1
|
Zubair A, Bibi B, Habib F, Sujan A, Ali M. Clinical trials and recent progress in HIV vaccine development. Funct Integr Genomics 2024; 24:143. [PMID: 39192058 DOI: 10.1007/s10142-024-01425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
The greatest obstacle for scientists is to develop an effective HIV vaccine. An effective vaccine represents the last hope for halting the unstoppable global spread of HIV and its catastrophic clinical consequences. Creating this vaccine has been challenging due to the virus's extensive genetic variability and the unique role of cytotoxic T lymphocytes (CTL) in containing it. Innovative methods to stimulate CTL have demonstrated significant therapeutic advantages in nonhuman primate model systems, unlike traditional vaccination techniques that are not expected to provide safe and efficient protection against HIV. Human clinical trials are currently evaluating these vaccination strategies, which involve plasmid DNA and live recombinant vectors. This review article covers the existing vaccines and ongoing trial vaccines. It also explores the different approaches used in developing HIV vaccines, including their molecular mechanisms, target site effectiveness, and potential side effects.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan.
| | - Bushra Bibi
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Faiza Habib
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Arooba Sujan
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Muhammad Ali
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan.
| |
Collapse
|
2
|
Chihana R, Jin Kee J, Moodie Z, Huang Y, Janes H, Dadabhai S, Roxby AC, Allen M, Kassim S, Naicker V, Innes C, Naicker N, Dubula T, Grunenberg N, Malahleha M, Kublin JG, Bekker LG, Gray G, Kumwenda J, Laher F. Factors associated with reactogenicity to an investigational HIV vaccine regimen in HIV vaccine trials network 702. Vaccine 2024; 42:125991. [PMID: 38772835 PMCID: PMC11320363 DOI: 10.1016/j.vaccine.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Reactogenicity informs vaccine safety, and may influence vaccine uptake. We evaluated factors associated with reactogenicity in HVTN 702, a typical HIV vaccine efficacy trial with multiple doses and products. METHODS HVTN 702, a phase 2b/3 double-blind placebo-controlled trial, randomized 5404 African participants aged 18-35 years without HIV to placebo, or ALVAC-HIV (vCP2438) at months 0, 1 and ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120/MF59 at months 3, 6, 12 and 18. Using multivariate logistic regression, we evaluated associations between reactogenicity with clinical, sociodemographic and laboratory variables. RESULTS More vaccine than placebo-recipients reported local symptoms (all p < 0.001), arthralgia (p = 0.008), chills (p = 0.012) and myalgia (p < 0.001). Reactogenicity was associated with female sex at birth (ORv = 2.50, ORp = 1.81, both p < 0.001) and geographic region. Amongst vaccine-recipients, each year of age was associated with 3 % increase in reactogenicity (OR = 1.03, p = 0.002). CONCLUSION Vaccine receipt, female sex at birth, older age, and region may affect reactogenicity.
Collapse
Affiliation(s)
- Rachel Chihana
- Johns Hopkins Research Project, P.O Box 1131, Blantyre, Malawi.
| | - Jia Jin Kee
- Fred Hutchinson Cancer Center, P.O Box 19024, Seattle, WA 98109-1024, USA
| | - Zoe Moodie
- Fred Hutchinson Cancer Center, P.O Box 19024, Seattle, WA 98109-1024, USA
| | - Yunda Huang
- Fred Hutchinson Cancer Center, P.O Box 19024, Seattle, WA 98109-1024, USA
| | - Holly Janes
- Fred Hutchinson Cancer Center, P.O Box 19024, Seattle, WA 98109-1024, USA
| | - Sufia Dadabhai
- Johns Hopkins Research Project, P.O Box 1131, Blantyre, Malawi
| | - Alison C Roxby
- University of Washington, P.O Box 355852, WA 98195-5852, USA; Fred Hutchinson Cancer Center, P.O Box 19024, WA 98109-1024, Seattle, USA
| | - Mary Allen
- National Institutes of Health, 9000, Rockville Pike, Bethesda, USA
| | - Sheetal Kassim
- The Desmond Tutu HIV Centre, P.O Box 13801, Mowbray 7705, Cape Town, South Africa
| | - Vimla Naicker
- South Africa Medical Research Council, P.O Box 19070, Cape Town, South Africa
| | - Craig Innes
- Aurum Institute, The Ridge, 29 Queens Road, Johannesburg, South Africa
| | - Nivashnee Naicker
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Private Bag X7, Durban, South Africa
| | - Thozama Dubula
- Walter Sisulu University, P. O Box 142, Eastern Cape, South Africa
| | - Nicole Grunenberg
- Fred Hutchinson Cancer Center, P.O Box 19024, Seattle, WA 98109-1024, USA
| | - Mookho Malahleha
- Setshaba Research Centre, P.O Box 468, Pretoria, South Africa; Synergy Biomed Research Institute, 280 Oxford Street, East London 5201, South Africa
| | - James G Kublin
- Fred Hutchinson Cancer Center, P.O Box 19024, Seattle, WA 98109-1024, USA
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, P.O Box 13801, Mowbray 7705, Cape Town, South Africa
| | - Glenda Gray
- Perinatal HIV Research Unit, P.O Box 114, University of the Witwatersrand, South Africa
| | | | - Fatima Laher
- Perinatal HIV Research Unit, P.O Box 114, University of the Witwatersrand, South Africa
| |
Collapse
|
3
|
Libera M, Caputo V, Laterza G, Moudoud L, Soggiu A, Bonizzi L, Diotti RA. The Question of HIV Vaccine: Why Is a Solution Not Yet Available? J Immunol Res 2024; 2024:2147912. [PMID: 38628675 PMCID: PMC11019575 DOI: 10.1155/2024/2147912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 02/24/2024] [Indexed: 04/19/2024] Open
Abstract
Ever since its discovery, human immunodeficiency virus type 1 (HIV-1) infection has remained a significant public health concern. The number of HIV-1 seropositive individuals currently stands at 40.1 million, yet definitive treatment for the virus is still unavailable on the market. Vaccination has proven to be a potent tool in combating infectious diseases, as evidenced by its success against other pathogens. However, despite ongoing efforts and research, the unique viral characteristics have prevented the development of an effective anti-HIV-1 vaccine. In this review, we aim to provide an historical overview of the various approaches attempted to create an effective anti-HIV-1 vaccine. Our objective is to explore the reasons why specific methods have failed to induce a protective immune response and to analyze the different modalities of immunogen presentation. This trial is registered with NCT05414786, NCT05471076, NCT04224701, and NCT01937455.
