1
|
Copeland EN, LeBlanc PJ, Duarte-Guterman P, Fajardo VA, MacPherson REK. The link between sarcopenic obesity and Alzheimer's disease: a brain-derived neurotrophic factor point of view. J Physiol 2025. [PMID: 39937973 DOI: 10.1113/jp288032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/16/2025] [Indexed: 02/14/2025] Open
Abstract
Age-related diseases are becoming more prominent as the lifespan of the global population rises. Many of these diseases coincide with each other and can even influence the onset of additional comorbidities. Sarcopenic obesity is described as age-related loss of muscle mass that concurs with excessive weight gain and tends to increase the risk of comorbidity development, including Alzheimer's disease (AD). Though the exact link between sarcopenic obesity and AD is not known, this review explores the possibility that reduced levels of brain-derived neurotrophic factor (BDNF) throughout the body may serve as the underlying commonality. In AD, reductions in BDNF signalling through its receptor promote the activation of glycogen synthase kinase 3 beta (GSK3β), which subsequently increases the production of amyloid beta (Aβ) peptides and neurofibrillary tangles (NFTs). In the skeletal muscle, lower BDNF concentrations are linked to impaired muscle fibre repair and regeneration, increasing the likelihood of sarcopenia. Furthermore, the absence of BDNF impairs mitochondrial function, leading to insulin resistance and increased adiposity. BDNF concentration has a negative relationship with obesogenic markers in adipose tissue, and as such, lower concentrations of BDNF lead to weight gain. Collectively, current literature suggests that BDNF attenuates AD pathology while improving skeletal muscle mitochondrial function, whole-body insulin resistance and facilitating adipocyte browning. Therefore, BDNF may be a viable target for multiple age-related diseases, but more research is required to substantiate this claim, with a particular focus on examining any potential influence of biological sex, as women are at a higher risk for both AD and sarcopenic obesity.
Collapse
Affiliation(s)
- Emily N Copeland
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Paul J LeBlanc
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Paula Duarte-Guterman
- Department of Psychology, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
2
|
Yang Q, Luo Q, Xia W, Yao N, Wang F, Xie C, Zhang H, He Y. Study on the mechanism on Yi-guan-jian decoction alleviating cognitive dysfunction in type 2 diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119286. [PMID: 39725366 DOI: 10.1016/j.jep.2024.119286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-guan-jian decoction (YGJ) is a traditional Chinese medicine prescription commonly used for treating syndromes associated with Yin deficiency in the liver and kidney, as well as Qi-obstructed in liver. AIM OF THE STUDY YGJ has shown potential alleviating cognitive dysfunction in type 2 diabetes mellitus (T2DM). However, the precise mechanisms are not yet fully understood. This study aims to reveal the mechanism by which YGJ alleviates cognitive dysfunction in T2DM. MATERIALS AND METHODS Various doses of YGJ were administered to T2DM rats with cognitive dysfunction for 8 weeks. The positive control group received a combination of metformin and memantine. Cognitive function was assessed in T2DM rats using the Morris water maze test during treatment. Changes in gut microbiota and bile acids in the intestine were evaluated, and their interactions analyzed. Additionally, this study also evaluated the expressions of inflammatory markers (IL-1β,TNF-α, IL-16, IL-18 and CRP protein), Tau protein, neurotransmitter (5-HT and GABA), and bile acid receptor (FXR, PXR, VDR, and TGR5). RESULTS YGJ significantly alleviated insulin resistance and hyperlipidemia, reduce the levels of inflammatory factors in serum and hippocampus, and decreased mortality in T2DM rats. The Morris water maze test indicated that YGJ reduced the escape latency and increased platform crossing frequency, thereby improving cognitive function in T2DM rats. Furthermore, YGJ regulated the abundance of microorganisms associated with bile acid metabolism, including Romboutsia, Bacteroides, Turicibacter, Blautia, and Ruminococcus, thus regulating bile acid metabolism in T2DM rats. Additionally, YGJ also regulated bile acid metabolism by regulating intestinal FXR, PXR, VDR and TRG5 receptors. CONCLUSION YGJ can alleviate glucose homeostasis, insulin sensitivity, lipid metabolism, neuroinflammation, cognitive function, as well as remodel intestinal flora and BA composition in CDT2DM rats, which is a potential complementary and alternative therapy for the prevention and treatment of CDT2DM. These effects may be associated that YGJ regulates the structure of intestinal flora and BA metabolism, and inhibits intestinal BA receptors FXR, PXR, TGR5, and VDR.
