1
|
Owen MC, Zhou Y, Dudley H, Feehley T, Hahn A, Yokoyama CC, Axelrod ML, Lin CY, Wang D, Janowski AB. Novel murine model of human astrovirus infection reveals cardiovascular tropism . J Virol 2025; 99:e0024025. [PMID: 40304490 PMCID: PMC12090817 DOI: 10.1128/jvi.00240-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Astroviruses are a common cause of gastrointestinal disease in humans and have been linked to fatal cases of encephalitis. A major barrier to the study of human-infecting astroviruses is the lack of an in vivo model as previous attempts failed to identify a host that supports viral replication. We describe a novel murine model of infection using astrovirus VA1/HMO-C (VA1), an astrovirus with high seroprevalence in humans. VA1 is cardiotropic, and viral RNA levels peak in the heart tissue 7 days post-inoculation in multiple different murine genetic backgrounds. Infectious VA1 particles could be recovered from heart tissue 3 and 5 days post-inoculation. Viral capsid was detected intracellularly in the heart tissue by immunostaining, and viral RNA was detected in cardiac myocytes, endocardium, and endothelial cells based on fluorescent in situ hybridization and confocal microscopy. Histologically, we identified inflammatory infiltrates consistent with myocarditis in some mice, with viral RNA colocalizing with the infiltrates. These foci contained CD3 +T cells and CD68 +macrophages. Viral RNA levels increased by >10 fold in the heart tissue or serum samples from Rag1 or Stat1 knockout mice, demonstrating the role of both adaptive and innate immunity in the response to VA1 infection. Based on the in vivo tropisms, we tested cardiac-derived primary cells and determined that VA1 can replicate in primary human cardiac endothelial cells, suggesting a novel cardiovascular tropism in human cells. This novel in vivo model of a human-infecting astrovirus enables further characterization of the host immune response and reveals a new cardiovascular tropism of astroviruses. IMPORTANCE Astroviruses routinely cause infections in humans; however, few methods were available to study these viruses. Here, we describe the first animal system to study human-infecting astroviruses by using mice. We demonstrate that mice are susceptible to astrovirus VA1, a strain that commonly infects humans and has been linked to fatal brain infections. The virus infects the heart tissue and is associated with inflammation. When mice with impaired immune systems were infected with VA1, they were found to have higher amounts of the virus in their hearts and blood. We found that VA1 can infect cells from human blood vessels of the heart, which is associated with human health. This model will enable us to better understand how astroviruses cause disease and how the immune system responds to infection. Our findings also suggest that astroviruses could be linked to cardiovascular diseases, including in humans.
Collapse
Affiliation(s)
- Macee C. Owen
- Immunology Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yuefang Zhou
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Holly Dudley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Ashley Hahn
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christine C. Yokoyama
- Department of Internal Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Margaret L. Axelrod
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B. Janowski
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Sarana da Silva A, de Campos GM, Altizani GM, de Carvalho E, Barros AC, Cella E, Kashima S, Sampaio SC, Elias MC, Giovanetti M, Scrideli CA, Slavov SN. Utilizing Viral Metagenomics to Characterize Pathogenic and Commensal Viruses in Pediatric Patients with Febrile Neutropenia. Viruses 2025; 17:345. [PMID: 40143275 PMCID: PMC11946616 DOI: 10.3390/v17030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Febrile neutropenia (FN) is one of the most common complications in pediatric oncology patients. It has a complex etiologic nature, which in the majority of cases remains unclear. Intervention often follows empirical treatment protocols, mainly using broad-spectrum antibiotics. To evaluate potential viral etiologic agents, this study applied viral metagenomics to paired plasma and oropharyngeal samples obtained from pediatric patients with oncological diseases diagnosed with FN. Metagenomic sequencing was performed on 15 pediatric patients with oncological diseases and FN at the outpatient clinic of Pediatric Oncology at the University Hospital of the Faculty of Medicine of Ribeirão Preto, University of São Paulo. As a control group, we included 15 pediatric patients with oncological diseases in remission or undergoing treatment. Clinically relevant viruses identified by metagenomics in FN patients predominantly included herpesviruses and viruses found in the respiratory tract, like adenoviruses. Direct molecular confirmation was performed on all of them. Anelloviruses, represented by various genera and species in all groups, were also highly prevalent. The data obtained in this study show that viruses might also have possible implications for the etiology of FN. However, due to the complex nature of this disease, more studies are necessary to evaluate their causal relationship. The results obtained in our study may serve to improve patient treatment and ensure adequate management.
Collapse
Affiliation(s)
- Anielly Sarana da Silva
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, Brazil; (A.S.d.S.); (G.M.d.C.); (S.K.)
| | - Gabriel Montenegro de Campos
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, Brazil; (A.S.d.S.); (G.M.d.C.); (S.K.)
| | - Gabriela Marengone Altizani
- Department of Puericulture and Pediatrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (G.M.A.); (C.A.S.)
| | - Enéas de Carvalho
- Butantan Institute, Avenida Vital Brasil, 1500, São Paulo 05503-001, Brazil; (E.d.C.); (S.C.S.); (M.C.E.)
| | - Alice Chagas Barros
- Central Laboratory, University Hospital of the Faculty of Medicine in Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-030, Brazil;
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Simone Kashima
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, Brazil; (A.S.d.S.); (G.M.d.C.); (S.K.)
| | - Sandra Coccuzzo Sampaio
- Butantan Institute, Avenida Vital Brasil, 1500, São Paulo 05503-001, Brazil; (E.d.C.); (S.C.S.); (M.C.E.)
| | - Maria Carolina Elias
- Butantan Institute, Avenida Vital Brasil, 1500, São Paulo 05503-001, Brazil; (E.d.C.); (S.C.S.); (M.C.E.)
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Carlos Alberto Scrideli
- Department of Puericulture and Pediatrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (G.M.A.); (C.A.S.)
| | - Svetoslav Nanev Slavov
- Butantan Institute, Avenida Vital Brasil, 1500, São Paulo 05503-001, Brazil; (E.d.C.); (S.C.S.); (M.C.E.)
- Center for Viral Surveillance and Serological Evaluation (CeVIVas), Butantan Institute, Avenida Vital Brasil 1500, São Paulo 05503-900, Brazil
| |
Collapse
|
3
|
Haga K, Tokui T, Miyamoto K, Takai‐Todaka R, Kudo S, Ishikawa A, Ishiyama R, Kato A, Yokoyama M, Katayama K, Nakanishi A. Neonatal Fc receptor is a functional receptor for classical human astrovirus. Genes Cells 2024; 29:983-1001. [PMID: 39266307 PMCID: PMC11555631 DOI: 10.1111/gtc.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/14/2024]
Abstract
Human astrovirus (HAstV) is a global cause of gastroenteritis in infants, the elderly, and the immunocompromised. However, the molecular mechanisms that control its susceptibility are not fully understood, as the functional receptor used by the virus has yet to be identified. Here, a genome-wide CRISPR-Cas9 library screen in Caco2 cells revealed that the neonatal Fc receptor (FcRn) can function as a receptor for classical HAstV (Mamastrovirus genotype 1). Deletion of FCGRT or B2M, which encode subunits of FcRn, rendered Caco2 cells and intestinal organoid cells resistant to HAstV infection. We also showed that human FcRn expression renders non-susceptible cells permissive to viral infection and that FcRn binds directly to the HAstV spike protein. Therefore, our findings provide insight into the entry mechanism of HAstV into susceptible cells. We anticipate that this information can be used to develop new therapies targeting human astroviruses, providing new strategies to treat this global health issue.
Collapse
Affiliation(s)
- Kei Haga
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Takashi Tokui
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Kana Miyamoto
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Reiko Takai‐Todaka
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Shiori Kudo
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Azusa Ishikawa
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Ryoka Ishiyama
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Akiko Kato
- National Center for Geriatrics and Gerontology, Department of Aging InterventionLaboratory of Gene Therapy, and Laboratory for Radiation safetyAichiJapan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious DiseasesTokyoJapan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control SciencesKitasato UniversityTokyoJapan
| | - Akira Nakanishi
- National Center for Geriatrics and Gerontology, Department of Aging InterventionLaboratory of Gene Therapy, and Laboratory for Radiation safetyAichiJapan
- Department of Biology‐Oriented Science and TechnologyKindai UniversityWakayamaJapan
| |
Collapse
|
4
|
Alshammari A, Alotaibi J, Almaghrabi R, Bawazeer R, Althawadi S, Tayeb H. First parechovirus reported case in Saudi Arabia in hospitalized immunocompromised adult patient. Virol J 2024; 21:102. [PMID: 38698421 PMCID: PMC11067097 DOI: 10.1186/s12985-024-02372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Human parechovirus, a member of the Picornaviridae family (PeVs), can lead to severe infections, including severe meningitis, meningoencephalitis, and sepsis-like syndrome. We report a case of human parechovirus-related encephalitis in a 52-year-old woman diagnosed with glioblastoma multiforme. She underwent surgical resection in June 2022. Unfortunately, her disease recurred, and she underwent a second resection in August 2022, followed by radiation therapy and Temozolomide therapy. She presented to the hospital with acute confusion followed by seizures, necessitating intubation for airway support. A cerebrospinal fluid (CSF) sample was obtained and processed using the Biofire FilmArray, which reported the detection of HSV-1. Despite being on Acyclovir, the patient did not show signs of improvement. Consequently, a second CSF sample was obtained and sent for next-generation sequencing (NGS), which returned a positive result for Parechovirus. In this presented case, the patient exhibited symptoms of an unknown infectious cause. The utilization of NGS and metagenomic analysis helped identify Parechovirus as the primary pathogen present, in addition to previously identified HSV. This comprehensive approach facilitated a thorough assessment of the underlying infection and guided targeted treatment. In conclusion, the application of NGS techniques and metagenomic analysis proved instrumental in identifying the root cause of the infection.
Collapse
Affiliation(s)
- Abdullah Alshammari
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Jawaher Alotaibi
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Reem Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Reema Bawazeer
- Center of Genomic Medicine CGM, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Sahar Althawadi
- Microbiology Laboratory, Department of Pathology & Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Hamsa Tayeb
- Clinical Scientist, Head of Functional Genomic section, Transitional Genomic (TG) Department, Center of Genomic Medicine CGM, King Faisal Specialist Hospital and Research Center, P.O.Box 3354, MBC-03-06, Riyadh, 11211, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Zhao Y, Huang F, Wang W, Gao R, Fan L, Wang A, Gao SH. Application of high-throughput sequencing technologies and analytical tools for pathogen detection in urban water systems: Progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165867. [PMID: 37516185 DOI: 10.1016/j.scitotenv.2023.165867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The ubiquitous presence of pathogenic microorganisms, such as viruses, bacteria, fungi, and protozoa, in urban water systems poses a significant risk to public health. The emergence of infectious waterborne diseases mediated by urban water systems has become one of the leading global causes of mortality. However, the detection and monitoring of these pathogenic microorganisms have been limited by the complexity and diversity in the environmental samples. Conventional methods were restricted by long assay time, high benchmarks of identification, and narrow application sceneries. Novel technologies, such as high-throughput sequencing technologies, enable potentially full-spectrum detection of trace pathogenic microorganisms in complex environmental matrices. This review discusses the current state of high-throughput sequencing technologies for identifying pathogenic microorganisms in urban water systems with a concise summary. Furthermore, future perspectives in pathogen research emphasize the need for detection methods with high accuracy and sensitivity, the establishment of precise detection standards and procedures, and the significance of bioinformatics software and platforms. We have compiled a list of pathogens analysis software/platforms/databases that boast robust engines and high accuracy for preference. We highlight the significance of analyses by combining targeted and non-targeted sequencing technologies, short and long reads technologies, sequencing technologies, and bioinformatic tools in pursuing upgraded biosafety in urban water systems.