Collapse
Affiliation(s)
- Martina Libera
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Valeria Caputo
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Giulia Laterza
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Louiza Moudoud
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Alessio Soggiu
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- SC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20133 Milan, Italy
| | - Luigi Bonizzi
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Roberta A. Diotti
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| |
Collapse
|
4
|
Malik S, Muhammad K, Aslam SM, Waheed Y. Tracing the recent updates on vaccination approaches and significant adjuvants being developed against HIV. Expert Rev Anti Infect Ther 2023; 21:431-446. [PMID: 36803177 DOI: 10.1080/14787210.2023.2182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus type 1 (HIV1); the causative agent of Acquired Immunodeficiency Syndrome (AIDS), has been a major target of the scientific community to develop an anti-viral therapy. Some successful discoveries have been made during the last two decades in the form of availability of antiviral therapy in endemic regions. Nevertheless, a total cure and safety vaccine has not yet been designed to eradicate HIV from the world. AREAS COVERED The purpose of this comprehensive study is to compile recent data regarding therapeutic interventions against HIV and to determine future research needs in this field. A systematic research strategy has been used to gather data from recent, most advanced published electronic sources. Literature based results show that experiments at the invitro level and animal models are continuously in research annals and are providing hope for human trials. EXPERT OPINION There is still a gap and more work is needed in the direction of modern drug and vaccination designs. Moreover coordination is necessary among researchers, educationists, public health workers, and the general community to communicate and coordinate the repercussions associated with the deadly disease. It is important for taking timely measures regarding mitigation and adaptation with HIV in future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sanaa Masood Aslam
- Foundation University College of Dentistry, Foundation University Islamabad, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
5
|
Haynes BF, Wiehe K, Borrow P, Saunders KO, Korber B, Wagh K, McMichael AJ, Kelsoe G, Hahn BH, Alt F, Shaw GM. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol 2023; 23:142-158. [PMID: 35962033 PMCID: PMC9372928 DOI: 10.1038/s41577-022-00753-w] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 01/07/2023]
Abstract
After nearly four decades of research, a safe and effective HIV-1 vaccine remains elusive. There are many reasons why the development of a potent and durable HIV-1 vaccine is challenging, including the extraordinary genetic diversity of HIV-1 and its complex mechanisms of immune evasion. HIV-1 envelope glycoproteins are poorly recognized by the immune system, which means that potent broadly neutralizing antibodies (bnAbs) are only infrequently induced in the setting of HIV-1 infection or through vaccination. Thus, the biology of HIV-1-host interactions necessitates novel strategies for vaccine development to be designed to activate and expand rare bnAb-producing B cell lineages and to select for the acquisition of critical improbable bnAb mutations. Here we discuss strategies for the induction of potent and broad HIV-1 bnAbs and outline the steps that may be necessary for ultimate success.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Kshitij Wagh
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
van Heuvel Y, Schatz S, Rosengarten JF, Stitz J. Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins (Basel) 2022; 14:toxins14020138. [PMID: 35202165 PMCID: PMC8876946 DOI: 10.3390/toxins14020138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Different mechanisms mediate the toxicity of RNA. Genomic retroviral mRNA hijacks infected host cell factors to enable virus replication. The viral genomic RNA of the human immunodeficiency virus (HIV) encompasses nine genes encoding in less than 10 kb all proteins needed for replication in susceptible host cells. To do so, the genomic RNA undergoes complex alternative splicing to facilitate the synthesis of the structural, accessory, and regulatory proteins. However, HIV strongly relies on the host cell machinery recruiting cellular factors to complete its replication cycle. Antiretroviral therapy (ART) targets different steps in the cycle, preventing disease progression to the acquired immunodeficiency syndrome (AIDS). The comprehension of the host immune system interaction with the virus has fostered the development of a variety of vaccine platforms. Despite encouraging provisional results in vaccine trials, no effective vaccine has been developed, yet. However, novel promising vaccine platforms are currently under investigation.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Stefanie Schatz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jamila Franca Rosengarten
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Correspondence:
| |
Collapse
|
7
|
Eldridge JH, Egan MA, Matassov D, Hamm S, Hermida L, Chen T, Tremblay M, Sciotto-Brown S, Xu R, Dimitrov A, Smith ER, Gurwith M, Chen RT. A Brighton Collaboration standardized template with key considerations for a benefit/risk assessment for a soluble glycoprotein vaccine to prevent disease caused by Nipah or Hendra viruses. Vaccine 2021; 39:5436-5441. [PMID: 34373117 DOI: 10.1016/j.vaccine.2021.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Auro Vaccines LLC has developed a protein vaccine to prevent disease from Nipah and Hendra virus infection that employs a recombinant soluble Hendra glycoprotein (HeV-sG) adjuvanted with aluminum phosphate. This vaccine is currently under clinical evaluation in a Phase 1 study. The Benefit-Risk Assessment of VAccines by TechnolOgy Working Group (BRAVATO; ex-V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of protein vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of such a vaccine platform. The structured and standardized assessment provided by the template may also help contribute to improved public acceptance and communication of licensed protein vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Tracy Chen
- Auro Vaccines, LLC, Pearl River, NY, USA
| | | | | | - Rong Xu
- Sabin Vaccine Institute, Washington, DC, USA
| | - Antony Dimitrov
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Emily R Smith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Marc Gurwith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T Chen
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | | |
Collapse
|
8
|
HIV-1 Envelope Glycosylation and the Signal Peptide. Vaccines (Basel) 2021; 9:vaccines9020176. [PMID: 33669676 PMCID: PMC7922494 DOI: 10.3390/vaccines9020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The RV144 trial represents the only vaccine trial to demonstrate any protective effect against HIV-1 infection. While the reason(s) for this protection are still being evaluated, it serves as justification for widespread efforts aimed at developing new, more effective HIV-1 vaccines. Advances in our knowledge of HIV-1 immunogens and host antibody responses to these immunogens are crucial to informing vaccine design. While the envelope (Env) protein is the only viral protein present on the surface of virions, it exists in a complex trimeric conformation and is decorated with an array of variable N-linked glycans, making it an important but difficult target for vaccine design. Thus far, efforts to elicit a protective humoral immune response using structural mimics of native Env trimers have been unsuccessful. Notably, the aforementioned N-linked glycans serve as a component of many of the epitopes crucial for the induction of potentially protective broadly neutralizing antibodies (bnAbs). Thus, a greater understanding of Env structural determinants, most critically Env glycosylation, will no doubt be of importance in generating effective immunogens. Recent studies have identified the HIV-1 Env signal peptide (SP) as an important contributor to Env glycosylation. Further investigation into the mechanisms by which the SP directs glycosylation will be important, both in the context of understanding HIV-1 biology and in order to inform HIV-1 vaccine design.
Collapse
|
9
|
Kochhar S, Kim D, Excler JL, Condit RC, Robertson JS, Drew S, Whelan M, Wood D, Fast PE, Gurwith M, Klug B, Khuri-Bulos N, Smith ER, Chen RT. The Brighton Collaboration standardized template for collection of key information for benefit-risk assessment of protein vaccines. Vaccine 2020; 38:5734-5739. [PMID: 32653276 PMCID: PMC7343648 DOI: 10.1016/j.vaccine.2020.06.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Several protein vaccine candidates are among the COVID-19 vaccines in development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of protein vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of such a vaccine platform. The structured and standardized assessment provided by the template would also help contribute to improved public acceptance and communication of licensed protein vaccines.
Collapse
Affiliation(s)
- Sonali Kochhar
- Global Healthcare Consulting, New Delhi, India; University of Washington, Seattle, WA, USA
| | - Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | | | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | | - Patricia E Fast
- International AIDS Vaccine Initiative, New York, NY, USA; Stanford School of Medicine, Palo Alto, CA, USA
| | - Marc Gurwith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | - Bettina Klug
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | - Emily R Smith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Robert T Chen
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | | |
Collapse
|
10
|
Easterhoff D, Pollara J, Luo K, Tolbert WD, Young B, Mielke D, Jha S, O'Connell RJ, Vasan S, Kim J, Michael NL, Excler JL, Robb ML, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Nitayaphan S, Sinangil F, Tartaglia J, Phogat S, Kepler TB, Alam SM, Wiehe K, Saunders KO, Montefiori DC, Tomaras GD, Moody MA, Pazgier M, Haynes BF, Ferrari G. Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. J Virol 2020; 94:e01120-19. [PMID: 31776278 PMCID: PMC6997759 DOI: 10.1128/jvi.01120-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Induction of protective antibodies is a critical goal of HIV-1 vaccine development. One strategy is to induce nonneutralizing antibodies (NNAbs) that kill virus-infected cells, as these antibody specificities have been implicated in slowing HIV-1 disease progression and in protection. HIV-1 Env constant region 1 and 2 (C1C2) monoclonal antibodies (MAbs) frequently mediate potent antibody-dependent cellular cytotoxicity (ADCC), making them an important vaccine target. Here, we explore the effect of delayed and repetitive boosting of RV144 vaccine recipients with AIDSVAX B/E on the C1C2-specific MAb repertoire. It was found that boosting increased clonal lineage-specific ADCC breadth and potency. A ligand crystal structure of a vaccine-induced broad and potent ADCC-mediating C1C2-specific MAb showed that it bound a highly conserved Env gp120 epitope. Thus, boosting to affinity mature these types of IgG C1C2-specific antibody responses may be one method by which to make an improved HIV vaccine with higher efficacy than that seen in the RV144 trial.IMPORTANCE Over one million people become infected with HIV-1 each year, making the development of an efficacious HIV-1 vaccine an important unmet medical need. The RV144 human HIV-1 vaccine regimen is the only HIV-1 clinical trial to date to demonstrate vaccine efficacy. An area of focus has been on identifying ways by which to improve upon RV144 vaccine efficacy. The RV305 HIV-1 vaccine regimen was a follow-up boost of RV144 vaccine recipients that occurred 6 to 8 years after the conclusion of RV144. Our study focused on the effect of delayed boosting in humans on the vaccine-induced Env constant region 1 and 2 (C1C2)-specific antibody repertoire. It was found that boosting with an HIV-1 Env vaccine increased C1C2-specific antibody-dependent cellular cytotoxicity potency and breadth.