Collapse
Affiliation(s)
- Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China.
| | - Qiwei Luo
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China.
| | - Nairong Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China.
| | - Fang Wang
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, PR China.
| | - Haiyan Zhang
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
3
|
Zheng JY, Pang RK, Ye JH, Su S, Shi J, Qiu YH, Pan HF, Zheng RY, Hu XR, Deng QW, Li XX, Cai YF, Zhang SJ. Huang-Lian-Jie-Du decoction alleviates cognitive impairment in high-fat diet-induced obese mice via Trem2/Dap12/Syk pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156248. [PMID: 39556986 DOI: 10.1016/j.phymed.2024.156248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/28/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Cognitive impairment induced by a high-fat diet (HFD) is common, but its mechanism is largely unknown. Huang-Lian-Jie-Du (HLJD) decoction is a classical and powerful prescription in China. It consists of four medicinal plants and is widely used in traditional Chinese medicines (TCM). Studies have shown that HLJD decoction is effective in treating obesity, depression, and so on. However, the therapeutic mechanism of HLJD is still poorly understood. PURPOSE Our study aimed to explore whether inflammatory factors and Trem2/Dap12/Syk pathway are involved in this process and whether HLJD treatment can repair cognitive impairment in HFD-induced obesity. METHODS To obtain the obese mice, male mice were treated with HFD (60 Kcal% fat) for 16 weeks. After an additional eight weeks, HLJD decoction was administered orally at doses of 4 and 8 g/kg daily for eight weeks. The mice were then subjected to four behavior tests. Aβ42, total Tau, inflammatory-related, and microglial dysregulation-related markers expression were measured. Molecular docking analysis was also conducted to predict the interaction of the chemical constituents of HLJD with human TREM2, DAP12, and SYK. HLJD at doses of 12.5, 25, and 50 µg/mL or limonin at concentrations of 12.5, 25, and 50 µM were used to treat BV2 cells for 24 h. CCK8 assay and Trem2, Dap12, Syk, and p-Syk expression were measured. RESULTS Our study revealed that cognitive impairment was evident in mice treated with HFD, indicating the impact of obesity on cognitive function. The expression of Aβ42 and total Tau in the hippocampus (HIP) was significantly higher in obese (HFD-V) mice compared to normal control (NC-V) mice. The Il6, Il1b, and Il10 mRNA expression levels were also markedly increased in the HIP of obese mice. Furthermore, Trem2, Dap12, p-Syk, and Iba1 expression were elevated in the HIP of obese mice. Importantly, HLJD treatment was found to repair cognitive impairment and lower the protein expression of Aβ42, Tau, Trem2, Dap12, p-Syk, and the expression of Il6, Il1b, and Il10 mRNA in HIP of HFD-V mice. The increased expression of Trem2, Dap12, p-Syk, and Iba1 in HIP after HFD consumption could be reduced after receiving HLJD decoction. The compound Limonin showed a well-predicted binding energy with TREM2, DAP12, and SYK. BV2 cells with HLJD or limonin detected the mRNA expressions of Trem2/Dap12. HLJD at 25 and 50 µg/mL decreased Trem2, Dap12, and p-Syk protein levels in BV2 cells. CONCLUSION These results reveal that HLJD treatment could alleviate cognitive impairment in HFD-induced obese mice by controlling the activation of the Trem2/Dap12 pathway and reducing Syk phosphorylation in HIP microglia. HLJD and limonin suppressed Trem2/Dap12/Syk signaling pathway in BV2 cells. HLJD therapy might represent a novel treatment for patients with cognitive impairment induced by obesity.
Collapse
Affiliation(s)
- Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Rui-Kang Pang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Shan Su
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jia Shi
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu-Hui Qiu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Hua-Feng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
| | - Ru-Yu Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Xin-Rui Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Qi-Wen Deng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Xiao-Xiao Li
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Singh AD, Chawda M, Kulkarni YA. Vasant Kusumakar Rasa Ameliorates Diabetic Encephalopathy by Reducing Oxidative Stress and Neuroinflammation and Improving Neurotransmitter Levels in Experimental Animals. Cureus 2024; 16:e75905. [PMID: 39830570 PMCID: PMC11739537 DOI: 10.7759/cureus.75905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/22/2025] Open
Abstract
PURPOSE Diabetic encephalopathy (DE) is one of the complications of diabetes that affects the brain. In the Ayurveda system of medicine, Vasant Kusumakar Rasa (VKR) is cited as a classical herbo-mineral formulation for diabetes. However, the role of VKR in DE is still unclear. METHODS High-fat diet and streptozotocin (35 mg/kg, i.p.) were used to induce type 2 DE in Sprague Dawley rats. VKR at doses 28 mg/kg and 56 mg/kg was given via intragastric route to diabetic rats for 16 weeks. Estimation of plasma glucose, serum insulin, glycohemoglobin, and C-reactive protein (C-RP) was analyzed. Furthermore, the Morris water maze test was performed to assess cognitive behavior. Pro-inflammatory, such as TNF-α, IL-1β, and IL-6, were measured in brain tissue homogenate. Antioxidant enzyme assays were performed to estimate the levels of malondialdehyde, reduced glutathione, superoxide dismutase, and catalase in brain tissue. Histopathology of brain sections was performed using hematoxylin and eosin (H & E) staining. Neurotransmitters (viz., serotonin (5-HT), dopamine (DA), and norepinephrine (NE)) were estimated in the brain by high-performance liquid chromatography (HPLC). The data were analyzed by using ANOVA, followed by Dunnett's multiple comparison test. RESULTS VKR treatment, at a dose of 28 and 56 mg/kg, reduced the plasma glucose level significantly (236.7±17.08 and 221.8±17.50, respectively; p<0.001) when compared with diabetic control (461.7±13.03). The treatment also reduced serum insulin and glycated hemoglobin levels and improved the escape latency in VKR-treated animals as compared to diabetic animals. Brain tissue pro-inflammatory marker levels were reduced, and oxidative stress enzymes showed positive marks in diabetic rats treated with VKR. Histopathology of the brain demonstrated a reduction in neuronal damage in the VKR-treated diabetic animals. VKR treatment at doses of 28 and 56 mg/kg also improved the levels of 5-HT (1.78±0.11 and 1.72±0.18, respectively) when compared with diabetic control (0.91±0.08) significantly (p<0.01). DA levels were significantly (p<0.01) increased in VKR-treated animals when compared with diabetic animals. The treatment of VKR for 16 weeks also improved the NE levels significantly when compared with diabetic control animals. CONCLUSION The result of the study indicates that the treatment with VKR for 16 weeks has significant therapeutic potential in the management of type 2 DE.