Collapse
Affiliation(s)
- Yanmei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
6
|
Wildi N, Seuberlich T. The Roles of the 5' and 3' Untranslated Regions in Human Astrovirus Replication. Viruses 2023; 15:1402. [PMID: 37376701 DOI: 10.3390/v15061402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Astroviruses are small nonenveloped single-stranded RNA viruses with a positive sense genome. They are known to cause gastrointestinal disease in a broad spectrum of species. Although astroviruses are distributed worldwide, a gap in knowledge of their biology and disease pathogenesis persists. Many positive-sense single-stranded RNA viruses show conserved and functionally important structures in their 5' and 3' untranslated regions (UTRs). However, not much is known about the role of the 5' and 3' UTRs in the viral replication of HAstV-1. We analyzed the UTRs of HAstV-1 for secondary RNA structures and mutated them, resulting in partial or total UTR deletion. We used a reverse genetic system to study the production of infectious viral particles and to quantify protein expression in the 5' and 3' UTR mutants, and we established an HAstV-1 replicon system containing two reporter cassettes in open reading frames 1a and 2, respectively. Our data show that 3' UTR deletions almost completely abolished viral protein expression and that 5' UTR deletions led to a reduction in infectious virus particles in infection experiments. This indicates that the presence of the UTRs is essential for the life cycle of HAstV-1 and opens avenues for further research.
Collapse
Affiliation(s)
- Nicole Wildi
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Stout MJ, Brar AK, Herter BN, Rankin A, Wylie KM. The plasma virome in longitudinal samples from pregnant patients. Front Cell Infect Microbiol 2023; 13:1061230. [PMID: 36844406 PMCID: PMC9949529 DOI: 10.3389/fcimb.2023.1061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Nucleic acid from viruses is common in peripheral blood, even in asymptomatic individuals. How physiologic changes of pregnancy impact host-virus dynamics for acute, chronic, and latent viral infections is not well described. Previously we found higher viral diversity in the vagina during pregnancy associated with preterm birth (PTB) and Black race. We hypothesized that higher diversity and viral copy numbers in the plasma would show similar trends. Methods To test this hypothesis, we evaluated longitudinally collected plasma samples from 23 pregnant patients (11 term and 12 preterm) using metagenomic sequencing with ViroCap enrichment to enhance virus detection. Sequence data were analyzed with the ViroMatch pipeline. Results We detected nucleic acid from at least 1 virus in at least 1 sample from 87% (20/23) of the maternal subjects. The viruses represented 5 families: Herpesviridae, Poxviridae, Papillomaviridae, Anelloviridae, and Flaviviridae. We analyzed cord plasma from 18 of the babies from those patients and found nucleic acid from viruses in 33% of the samples (6/18) from 3 families: Herpesviridae, Papillomaviridae, and Anelloviridae. Some viral genomes were found in both maternal plasma and cord plasma from maternal-fetal pairs (e.g. cytomegalovirus, anellovirus). We found that Black race associated with higher viral richness (number of different viruses detected) in the maternal blood samples (P=0.003), consistent with our previous observations in vaginal samples. We did not detect associations between viral richness and PTB or the trimester of sampling. We then examined anelloviruses, a group of viruses that is ubiquitous and whose viral copy numbers fluctuate with immunological state. We tested anellovirus copy numbers in plasma from 63 pregnant patients sampled longitudinally using qPCR. Black race associated with higher anellovirus positivity (P<0.001) but not copy numbers (P=0.1). Anellovirus positivity and copy numbers were higher in the PTB group compared to the term group (P<0.01, P=0.003, respectively). Interestingly, these features did not occur at the time of delivery but appeared earlier in pregnancy, suggesting that although anelloviruses were biomarkers for PTB they were not triggering parturition. Discussion These results emphasize the importance of longitudinal sampling and diverse cohorts in studies of virome dynamics during pregnancy.
Collapse
Affiliation(s)
- Molly J. Stout
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Anoop K. Brar
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Brandi N. Herter
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Ananda Rankin
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Kristine M. Wylie
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
Delgado-Cunningham K, López T, Khatib F, Arias CF, DuBois RM. Structure of the divergent human astrovirus MLB capsid spike. Structure 2022; 30:1573-1581.e3. [PMID: 36417907 PMCID: PMC9722636 DOI: 10.1016/j.str.2022.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/30/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Despite their worldwide prevalence and association with human disease, the molecular bases of human astrovirus (HAstV) infection and evolution remain poorly characterized. Here, we report the structure of the capsid protein spike of the divergent HAstV MLB clade (HAstV MLB). While the structure shares a similar folding topology with that of classical-clade HAstV spikes, it is otherwise strikingly different. We find no evidence of a conserved receptor-binding site between the MLB and classical HAstV spikes, suggesting that MLB and classical HAstVs utilize different receptors for host-cell attachment. We provide evidence for this hypothesis using a novel HAstV infection competition assay. Comparisons of the HAstV MLB spike structure with structures predicted from its sequence reveal poor matches, but template-based predictions were surprisingly accurate relative to machine-learning-based predictions. Our data provide a foundation for understanding the mechanisms of infection by diverse HAstVs and can support structure determination in similarly unstudied systems.
Collapse
Affiliation(s)
- Kevin Delgado-Cunningham
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Firas Khatib
- Department of Computer and Information Science, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
9
|
Sandybayev N, Beloussov V, Strochkov V, Solomadin M, Granica J, Yegorov S. Next Generation Sequencing Approaches to Characterize the Respiratory Tract Virome. Microorganisms 2022; 10:microorganisms10122327. [PMID: 36557580 PMCID: PMC9785614 DOI: 10.3390/microorganisms10122327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic and heightened perception of the risk of emerging viral infections have boosted the efforts to better understand the virome or complete repertoire of viruses in health and disease, with a focus on infectious respiratory diseases. Next-generation sequencing (NGS) is widely used to study microorganisms, allowing the elucidation of bacteria and viruses inhabiting different body systems and identifying new pathogens. However, NGS studies suffer from a lack of standardization, in particular, due to various methodological approaches and no single format for processing the results. Here, we review the main methodological approaches and key stages for studies of the human virome, with an emphasis on virome changes during acute respiratory viral infection, with applications for clinical diagnostics and epidemiologic analyses.
Collapse
Affiliation(s)
- Nurlan Sandybayev
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Correspondence: ; Tel.: +7-778312-2058
| | - Vyacheslav Beloussov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Vitaliy Strochkov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| | - Maxim Solomadin
- School of Pharmacy, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Joanna Granica
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Sergey Yegorov
- Michael G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4LB, Canada
| |
Collapse
|
10
|
Ogunbayo AE, Mogotsi MT, Sondlane H, Nkwadipo KR, Sabiu S, Nyaga MM. Metagenomic Analysis of Respiratory RNA Virome of Children with and without Severe Acute Respiratory Infection from the Free State, South Africa during COVID-19 Pandemic Reveals Higher Diversity and Abundance in Summer Compared with Winter Period. Viruses 2022; 14:2516. [PMID: 36423125 PMCID: PMC9692838 DOI: 10.3390/v14112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Viral respiratory infections contribute to significant morbidity and mortality in children. Currently, there are limited reports on the composition and abundance of the normal commensal respiratory virome in comparison to those in severe acute respiratory infections (SARIs) state. This study characterised the respiratory RNA virome in children ≤ 5 years with (n = 149) and without (n = 139) SARI during the summer and winter of 2020/2021 seasons in South Africa. Nasopharyngeal swabs were, collected, pooled, enriched for viral RNA detection, sequenced using Illumina MiSeq, and analysed using the Genome Detective bioinformatic tool. Overall, Picornaviridae, Paramoxyviridae, Pneumoviridae, Picobirnaviridae, Totiviridae, and Retroviridae families were the most abundant viral population in both groups across both seasons. Human rhinovirus and endogenous retrovirus K113 were detected in most pools, with exclusive detection of Pneumoviridae in SARI pools. Generally, higher viral diversity/abundance was seen in children with SARI and in the summer pools. Several plant/animal viruses, eukaryotic viruses with unclear pathogenicity including a distinct rhinovirus A type, were detected. This study provides remarkable data on the respiratory RNA virome in children with and without SARI with a degree of heterogeneity of known viruses colonizing their respiratory tract. The implication of the detected viruses in the dynamics/progression of SARI requires further investigations.
Collapse
Affiliation(s)
- Ayodeji E. Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hlengiwe Sondlane
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Kelebogile R. Nkwadipo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
11
|
Santiago-Rodriguez TM, Hollister EB. Unraveling the viral dark matter through viral metagenomics. Front Immunol 2022; 13:1005107. [PMID: 36189246 PMCID: PMC9523745 DOI: 10.3389/fimmu.2022.1005107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are part of the microbiome and have essential roles in immunology, evolution, biogeochemical cycles, health, and disease progression. Viruses influence a wide variety of systems and processes, and the continued discovery of novel viruses is anticipated to reveal new mechanisms influencing the biology of diverse environments. While the identity and roles of viruses continue to be discovered and understood through viral metagenomics, most of the sequences in virome datasets cannot be attributed to known viruses or may be only distantly related to species already described in public sequence databases, at best. Such viruses are known as the viral dark matter. Ongoing discoveries from the viral dark matter have provided insights into novel viruses from a variety of environments, as well as their potential in immunological processes, virus evolution, health, disease, therapeutics, and surveillance. Increased understanding of the viral dark matter will continue with a combination of cultivation, microscopy, sequencing, and bioinformatic efforts, which are discussed in the present review.