Collapse
Affiliation(s)
| | | | - Kan Luo
- Duke University, Durham, North Carolina, USA
| | - William D Tolbert
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brianna Young
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | | - Shalini Jha
- Duke University, Durham, North Carolina, USA
| | | | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- U.S. Army Medical Directorate, AFRIMS, Bangkok, Thailand
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jerome Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | | | - Faruk Sinangil
- Global Solutions of Infectious Diseases, South San Francisco, California, USA
| | | | | | | | | | - Kevin Wiehe
- Duke University, Durham, North Carolina, USA
| | | | | | | | | | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | |
Collapse
|
11
|
Prow NA, Jimenez Martinez R, Hayball JD, Howley PM, Suhrbier A. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert Rev Vaccines 2018; 17:925-934. [PMID: 30300041 DOI: 10.1080/14760584.2018.1522255] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION With the increasing number of vaccines and vaccine-preventable diseases, the pressure to generate multi-valent and multi-pathogen vaccines grows. Combining individual established vaccines to generate single-shot formulations represents an established path, with significant ensuing public health and cost benefits. Poxvirus-based vector systems have the capacity for large recombinant payloads and have been widely used as platforms for the development of recombinant vaccines encoding multiple antigens, with considerable clinical trials activity and a number of registered and licensed products. AREAS COVERED Herein we discuss design strategies, production processes, safety issues, regulatory hurdles and clinical trial activities, as well as pertinent new technologies such as systems vaccinology and needle-free delivery. Literature searches used PubMed, Google Scholar and clinical trials registries, with a focus on the recombinant vaccinia-based systems, Modified Vaccinia Ankara and the recently developed Sementis Copenhagen Vector. EXPERT COMMENTARY Vaccinia-based platforms show considerable promise for the development of multi-valent and multi-pathogen vaccines, especially with recent developments in vector technologies and manufacturing processes. New methodologies for defining immune correlates and human challenge models may also facilitate bringing such vaccines to market.
Collapse
Affiliation(s)
- Natalie A Prow
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| | - Rocio Jimenez Martinez
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - John D Hayball
- c Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences , University of South Australia Cancer Research Institute , Adelaide , Australia
| | - Paul M Howley
- d Inflammation Biology , Sementis Ltd , Berwick , Australia
| | - Andreas Suhrbier
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| |
Collapse
|
12
|
Virus-Like-Vaccines against HIV. Vaccines (Basel) 2018; 6:vaccines6010010. [PMID: 29439476 PMCID: PMC5874651 DOI: 10.3390/vaccines6010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022] Open
Abstract
Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8+ and CD4+ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.
Collapse
|
13
|
Sauermann U, Radaelli A, Stolte-Leeb N, Raue K, Bissa M, Zanotto C, Krawczak M, Tenbusch M, Überla K, Keele BF, De Giuli Morghen C, Sopper S, Stahl-Hennig C. Vector Order Determines Protection against Pathogenic Simian Immunodeficiency Virus Infection in a Triple-Component Vaccine by Balancing CD4 + and CD8 + T-Cell Responses. J Virol 2017; 91:e01120-17. [PMID: 28904195 PMCID: PMC5686736 DOI: 10.1128/jvi.01120-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen.IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.
Collapse
Affiliation(s)
- Ulrike Sauermann
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nicole Stolte-Leeb
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Katharina Raue
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Sieghart Sopper
- Clinic for Hematology and Oncology, Medical University Innsbruck, Tyrolean Cancer Research Center, Innsbruck, Austria
| | | |
Collapse
|
14
|
Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era. Viruses 2017; 9:v9100281. [PMID: 28961190 PMCID: PMC5691633 DOI: 10.3390/v9100281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a causative agent of acquired immune deficiency syndrome (AIDS). Highly active antiretroviral therapy (HAART) can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR)-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RECENT FINDINGS RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. SUMMARY An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.
Collapse
|
16
|
Rerks-Ngarm S, Pitisuttithum P, Excler JL, Nitayaphan S, Kaewkungwal J, Premsri N, Kunasol P, Karasavvas N, Schuetz A, Ngauy V, Sinangil F, Dawson P, deCamp AC, Phogat S, Garunathan S, Tartaglia J, DiazGranados C, Ratto-Kim S, Pegu P, Eller M, Karnasuta C, Montefiori DC, Sawant S, Vandergrift N, Wills S, Tomaras GD, Robb ML, Michael NL, Kim JH, Vasan S, O'Connell RJ. Randomized, Double-Blind Evaluation of Late Boost Strategies for HIV-Uninfected Vaccine Recipients in the RV144 HIV Vaccine Efficacy Trial. J Infect Dis 2017; 215:1255-1263. [PMID: 28329190 DOI: 10.1093/infdis/jix099] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/16/2017] [Indexed: 11/12/2022] Open
Abstract
Background The RV144 ALVAC-HIV prime, AIDSVAX B/E boost afforded 60% efficacy against human immunodeficiency virus (HIV) acquisition at 1 year, waning to 31.2% after 3.5 years. We hypothesized that additional vaccinations might augment immune correlates of protection. Methods In a randomized placebo-controlled double-blind study of 162 HIV-negative RV144 vaccine recipients, we evaluated 2 additional boosts, given 6-8 years since RV144 vaccination, for safety and immunogenicity, at weeks 0 and 24. Study groups 1-3 received ALVAC-HIV+AIDSVAX B/E, AIDSVAX B/E, and ALVAC-HIV, respectively, or placebo. Results Vaccines were well tolerated. For groups 1 and 2, plasma immunoglobulin (Ig) G, IgA, and neutralizing antibody responses at week 2 were all significantly higher than 2 weeks after the last RV144 vaccination. IgG titers against glycoprotein (gp) 70V1V2 92TH023 increased 14-fold compared with 2 weeks after the last RV144 vaccination (14069 vs 999; P < .001). Groups 1 and 2 did not differ significantly from each other, whereas group 3 was similar to placebo recipients. Responses in groups 1 and 2 declined by week 24 but were boosted by the second vaccination, albeit at lower magnitude than for week 2. Conclusions In RV144 vaccinees, AIDSVAX B/E with or without ALVAC-HIV 6-8 years after initial vaccination generated higher humoral responses than after RV144, but these responses were short-lived, and their magnitude did not increase with subsequent boost. Clinical Trials Registration NCT01435135.