Collapse
Affiliation(s)
- Alok D Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, IND
| | - Mukesh Chawda
- Medical Services, Shree Dhootapapeshwar Limited, Mumbai, IND
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, IND
| |
Collapse
|
5
|
Fulghum K, Salathe SF, Davis X, Thyfault JP, Puchalska P, Crawford PA. Ketone body metabolism and cardiometabolic implications for cognitive health. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:29. [PMID: 40093558 PMCID: PMC11908690 DOI: 10.1038/s44324-024-00029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/05/2024] [Indexed: 03/19/2025]
Abstract
Cardiometabolic complications of obesity present a growing public health concern and are associated with poor outcomes, mediated in part by an increased risk for cardiovascular disease, metabolic dysfunction-associated fatty liver disease, and systemic insulin resistance. Recent studies support that both insulin resistance and obesity are also associated with aberrant brain metabolism and cognitive impairment similar to what is observed in neurodegenerative diseases. Central to these pathological outcomes are adverse changes in tissue glucose and ketone body metabolism, suggesting that regulation of substrate utilization could be a mechanistic link between the cardiometabolic outcomes of obesity and the progression of cognitive decline. Here, we review ketone body metabolism in physiological and pathological conditions with an emphasis on the therapeutic potential of ketone bodies in treating cardiometabolic diseases and neurodegenerative diseases that lead to cognitive decline. We highlight recent findings in the associations among cardiometabolic disease, ketone body metabolism, and cognitive health while providing a theoretical framework by which ketone bodies may promote positive health outcomes and preserve cognitive function.
Collapse
Affiliation(s)
- Kyle Fulghum
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sebastian F. Salathe
- Departments of Cell Biology and Physiology and Internal Medicine – Division of Endocrinology and Metabolism, Kansas University Medical Center, Kansas City, KS, USA
| | - Xin Davis
- Departments of Cell Biology and Physiology and Internal Medicine – Division of Endocrinology and Metabolism, Kansas University Medical Center, Kansas City, KS, USA
| | - John P. Thyfault
- Departments of Cell Biology and Physiology and Internal Medicine – Division of Endocrinology and Metabolism, Kansas University Medical Center, Kansas City, KS, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Yuan Y, Peng W, Lei J, Zhao Y, Zhao B, Li Y, Wang J, Qu Q. AQP4 Endocytosis-Lysosome Degradation Mediated by MMP-9/β-DG Involved in Diabetes Cognitive Impairment. Mol Neurobiol 2024; 61:8438-8453. [PMID: 38512439 DOI: 10.1007/s12035-024-04085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Cognitive impairment is considered to be one of the important comorbidities of diabetes, but the underlying mechanisms are widely unknown. Aquaporin-4 (AQP4) is the most abundant water channel in the central nervous system, which plays a neuroprotective role in various neurological diseases by maintaining the function of glymphatic system and synaptic plasticity. However, whether AQP4 is involved in diabetes-related cognitive impairment remains unknown. β-dystroglycan (β-DG), a key molecule for anchoring AQP4 on the plasma membrane of astrocytes and avoiding its targeting to lysosomes for degradation, can be cleaved by matrix metalloproteinase-9 (MMP-9). β-DG deficiency can cause a decline in AQP4 via regulating its endocytosis. However, whether cleavage of β-DG can affect the expression of AQP4 remains unreported. In this study, we observed that diabetes mice displayed cognitive disorder accompanied by reduction of AQP4 in prefrontal cortex. And we found that bafilomycin A1, a widely used lysosome inhibitor, could reverse the downregulation of AQP4 in diabetes, further demonstrating that the reduction of AQP4 in diabetes is a result of more endocytosis-lysosome degradation. In further experiments, we found diabetes caused the excessive activation of MMP-9/β-DG which leaded to the loss of connection between AQP4 and β-DG, further inducing the endocytosis of AQP4. Moreover, inhibition of MMP-9/β-DG restored the endocytosis-lysosome degradation of AQP4 and partially alleviated cognitive dysfunction in diabetes. Our study sheds new light on the role of AQP4 in diabetes-associated cognitive disorder. And we provide a promising therapeutic target to reverse the endocytosis-lysosome degradation of AQP4 in diabetes, such as MMP-9/β-DG.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Wei Peng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Jingna Lei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Beiyu Zhao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Yang Y, Wang Y, Wang Y, Ke T, Zhao L. PCSK9 inhibitor effectively alleviated cognitive dysfunction in a type 2 diabetes mellitus rat model. PeerJ 2024; 12:e17676. [PMID: 39157774 PMCID: PMC11330219 DOI: 10.7717/peerj.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/12/2024] [Indexed: 08/20/2024] Open
Abstract