Collapse
|
12
|
Porto BN. Insights Into the Role of the Lung Virome During Respiratory Viral Infections. Front Immunol 2022; 13:885341. [PMID: 35572506 PMCID: PMC9091589 DOI: 10.3389/fimmu.2022.885341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The virome constitutes the viral component of the microbiome and it consists of the genomes of all the viruses that inhabit a particular region of the human body, including those that cause acute, persistent or latent infection, and retroviral elements integrated to host chromosomes. The human virome is composed by eukaryotic viruses, bacteriophages and archaeal viruses. The understanding of the virome composition and role on human health has been delayed by the absence of specific tools and techniques to accurately characterize viruses. However, more recently, advanced methods for viral diagnostics, such as deep sequencing and metagenomics, have allowed a better understanding of the diverse viral species present in the human body. Previous studies have shown that the respiratory virome modulates the host immunity and that, since childhood, the human lung is populated by viruses for whom there is no disease association. Whether these viruses are potentially pathogenic and the reason for their persistence remain elusive. Increased respiratory viral load can cause exacerbation of chronic pulmonary diseases, including COPD, cystic fibrosis, and asthma. Moreover, the presence of resident viral populations may contribute to the pathogenesis of community-acquired respiratory virus infections. In this mini review, I will discuss the recent progress on our understanding of the human lung virome and summarize the up-to-date knowledge on the relationships among community-acquired respiratory viruses, the lung virome and the immune response to better understand disease pathophysiology and the factors that may lead to viral persistence.
Collapse
Affiliation(s)
- Bárbara N Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Fu ZF, Zhang HC, Zhang Y, Cui P, Zhou Y, Wang HY, Lin K, Zhou X, Wu J, Wu HL, Zhang WH, Ai JW. Evaluations of Clinical Utilization of Metagenomic Next-Generation Sequencing in Adults With Fever of Unknown Origin. Front Cell Infect Microbiol 2022; 11:745156. [PMID: 35127548 PMCID: PMC8813867 DOI: 10.3389/fcimb.2021.745156] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The diagnosis of infection-caused fever of unknown origin (FUO) is still challenging, making it difficult for physicians to provide an early effective therapy. Therefore, a novel pathogen detection platform is needed. Metagenomic next-generation sequencing (mNGS) provides an unbiased, comprehensive technique for the sequence-based identification of pathogenic microbes, but the study of the diagnostic values of mNGS in FUO is still limited. Methods In a single-center retrospective cohort study, 175 FUO patients were enrolled, and clinical data were recorded and analyzed to compare mNGS with culture or traditional methods including as smears, serological tests, and nucleic acid amplification testing (NAAT) (traditional PCR, Xpert MTB/RIF, and Xpert MTB/RIF Ultra). Results The blood mNGS could increase the overall rate of new organisms detected in infection-caused FUO by roughly 22.9% and 19.79% in comparison to culture (22/96 vs. 0/96; OR, ∞; p = 0.000) and conventional methods (19/96 vs. 3/96; OR, 6.333; p = 0.001), respectively. Bloodstream infection was among the largest group of those identified, and the blood mNGS could have a 38% improvement in the diagnosis rate compared to culture (19/50 vs. 0/50; OR, ∞; p = 0.000) and 32.0% compared to conventional methods (16/50 vs. 3/50; OR, 5.333; p = 0.004). Among the non-blood samples in infection-caused FUO, we observed that the overall diagnostic performance of mNGS in infectious disease was better than that of conventional methods by 20% (9/45 vs. 2/45; OR, 4.5; p = 0.065), and expectedly, the use of non-blood mNGS in non-bloodstream infection increased the diagnostic rate by 26.2% (8/32 vs. 0/32; OR, ∞; p = 0.008). According to 175 patients’ clinical decision-making, we found that the use of blood mNGS as the first-line investigation could effectively increase 10.9% of diagnosis rate of FUO compared to culture, and the strategy that the mNGS of suspected parts as the second-line test could further benefit infectious patients, improving the diagnosis rate of concurrent infection by 66.7% and 12.5% in non-bloodstream infection, respectively. Conclusion The application of mNGS in the FUO had significantly higher diagnostic efficacy than culture or other conventional methods. In infection-caused FUO patients, application of blood mNGS as the first-line investigation and identification of samples from suspected infection sites as the second-line test could enhance the overall FUO diagnosis rate and serve as a promising optimized diagnostic protocol in the future.
Collapse
Affiliation(s)
- Zhang-fan Fu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao-cheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- BGI PathoGenesis Pharmaceutical Technology Co., Ltd., BGI-Shenzhen, Shenzhen, China
| | - Hong-yu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xian Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong-long Wu
- BGI PathoGenesis Pharmaceutical Technology Co., Ltd., BGI-Shenzhen, Shenzhen, China
- BGI Wuhan Biotechnology, BGI-Shenzhen, Wuhan, China
| | - Wen-hong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-wen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jingwen Ai,
| |
Collapse
|
14
|
Capai L, Piorkowski G, Maestrini O, Casabianca F, Masse S, de Lamballerie X, Charrel RN, Falchi A. Detection of porcine enteric viruses (Kobuvirus, Mamastrovirus and Sapelovirus) in domestic pigs in Corsica, France. PLoS One 2022; 17:e0260161. [PMID: 35030164 PMCID: PMC8759673 DOI: 10.1371/journal.pone.0260161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Many enteric viruses are found in pig farms around the world and can cause death of animals or important production losses for breeders. Among the wide spectrum of enteric viral species, porcine Sapelovirus (PSV), porcine Kobuvirus (PKoV) and porcine Astrovirus (PAstV) are frequently found in pig feces. In this study we investigated sixteen pig farms in Corsica, France, to evaluate the circulation of three enteric viruses (PKoV, PAstV-1 and PSV). In addition to the three viruses studied by RT-qPCR (908 pig feces samples), 26 stool samples were tested using the Next Generation Sequencing method (NGS). Our results showed viral RNA detection rates (i) of 62.0% [58.7-65.1] (n = 563/908) for PSV, (ii) of 44.8% [41.5-48.1] (n = 407/908) for PKoV and (iii) of 8.6% [6.8-10.6] (n = 78/908) for PAstV-1. Significant differences were observed for all three viruses according to age (P-value = 2.4e-13 for PAstV-1; 2.4e-12 for PKoV and 0.005 for PSV). The type of breeding was significantly associated with RNA detection only for PAstV-1 (P-value = 9.6e-6). Among the 26 samples tested with NGS method, consensus sequences corresponding to 10 different species of virus were detected. This study provides first insight on the presence of three common porcine enteric viruses in France. We also showed that they are frequently encountered in pigs born and bred in Corsica, which demonstrates endemic local circulation.
Collapse
Affiliation(s)
- Lisandru Capai
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Oscar Maestrini
- Laboratoire de Recherche sur le Développement de l’Elevage (LRDE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Corte, France
| | - François Casabianca
- Laboratoire de Recherche sur le Développement de l’Elevage (LRDE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Corte, France
| | - Shirley Masse
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Rémi N. Charrel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Alessandra Falchi
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| |
Collapse
|
15
|
Cordey S, Laubscher F, Hartley MA, Junier T, Keitel K, Docquier M, Guex N, Iseli C, Vieille G, Le Mercier P, Gleizes A, Samaka J, Mlaganile T, Kagoro F, Masimba J, Said Z, Temba H, Elbanna GH, Tapparel C, Zanella MC, Xenarios I, Fellay J, D’Acremont V, Kaiser L. Blood virosphere in febrile Tanzanian children. Emerg Microbes Infect 2021; 10:982-993. [PMID: 33929935 PMCID: PMC8171259 DOI: 10.1080/22221751.2021.1925161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Viral infections are the leading cause of childhood acute febrile illnesses motivating consultation in sub-Saharan Africa. The majority of causal viruses are never identified in low-resource clinical settings as such testing is either not part of routine screening or available diagnostic tools have limited ability to detect new/unexpected viral variants. An in-depth exploration of the blood virome is therefore necessary to clarify the potential viral origin of fever in children. Metagenomic next-generation sequencing is a powerful tool for such broad investigations, allowing the detection of RNA and DNA viral genomes. Here, we describe the blood virome of 816 febrile children (<5 years) presenting at outpatient departments in Dar es Salaam over one-year. We show that half of the patients (394/816) had at least one detected virus recognized as causes of human infection/disease (13.8% enteroviruses (enterovirus A, B, C, and rhinovirus A and C), 12% rotaviruses, 11% human herpesvirus type 6). Additionally, we report the detection of a large number of viruses (related to arthropod, vertebrate or mammalian viral species) not yet known to cause human infection/disease, highlighting those who should be on the radar, deserve specific attention in the febrile paediatric population and, more broadly, for surveillance of emerging pathogens.Trial registration: ClinicalTrials.gov identifier: NCT02225769.
Collapse
Affiliation(s)
- Samuel Cordey
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian Laubscher
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mary-Anne Hartley
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Intelligent Global Health, Machine Learning and Optimization Laboratory, EPFL, Lausanne, Switzerland
| | - Thomas Junier
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kristina Keitel
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
- Department of Paediatric Emergency Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne and EPFL, Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne and EPFL, Lausanne, Switzerland
| | - Gael Vieille
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Anne Gleizes
- SwissProt group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | | | - Frank Kagoro
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - John Masimba
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Zamzam Said
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Gasser H. Elbanna
- Intelligent Global Health, Machine Learning and Optimization Laboratory, EPFL, Lausanne, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Marie-Celine Zanella
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ioannis Xenarios
- Health2030 Genome Center, Geneva, Switzerland
- Agora Center, University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valérie D’Acremont
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
16
|
Mora M, Wicaksono WA, Egamberdieva D, Krause R, Martinez JL, Cernava T, Berg G. Explorative assessment of coronavirus-like short sequences from host-associated and environmental metagenomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148494. [PMID: 34328954 PMCID: PMC8222970 DOI: 10.1016/j.scitotenv.2021.148494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 04/14/2023]
Abstract
The ongoing COVID-19 pandemic has not only globally caused a high number of causalities, but is also an unprecedented challenge for scientists. False-positive virus detection tests not only aggravate the situation in the healthcare sector, but also provide ground for speculations. Previous studies have highlighted the importance of software choice and data interpretation in virome studies. We aimed to further expand theoretical and practical knowledge in bioinformatics-driven virome studies by focusing on short, virus-like DNA sequences in metagenomic data. Analyses of datasets obtained from different sample types (terrestrial, animal and human related samples) and origins showed that coronavirus-like sequences have existed in host-associated and environmental samples before the current COVID-19 pandemic. In the analyzed datasets, various Betacoronavirus-like sequences were detected that also included SARS-CoV-2 matches. Deepening analyses indicated that the detected sequences are not of viral origin and thus should not be considered in virome profiling approaches. Our study confirms the importance of parameter selection, especially in terms of read length, for reliable virome profiling. Natural environments are an important source of coronavirus-like nucleotide sequences that should be taken into account when virome datasets are analyzed and interpreted. We therefore suggest that processing parameters are carefully selected for SARS-CoV-2 profiling in host related as well as environmental samples in order to avoid incorrect identifications.