Collapse
Affiliation(s)
| | | | - Jean-Louis Excler
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | | | - Jaranit Kaewkungwal
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bankok
| | - Nakorn Premsri
- Department of Disease Control, Ministry of Public Health, Nonthaburi
| | - Prayura Kunasol
- Department of Disease Control, Ministry of Public Health, Nonthaburi
| | - Nicos Karasavvas
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Alexandra Schuetz
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Viseth Ngauy
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, California
| | | | - Allan C deCamp
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | - Silvia Ratto-Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Poonam Pegu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Michael Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | | | - David C Montefiori
- Duke Human Vaccine Institute, Durham, North Carolina.,Department of Surgery, Duke University, Durham, North Carolina
| | | | | | | | | | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda.,Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Robert J O'Connell
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | | |
Collapse
|
17
|
Townsend DG, Trivedi S, Jackson RJ, Ranasinghe C. Recombinant fowlpox virus vector-based vaccines: expression kinetics, dissemination and safety profile following intranasal delivery. J Gen Virol 2017; 98:496-505. [PMID: 28056224 PMCID: PMC5797952 DOI: 10.1099/jgv.0.000702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
We have previously established that mucosal uptake of recombinant fowlpox virus (rFPV) vaccines is far superior to other vector-based vaccines. Specifically, intranasal priming with rFPV vaccines can recruit unique antigen-presenting cells, which induce excellent mucosal and systemic HIV-specific CD8+ T-cell immunity. In this study, we have for the first time investigated the in vivo dissemination, safety and expression kinetics of rFPV post intranasal delivery using recombinant viruses expressing green fluorescent protein or mCherry. Both confocal microscopy of tissue sections using green fluorescent protein and in vivo Imaging System (IVIS) spectrum live animal and whole organ imaging studies using mCherry revealed that (i) the peak antigen expression occurs 12 to 24 h post vaccination and no active viral gene expression is detected 96 h post vaccination. (ii) The virus only infects the initial vaccination site (lung and nasal cavity) and does not disseminate to distal sites such as the spleen or gut. (iii) More importantly, rFPV does not cross the olfactory receptor neuron pathway. Collectively, our findings indicate that rFPV vector-based vaccines have all the hallmarks of a safe and effective mucosal delivery vector, suitable for clinical evaluation.
Collapse
Affiliation(s)
- David G Townsend
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
- Present address: Division of Infectious Diseases, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
18
|
Zhu Y, Guo Y, Du S, Liu C, Wang M, Ren D, Zhao F, Zhang Y, Sun W, Li Y, Cao T, Jiang Y, Xing B, Bai B, Li C, Jin N. Construction, Selection and Immunogenicity of Recombinant Fowlpox Candidate Vaccine Co-expressing HIV-1 gag and gp145. Indian J Microbiol 2017; 57:162-170. [PMID: 28611493 DOI: 10.1007/s12088-017-0639-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/23/2017] [Indexed: 11/26/2022] Open
Abstract
An HIV candidate vaccine for the Chinese population was designed by constructing a recombinant fowlpox virus expressing HIV-1 gag and HIV gp145 proteins via homologous recombination and plaque screening using enhanced green fluorescent protein (EGFP) as the reporter gene. EGFP in the recombinant was then knocked out with the Cre/Loxp system yielding rFPVHg-Hp, which was identified at the genomic, transcriptional and translational levels. The immunogenicity of rFPVHg-Hp was analyzed by measuring levels of HIV-specific antibodies and IFN-γ-secreting splenocytes by enzyme-linked immunosorbent assay and IFN enzyme-linked immune spot test in the BALB/c mouse model. Results showed that rFPV could not stimulate HIV-1 specific antibodies or IFN-γ-secreting cells by a single immunization. Meanwhile, in the prime-boost strategy, HIV-p24 antibodies (P < 0.01) and IFN-γ-secreting cells (P < 0.05) were induced strongly by the candidate vaccine after the boost immunization. Thus, both humoral and cellular immunity could be elicited by the candidate vaccine in a prime-boost immunization strategy. This study provides a foundation for future preclinical studies on the HIV rFPVHg-Hp candidate vaccine.
Collapse
Affiliation(s)
- Yilong Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Yan Guo
- Changchun University of Traditional Chinese Medicine, Changchun, 130117 China
| | - Shouwen Du
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Cunxia Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Maopeng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Dayong Ren
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Fei Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Yanfang Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Wenchao Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Tingting Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Yingyue Jiang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Bin Xing
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Bing Bai
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
| | - Chang Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| |
Collapse
|
19
|
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16068. [PMID: 28197421 PMCID: PMC5289440 DOI: 10.1038/mtm.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami , Miami, Florida, USA
| |
Collapse
|
20
|
Beeler JA, Lambach P, Fulton TR, Narayanan D, Ortiz JR, Omer SB. A systematic review of ethical issues in vaccine studies involving pregnant women. Hum Vaccin Immunother 2016; 12:1952-1959. [PMID: 27246403 PMCID: PMC4994733 DOI: 10.1080/21645515.2016.1186312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/19/2016] [Accepted: 04/30/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Immunization during pregnancy can provide protection for mother and child. However, there have been only a limited number of studies documenting the efficacy and safety of this strategy. AIMS To determine the extent and nature of subject matter related to ethics in maternal immunization by systematically documenting the spectrum of ethical issues in vaccine studies involving pregnant women. METHOD We conducted a systematic literature review of published works pertaining to vaccine and therapeutic studies involving pregnant women through searches of PubMed, EMBASE, Web of Science, the Cochrane Database, and ClinicalTrials.gov. We selected literature meeting the inclusion criteria published between 1988 and June 2014. We systematically abstracted subject matter pertaining to ethical issues in immunization studies during pregnancy. Immunization-specific ethical issues were matched and grouped into major categories and subcategories. RESULTS Seventy-seven published articles met the inclusion criteria. Published articles reported findings on data that had been collected in 26 countries, the majority of which were classified as high-income or upper-middle-income nations according to World Bank criteria. Review of these publications produced 60 immunization-specific ethical issues, grouped into six major categories. Notably, many studies demonstrated limited acknowledgment of key ethical issues including the rights and welfare of participants. Additionally, there was no discussion pertaining to the ethics of program implementation, including integration of maternal immunization programs into existing routine immunization programs. CONCLUSION This review of ethical issues in immunization studies of pregnant women can be used to help inform future vaccine trials in this important population. Consistent documentation of these ethical issues by investigators will facilitate a broader and more nuanced discussion of ethics in immunization of pregnant women - offering new and valuable insights for programs developed to prevent disease in newborn children in low- and middle-income countries.
Collapse
Affiliation(s)
- Jennifer A. Beeler
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Philipp Lambach
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| | - T. Roice Fulton
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Divya Narayanan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Justin R. Ortiz
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| | - Saad B. Omer
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
21
|
Lee KL, Twyman RM, Fiering S, Steinmetz N. Virus-based nanoparticles as platform technologies for modern vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:554-78. [PMID: 26782096 PMCID: PMC5638654 DOI: 10.1002/wnan.1383] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
Abstract
Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Karin L. Lee
- Department of Biomedical Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
| | | | - Steven Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Nicole Steinmetz
- Departments of Biomedical Engineering, Radiology, Materials Science and Engineering, and Macromolecular Science and Engineering, Case Western Reserve University and Medicine, Cleveland, OH 44106;
| |
Collapse
|
22
|
Unique safety issues associated with virus-vectored vaccines: Potential for and theoretical consequences of recombination with wild type virus strains. Vaccine 2016; 34:6610-6616. [PMID: 27346303 PMCID: PMC5204448 DOI: 10.1016/j.vaccine.2016.04.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/26/2022]
Abstract
In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus-vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains.
Collapse
|
23
|
Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds. J Virol 2016; 90:5031-5046. [PMID: 26962221 DOI: 10.1128/jvi.03211-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/26/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.
