Benjamin Grenier-Boley
- INSERM U744, Institut Pasteur de Lille, Université Lille Nord de France, UDSL, Lille, France
| | - Marcela Gonzalez-Gross
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Stephan De Henauw
- Ghent University, Department of Public Health, Ghent University Hospital, Ghent, Belgium
- University College Ghent, Department of Nutrition and Dietetics, Faculty of Health Care Vesalius, Ghent, Belgium
| | - Denes Molnar
- Department of Paediatrics, Medical Faculty, University of Pécs, Pécs, Hungary
| | - Peter Stehle
- Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Laurent Béghin
- INSERM U955, IFR114, Faculty of Medicine, Université Lille 2, Lille, France
- CIC-9301-INSERM-CHRU de Lille, Lille, France
| | - Luis A. Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Escuela Universitaria de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain
| | - Philippe Amouyel
- INSERM U744, Institut Pasteur de Lille, Université Lille Nord de France, UDSL, Lille, France
| | - Jean Dallongeville
- INSERM U744, Institut Pasteur de Lille, Université Lille Nord de France, UDSL, Lille, France
| | - Aline Meirhaeghe
- INSERM U744, Institut Pasteur de Lille, Université Lille Nord de France, UDSL, Lille, France
- Corresponding author: Aline Meirhaeghe,
| |
Collapse
|