Collapse
Affiliation(s)
- Maximilian Mora
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
| | - Wisnu Adi Wicaksono
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
| | | | - Robert Krause
- Medical University of Graz, Division of Infectious Diseases, Department of Internal Medicine, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | | | - Tomislav Cernava
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria.
| | - Gabriele Berg
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
17
|
Santos PD, Ziegler U, Szillat KP, Szentiks CA, Strobel B, Skuballa J, Merbach S, Grothmann P, Tews BA, Beer M, Höper D. In action-an early warning system for the detection of unexpected or novel pathogens. Virus Evol 2021; 7:veab085. [PMID: 34703624 PMCID: PMC8542707 DOI: 10.1093/ve/veab085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Proactive approaches in preventing future epidemics include pathogen discovery prior to their emergence in human and/or animal populations. Playing an important role in pathogen discovery, high-throughput sequencing (HTS) enables the characterization of microbial and viral genetic diversity within a given sample. In particular, metagenomic HTS allows the unbiased taxonomic profiling of sequences; hence, it can identify novel and highly divergent pathogens such as viruses. Newly discovered viral sequences must be further investigated using genomic characterization, molecular and serological screening, and/or invitro and invivo characterization. Several outbreak and surveillance studies apply unbiased generic HTS to characterize the whole genome sequences of suspected pathogens. In contrast, this study aimed to screen for novel and unexpected pathogens in previously generated HTS datasets and use this information as a starting point for the establishment of an early warning system (EWS). As a proof of concept, the EWS was applied to HTS datasets and archived samples from the 2018–9 West Nile virus (WNV) epidemic in Germany. A metagenomics read classifier detected sequences related to genome sequences of various members of Riboviria. We focused the further EWS investigation on viruses belonging to the families Peribunyaviridae and Reoviridae, under suspicion of causing co-infections in WNV-infected birds. Phylogenetic analyses revealed that the reovirus genome sequences clustered with sequences assigned to the species Umatilla virus (UMAV), whereas a new peribunyavirid, tentatively named ‘Hedwig virus’ (HEDV), belonged to a putative novel genus of the family Peribunyaviridae. In follow-up studies, newly developed molecular diagnostic assays detected fourteen UMAV-positive wild birds from different German cities and eight HEDV-positive captive birds from two zoological gardens. UMAV was successfully cultivated in mosquito C6/36 cells inoculated with a blackbird liver. In conclusion, this study demonstrates the power of the applied EWS for the discovery and characterization of unexpected viruses in repurposed sequence datasets, followed by virus screening and cultivation using archived sample material. The EWS enhances the strategies for pathogen recognition before causing sporadic cases and massive outbreaks and proves to be a reliable tool for modern outbreak preparedness.
Collapse
Affiliation(s)
- Pauline Dianne Santos
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Kevin P Szillat
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Claudia A Szentiks
- 4Department of Wildlife Diseases, Leibniz-Institute for Zoo- and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| | - Birte Strobel
- Chemical and Veterinary Investigations Office Karlsruhe (CVUA Karlsruhe), Weissenburgerstrasse 3, Karlsruhe 76187, Germany
| | - Jasmin Skuballa
- Chemical and Veterinary Investigations Office Karlsruhe (CVUA Karlsruhe), Weissenburgerstrasse 3, Karlsruhe 76187, Germany
| | - Sabine Merbach
- State Institute for Chemical and Veterinary Analysis (CVUA) Westfalen, Zur Taubeneiche 10-12, Arnsberg 59821, Germany
| | - Pierre Grothmann
- Practice for Zoo, Game and Wild Animals, Lintiger Str. 74, Geestland 27624, Germany
| | - Birke Andrea Tews
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| |
Collapse
|
18
|
Langat SK, Eyase F, Bulimo W, Lutomiah J, Oyola SO, Imbuga M, Sang R. Profiling of RNA Viruses in Biting Midges ( Ceratopogonidae) and Related Diptera from Kenya Using Metagenomics and Metabarcoding Analysis. mSphere 2021; 6:e0055121. [PMID: 34643419 PMCID: PMC8513680 DOI: 10.1128/msphere.00551-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Vector-borne diseases (VBDs) cause enormous health burden worldwide, as they account for more than 17% of all infectious diseases and over 700,000 deaths each year. A significant number of these VBDs are caused by RNA virus pathogens. Here, we used metagenomics and metabarcoding analysis to characterize RNA viruses and their insect hosts among biting midges from Kenya. We identified a total of 15 phylogenetically distinct insect-specific viruses. These viruses fall into six families, with one virus falling in the recently proposed negevirus taxon. The six virus families include Partitiviridae, Iflaviridae, Tombusviridae, Solemoviridae, Totiviridae, and Chuviridae. In addition, we identified many insect species that were possibly associated with the identified viruses. Ceratopogonidae was the most common family of midges identified. Others included Chironomidae and Cecidomyiidae. Our findings reveal a diverse RNA virome among Kenyan midges that includes previously unknown viruses. Further, metabarcoding analysis based on COI (cytochrome c oxidase subunit 1 mitochondrial gene) barcodes reveal a diverse array of midge species among the insects used in the study. Successful application of metagenomics and metabarcoding methods to characterize RNA viruses and their insect hosts in this study highlights a possible simultaneous application of these two methods as cost-effective approaches to virus surveillance and host characterization. IMPORTANCE The majority of the viruses that currently cause diseases in humans and animals are RNA viruses, and more specifically arthropod-transmitted viruses. They cause diseases such as dengue, West Nile infection, bluetongue disease, Schmallenberg disease, and yellow fever, among others. Several sequencing investigations have shown us that a diverse array of RNA viruses among insect vectors remain unknown. Some of these could be ancient lineages that could aid in comprehensive studies on RNA virus evolution. Such studies may provide us with insights into the evolution of the currently pathogenic viruses. Here, we applied metagenomics to field-collected midges and we managed to characterize several RNA viruses, where we recovered complete and nearly complete genomes of these viruses. We also characterized the insect host species that are associated with these viruses. These results add to the currently known diversity of RNA viruses among biting midges as well as their associated insect hosts.
Collapse
Affiliation(s)
- Solomon K. Langat
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Fredrick Eyase
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate—Africa, Nairobi, Kenya
| | - Wallace Bulimo
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Joel Lutomiah
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Mabel Imbuga
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Rosemary Sang
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
19
|
Morris C, Lee YS, Yoon S. Adventitious agent detection methods in bio-pharmaceutical applications with a focus on viruses, bacteria, and mycoplasma. Curr Opin Biotechnol 2021; 71:105-114. [PMID: 34325176 DOI: 10.1016/j.copbio.2021.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Adventitious agents present significant complications to biopharmaceutical manufacturing. Adventitious agents include numerous lifeforms such as bacteria, fungi, viruses, mycoplasma, and others that are inadvertently introduced into biological systems. They present significant problems to the stability of cell cultures and the sterility of manufacturing products. In this review, detection methods for bacteria, viruses, and mycoplasma are comprehensively addressed. Detection methods for viruses include traditional culture-based methods, electron microscopy studies, in vitro molecular and antibody assays, sequencing methods (massive parallel or next generation sequencing), and degenerate PCR (polymerase chain reaction). Bacteria, on the other hand, can be detected with culture-based approaches, PCR, and biosensor-based methods. Mycoplasma can be detected via PCR (including specific kits), microbiological culture methods, and enzyme-linked immunosorbent assays (ELISA). This review highlights the advantages and weaknesses of current detection methods while exploring potential avenues for further development and improvement of novel detection methods. Additionally, a brief evaluation of the transition of these methods into the gene therapy production realm with a focus on viral titer monitoring will be presented.
Collapse
Affiliation(s)
- Caitlin Morris
- Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Yong Suk Lee
- Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Seongkyu Yoon
- Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
20
|
Dodi G, Attanasi M, Di Filippo P, Di Pillo S, Chiarelli F. Virome in the Lungs: The Role of Anelloviruses in Childhood Respiratory Diseases. Microorganisms 2021; 9:microorganisms9071357. [PMID: 34201449 PMCID: PMC8307813 DOI: 10.3390/microorganisms9071357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
More recently, increasing attention has been directed to exploring the function of the global virome in health and disease. Currently, by new molecular techniques, such as metagenomic DNA sequencing, the virome has been better unveiled. By investigating the human lung virome, we could provide novel insights into respiratory diseases. The virome, as a part of the microbiome, is characterized by a constant change in composition related to the type of diet, environment, and our genetic code, and other incalculable factors. The virome plays a substantial role in modulating human immune defenses and contributing to the inflammatory processes. Anelloviruses (AVs) are new components of the virome. AVs are already present during early life and reproduce without apparently causing harm to the host. The role of AVs is still unknown, but several reports have shown that AVs could activate the inflammasomes, intracellular multiprotein oligomers of the innate immune system, which show a crucial role in the host defense to several pathogens. In this narrative revision, we summarize the epidemiological data related to the possible link between microbial alterations and chronic respiratory diseases in children. Briefly, we also describe the characteristics of the most frequent viral family present in the lung virome, Anelloviridae. Furthermore, we discuss how AVs could modulate the immune system in children, affecting the development of chronic respiratory diseases, particularly asthma, the most common chronic inflammatory disease in childhood.
Collapse
|
21
|
Abstract
The nasopharyngeal microbiome is a dynamic microbial interface of the aerodigestive tract, and a diagnostic window in the fight against respiratory infections and antimicrobial resistance. As its constituent bacteria, viruses and mycobacteria become better understood and sampling accuracy improves, diagnostics of the nasopharynx could guide more personalized care of infections of surrounding areas including the lungs, ears and sinuses. This review will summarize the current literature from a clinical perspective and highlight its growing importance in diagnostics and infectious disease management.
Collapse
Affiliation(s)
- Matthew Flynn
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
- Otolaryngology Department, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - James Dooley
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
22
|
Hu B, Tao Y, Shao Z, Zheng Y, Zhang R, Yang X, Liu J, Li X, Sun R. A Comparison of Blood Pathogen Detection Among Droplet Digital PCR, Metagenomic Next-Generation Sequencing, and Blood Culture in Critically Ill Patients With Suspected Bloodstream Infections. Front Microbiol 2021; 12:641202. [PMID: 34079528 PMCID: PMC8165239 DOI: 10.3389/fmicb.2021.641202] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) and droplet digital PCR (ddPCR) have recently demonstrated a great potential for pathogen detection. However, few studies have been undertaken to compare these two nucleic acid detection methods for identifying pathogens in patients with bloodstream infections (BSIs). This prospective study was thus conducted to compare these two methods for diagnostic applications in a clinical setting for critically ill patients with suspected BSIs. Upon suspicion of BSIs, whole blood samples were simultaneously drawn for ddPCR covering 20 common isolated pathogens and four antimicrobial resistance (AMR) genes, mNGS, and blood culture. Then, a head-to-head comparison was performed between ddPCR and mNGS. A total of 60 episodes of suspected BSIs were investigated in 45 critically ill patients, and ddPCR was positive in 50 (83.3%), mNGS in 41 (68.3%, not including viruses), and blood culture in 10 (16.7%) episodes. Of the 10 positive blood cultures, nine were concordantly identified by both mNGS and ddPCR methods. The head-to-head comparison showed that ddPCR was more rapid (~4 h vs. ~2 days) and sensitive (88 vs. 53 detectable pathogens) than mNGS within the detection range of ddPCR, while mNGS detected a broader range of pathogens (126 vs. 88 detectable pathogens, including viruses) than ddPCR. In addition, a total of 17 AMR genes, including 14 blaKPC and 3 mecA genes, were exclusively identified by ddPCR. Based on their respective limitations and strengths, the ddPCR method is more useful for rapid detection of common isolated pathogens as well as AMR genes in critically ill patients with suspected BSI, whereas mNGS testing is more appropriate for the diagnosis of BSI where classic microbiological or molecular diagnostic approaches fail to identify causative pathogens.