Collapse
|
24
|
O'Connell RJ, Excler JL, Polonis VR, Ratto-Kim S, Cox J, Jagodzinski LL, Liu M, Wieczorek L, McNeil JG, El-Habib R, Michael NL, Gilliam BL, Paris R, VanCott TC, Tomaras GD, Birx DL, Robb ML, Kim JH. Safety and Immunogenicity of a Randomized Phase 1 Prime-Boost Trial With ALVAC-HIV (vCP205) and Oligomeric Glycoprotein 160 From HIV-1 Strains MN and LAI-2 Adjuvanted in Alum or Polyphosphazene. J Infect Dis 2016; 213:1946-54. [PMID: 26908741 DOI: 10.1093/infdis/jiw059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/03/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Prime-boost regimens comprising ALVAC-HIV (prime) and human immunodeficiency virus type 1 (HIV) Env (boost) induce HIV-specific neutralizing antibody and cell-mediated immune responses, but the impact of boost schedule and adjuvant requires further definition. METHODS A phase 1 trial was conducted. In part A (open label), 19 volunteers received oligomeric glycoprotein 160 from HIV strains MN and LAI-2 (ogp160 MN/LAI-2) with dose escalation (25, 50, 100 μg) and either polyphosphazene (pP) or alum adjuvant. In part B, 72 volunteers received either placebo (n=12) or recombinant canarypox virus expressing HIV antigens (ALVAC-HIV [vCP205]) with different doses and schedules of ogp160 MN/LAI-2 in pP or alum (n = 60). RESULTS The vaccines were safe and well tolerated, with no vaccine-related serious adverse events. Anti-gp70 V1V2 antibody responses were detected in 17 of 19 part A volunteers (89%) and 10%-100% of part B volunteers. Use of a peripheral blood mononuclear cell-based assay revealed that US-1 primary isolate neutralization was induced in 2 of 19 recipients of ogp160 protein alone (10.5%) and 5 of 49 prime-boost volunteers (10.2%). Among ogp160 recipients, those who received pP were more likely than those who received alum to have serum that neutralized tier 2 viruses (12% vs 0%; P = .015). CONCLUSIONS Administration of ogp160 with pP induces primary isolate tier 2 neutralizing antibody responses in a small percentage of volunteers, demonstrating proof of concept and underscoring the importance of further optimization of prime-boost strategies for HIV infection prevention. CLINICAL TRIALS REGISTRATION NCT00004579.
Collapse
Affiliation(s)
- Robert J O'Connell
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Institute of Medical Sciences, Bangkok, Thailand
| | - Jean-Louis Excler
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda US Military HIV Research Program
| | | | | | - Josephine Cox
- International AIDS Vaccine Initiative, New York, New York
| | | | - Michelle Liu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda US Military HIV Research Program
| | | | | | | | | | - Bruce L Gilliam
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore
| | - Robert Paris
- US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring
| | | | | | | | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda US Military HIV Research Program
| | - Jerome H Kim
- US Military HIV Research Program International Vaccine Institute, Seoul, Republic of Korea
| |
Collapse
|
25
|
Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine 2016; 34:413-423. [DOI: 10.1016/j.vaccine.2015.11.062] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 01/01/2023]
|
26
|
Fulton TR, Narayanan D, Bonhoeffer J, Ortiz JR, Lambach P, Omer SB. A systematic review of adverse events following immunization during pregnancy and the newborn period. Vaccine 2015; 33:6453-65. [PMID: 26413879 PMCID: PMC8290429 DOI: 10.1016/j.vaccine.2015.08.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 01/31/2023]
Abstract
In 2013, the WHO Strategic Advisory Group of Experts on Immunization (SAGE) requested WHO to develop a process and a plan to move the maternal immunization agenda forward in support of an increased alignment of data safety evidence, public health needs, and regulatory processes. A key challenge identified was the continued need for harmonization of maternal adverse event following immunization (AEFI) research and surveillance efforts within developing and developed country contexts. We conducted a systematic review as a preliminary step in the development of standardized AEFI definitions for use in maternal and neonatal clinical trials, post-licensure surveillance, and other vaccine studies. We documented the current extent and nature of variability in AEFI definitions and adverse event reporting among 74 maternal immunization studies, which reported a total of 240 different types of adverse events. Forty-nine studies provided explicit AEFI case definitions describing 35 separate types of AEFIs. We identified variability in how AEFIs were determined to be present, in how AEFI definitions were applied, and in the ways that AEFIs were reported. Definitions for key maternal/neonatal AEFIs differed on four discrete attributes: overall level of detail, physiological and temporal boundaries and cut-offs, severity strata, and standards used. Our findings suggest that investigators may proactively address these inconsistencies through comprehensive and consistent reporting of AEFI definitions and outcomes in future publications. In addition, efforts to develop standardized AEFI definitions should generate definitions of sufficient detail and consistency of language to avoid the ambiguities we identified in reviewed articles, while remaining practically applicable given the constraints of low-resource contexts such as limited diagnostic capacity and high patient throughput.
Collapse
Affiliation(s)
- T Roice Fulton
- Departments of Global Health and Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
| | - Divya Narayanan
- Departments of Global Health and Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA.
| | - Jan Bonhoeffer
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056 Basel, Switzerland; Brighton Collaboration Foundation, Spitalstrasse 33, 4056 Basel, Switzerland.
| | - Justin R Ortiz
- Initiative for Vaccine Research, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland.
| | - Philipp Lambach
- Initiative for Vaccine Research, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland.
| | - Saad B Omer
- Departments of Global Health and Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, GA 30307, USA; Emory Vaccine Center, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
27
|
Sheets RL, Zhou T, Knezevic I. Review of efficacy trials of HIV-1/AIDS vaccines and regulatory lessons learned: A review from a regulatory perspective. Biologicals 2015; 44:73-89. [PMID: 26776940 DOI: 10.1016/j.biologicals.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022] Open
Abstract
The clinical development of prophylactic HIV-1/AIDS vaccines is confounded by numerous scientific challenges and these in turn result in challenges to regulators reviewing clinical trial applications (CTAs). The search for an HIV-1/AIDS vaccine will only succeed through the conduct of well-designed, well-conducted and well-controlled human efficacy studies. This review summarizes relevant context in which HIV vaccines are being investigated and the six completed efficacy trials of various candidate vaccines and regimens, as well as the lessons learned from them relevant to regulatory evaluation. A companion review focuses on the scientific challenges regulators face and summarizes some current candidates in development. The lessons learned from the completed efficacy trials will enable the development of better designed, potentially more efficient efficacy trials in future. This summary, supported by the World Health Organization (WHO), is unique in that it is meant to aid regulators in understanding the valuable lessons gained from experience in the field to date.
Collapse
Affiliation(s)
| | - TieQun Zhou
- Technologies Standards and Norms Team, Regulation of Medicines and other Health Technologies, Department of Essential Medicines and Health Products, Health Systems and Innovation, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland.
| | - Ivana Knezevic
- Technologies Standards and Norms Team, Regulation of Medicines and other Health Technologies, Department of Essential Medicines and Health Products, Health Systems and Innovation, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland.
| |
Collapse
|
28
|
Phanuphak N, Lo YR, Shao Y, Solomon SS, O'Connell RJ, Tovanabutra S, Chang D, Kim JH, Excler JL. HIV Epidemic in Asia: Implications for HIV Vaccine and Other Prevention Trials. AIDS Res Hum Retroviruses 2015; 31:1060-76. [PMID: 26107771 PMCID: PMC4651036 DOI: 10.1089/aid.2015.0049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An overall decrease of HIV prevalence is now observed in several key Asian countries due to effective prevention programs. The decrease in HIV prevalence and incidence may further improve with the scale-up of combination prevention interventions. The implementation of future prevention trials then faces important challenges. The opportunity to identify heterosexual populations at high risk such as female sex workers may rapidly wane. With unabating HIV epidemics among men who have sex with men (MSM) and transgender (TG) populations, an effective vaccine would likely be the only option to turn the epidemic. It is more likely that efficacy trials will occur among MSM and TG because their higher HIV incidence permits smaller and less costly trials. The constantly evolving patterns of HIV-1 diversity in the region suggest close monitoring of the molecular HIV epidemic in potential target populations for HIV vaccine efficacy trials. CRF01_AE remains predominant in southeast Asian countries and MSM populations in China. This relatively steady pattern is conducive to regional efficacy trials, and as efficacy warrants, to regional licensure. While vaccines inducing nonneutralizing antibodies have promise against HIV acquisition, vaccines designed to induce broadly neutralizing antibodies and cell-mediated immune responses of greater breadth and depth in the mucosal compartments should be considered for testing in MSM and TG. The rationale and design of efficacy trials of combination prevention modalities such as HIV vaccine and preexposure prophylaxis (PrEP) remain hypothetical, require high adherence to PrEP, are more costly, and present new regulatory challenges. The prioritization of prevention interventions should be driven by the HIV epidemic and decided by the country-specific health and regulatory authorities. Modeling the impact and cost-benefit may help this decision process.