Background The incidence of diabetes-associated cognitive dysfunction (DACD) is increasing; however, few clinical intervention measures are available for the prevention and treatment of this disease. Research has shown that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, particularly SBC-115076, have a protective effect against various neurodegenerative diseases. However, their role in DACD remains unknown. In this study, we aimed to explore the impact of PCSK9 inhibitors on DACD. Methods Male Sprague-Dawley (SD) rats were used to establish an animal model of type 2 diabetes mellitus (T2DM). The rats were randomly divided into three groups: the Control group (Control, healthy rats, n = 8), the Model group (Model, rats with T2DM, n = 8), and the PCSK9 inhibitor-treated group (Treat, T2DM rats treated with PCSK9 inhibitors, n = 8). To assess the spatial learning and memory of the rats in each group, the Morris water maze (MWM) test was conducted. Hematoxylin-eosin staining and Nissl staining procedures were performed to assess the structural characteristics and functional status of the neurons of rats from each group. Transmission electron microscopy was used to examine the morphology and structure of the hippocampal neurons. Determine serum PCSK9 and lipid metabolism indicators in each group of rats. Use qRT-PCR to detect the expression levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) in the hippocampal tissues of each group of rats. Western blot was used to detect the expression of PCSK9 and low-density lipoprotein receptor (LDLR) in the hippocampal tissues of rats. In addition, a 4D label-free quantitative proteomics approach was used to analyse protein expression in rat hippocampal tissues. The expression of selected proteins in hippocampal tissues was verified by parallel reaction monitoring (PRM) and immunohistochemistry (IHC). Results The results showed that the PCSK9 inhibitor alleviated cognitive dysfunction in T2DM rats. PCSK9 inhibitors can reduce PCSK9, total cholesterol (TC), and low-density lipoprotein (LDL) levels in the serum of T2DM rats. Meanwhile, it was found that PCSK9 inhibitors can reduce the expression of PCSK9, IL-1β, IL-6, and TNF-α in the hippocampal tissues of T2DM rats, while increasing the expression of LDLR. Thirteen potential target proteins for the action of PCSK9 inhibitors on DACD rats were identified. PRM and IHC revealed that PCSK9 inhibitors effectively counteracted the downregulation of transthyretin in DACD rats. Conclusion This study uncovered the target proteins and specific mechanisms of PCSK9 inhibitors in DACD, providing an experimental basis for the clinical application of PCSK9 inhibitors for the potential treatment of DACD.
Collapse
Affiliation(s)
- Yang Yang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yeying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuwen Wang
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Tingyu Ke
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Ling Zhao
- Department of Endocrinology, the Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Zhang T, Wang P, Li R, Wang Y, Yan S. Correlation between obesity and Alzheimer 's disease and the mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1052-1061. [PMID: 39788493 PMCID: PMC11495975 DOI: 10.11817/j.issn.1672-7347.2024.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is a progressive central neurodegenerative disorder with an insidious onset. With global aging, the incidence and mortality of AD have been steadily increasing, yet effective treatments remain elusive. Obesity, characterized by excessive or abnormal fat accumulation, is a complex metabolic disorder and a confirmed risk factor for numerous diseases. Both obesity and AD have become major public health concerns, posing significant threats to human health and economic development. Studies have revealed a strong correlation between obesity and AD, with multiple contributing factors, including metabolic abnormalities of endocrine factors, inflammatory responses, and genetic interactions. Exploring the correlation and mechanisms between obesity and AD provides important insights and new strategies for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tenglin Zhang
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000.
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000.
| | - Ping Wang
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000
| | - Ruonan Li
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Shuxun Yan
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000.
| |
Collapse
|
9
|
Yu MH, Lim JS, Yi HA, Won KS, Kim HW. Association between Visceral Adipose Tissue Metabolism and Cerebral Glucose Metabolism in Patients with Cognitive Impairment. Int J Mol Sci 2024; 25:7479. [PMID: 39000586 PMCID: PMC11242271 DOI: 10.3390/ijms25137479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Visceral adipose tissue (VAT) dysfunction has been recently recognized as a potential contributor to the development of Alzheimer's disease (AD). This study aimed to explore the relationship between VAT metabolism and cerebral glucose metabolism in patients with cognitive impairment. This cross-sectional prospective study included 54 patients who underwent 18F-fluorodeoxyglucose (18F-FDG) brain and torso positron emission tomography/computed tomography (PET/CT), and neuropsychological evaluations. VAT metabolism was measured by 18F-FDG torso PET/CT, and cerebral glucose metabolism was measured using 18F-FDG brain PET/CT. A voxel-based analysis revealed that the high-VAT-metabolism group exhibited a significantly lower cerebral glucose metabolism in AD-signature regions such as the parietal and temporal cortices. In the volume-of-interest analysis, multiple linear regression analyses with adjustment for age, sex, and white matter hyperintensity volume revealed that VAT metabolism was negatively associated with cerebral glucose metabolism in AD-signature regions. In addition, higher VAT metabolism was correlated with poorer outcomes on cognitive assessments, including the Korean Boston Naming Test, Rey Complex Figure Test immediate recall, and the Controlled Oral Word Association Test. In conclusion, our study revealed significant relationships among VAT metabolism, cerebral glucose metabolism, and cognitive function. This suggests that VAT dysfunction actively contributes to the neurodegenerative processes characteristic of AD, making VAT dysfunction targeting a novel AD therapy approach.