Collapse
Affiliation(s)
- Bangchuan Hu
- Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yue Tao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ziqiang Shao
- Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yang Zheng
- Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Run Zhang
- Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xuejing Yang
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jingquan Liu
- Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Renhua Sun
- Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
23
|
Beyond the Gastrointestinal Tract: The Emerging and Diverse Tissue Tropisms of Astroviruses. Viruses 2021; 13:v13050732. [PMID: 33922259 PMCID: PMC8145421 DOI: 10.3390/v13050732] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Astroviruses are single stranded, positive-sense RNA viruses that have been historically associated with diseases of the gastrointestinal tract of vertebrates, including humans. However, there is now a multitude of evidence demonstrating the capacity of these viruses to cause extraintestinal diseases. The most striking causal relationship is neurological diseases in humans, cattle, pigs, and other mammals, caused by astrovirus infection. Astroviruses have also been associated with disseminated infections, localized disease of the liver or kidneys, and there is increasing evidence suggesting a potential tropism to the respiratory tract. This review will discuss the current understanding of the tissue tropisms for astroviruses and their emerging capacity to cause disease in multiple organ systems.
Collapse
|
24
|
ViroMatch: A Computational Pipeline for the Detection of Viral Sequences from Complex Metagenomic Data. Microbiol Resour Announc 2021; 10:10/9/e01468-20. [PMID: 33664143 PMCID: PMC7936641 DOI: 10.1128/mra.01468-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ViroMatch is an automated pipeline that takes metagenomic sequencing reads as input and performs iterative nucleotide and translated nucleotide mapping to identify viral sequences. We provide a Docker image for ViroMatch, so that users will not have to install dependencies.
Collapse
|
25
|
Wright WF, Simner PJ, Carroll KC, Auwaerter PG. Progress Report: Next-Generation Sequencing (NGS), Multiplex Polymerase Chain Reaction (PCR), and Broad-Range Molecular Assays as Diagnostic Tools for Fever of Unknown Origin (FUO) Investigations in Adults. Clin Infect Dis 2021; 74:924-932. [PMID: 33606012 DOI: 10.1093/cid/ciab155] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 11/12/2022] Open
Abstract
Even well into the 21st century, infectious diseases still account for most causes of fever of unknown origin (FUO). Advances in molecular technologies, including broad-range PCR of the 16S rRNA gene followed by Sanger sequencing, multiplex PCR assays, and more recently, next-generation sequencing (NGS) applications, have transitioned from research methods to more commonplace in some clinical microbiology laboratories. They have the potential to supplant traditional microbial identification methods and antimicrobial susceptibility testing. Despite the remaining challenges with these technologies, publications in the past decade justify excitement about the potential to transform FUO investigations. We discuss available evidence using these molecular methods for FUO evaluations, including potential cost-benefits and future directions.
Collapse
Affiliation(s)
- William F Wright
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Karen C Carroll
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paul G Auwaerter
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
26
|
Li N, Cai Q, Miao Q, Song Z, Fang Y, Hu B. High-Throughput Metagenomics for Identification of Pathogens in the Clinical Settings. SMALL METHODS 2021; 5:2000792. [PMID: 33614906 PMCID: PMC7883231 DOI: 10.1002/smtd.202000792] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Indexed: 05/25/2023]
Abstract
The application of sequencing technology is shifting from research to clinical laboratories owing to rapid technological developments and substantially reduced costs. However, although thousands of microorganisms are known to infect humans, identification of the etiological agents for many diseases remains challenging as only a small proportion of pathogens are identifiable by the current diagnostic methods. These challenges are compounded by the emergence of new pathogens. Hence, metagenomic next-generation sequencing (mNGS), an agnostic, unbiased, and comprehensive method for detection, and taxonomic characterization of microorganisms, has become an attractive strategy. Although many studies, and cases reports, have confirmed the success of mNGS in improving the diagnosis, treatment, and tracking of infectious diseases, several hurdles must still be overcome. It is, therefore, imperative that practitioners and clinicians understand both the benefits and limitations of mNGS when applying it to clinical practice. Interestingly, the emerging third-generation sequencing technologies may partially offset the disadvantages of mNGS. In this review, mainly: a) the history of sequencing technology; b) various NGS technologies, common platforms, and workflows for clinical applications; c) the application of NGS in pathogen identification; d) the global expert consensus on NGS-related methods in clinical applications; and e) challenges associated with diagnostic metagenomics are described.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious DiseasesZhongshan HospitalFudan UniversityShanghai200032China
| | - Qingqing Cai
- Genoxor Medical Science and Technology Inc.Zhejiang317317China
| | - Qing Miao
- Department of Infectious DiseasesZhongshan HospitalFudan UniversityShanghai200032China
| | - Zeshi Song
- Genoxor Medical Science and Technology Inc.Zhejiang317317China
| | - Yuan Fang
- Genoxor Medical Science and Technology Inc.Zhejiang317317China
| | - Bijie Hu
- Department of Infectious DiseasesZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
27
|
Zhong Y, Xu F, Wu J, Schubert J, Li MM. Application of Next Generation Sequencing in Laboratory Medicine. Ann Lab Med 2021; 41:25-43. [PMID: 32829577 PMCID: PMC7443516 DOI: 10.3343/alm.2021.41.1.25] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The rapid development of next-generation sequencing (NGS) technology, including advances in sequencing chemistry, sequencing technologies, bioinformatics, and data interpretation, has facilitated its wide clinical application in precision medicine. This review describes current sequencing technologies, including short- and long-read sequencing technologies, and highlights the clinical application of NGS in inherited diseases, oncology, and infectious diseases. We review NGS approaches and clinical diagnosis for constitutional disorders; summarize the application of U.S. Food and Drug Administration-approved NGS panels, cancer biomarkers, minimal residual disease, and liquid biopsy in clinical oncology; and consider epidemiological surveillance, identification of pathogens, and the importance of host microbiome in infectious diseases. Finally, we discuss the challenges and future perspectives of clinical NGS tests.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Feng Xu
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Jinhua Wu
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Jeffrey Schubert
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Marilyn M. Li
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| |
Collapse
|
28
|
Abstract
The human body hosts vast microbial communities, termed the microbiome. Less well known is the fact that the human body also hosts vast numbers of different viruses, collectively termed the 'virome'. Viruses are believed to be the most abundant and diverse biological entities on our planet, with an estimated 1031 particles on Earth. The human virome is similarly vast and complex, consisting of approximately 1013 particles per human individual, with great heterogeneity. In recent years, studies of the human virome using metagenomic sequencing and other methods have clarified aspects of human virome diversity at different body sites, the relationships to disease states and mechanisms of establishment of the human virome during early life. Despite increasing focus, it remains the case that the majority of sequence data in a typical virome study remain unidentified, highlighting the extent of unexplored viral 'dark matter'. Nevertheless, it is now clear that viral community states can be associated with adverse outcomes for the human host, whereas other states are characteristic of health. In this Review, we provide an overview of research on the human virome and highlight outstanding recent studies that explore the assembly, composition and dynamics of the human virome as well as host-virome interactions in health and disease.
Collapse
|
29
|
Reyes AC, Egwu E, Yu E, Sanchez AN, De La O L, Elijah OE, Muschalek TJ, Zhang W, Ji H, Ehsan H, Kaneko G. Forkhead transcription factor O1 (FoxO1) in torafugu pufferfish Takifugu rubripes: Molecular cloning, in vitro DNA binding, and target gene screening in fish metagenome. Gene 2020; 768:145335. [PMID: 33278555 DOI: 10.1016/j.gene.2020.145335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
The fish insulin/insulin-like growth factor (IGF) pathway has weak control over carbohydrate metabolism. To understand the molecular basis for the metabolic diversity, we characterized the forkhead box transcription factor O1A (FoxO1A), a downstream target of the insulin/IGF pathway, in torafugu Takifugu rubripes. The cloned torafugu FoxO1A cDNA contained all conserved features critical for its transcriptional activity and a unique unspliced intron encoding a poly-glutamine stretch. Torafugu FoxO1A showed the IGF-dependent nuclear exclusion and in vitro binding to the well-conserved FoxO1 binding site, DAF-16 binding element (DBE), but failed to bind to the insulin-responsive element by which mammalian FoxO1 mediates insulin effects. The subsequent in silico genomic screening provided a list of 587 potential torafugu FoxO1A target genes containing the DBE. Some carbohydrate metabolic genes regulated by FoxO1 in mammals were not included in the list. We further identified about 250 potential fish FoxO1 target genes by integrating results of the DBE screening against fish metagenome that contained 262 species. Neuronal processes appeared to be the common major function of fish FoxO1, although further annotation of the potential target genes is required. These results provide a part of the molecular basis underlying the weak association between the insulin/IGF pathway and carbohydrate metabolism in fish.