Collapse
Affiliation(s)
| | - Ying-Ru Lo
- HIV, Hepatitis, and STI Unit, WHO Regional Office for the Western Pacific, Manila, Philippines
| | - Yiming Shao
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sunil Suhas Solomon
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Robert J. O'Connell
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - David Chang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jerome H. Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jean Louis Excler
- U.S. Military HIV Research Program, Bethesda, Maryland
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| |
Collapse
|
29
|
Vacas-Córdoba E, Climent N, De La Mata FJ, Plana M, Gómez R, Pion M, García F, Muñoz-Fernández MÁ. Dendrimers as nonviral vectors in dendritic cell-based immunotherapies against human immunodeficiency virus: steps toward their clinical evaluation. Nanomedicine (Lond) 2015; 9:2683-702. [PMID: 25529571 DOI: 10.2217/nnm.14.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the antiretroviral therapy has led to a long-term control of HIV-1, it does not cure the disease. Therefore, several strategies are being explored to develop an effective HIV vaccine, such as the use of dendritic cells (DCs). DC-based immunotherapies bear different limitations, but one of the most critical point is the antigen loading into DCs. Nanotechnology offers new tools to overcome these constraints. Dendrimers have been proposed as carriers for targeted delivery of HIV antigens in DCs. These nanosystems can release the antigens in a controlled manner leading to a more potent specific immune response. This review focuses on the first steps for clinical development of dendrimers to assess their safety and potential use in DC-based immunotherapies against HIV.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Sección Inmunologia, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pitisuttithum P, Rerks-Ngarm S, Stablein D, Dawson P, Nitayaphan S, Kaewkungwal J, Michael NL, Kim JH, Robb ML, O’Connell RJ, Yoon IK, Fernandez S, Excler JL. Accuracy of Clinical Diagnosis of Dengue Episodes in the RV144 HIV Vaccine Efficacy Trial in Thailand. PLoS One 2015; 10:e0127998. [PMID: 26011728 PMCID: PMC4444125 DOI: 10.1371/journal.pone.0127998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
RV144 was a community-based HIV vaccine efficacy trial conducted in HIV-uninfected adults in Thailand, where dengue virus continues to cause a large number of infections every year. We attempted to document the accuracy of clinically diagnosed dengue episodes reported as serious adverse events (SAEs) and adverse events (AEs) and examine whether dengue serology would support the clinical diagnosis. Subjects without a clinical dengue diagnosis but with an infection or idiopathic fever were selected as a control population. Dengue serology was performed by hemagglutination inhibition on plasma samples. A total of 124 clinical dengue episodes were reported (103 SAEs and 21 AEs). Overall 82.6% of the clinically diagnosed dengue episodes were supported by a positive dengue serology: 71.4% of the AEs and 85.0% of the SAEs. Of the 100 subjects with both clinical dengue and positive serology, all presented with fever, 83% with leucopenia, 54% with thrombocytopenia, and 27% with hemorrhagic symptoms. All episodes resolved spontaneously without sequellae. Only two of 15 subjects with a negative serology presented with fever. The sensitivity and specificity of clinical dengue diagnosis were 90.9% and 74.4%, respectively, when compared to the control population, and with a positive predictive value of 82.6% and negative predictive value of 84.7% when compared to dengue serology. Clinical diagnosis of dengue is an accurate method of dengue diagnosis in adults in Thailand. Large-scale clinical trials offer the opportunity to systematically study infectious diseases such as dengue and other infections that may occur during the trial.
Collapse
Affiliation(s)
- Punnee Pitisuttithum
- Vaccine Trial Center, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Donald Stablein
- EMMES Corporation, Rockville, Maryland, United States of America
| | - Peter Dawson
- EMMES Corporation, Rockville, Maryland, United States of America
| | - Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Jaranit Kaewkungwal
- Center of Excellence for Biomedical and Public Health Informatics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nelson L. Michael
- US Military HIV Research Program (MHRP), Bethesda, Maryland, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program (MHRP), Bethesda, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program (MHRP), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Robert J. O’Connell
- US Military HIV Research Program (MHRP), Bethesda, Maryland, United States of America
- Department of Retrovirology, US Component—Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - In-Kyu Yoon
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Jean-Louis Excler
- US Military HIV Research Program (MHRP), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
32
|
Brown J, Excler JL, Kim JH. New prospects for a preventive HIV-1 vaccine. J Virus Erad 2015; 1:78-88. [PMID: 26523292 PMCID: PMC4625840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immune correlates of risk analysis and recent non-human primate (NHP) challenge studies have generated hypotheses that suggest HIV-1 envelope may be essential and, perhaps, sufficient to induce protective antibody responses against HIV-1 acquisition at the mucosal entry. New prime-boost mosaic and conserved-sequence, together with replicating vector immunisation strategies aiming at inducing immune responses or greater breadth, as well as the development of immunogens inducing broadly neutralising antibodies and mucosal responses, should be actively pursued and tested in humans. Whether the immune correlates of risk identified in RV144 can be extended to other vaccines, other populations, or different modes and intensity of transmission, and against increasing HIV-1 genetic diversity, remains to be demonstrated. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key for answering the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
| | - Jean-Louis Excler
- US Military HIV Research Program,
Bethesda,
MD,
USA,The Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA,Corresponding author: Jean-Louis Excler,
US Military HIV Research Program,
6720-A Rockledge Drive, Suite 400Bethesda,
MD20817,
USA
| | - Jerome H Kim
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MD,
USA
| |
Collapse
|
33
|
Prentice HA, Ehrenberg PK, Baldwin KM, Geretz A, Andrews C, Nitayaphan S, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, O'Connell RJ, Robb ML, Kim JH, Michael NL, Thomas R. HLA class I, KIR, and genome-wide SNP diversity in the RV144 Thai phase 3 HIV vaccine clinical trial. Immunogenetics 2014; 66:299-310. [PMID: 24682434 DOI: 10.1007/s00251-014-0765-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/23/2014] [Indexed: 11/25/2022]
Abstract
RV144 is the first phase 3 HIV vaccine clinical trial to demonstrate efficacy. This study consisted of more than 8,000 individuals in each arm of the trial, representing the four major regions of Thailand. Human leukocyte antigen (HLA) class I and killer cell immunoglobulin-like receptor (KIR) genes, as well as 96 genome-wide ancestry informative markers (AIMs) were genotyped in 450 placebo HIV-1-uninfected individuals to identify the immunogenetic diversity and population structure of this cohort. High-resolution genotyping identified the common HLA alleles as A*02:03, A*02:07, A*11:01, A*24:02, A*24:07, A*33:03, B*13:01, B*15:02, B*18:01, B*40:01, B*44:03, B*46:01, B*58:01, C*01:02, C*03:02, C*03:04, C*07:01, C*07:02, C*07:04, and C*08:01. The most frequent three-loci haplotype was B*46:01-C*01:02-A*02:07. Framework genes KIR2DL4, 3DL2, and 3DL3 were present in all samples, and KIR2DL1, 2DL3, 3DL1, 2DS4, and 2DP1 occurred at frequencies greater than 90 %. The combined HLA and KIR profile suggests admixture with neighboring Asian populations. Principal component and correspondence analyses comparing the RV144 samples to the phase 3 International HapMap Project (HapMap3) populations using AIMs corroborated these findings. Structure analyses identified a distinct profile in the Thai population that did not match the Asian or other HapMap3 samples. This shows genetic variability unique to Thais in RV144, making it essential to take into account population stratification while performing genetic association studies. The overall analyses from all three genetic markers indicate that the RV144 samples are representative of the Thai population. This will inform subsequent host genetic analyses in the RV144 cohort and provide insight for future genetic association studies in the Thai population.