Collapse
Affiliation(s)
- Mi-Hee Yu
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Ji Sun Lim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Hyon-Ah Yi
- Department of Neurology, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea
| |
Collapse
|
10
|
Henry RJ, Barrett JP, Vaida M, Khan NZ, Makarevich O, Ritzel RM, Faden AI, Stoica BA. Interaction of high-fat diet and brain trauma alters adipose tissue macrophages and brain microglia associated with exacerbated cognitive dysfunction. J Neuroinflammation 2024; 21:113. [PMID: 38685031 PMCID: PMC11058055 DOI: 10.1186/s12974-024-03107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.
Collapse
Affiliation(s)
- Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Vaida
- Harrisburg University of Science and Technology, 326 Market St, Harrisburg, PA, USA
| | - Niaz Z Khan
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oleg Makarevich
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, 21201, USA
| |
Collapse
|
11
|
Berbert-Gomes C, Ramos JS, Silveira-Rodrigues JG, Leite DMM, Melo BP, Soares DD. An acute bout of resistance exercise increases BDNF in hippocampus and restores the long-term memory of insulin-resistant rats. Exp Brain Res 2024; 242:901-912. [PMID: 38453752 DOI: 10.1007/s00221-024-06795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
A sedentary lifestyle, inadequate diet, and obesity are substantial risk factors for Type 2 diabetes mellitus (T2DM) development. A major picture of T2DM is insulin resistance (IR), which causes many impairments in brain physiology, such as increased proinflammatory state and decreased brain-derived neurotrophic factor (BDNF) concentration, hence reducing cognitive function. Physical exercise is a non-pharmacological tool for managing T2DM/IR and its complications. Thus, this study investigated the effects of IR induction and the acute effects of resistance exercise (RE) on memory, neurotrophic, and inflammatory responses in the hippocampus and prefrontal cortex of insulin-resistant rats. IR was induced by a high-fat diet and fructose-rich beverage. Insulin-resistant rats performed acute resistance exercise (IR.RE; vertical ladder climb at 50-100% of the maximum load) or rest (IR.REST; 20 min). Cognitive parameters were assessed by novel object recognition (NOR) tasks, and biochemical analyses were performed to assess BDNF concentrations and inflammatory profile in the hippocampus and prefrontal cortex. Insulin-resistant rats had 20% worse long-term memory (LTM) (p < 0.01) and lower BDNF concentration in the hippocampus (-14.6%; p < 0.05) when compared to non-insulin-resistant rats (CON). An acute bout of RE restored LTM (-9.7% pre vs. post; p > 0.05) and increased BDNF concentration in the hippocampus (9.1%; p < 0.05) of insulin-resistant rats compared to REST. Thus, an acute bout of RE can attenuate the adverse effects of IR on memory and neurotrophic factors in rats, representing a therapeutic tool to alleviate the IR impact on the brain.
Collapse
Affiliation(s)
- Camila Berbert-Gomes
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Júlia S Ramos
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - João G Silveira-Rodrigues
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Daniel M M Leite
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Bruno P Melo
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Danusa D Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil.
| |
Collapse
|
12
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|
13
|
Cifre M, Palou A, Oliver P. The Metabolically Obese, Normal-Weight Phenotype in Young Rats Is Associated with Cognitive Impairment and Partially Preventable with Leptin Intake during Lactation. Int J Mol Sci 2023; 25:228. [PMID: 38203399 PMCID: PMC10778589 DOI: 10.3390/ijms25010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The intake of high-fat diets (HFDs) and obesity are linked to cognitive impairment. Here, we aimed to investigate whether an early metabolically obese, normal-weight (MONW) phenotype, induced with an HFD in young rats, also leads to cognitive dysfunction and to evaluate the potential cognitive benefits of neonatal intake of leptin. To achieve this, Wistar rats orally received physiological doses of leptin or its vehicle during lactation, followed by 11 weeks of pair-feeding with an HFD or control diet post-weaning. Working memory was assessed using a T-maze, and gene expression in the hippocampus and peripheral blood mononuclear cells (PBMCs) was assessed with real-time RT-qPCR to identify cognition biomarkers. Young MONW-like rats showed hippocampal gene expression changes and decreased working memory. Animals receiving leptin during lactation presented similar gene expression changes but preserved working memory despite HFD intake, partly due to improved insulin sensitivity. Notably, PBMC Syn1 expression appears as an accessible biomarker of cognitive health, reflecting both the detrimental effect of HFD intake at early ages despite the absence of obesity and the positive effects of neonatal leptin treatment on cognition. Thus, the MONW phenotype developed at a young age is linked to cognitive dysfunction, which is reflected at the transcriptomic level in PBMCs. Neonatal leptin intake can partly counteract this impaired cognition resulting from early HFD consumption.