Collapse
Affiliation(s)
- Anthony Canela Reyes
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Elvis Egwu
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Ermeng Yu
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou 510380, China
| | - Ashley N Sanchez
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Linda De La O
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA
| | | | - Tyler J Muschalek
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Wei Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hashimul Ehsan
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Gen Kaneko
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA.
| |
Collapse
|
30
|
Al Bataineh MT, Hamoudi RA, Dash NR, Ramakrishnan RK, Almasalmeh MA, Sharif HA, Al-Hajjaj MS, Hamid Q. Altered respiratory microbiota composition and functionality associated with asthma early in life. BMC Infect Dis 2020; 20:697. [PMID: 32962658 PMCID: PMC7510324 DOI: 10.1186/s12879-020-05427-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background The microbiota of the respiratory tract has an important role in maintaining respiratory health. However, little is known on the respiratory microbiota in asthmatic patients among Middle Eastern populations. This study investigated the respiratory microbiota composition and functionality associated with asthma in Emirati subjects. Methods We performed 16S rRNA and ITS2-gene based microbial profiling of 40 expectorated sputum samples from adult and pediatric Emirati individuals averaging 52 and 7 years of age, respectively with or without asthma. Results We report bacterial difference belonging to Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria phyla between asthmatic and non-asthmatic controls. Similarly, fungal difference belonging to Ascomycota, Basidiomycota phyla and other unclassified fungi. Differential abundance testing among asthmatic individuals with relation to Asthma Control Test show a significant depletion of Penicillium aethiopicum and Alternaria spp., among poorly controlled asthmatics. Moreover, data suggest a significant expansion of Malassezia spp. and other unclassified fungi in the airways of those receiving steroids and leukotriene receptor antagonists’ combination therapy, in contrast to those receiving steroids alone. Functional profiling from 16S data showed marked differences between pediatric asthmatic and non-asthmatic controls, with pediatric asthmatic patients showing an increase in amino acid (p-value < 5.03 × 10− 7), carbohydrate (p-value < 4.76 × 10− 7), and fatty acid degradation (p-value < 6.65 × 10− 7) pathways, whereas non-asthmatic controls are associated with increase in amino acid (p-value < 8.34 × 10− 7), carbohydrate (p-value < 3.65 × 10− 7), and fatty acid (p-value < 2.18 × 10− 6) biosynthesis pathways in concordance with enterotype composition. Conclusions These differences provide an insight into respiratory microbiota composition in Emirati population and its possible role in the development of asthma early in life. This study provides important information that may eventually lead to the development of screening biomarkers to predict early asthma development and novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad T Al Bataineh
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates. .,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Rifat A Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Nihar R Dash
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Hanan A Sharif
- University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Mohamed S Al-Hajjaj
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates.,University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Abstract
When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance. Traditional screening for arboviruses in mosquitoes requires a priori knowledge and the utilization of appropriate assays for their detection. Mosquitoes can also provide other valuable information, including unexpected or novel arboviruses, nonarboviral pathogens ingested from hosts they feed on, and their own genetic material. Metagenomic analysis using next-generation sequencing (NGS) is a rapidly advancing technology that allows us to potentially obtain all this information from a mosquito sample without any prior knowledge of virus, host, or vector. Moreover, it has been recently demonstrated that pathogens, including arboviruses and parasites, can be detected in mosquito excreta by molecular methods. In this study, we investigated whether RNA viruses could be detected in mosquito excreta by NGS. Excreta samples were collected from Aedes vigilax and Culex annulirostris experimentally exposed to either Ross River or West Nile viruses and from field mosquitoes collected across Queensland, Australia. Total RNA was extracted from the excreta samples, reverse transcribed to cDNA, and sequenced using the Illumina NextSeq 500 platform. Bioinformatic analyses from the generated reads demonstrate that mosquito excreta provide sufficient RNA for NGS, allowing the assembly of near-full-length viral genomes. We detected Australian Anopheles totivirus, Wuhan insect virus 33, and Hubei odonate virus 5 and identified seven potentially novel viruses closely related to members of the order Picornavirales (2/7) and to previously described, but unclassified, RNA viruses (5/7). Our results suggest that metagenomic analysis of mosquito excreta has great potential for virus discovery and for unbiased arbovirus surveillance in the near future. IMPORTANCE When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance.
Collapse
|
32
|
Carbo EC, Buddingh EP, Karelioti E, Sidorov IA, Feltkamp MC, Borne PAVD, Verschuuren JJ, Kroes AC, Claas EC, de Vries JJ. Improved diagnosis of viral encephalitis in adult and pediatric hematological patients using viral metagenomics. J Clin Virol 2020; 130:104566. [DOI: 10.1016/j.jcv.2020.104566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
|
33
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
34
|
Mollerup S, Asplund M, Friis-Nielsen J, Kjartansdóttir KR, Fridholm H, Hansen TA, Herrera JAR, Barnes CJ, Jensen RH, Richter SR, Nielsen IB, Pietroni C, Alquezar-Planas DE, Rey-Iglesia A, Olsen PVS, Rajpert-De Meyts E, Groth-Pedersen L, von Buchwald C, Jensen DH, Gniadecki R, Høgdall E, Langhoff JL, Pete I, Vereczkey I, Baranyai Z, Dybkaer K, Johnsen HE, Steiniche T, Hokland P, Rosenberg J, Baandrup U, Sicheritz-Pontén T, Willerslev E, Brunak S, Lund O, Mourier T, Vinner L, Izarzugaza JMG, Nielsen LP, Hansen AJ. High-Throughput Sequencing-Based Investigation of Viruses in Human Cancers by Multienrichment Approach. J Infect Dis 2020; 220:1312-1324. [PMID: 31253993 PMCID: PMC6743825 DOI: 10.1093/infdis/jiz318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
Background Viruses and other infectious agents cause more than 15% of human cancer cases. High-throughput sequencing-based studies of virus-cancer associations have mainly focused on cancer transcriptome data. Methods In this study, we applied a diverse selection of presequencing enrichment methods targeting all major viral groups, to characterize the viruses present in 197 samples from 18 sample types of cancerous origin. Using high-throughput sequencing, we generated 710 datasets constituting 57 billion sequencing reads. Results Detailed in silico investigation of the viral content, including exclusion of viral artefacts, from de novo assembled contigs and individual sequencing reads yielded a map of the viruses detected. Our data reveal a virome dominated by papillomaviruses, anelloviruses, herpesviruses, and parvoviruses. More than half of the included samples contained 1 or more viruses; however, no link between specific viruses and cancer types were found. Conclusions Our study sheds light on viral presence in cancers and provides highly relevant virome data for future reference.
Collapse
Affiliation(s)
- Sarah Mollerup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Maria Asplund
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Jens Friis-Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | | | - Helena Fridholm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Thomas Arn Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - José Alejandro Romero Herrera
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Randi Holm Jensen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Stine Raith Richter
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Ida Broman Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Carlotta Pietroni
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - David E Alquezar-Planas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Alba Rey-Iglesia
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Pernille V S Olsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - Line Groth-Pedersen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital
| | - David H Jensen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital
| | - Robert Gniadecki
- Department of Dermato-Venerology, Faculty of Health Sciences, Copenhagen University Hospital, Bispebjerg Hospital, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev and Gentofte Hospital, University of Copenhagen, Denmark
| | - Jill Levin Langhoff
- Department of Pathology, Herlev and Gentofte Hospital, University of Copenhagen, Denmark
| | - Imre Pete
- National Institute of Oncology, Department of Gynecology, Budapest, Hungary
| | - Ildikó Vereczkey
- National Institute of Oncology, Department of Gynecology, Budapest, Hungary
| | - Zsolt Baranyai
- 1st Department of Surgery, Semmelweis University, Budapest, Hungary
| | - Karen Dybkaer
- Department of Clinical Medicine, Aalborg University, Denmark
| | | | | | - Peter Hokland
- Department of Clinical Medicine, Department of Haematology, Aarhus University Hospital, Denmark
| | - Jacob Rosenberg
- Department of Surgery, Herlev and Gentofte Hospital, University of Copenhagen, Denmark
| | - Ulrik Baandrup
- Center for Clinical Research, North Denmark Regional Hospital and Department of Clinical Medicine, Aalborg University, Hjørring, Denmark
| | - Thomas Sicheritz-Pontén
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Kedah, Malaysia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Søren Brunak
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ole Lund
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Lasse Vinner
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Jose M G Izarzugaza
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Lars Peter Nielsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen S, Denmark
| | - Anders Johannes Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| |
Collapse
|
35
|
Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity 2020; 52:241-255. [PMID: 32075727 PMCID: PMC7128389 DOI: 10.1016/j.immuni.2020.01.007] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Asthma is a common chronic respiratory disease affecting more than 300 million people worldwide. Clinical features of asthma and its immunological and molecular etiology vary significantly among patients. An understanding of the complexities of asthma has evolved to the point where precision medicine approaches, including microbiome analysis, are being increasingly recognized as an important part of disease management. Lung and gut microbiota play several important roles in the development, regulation, and maintenance of healthy immune responses. Dysbiosis and subsequent dysregulation of microbiota-related immunological processes affect the onset of the disease, its clinical characteristics, and responses to treatment. Bacteria and viruses are the most extensively studied microorganisms relating to asthma pathogenesis, but other microbes, including fungi and even archaea, can potently influence airway inflammation. This review focuses on recently discovered connections between lung and gut microbiota, including bacteria, fungi, viruses, and archaea, and their influence on asthma.
Collapse
Affiliation(s)
- Weronika Barcik
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Rozlyn C T Boutin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Fahsbender E, Charlys da-Costa A, Elise Gill D, Augusto de Padua Milagres F, Brustulin R, Julio Costa Monteiro F, Octavio da Silva Rego M, Soares D’Athaide Ribeiro E, Cerdeira Sabino E, Delwart E. Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus. PLoS One 2020; 15:e0229993. [PMID: 32134963 PMCID: PMC7058308 DOI: 10.1371/journal.pone.0229993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Plasma from patients with dengue-like symptoms was collected in 2013 to 2016 from the Brazilian states of Tocantins and Amapa. 781 samples testing negative for IgM against Dengue, Zika, and Chikungunya viruses and for flaviviruses, alphaviruses and enteroviruses RNA using RT-PCRs were analyzed using viral metagenomics. Viral particles-associated nucleic acids were enriched, randomly amplified, and deep sequenced in 102 mini-pools generating over 2 billion reads. Sequence data was analyzed for the presence of known and novel eukaryotic viral reads. Anelloviruses were detected in 80%, human pegivirus 1 in 19%, and parvovirus B19 in 17% of plasma pools. HIV and enteroviruses were detected in two pools each. Previously uncharacterized viral genomes were also identified, and their presence in single plasma samples confirmed by PCR. Chapparvovirus and ambidensovirus genomes, both in the Parvoviridae family, were partially characterized showing 33% and 34% identity in their NS1 sequences to their closest relative. Molecular surveillance using pre-existing plasma from febrile patients provides a readily scalable approach for the detection of novel, potentially emerging, viruses.