Collapse
Affiliation(s)
- Heather A Prentice
- U.S. Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Excler JL, Robb ML, Kim JH. HIV-1 vaccines: challenges and new perspectives. Hum Vaccin Immunother 2014; 10:1734-46. [PMID: 24637946 DOI: 10.4161/hv.28462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Merlin L Robb
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Jerome H Kim
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA
| |
Collapse
|
35
|
In vivo electroporation of minicircle DNA as a novel method of vaccine delivery to enhance HIV-1-specific immune responses. J Virol 2013; 88:1924-34. [PMID: 24284319 DOI: 10.1128/jvi.02757-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA vaccines offer advantage over conventional vaccines, as they are safer to use, easier to produce, and able to induce humoral as well cellular immune responses. Unfortunately, no DNA vaccines have been licensed for human use for the difficulties in developing an efficient and safe in vivo gene delivery system. In vivo electroporation (EP)-based DNA delivery has attracted great attention for its potency to enhance cellular uptake of DNA vaccines and function as an adjuvant. Minicircle DNA (a new form of DNA containing only a gene expression cassette and lacking a backbone of bacterial plasmid DNA) is a powerful candidate of gene delivery in terms of improving the levels and the duration of transgene expression in vivo. In this study, as a novel vaccine delivery system, we combined in vivo EP and the minicircle DNA carrying a codon-optimized HIV-1 gag gene (minicircle-gag) to evaluate the immunogenicity of this system. We found that minicircle-gag conferred persistent and high levels of gag expression in vitro and in vivo. The use of EP delivery further increased minicircle-based gene expression. Moreover, when delivered by EP, minicircle-gag vaccination elicited a 2- to 3-fold increase in cellular immune response and a 1.5- to 3-fold augmentation of humoral immune responses compared with those elicited by a pVAX1-gag positive control. Increased immunogenicity of EP-assisted minicircle-gag may benefit from increasing local antigen expression, upregulating inflammatory genes, and recruiting immune cells. Collectively, in vivo EP of minicircle DNA functions as a novel vaccine platform that can enhance efficacy and immunogenicity of DNA vaccines.
Collapse
|
36
|
Gómez CE, Perdiguero B, García-Arriaza J, Esteban M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 2013; 12:1395-416. [PMID: 24168097 DOI: 10.1586/14760584.2013.845531] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Buglione-Corbett R, Pouliot K, Marty-Roix R, West K, Wang S, Lien E, Lu S. Serum cytokine profiles associated with specific adjuvants used in a DNA prime-protein boost vaccination strategy. PLoS One 2013; 8:e74820. [PMID: 24019983 PMCID: PMC3760864 DOI: 10.1371/journal.pone.0074820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022] Open
Abstract
In recent years, heterologous prime-boost vaccines have been demonstrated to be an effective strategy for generating protective immunity, consisting of both humoral and cell-mediated immune responses against a variety of pathogens including HIV-1. Previous reports of preclinical and clinical studies have shown the enhanced immunogenicity of viral vector or DNA vaccination followed by heterologous protein boost, compared to using either prime or boost components alone. With such approaches, the selection of an adjuvant for inclusion in the protein boost component is expected to impact the immunogenicity and safety of a vaccine. In this study, we examined in a mouse model the serum cytokine and chemokine profiles for several candidate adjuvants: QS-21, Al(OH)3, monophosphoryl lipid A (MPLA) and ISCOMATRIX™ adjuvant, in the context of a previously tested pentavalent HIV-1 Env DNA prime-protein boost formulation, DP6-001. Our data revealed that the candidate adjuvants in the context of the DP6-001 formulation are characterized by unique serum cytokine and chemokine profiles. Such information will provide valuable guidance in the selection of an adjuvant for future AIDS vaccine development, with the ultimate goal of enhancing immunogenicity while minimizing reactogenicity associated with the use of an adjuvant. More significantly, results reported here will add to the knowledge on how to include an adjuvant in the context of a heterologous prime-protein boost vaccination strategy in general.
Collapse
Affiliation(s)
- Rachel Buglione-Corbett
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kimberly Pouliot
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robyn Marty-Roix
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kim West
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Egil Lien
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Considerable HIV-1 vaccine development efforts have been deployed over the past decade. Put into perspective, the results from efficacy trials and the identification of correlates of risk have opened large and unforeseen avenues for vaccine development. RECENT FINDINGS The Thai efficacy trial, RV144, provided the first evidence that HIV-1 vaccine protection against HIV-1 acquisition could be achieved. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop inversely correlated with a decreased risk of infection, whereas Env-specific IgA directly correlated with risk. Further clinical trials will focus on testing new envelope subunit proteins formulated with adjuvants capable of inducing higher and more durable functional antibody responses (both binding and broadly neutralizing antibodies). Moreover, vector-based vaccine regimens that can induce cell-mediated immune responses in addition to humoral responses remain a priority. SUMMARY Future efficacy trials will focus on prevention of HIV-1 transmission in heterosexual population in Africa and MSM in Asia. The recent successes leading to novel directions in HIV-1 vaccine development are a result of collaboration and commitment among vaccine manufacturers, funders, scientists and civil society stakeholders. Sustained and broad collaborative efforts are required to advance new vaccine strategies for higher levels of efficacy.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program (MHRP), Bethesda, Maryland 20817, USA.
| | | | | |
Collapse
|
39
|
An HIV Vaccine for South-East Asia-Opportunities and Challenges. Vaccines (Basel) 2013; 1:348-66. [PMID: 26344118 PMCID: PMC4494230 DOI: 10.3390/vaccines1030348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 11/17/2022] Open
Abstract
Recent advances in HIV vaccine development along with a better understanding of the immune correlates of risk have emerged from the RV144 efficacy trial conducted in Thailand. Epidemiological data suggest that CRF01_AE is still predominant in South-East Asia and is spreading in China with a growing number of circulating recombinant forms due to increasing human contact, particularly in large urban centers, tourist locations and in sites of common infrastructure. A vaccine countering CRF01_AE is a priority for the region. An Asia HIV vaccine against expanding B/E or BCE recombinant forms should be actively pursued. A major challenge that remains is the conduct of efficacy trials in heterosexual populations in this region. Men who have sex with men represent the main target population for future efficacy trials in Asia. Coupling HIV vaccines with other prevention modalities in efficacy trials might also be envisaged. These new avenues will only be made possible through the conduct of large-scale efficacy trials, interdisciplinary teams, international collaborations, and strong political and community commitments.
Collapse
|
40
|
Azizi A, Edamura KN, Leung G, Gisonni-Lex L, Mallet L. Short communication: evaluating the level of expressed HIV type 1 gp120 and gag proteins in the vCP1521 vector by two immunoplaque methods. AIDS Res Hum Retroviruses 2013; 29:397-9. [PMID: 22992109 DOI: 10.1089/aid.2012.0212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past few years, several recombinant ALVAC constructs have been used as delivery systems in various vaccine research studies and trials. The ALVAC-HIV vCP1521 vector has been used as a vaccine delivery system in the RV144 study, a phase III HIV study that displayed over 31% protective efficacy. One of the important parameters for evaluating the potency of an ALVAC construct is the stable expression of proteins encoded by the inserted genes. Herein, the expression of inserted gp120 and gag genes in two manufactured ALVAC-HIV vCP1521 lots have been determined by two immunoplaque methods (dish and plaque lift). Both methods were specific and robust and demonstrated that the ALVAC-HIV vCP1521 lots were able to express gp120 and gag proteins in over 99% of the infectious plaques.