Collapse
Affiliation(s)
- Margalida Cifre
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), 07122 Palma, Spain (A.P.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), 07122 Palma, Spain (A.P.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands (UIB), 07122 Palma, Spain (A.P.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| |
Collapse
|
14
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Dunot J, Ribera A, Pousinha PA, Marie H. Spatiotemporal insights of APP function. Curr Opin Neurobiol 2023; 82:102754. [PMID: 37542943 DOI: 10.1016/j.conb.2023.102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 08/07/2023]
Abstract
The amyloid-β precursor protein (APP) is a ubiquitous protein with a strong genetic link to Alzheimer's disease. Although the protein was identified more than forty years ago, its physiological function is still unclear. In recent years, advances in technology have allowed researchers to tackle APP functions in greater depth. In this review, we discuss the latest research pertaining to APP functions from development to aging. We also address the different roles that APP could play in specific types of cells of the central and peripheral nervous system and in other organs of the body. We argue that, until we fully identify the functions of APP in space and time, we will be missing important pieces of the puzzle to solve its pathological implication in Alzheimer's disease and beyond.
Collapse
Affiliation(s)
- Jade Dunot
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560, Valbonne, France. https://twitter.com/DunotJade
| | - Aurore Ribera
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560, Valbonne, France. https://twitter.com/aurore_et_al_
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560, Valbonne, France.
| | - Hélène Marie
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, 06560, Valbonne, France.
| |
Collapse
|
16
|
Henry RJ, Barrett JP, Vaida M, Khan NZ, Makarevich O, Ritzel RM, Faden AI, Stoica BA. Interaction of high-fat diet and brain trauma alters adipose tissue macrophages and brain microglia associated with exacerbated cognitive dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550986. [PMID: 37546932 PMCID: PMC10402152 DOI: 10.1101/2023.07.28.550986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Obesity increases the morbidity and mortality of traumatic brain injury (TBI). We performed a detailed analysis of transcriptomic changes in the brain and adipose tissue to examine the interactive effects between high-fat diet-induced obesity (DIO) and TBI in relation to central and peripheral inflammatory pathways, as well as neurological function. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. Combined TBI and HFD resulted in additive dysfunction in the Y-Maze, novel object recognition (NOR), and Morris water maze (MWM) cognitive function tests. We also performed high-throughput transcriptomic analysis using Nanostring panels of cellular compartments in the brain and total visceral adipose tissue (VAT), followed by unsupervised clustering, principal component analysis, and IPA pathway analysis to determine shifts in gene expression programs and molecular pathway activity. Analysis of cellular populations in the cortex and hippocampus as well as in visceral adipose tissue during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in select gene expression signatures and pathways. These data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and visceral adipose tissue macrophages, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue macrophages, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.
Collapse
Affiliation(s)
- Rebecca J. Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - James P. Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Vaida
- Harrisburg University of Science and Technology, 326 Market St, Harrisburg, PA, USA
| | - Niaz Z. Khan
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oleg Makarevich
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rodney M. Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A. Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Juby AG, Cunnane SC, Mager DR. Refueling the post COVID-19 brain: potential role of ketogenic medium chain triglyceride supplementation: an hypothesis. Front Nutr 2023; 10:1126534. [PMID: 37415915 PMCID: PMC10320593 DOI: 10.3389/fnut.2023.1126534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/25/2023] [Indexed: 07/08/2023] Open
Abstract
COVID-19 infection causes cognitive changes in the acute phase, but also after apparent recovery. Over fifty post (long)-COVID symptoms are described, including cognitive dysfunction ("brain fog") precluding return to pre-COVID level of function, with rates twice as high in females. Additionally, the predominant demographic affected by these symptoms is younger and still in the workforce. Lack of ability to work, even for six months, has significant socio-economic consequences. This cognitive dysfunction is associated with impaired cerebral glucose metabolism, assessed using 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET), showing brain regions that are abnormal compared to age and sex matched controls. In other cognitive conditions such as Alzheimer's disease (AD), typical patterns of cerebral glucose hypometabolism, frontal hypometabolism and cerebellar hypermetabolism are common. Similar FDG-PET changes have also been observed in post-COVID-19, raising the possibility of a similar etiology. Ketone bodies (B-hydroxybutyrate, acetoacetate and acetone) are produced endogenously with very low carbohydrate intake or fasting. They improve brain energy metabolism in the face of cerebral glucose hypometabolism in other conditions [mild cognitive impairment (MCI) and AD]. Long-term low carbohydrate intake or prolonged fasting is not usually feasible. Medium chain triglyceride (MCT) is an exogenous route to nutritional ketosis. Research has supported their efficacy in managing intractable seizures, and cognitive impairment in MCI and AD. We hypothesize that cerebral glucose hypometabolism associated with post COVID-19 infection can be mitigated with MCT supplementation, with the prediction that cognitive function would also improve. Although there is some suggestion that post COVID-19 cognitive symptoms may diminish over time, in many individuals this may take more than six months. If MCT supplementation is able to speed the cognitive recovery, this will impact importantly on quality of life. MCT is readily available and, compared to pharmaceutical interventions, is cost-effective. Research shows general tolerability with dose titration. MCT is a component of enteral and parenteral nutrition supplements, including in pediatrics, so has a long record of safety in vulnerable populations. It is not associated with weight gain or adverse changes in lipid profiles. This hypothesis serves to encourage the development of clinical trials evaluating the impact of MCT supplementation on the duration and severity of post COVID-19 cognitive symptoms.