Collapse
Affiliation(s)
- Elizabeth Fahsbender
- Vitalant Research Institute, San Francisco, CA, United States of America
- UCSF Dept. of Laboratory Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Antonio Charlys da-Costa
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Danielle Elise Gill
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Flavio Augusto de Padua Milagres
- Public Health Laboratory State (LACEN/TO), Secretary of Health of Tocantins, Palmas, TO, Brazil
- Federal University of Tocantins, Palmas, Tocantins, Brazil
| | - Rafael Brustulin
- Public Health Laboratory State (LACEN/TO), Secretary of Health of Tocantins, Palmas, TO, Brazil
- Federal University of Tocantins, Palmas, Tocantins, Brazil
| | | | | | | | - Ester Cerdeira Sabino
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, United States of America
- UCSF Dept. of Laboratory Medicine, University of California–San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
37
|
Nazareth R, Chasqueira MJ, Rodrigues ML, Paulino C, Conceição C, Lêdo L, Segura Ú, Santos M, Messias A, Póvoa P, Paixão P. Respiratory viruses in mechanically ventilated patients: a pilot study. BMC Pulm Med 2020; 20:39. [PMID: 32054471 PMCID: PMC7020345 DOI: 10.1186/s12890-020-1082-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Respiratory virome is an integral part of the human microbiome and its characterization may contribute to a better understanding of the changes that arise in the disease and, consequently, influence the approach and treatment of patients with acute lower respiratory infections. The aim of this study was to evaluate the presence of respiratory viruses in the lower airways of individuals undergoing invasive mechanical ventilation, with and without acute lower respiratory infection (respectively WRI and WORI groups). METHODS We studied 44 mini-bronchoalveolar lavage samples (collected with a double catheter, Combicath® kit) from patients with mean age in the seventh decade, 20 from WORI group and 24 from WRI group, who were hospitalized for acute respiratory failure in Intensive Care Units of two hospitals in the Lisbon area. Real-time PCR was applied to verify analyse the presence of 15 common respiratory viruses (adenovirus, human bocavirus, influenza virus A and B, repiratory syncytial virus, human parainfluenza virus types 1, 2, 3 and 4, human enterovirus, human rhinovirus, human metapneumovirus, human coronavirus group 1 (229E, NL63) and 2 (OC43, HKU1). RESULTS Respiratory viruses were detected in six of the 20 patients in the WORI group: influenza AH3 (n = 2), parainfluenza virus 1/3 (n = 2), human rhinovirus (n = 2), respiratory syncytial virus (n = 1) and human metapneumovirus (n = 1). In the WRI group, respiratory viruses were detected in 12 of the 24 patients: influenza AH3 (n = 3), human rhinovirus (n = 3), respiratory syncytial virus (n = 3), human metapneumovirus (n = 3), human bocavirus (n = 2) and human enterovirus (n = 1). Simultaneous detection of two viruses was recorded in two samples in both groups. CONCLUSIONS The results of this study suggest the presence of common respiratory viruses in the lower respiratory tract without causing symptomatic infection, even in carefully collected lower samples. This may have important implications on the interpretation of the results on the diagnostic setting.
Collapse
Affiliation(s)
- Raquel Nazareth
- Hospital Beatriz Ângelo, Avenida Carlos Teixeira, 3, 2674-514, Loures, Portugal. .,Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.
| | - Maria-Jesus Chasqueira
- Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Maria-Lúcia Rodrigues
- Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Carolina Paulino
- Hospital São Francisco de Xavier, Estrada Forte do Alto Duque, 1449-005, Lisbon, Portugal
| | - Catarina Conceição
- Hospital São Francisco de Xavier, Estrada Forte do Alto Duque, 1449-005, Lisbon, Portugal
| | - Lia Lêdo
- Hospital São Francisco de Xavier, Estrada Forte do Alto Duque, 1449-005, Lisbon, Portugal
| | - Úrsula Segura
- Hospital Beatriz Ângelo, Avenida Carlos Teixeira, 3, 2674-514, Loures, Portugal
| | - Madalena Santos
- Hospital Curry Cabral, Centro Hospitalar de Lisboa Central, Rua da Beneficiência n° 8, 1069-166, Lisbon, Portugal
| | - António Messias
- Hospital Beatriz Ângelo, Avenida Carlos Teixeira, 3, 2674-514, Loures, Portugal
| | - Pedro Póvoa
- Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Hospital São Francisco de Xavier, Estrada Forte do Alto Duque, 1449-005, Lisbon, Portugal.,Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
| | - Paulo Paixão
- Centro de Estudos de Doenças Crónicas, CEDOC, Faculdade de Ciências Médicas
- NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Clinical Pathology Laboratory (Synlab), Hospital da Luz, Av Lusíada, 100, 1500-650, Lisbon, Portugal
| |
Collapse
|
38
|
van Boheemen S, van Rijn AL, Pappas N, Carbo EC, Vorderman RHP, Sidorov I, van T Hof PJ, Mei H, Claas ECJ, Kroes ACM, de Vries JJC. Retrospective Validation of a Metagenomic Sequencing Protocol for Combined Detection of RNA and DNA Viruses Using Respiratory Samples from Pediatric Patients. J Mol Diagn 2020; 22:196-207. [PMID: 31837435 PMCID: PMC7106021 DOI: 10.1016/j.jmoldx.2019.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
Viruses are the main cause of respiratory tract infections. Metagenomic next-generation sequencing (mNGS) enables unbiased detection of all potential pathogens. To apply mNGS in viral diagnostics, sensitive and simultaneous detection of RNA and DNA viruses is needed. Herein, were studied the performance of an in-house mNGS protocol for routine diagnostics of viral respiratory infections with potential for automated pan-pathogen detection. The sequencing protocol and bioinformatics analysis were designed and optimized, including exogenous internal controls. Subsequently, the protocol was retrospectively validated using 25 clinical respiratory samples. The developed protocol using Illumina NextSeq 500 sequencing showed high repeatability. Use of the National Center for Biotechnology Information's RefSeq database as opposed to the National Center for Biotechnology Information's nucleotide database led to enhanced specificity of classification of viral pathogens. A correlation was established between read counts and PCR cycle threshold value. Sensitivity of mNGS, compared with PCR, varied up to 83%, with specificity of 94%, dependent on the cutoff for defining positive mNGS results. Viral pathogens only detected by mNGS, not present in the routine diagnostic workflow, were influenza C, KI polyomavirus, cytomegalovirus, and enterovirus. Sensitivity and analytical specificity of this mNGS protocol were comparable to PCR and higher when considering off-PCR target viral pathogens. One single test detected all potential viral pathogens and simultaneously obtained detailed information on detected viruses.
Collapse
Affiliation(s)
- Sander van Boheemen
- Department of Medical Microbiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Anneloes L van Rijn
- Department of Medical Microbiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
| | - Nikos Pappas
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen C Carbo
- Department of Medical Microbiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruben H P Vorderman
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Igor Sidorov
- Department of Medical Microbiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter J van T Hof
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric C J Claas
- Department of Medical Microbiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Aloys C M Kroes
- Department of Medical Microbiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jutte J C de Vries
- Department of Medical Microbiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
39
|
Shah AA, Wang D, Hirsch E. Nucleic Acid-Based Screening of Maternal Serum to Detect Viruses in Women with Labor or PROM. Reprod Sci 2020; 27:537-544. [PMID: 31925769 DOI: 10.1007/s43032-019-00051-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/12/2019] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to determine whether timing of the initiating event of spontaneous labor (either uterine contractions with intact fetal membranes or rupture of membranes prior to labor (PROM)) is associated with maternal viral infection. It was a prospective case control study of women with either spontaneous labor or PROM occurring < 37 weeks' gestation ("cases") or at term ("controls"). An initial unbiased screen for viruses was performed with next-generation sequencing (NGS) in serum pooled from eight cases delivered by C/S and represents a range of gestational ages, membrane rupture status, and presence or absence of chorioamnionitis. Custom PCR was used to query individual patient samples from the original cohort. The NGS screen generated 15 million reads. Seven unique viral sequences were detected in two cases, all identified as torque teno virus (TTV), an ubiquitous DNA anellovirus of no known pathogenicity. Using nested and semi-nested PCR, sera from 72 patients (47 cases and 25 matched controls, stratified by ROM status) were screened for the 3 subtypes of anelloviruses (TTV, TTMDV, or TTMV). These were found in 43/47 cases (91%) and 16/25 controls (64%) (p = 0.012, OR = 5.9 (95% CI = 1.4-29.9)). In logistic regression, pregnant women with at least one type of anellovirus were more likely to experience preterm labor than those with no anellovirus (p = 0.03, aOR = 4.6, CI = 1.2-18.7). Among women experiencing a spontaneous initiating event of labor, TTV virus was more likely to be present in the serum of preterm than term patients. TTV may have a role in determining the timing of parturition.
Collapse
Affiliation(s)
- Ankit A Shah
- Department of Obstetrics and Gynecology, NorthShore University Health System, 2650 Ridge Ave, Evanston, IL, USA.,Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University Health System, 2650 Ridge Ave, Evanston, IL, USA. .,Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
40
|
Redondoviridae, a Family of Small, Circular DNA Viruses of the Human Oro-Respiratory Tract Associated with Periodontitis and Critical Illness. Cell Host Microbe 2019; 25:719-729.e4. [PMID: 31071295 DOI: 10.1016/j.chom.2019.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
The global virome is largely uncharacterized but is now being unveiled by metagenomic DNA sequencing. Exploring the human respiratory virome, in particular, can provide insights into oro-respiratory diseases. Here, we use metagenomics to identify a family of small circular DNA viruses-named Redondoviridae-associated with human diseases. We first identified two redondovirus genomes from bronchoalveolar lavage samples from human lung donors. We then queried thousands of metagenomic samples and recovered 17 additional complete redondovirus genomes. Detections were exclusively in human samples and mostly from respiratory tract and oro-pharyngeal sites, where Redondoviridae was the second most prevalent eukaryotic DNA virus family. Redondovirus sequences were associated with periodontal disease, and abundances decreased with treatment. Some critically ill patients in a medical intensive care unit were found to harbor high levels of redondoviruses in respiratory samples. These results suggest that redondoviruses colonize human oro-respiratory sites and can bloom in several human disorders.
Collapse
|
41
|
Kolawole AO, Mirabelli C, Hill DR, Svoboda SA, Janowski AB, Passalacqua KD, Rodriguez BN, Dame MK, Freiden P, Berger RP, Vu DL, Hosmillo M, O'Riordan MXD, Schultz-Cherry S, Guix S, Spence JR, Wang D, Wobus CE. Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape. PLoS Pathog 2019; 15:e1008057. [PMID: 31671153 PMCID: PMC6957189 DOI: 10.1371/journal.ppat.1008057] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/13/2020] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions. Human astroviruses (HAstV) are understudied positive-strand RNA viruses that typically cause gastroenteritis mostly in children and the elderly, but more recent studies also implicate them in neurological disease in immunocompromised patients. To better understand these viruses, a physiologically relevant cell culture model that supports growth of all clades of HAstV would be highly beneficial. Herein, we demonstrated robust infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts from different patients and intestinal regions, making HIE a valuable model to study HAstV biology. Using this system, we identify for the first time that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes. Analysis of the antiviral host response to infection demonstrated that HIE respond to infection with a type I and III interferon response. This response reduced HAstV replication and when blocked resulted in increased infection. Establishment of the HIE system for HAstV research lays the foundation for future basic and translational discoveries.