Collapse
Affiliation(s)
- Ali Azizi
- Microbiology and Virology Platform, Department of Analytical Research and Development North America, Sanofi Pasteur, Toronto, Ontario, Canada
| | - Kerrie Nichol Edamura
- Microbiology and Virology Platform, Department of Analytical Research and Development North America, Sanofi Pasteur, Toronto, Ontario, Canada
| | - Glenda Leung
- Microbiology and Virology Platform, Department of Analytical Research and Development North America, Sanofi Pasteur, Toronto, Ontario, Canada
| | - Lucy Gisonni-Lex
- Microbiology and Virology Platform, Department of Analytical Research and Development North America, Sanofi Pasteur, Toronto, Ontario, Canada
| | - Laurent Mallet
- Microbiology and Virology Platform, Department of Analytical Research and Development North America, Sanofi Pasteur, Toronto, Ontario, Canada
| |
Collapse
|
41
|
|
42
|
Nitayaphan S, Ngauy V, O'Connell R, Excler JL. HIV epidemic in Asia: optimizing and expanding vaccine development. Expert Rev Vaccines 2012; 11:805-19. [PMID: 22913258 DOI: 10.1586/erv.12.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent evidence in Thailand for protection from acquisition of HIV through vaccination in a mostly heterosexual population has generated considerable hope. Building upon these results and the analysis of the correlates of risk remains among the highest priorities. Improved vaccine concepts including heterologous prime-boost regimens, improved proteins with potent adjuvants and new vectors expressing mosaic antigens may soon enter clinical development to assess vaccine efficacy in men who have sex with men. Identifying heterosexual populations with sufficient HIV incidence for the conduct of efficacy trials represents perhaps the main challenge in Asia. Fostering translational research efforts in Asian countries may benefit from the development of master strategic plans and program management processes.
Collapse
Affiliation(s)
- Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
43
|
Zhang H, Wang Y, Liu C, Zhang L, Xia Q, Zhang Y, Wu J, Jiang C, Chen Y, Wu Y, Zha X, Yu X, Kong W. DNA and adenovirus tumor vaccine expressing truncated survivin generates specific immune responses and anti-tumor effects in a murine melanoma model. Cancer Immunol Immunother 2012; 61:1857-67. [PMID: 22706381 PMCID: PMC11028718 DOI: 10.1007/s00262-012-1296-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022]
Abstract
Survivin is overexpressed in major types of cancer and is considered an ideal "universal" tumor-associated antigen that can be targeted by immunotherapeutic vaccines. However, its anti-apoptosis function raises certain safety concerns. Here, a new truncated human survivin, devoid of the anti-apoptosis function, was generated as a candidate tumor vaccine. Interleukin 2 (IL-2) has been widely used as an adjuvant for vaccination against various diseases. Meanwhile, the DNA prime and recombinant adenovirus (rAd) boost heterologous immunization strategy has been proven to be highly effective in enhancing immune responses. Therefore, the efficacy of a new cancer vaccine based on a truncated form of survivin, combined with IL-2, DNA prime, and rAd boost, was tested. As prophylaxis, immunization with the DNA vaccine alone resulted in a weak immune response and modest anti-tumor effect, whereas the tumor inhibition ratio with the DNA vaccine administered with IL-2 increased to 89 % and was further increased to nearly 100 % by rAd boosting. Moreover, complete tumor rejection was observed in 5 of 15 mice. Efficacy of the vaccine administered therapeutically was enhanced by nearly 300 % when combined with carboplatin. These results indicated that vaccination with a truncated survivin vaccine using DNA prime-rAd boost combined with IL-2 adjuvant and carboplatin represents an attractive strategy to overcoming immune tolerance to tumors and has potential therapeutic benefits in melanoma cancer.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents/therapeutic use
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carboplatin/therapeutic use
- Cell Line, Tumor
- Combined Modality Therapy
- Female
- Humans
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/immunology
- Interleukin-2/therapeutic use
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mutation
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/therapy
- Survivin
- Treatment Outcome
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Yuqian Wang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Chenlu Liu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Lixing Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Qiu Xia
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Xiao Zha
- Sichuan Tumor Hospital and Institute, Chengdu, 610041 China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
- Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun, 130012 China
| |
Collapse
|
44
|
Elena Gómez C, Perdiguero B, García-Arriaza J, Esteban M. Poxvirus vectors as HIV/AIDS vaccines in humans. Hum Vaccin Immunother 2012; 8:1192-207. [PMID: 22906946 PMCID: PMC3579898 DOI: 10.4161/hv.20778] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The RV144 phase III clinical trial with the combination of the poxvirus vector ALVAC and the HIV gp120 protein has taught us that a vaccine against HIV/AIDS is possible but further improvements are still needed. Although the HIV protective effect of RV144 was modest (31.2%), these encouraging results reinforce the use of poxvirus vectors as HIV/AIDS vaccine candidates. In this review we focus on the prophylactic clinical studies thus far performed with the more widely studied poxvirus vectors, ALVAC, MVA, NYVAC and fowlpox expressing HIV antigens. We describe the characteristics of each vector administered either alone or in combination with other vectors, with emphasis on the immune parameters evaluated in healthy volunteers, percentage of responders and triggering of humoral and T cell responses. Some of these immunogens induced broad, polyfunctional and long-lasting CD4(+) and CD8(+) T cell responses to HIV-1 antigens in most volunteers, with preference for effector memory T cells, and neutralizing antibodies, immune parameters that might be relevant in protection. Finally, we consider improvements in immunogenicity of the poxvirus vectors by the selective deletion of viral immunomodulatory genes and insertion of host range genes in the poxvirus genome. Overall, the poxvirus vectors have proven to be excellent HIV/AIDS vaccine candidates, with distinct behavior among them, and the future implementation will be dictated by their optimized immune profile in clinical trials.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| |
Collapse
|
45
|
Aldhamen YA, Seregin SS, Schuldt NJ, Rastall DPW, Liu CJJ, Godbehere S, Amalfitano A. Vaccines expressing the innate immune modulator EAT-2 elicit potent effector memory T lymphocyte responses despite pre-existing vaccine immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1349-59. [PMID: 22745373 PMCID: PMC11119577 DOI: 10.4049/jimmunol.1200736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mixed results from recent vaccine clinical trials targeting HIV-1 justify the need to enhance the potency of HIV-1 vaccine platforms in general. Use of first-generation recombinant adenovirus serotype 5 (rAd5) platforms failed to protect vaccinees from HIV-1 infection. One hypothesis is that the rAd5-based vaccine failed due to the presence of pre-existing Ad5 immunity in many vaccines. We recently confirmed that EAT-2-expressing rAd5 vectors uniquely activate the innate immune system and improve cellular immune responses against rAd5-expressed Ags, inclusive of HIV/Gag. In this study, we report that use of the rAd5-EAT-2 vaccine can also induce potent cellular immune responses to HIV-1 Ags despite the presence of Ad5-specific immunity. Compared to controls expressing a mutant SH2 domain form of EAT-2, Ad5 immune mice vaccinated with an rAd5-wild-type EAT-2 HIV/Gag-specific vaccine formulation significantly facilitated the induction of several arms of the innate immune system. These responses positively correlated with an improved ability of the vaccine to induce stronger effector memory T cell-biased, cellular immune responses to a coexpressed Ag despite pre-existing anti-Ad5 immunity. Moreover, inclusion of EAT-2 in the vaccine mixture improves the generation of polyfunctional cytolytic CD8(+) T cell responses as characterized by enhanced production of IFN-γ, TNF-α, cytotoxic degranulation, and increased in vivo cytolytic activity. These data suggest a new approach whereby inclusion of EAT-2 expression in stringent human vaccination applications can provide a more effective vaccine against HIV-1 specifically in Ad5 immune subjects.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- AIDS Vaccines/pharmacology
- Adaptive Immunity/genetics
- Adenoviridae/genetics
- Adenoviridae/immunology
- Animals
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Cell Line
- Cells, Cultured
- Genetic Vectors
- Immunity, Innate/genetics
- Immunologic Memory/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- Yasser Ali Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Sergey S. Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Nathaniel J. Schuldt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - David P. W. Rastall
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Chyong-jy J. Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
- Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|