Collapse
Affiliation(s)
- Angela G. Juby
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Stephen C. Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Diana R. Mager
- Agriculture Food and Nutrition Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Gupta M, Pandey S, Rumman M, Singh B, Mahdi AA. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neurosci Rep 2023; 14:57-63. [PMID: 36590246 PMCID: PMC9800261 DOI: 10.1016/j.ibneur.2022.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia. DM can lead to a number of secondary complications affecting multiple organs in the body including the eyes, kidney, heart, and brain. The most common effect of hyperglycemia on the brain is cognitive decline. It has been estimated that 20-70% of people with DM have cognitive deficits. High blood sugar affects key brain areas involved in learning, memory, and spatial navigation, and the structural complexity of the brain has made it prone to a variety of pathological disorders, including T2DM. Studies have reported that cognitive decline can occur in people with diabetes, which could go undetected for several years. Moreover, studies on brain imaging suggest extensive effects on different brain regions in patients with T2D. It remains unclear whether diabetes-associated cognitive decline is a consequence of hyperglycemia or a complication that co-occurs with T2D. The exact mechanism underlying cognitive impairment in diabetes is complex; however, impaired glucose metabolism and abnormal insulin function are thought to play important roles. In this review, we have tried to summarize the effect of hyperglycemia on the brain structure and functions, along with the potential mechanisms underlying T2DM-associated cognitive decline.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Afsar A, Chacon Castro MDC, Soladogun AS, Zhang L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:7258. [PMID: 37108421 PMCID: PMC10138573 DOI: 10.3390/ijms24087258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (Aβ) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood-brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance.Additionally, recent studies have shown an association between altered heme metabolism and AD. Unfortunately, decades of research and drug development have not produced any effective treatments for AD. Therefore, understanding the cellular and molecular mechanisms underlying AD pathology and identifying potential therapeutic targets are crucial for AD drug development. This review discusses the most common alterations associated with AD and promising therapeutic targets for AD drug discovery. Furthermore, it highlights the role of heme in AD development and summarizes mathematical models of AD, including a stochastic mathematical model of AD and mathematical models of the effect of Aβ on AD. We also summarize the potential treatment strategies that these models can offer in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
20
|
A PDK-1 allosteric agonist improves spatial learning and memory in a βAPP/PS-1 transgenic mouse-high fat diet intervention model of Alzheimer's disease. Behav Brain Res 2023; 438:114183. [PMID: 36404570 DOI: 10.1016/j.bbr.2022.114183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM), peripheral insulin resistance (IR) and obesity are clear risk factors for Alzheimer's disease. Several anti-diabetic drugs and insulin have been tested in rodents and humans with MCI or AD, yielding promising but inconclusive results. The PDK-1/Akt axis, essential to the action of insulin, has not however been pharmacologically interrogated to a similar degree. Our previous cell culture and in vitro studies point to such an approach. Double transgenic APPsw/PSENdE9 mice, a model for Alzheimer's disease, were used to test the oral administration of PS48, a PDK-1 agonist, on preventing the expected decline in learning and memory in the Morris Water Maze (MWM). Mice were raised on either standard (SD) or high fat (HFD) diets, dosed beginning 10 months age and tested at an advanced age of 14 months. PS48 had positive effects on learning the spatial location of a hidden platform in the TG animals, on either SD or HFD, compared to vehicle diet and WT animals. On several measures of spatial memory following successful acquisition (probe trials), the drug also proved significantly beneficial to animals on either diet. The PS48 treatment-effect size was more pronounced in the TG animals on HFD compared to on SD in several of the probe measures. HFD produced some of the intended metabolic effects of weight gain and hyperglycemia, as well as accelerating cognitive impairment in the TG animals. PS48 was found to have added value in modestly reducing body weights and improving OGTT responses in TG groups although results were not definitive. PS48 was well tolerated without obvious clinical signs or symptoms and did not itself affect longevity. These results recommend a larger preclinical study before human trial.
Collapse
|
21
|
Pleiotrophin deficiency protects against high-fat diet-induced neuroinflammation: Implications for brain mitochondrial dysfunction and aberrant protein aggregation. Food Chem Toxicol 2023; 172:113578. [PMID: 36566969 DOI: 10.1016/j.fct.2022.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Metabolic Syndrome (MetS) is a risk factor for the development of neurodegenerative diseases. Neuroinflammation associated with MetS may contribute significantly to neurodegeneration. Pleiotrophin (PTN) is a neurotrophic factor that modulates neuroinflammation and is a key player in regulating energy metabolism and thermogenesis, suggesting that PTN could be important in the connection between MetS and neuroinflammation. We have now used a high-fat diet (HFD)-induced obesity model in Ptn-/- mice. HFD and Ptn deletion caused alterations in circulating hormones including GIP, leptin and resistin. HFD produced in Ptn+/+ mice a neuroinflammatory state as observed in cerebral quantifications of proinflammatory markers, including Il1β, Tnfα and Ccl2. The upregulation of neuroinflammatory markers was prevented in Ptn-/- mice. Changes induced by HFD in genes related to mitochondrial biogenesis and dynamics were less pronounced in the brain of Ptn-/- mice and were accompanied by significant increases in the protein expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I and IV. HFD-induced changes in genes related to the elimination of protein aggregates were also less pronounced in the brain of Ptn-/- mice. This study provides substantial evidence that Ptn deletion protects against HFD-induced neuroinflammation, mitochondrial dysfunction, and aberrant protein aggregation, prominent features in neurodegenerative diseases.