Collapse
Affiliation(s)
- Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David R Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sophia A Svoboda
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew B Janowski
- Department of Pediatrics, Washington University, St. Louis, Missouri, United States of America
| | - Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benancio N Rodriguez
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael K Dame
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pamela Freiden
- St. Jude Children's Hospital, Memphis, Tennessee, United States of America
| | - Ryan P Berger
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Diem-Lan Vu
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Biomedical Engineering, University of Michigan, Ann arbor, Michigan, United States of America
| | - David Wang
- Departments of Molecular Microbiology, and Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
42
|
Tampuu A, Bzhalava Z, Dillner J, Vicente R. ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples. PLoS One 2019; 14:e0222271. [PMID: 31509583 PMCID: PMC6738585 DOI: 10.1371/journal.pone.0222271] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022] Open
Abstract
Despite its clinical importance, detection of highly divergent or yet unknown viruses is a major challenge. When human samples are sequenced, conventional alignments classify many assembled contigs as "unknown" since many of the sequences are not similar to known genomes. In this work, we developed ViraMiner, a deep learning-based method to identify viruses in various human biospecimens. ViraMiner contains two branches of Convolutional Neural Networks designed to detect both patterns and pattern-frequencies on raw metagenomics contigs. The training dataset included sequences obtained from 19 metagenomic experiments which were analyzed and labeled by BLAST. The model achieves significantly improved accuracy compared to other machine learning methods for viral genome classification. Using 300 bp contigs ViraMiner achieves 0.923 area under the ROC curve. To our knowledge, this is the first machine learning methodology that can detect the presence of viral sequences among raw metagenomic contigs from diverse human samples. We suggest that the proposed model captures different types of information of genome composition, and can be used as a recommendation system to further investigate sequences labeled as "unknown" by conventional alignment methods. Exploring these highly-divergent viruses, in turn, can enhance our knowledge of infectious causes of diseases.
Collapse
Affiliation(s)
- Ardi Tampuu
- Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Zurab Bzhalava
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Dillner
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Raul Vicente
- Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia
| |
Collapse
|
43
|
Xie M, Zhou Z, Guo S, Li Z, Zhao H, Deng J. Next-generation sequencing specifies Angiostrongylus eosinophilic meningoencephalitis in infants: Two case reports. Medicine (Baltimore) 2019; 98:e16985. [PMID: 31464947 PMCID: PMC6736482 DOI: 10.1097/md.0000000000016985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Angiostrongylus cantonensis-induced eosinophilic meningoencephalitis (AEM) in infants is a very rare but fatal disease. Utilization of genetic assay to detect the cerebral parasite plays an important role for the treatment of the infection. PATIENT CONCERNS Two infants (<2 years) presented with cough, intermittent fever, mental fatigue, and poor diet. DIAGNOSIS The patients were under clinical examination and laboratory test including cardiac ultrasound, chest X-ray, blood or cerebrospinal fluid (CSF) cell counting, serum enzyme-linked immunosorbent assay (ELISA), head magnetic resonance imaging (MRI) and next-generation sequencing (NGS) on DNA from CSF. Due to hypereosinophils in patients' peripheral blood and CSF, and abundant DNA sequences from A cantonensis in CSF, the patients were diagnosed with Angiostrongylus eosinophilic meningoencephalitis. INTERVENTIONS The patients were treated with albendazole to deworm, and methylprednisolone to reduce inflammation. OUTCOME The patients were completely recovered from AEM without relapse after 10-day treatment. LESSONS ELISA and MRI are not sufficiently accurate for the diagnosis of AEM in infants. NGS can specify the infection by the cerebral parasite and offers a new effective approach for the early and precise diagnosis of AEM in infants.
Collapse
Affiliation(s)
- Mei Xie
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhen Zhou
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Suhua Guo
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zengqing Li
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hui Zhao
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiusheng Deng
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
44
|
Guo K, Li LL, Zhang Q, Yu JM, Ye Y. Diversified Variants of Astrovirus MLB2 in Patients Following Hematopoietic Stem Cell Transplantation and the Evolutionary Rates and Patterns of the Virus. Evol Bioinform Online 2019; 15:1176934319864922. [PMID: 31360058 PMCID: PMC6637835 DOI: 10.1177/1176934319864922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/03/2022] Open
Abstract
We assessed the quasispecies heterogeneity of a human astrovirus MLB2 (HAstV-MLB2-YJMGK) in immunocompromised patients following hematopoietic stem cell transplantation and performed genetic and evolutionary analyses of HAstV isolates circulating worldwide. The result showed that the virus had diversified variants and a strong positive selection in the patient, indicating that such patients may be a reservoir for astrovirus. The time to the most recent common ancestor of MLB2 and classic HAstVs was around 1800 years, and it has a decline in effective population size of HAstVs in the late 100 years.
Collapse
Affiliation(s)
- Ke Guo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Diarrhea, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Li-Li Li
- Department of Diarrhea, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Qing Zhang
- Department of Diarrhea, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jie-Mei Yu
- Department of Diarrhea, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
Human Astrovirus MLB Replication In Vitro: Persistence in Extraintestinal Cell Lines. J Virol 2019; 93:JVI.00557-19. [PMID: 31019055 DOI: 10.1128/jvi.00557-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
MLB astroviruses were identified 10 years ago in feces from children with gastroenteritis of unknown etiology and have been unexpectedly detected in severe cases of meningitis/encephalitis, febrile illness of unknown etiology, and respiratory syndromes. The aim of this study was to establish a cell culture system supporting MLB astrovirus replication. We used two clinical strains to infect several cell lines, an MLB1 strain from a gastroenteritis case, and an MLB2 strain associated with a neurologic infection. Efforts to propagate the viruses in the Caco-2 cell line were unsuccessful. In contrast, we identified two human nonintestinal cell lines, Huh-7 and A549, permissive for both genotypes. After serial passages in the Huh-7.5 cell line, the adapted strains were able to establish persistent infections in the Huh-7.5, Huh-7AI, and A549 cell lines, with high viral loads (up to 10 log10 genome copies/ml) detected by quantitative reverse transcription-PCR (RT-qPCR) in the culture supernatant. Immunofluorescence assays demonstrated infection in about 10% of cells in persistently infected cultures. Electron microscopy revealed particles of 32 to 33 nm in diameter after negative staining of cell supernatants and capsid arrays in ultrathin sections with a particularly high production in Huh-7.5 cells. Interferon (IFN) expression by infected cells and effect of exogenous IFN varied depending on the type of infection and the cell line. The availability of a cell culture system to propagate MLB astroviruses represents a key step to better understand their replicative cycle, as well as a source of viruses to conduct a wide variety of basic virologic studies.IMPORTANCE MLB astroviruses are emerging viruses infecting humans. More studies are required to determine their exact epidemiology, but several reports have already identified them as the cause of unexpected clinical diseases, including severe neurologic diseases. Our study provides the first description of a cell culture system for the propagation of MLB astroviruses, enabling the study of their replicative cycle. Moreover, we demonstrated the unknown capacity of MLB astrovirus to establish persistent infections in cell culture. Whether these persistent infections are also established in vivo remains unknown, but the clinical consequences would be of high interest if persistence was confirmed in vivo Finally, our analysis of IFN expression provides some trails to understand the mechanism by which MLB astroviruses can cause persistent infections in the assayed cultures.
Collapse
|
46
|
Astrovirus and the microbiome. Curr Opin Virol 2019; 37:10-15. [PMID: 31163291 DOI: 10.1016/j.coviro.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
Although astroviruses are most commonly associated with acute gastrointestinal illness in humans, their ability to infect a broad range of hosts and cause a spectrum of disease makes them widespread and complex pathogens. The precise mechanisms that dictate the course of astrovirus disease have not been studied extensively but are likely driven by multifactorial host-microbe interactions. Recent insights from studies of animal astrovirus infections have revealed both beneficial and detrimental effects for the host. However, further in-depth studies are needed to fully explore the consequences of astrovirus-induced changes in the gut microenvironment as well as the role of the microbiota in astrovirus infection.
Collapse
|
47
|
Abstract
The NIH Human Microbiome Project (HMP) has been carried out over ten years and two phases to provide resources, methods, and discoveries that link interactions between humans and their microbiomes to health-related outcomes. The recently completed second phase, the Integrative Human Microbiome Project, comprised studies of dynamic changes in the microbiome and host under three conditions: pregnancy and preterm birth; inflammatory bowel diseases; and stressors that affect individuals with prediabetes. The associated research begins to elucidate mechanisms of host-microbiome interactions under these conditions, provides unique data resources (at the HMP Data Coordination Center), and represents a paradigm for future multi-omic studies of the human microbiome.
Collapse
|
48
|
The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 2019; 569:641-648. [PMID: 31142853 PMCID: PMC6784865 DOI: 10.1038/s41586-019-1238-8] [Citation(s) in RCA: 755] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
The NIH Human Microbiome Project (HMP) has been carried out over ten years and two phases to provide resources, methods, and discoveries that link interactions between humans and their microbiomes to health-related outcomes. The recently completed second phase, the Integrative Human Microbiome Project, comprised studies of dynamic changes in the microbiome and host under three conditions: pregnancy and preterm birth; inflammatory bowel diseases; and stressors that affect individuals with prediabetes. The associated research begins to elucidate mechanisms of host-microbiome interactions under these conditions, provides unique data resources (at the HMP Data Coordination Center), and represents a paradigm for future multi-omic studies of the human microbiome.
Collapse
|
49
|
Mitchell AB, Glanville AR. Introduction to Techniques and Methodologies for Characterizing the Human Respiratory Virome. Methods Mol Biol 2019; 1838:111-123. [PMID: 30128993 DOI: 10.1007/978-1-4939-8682-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There have been great advances in the methodologies available for the detection of respiratory viruses. Accompanying this, our knowledge surrounding the impact of these viruses has also made a great leap forward. We have come a long way from the once commonly accepted belief that the lower respiratory tract was sterile and that the detection of any microbial species must represent a breach in host defence and likely be associated with symptomatic infection. With the advent of molecular detection techniques and improvements in sequencing-based methodologies to make these tools more accessible and cost effective, we now know that there is an abundant and diverse ecosystem within the lower-respiratory tract. This chapter will outline the clinical impact of the human respiratory virome, techniques for sampling the lower respiratory tract, the evolution of the diagnostic tools available, and the current limitations in our instruments and knowledge in this area. The human respiratory virome is an exciting new area of research that will continue to grow with the aid of the methodologies outlined in the following chapters and the advent of even more efficient tools in the future.
Collapse
Affiliation(s)
- Alicia B Mitchell
- The Woolcock Institute of Medical Research, Sydney, NSW, Australia. .,University of Technology Sydney, Sydney, NSW, Australia. .,The Lung Transplant Unit, St. Vincent's Hospital, Sydney, NSW, Australia.
| | - Allan R Glanville
- The Lung Transplant Unit, St. Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
50
|
Wohlgemuth N, Honce R, Schultz-Cherry S. Astrovirus evolution and emergence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:30-37. [PMID: 30639546 PMCID: PMC7106029 DOI: 10.1016/j.meegid.2019.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Astroviruses are small, non-enveloped, positive-sense, single-stranded RNA viruses that belong to the Astroviridae family. Astroviruses infect diverse hosts and are typically associated with gastrointestinal illness; although disease can range from asymptomatic to encephalitis depending on the host and viral genotype. Astroviruses have high genetic variability due to an error prone polymerase and frequent recombination events between strains. Once thought to be species specific, recent evidence suggests astroviruses can spread between different host species, although the frequency with which this occurs and the restrictions that regulate the process are unknown. Recombination events can lead to drastic evolutionary changes and contribute to cross-species transmission events. This work reviews the current state of research on astrovirus evolution and emergence, especially as it relates to cross-species transmission and recombination of astroviruses.
Collapse
Affiliation(s)
- Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|