Collapse
|
22
|
Krakovski MA, Arora N, Jain S, Glover J, Dombrowski K, Hernandez B, Yadav H, Sarma AK. Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Front Neurosci 2022; 16:1002266. [PMID: 36188471 PMCID: PMC9523267 DOI: 10.3389/fnins.2022.1002266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, appreciation for the gut microbiome and its relationship to human health has emerged as a facilitator of maintaining healthy physiology and a contributor to numerous human diseases. The contribution of the microbiome in modulating the gut-brain axis has gained significant attention in recent years, extensively studied in chronic brain injuries such as Epilepsy and Alzheimer’s Disease. Furthermore, there is growing evidence that gut microbiome also contributes to acute brain injuries like stroke(s) and traumatic brain injury. Microbiome-gut-brain communications are bidirectional and involve metabolite production and modulation of immune and neuronal functions. The microbiome plays two distinct roles: it beneficially modulates immune system and neuronal functions; however, abnormalities in the host’s microbiome also exacerbates neuronal damage or delays the recovery from acute injuries. After brain injury, several inflammatory changes, such as the necrosis and apoptosis of neuronal tissue, propagates downward inflammatory signals to disrupt the microbiome homeostasis; however, microbiome dysbiosis impacts the upward signaling to the brain and interferes with recovery in neuronal functions and brain health. Diet is a superlative modulator of microbiome and is known to impact the gut-brain axis, including its influence on acute and neuronal injuries. In this review, we discussed the differential microbiome changes in both acute and chronic brain injuries, as well as the therapeutic importance of modulation by diets and probiotics. We emphasize the mechanistic studies based on animal models and their translational or clinical relationship by reviewing human studies.
Collapse
Affiliation(s)
| | - Niraj Arora
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Shalini Jain
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Jennifer Glover
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Keith Dombrowski
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Beverly Hernandez
- Clinical Nutrition Services, Tampa General Hospital, Tampa, FL, United States
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, United States
- *Correspondence: Hariom Yadav,
| | - Anand Karthik Sarma
- Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
- Anand Karthik Sarma,
| |
Collapse
|
23
|
Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther 2022; 235:108122. [PMID: 35114285 DOI: 10.1016/j.pharmthera.2022.108122] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
Amyloid precursor protein (APP) is an evolutionarily conserved transmembrane protein and a well-characterized precursor protein of amyloid-beta (Aβ) peptides, which accumulate in the brains of individuals with Alzheimer's disease (AD)-related pathologies. Aβ has been extensively investigated since the amyloid hypothesis in AD was proposed. Besides Aβ, previous studies on APP and its proteolytic cleavage products have suggested their diverse pathological and physiological functions. However, their roles still have not been thoroughly understood. In this review, we extensively discuss the evolutionarily-conserved biology of APP, including its structure and processing pathway, as well as recent findings on the physiological roles of APP and its fragments in the central nervous system and peripheral nervous system. We have also elaborated upon the current status of APP-targeted therapeutic approaches for AD treatment by discussing inhibitors of several proteases participating in APP processing, including α-, β-, and γ-secretases. Finally, we have highlighted the future perspectives pertaining to further research and the potential clinical role of APP.
Collapse
Affiliation(s)
- Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Pauld Feder Laboratory on Alzheimer's Disease Research, Israel
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
24
|
Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci Rep 2022; 12:10848. [PMID: 35761012 PMCID: PMC9237037 DOI: 10.1038/s41598-022-14812-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/13/2022] [Indexed: 12/06/2022] Open
Abstract
Neuroinflammation is a key event in neurodegenerative conditions such as Alzheimer's disease (AD) and characterizes metabolic pathologies like obesity and type 2 diabetes (T2D). Growing evidence in humans shows that obesity increases the risk of developing AD by threefold. Hippocampal neuroinflammation in rodents correlates with poor memory performance, suggesting that it contributes to cognitive decline. Here we propose that reducing obesity/T2D-driven neuroinflammation may prevent the progression of cognitive decline associated with AD-like neurodegenerative states. Near-infrared light (NIR) has attracted increasing attention as it was shown to improve learning and memory in both humans and animal models. We previously reported that transcranial NIR delivery reduced amyloid beta and Tau pathology and improved memory function in mouse models of AD. Here, we report the effects of NIR in preventing obesity-induced neuroinflammation in a diet-induced obese mouse model. Five-week-old wild-type mice were fed a high-fat diet (HFD) for 13 weeks to induce obesity prior to transcranial delivery of NIR for 4 weeks during 90-s sessions given 5 days a week. After sacrifice, brain slices were subjected to free-floating immunofluorescence for microglia and astrocyte markers to evaluate glial activation and quantitative real-time polymerase chain reaction (PCR) to evaluate expression levels of inflammatory cytokines and brain-derived neurotrophic factor (BDNF). The hippocampal and cortical regions of the HFD group had increased expression of the activated microglial marker CD68 and the astrocytic marker glial fibrillary acidic protein. NIR-treated HFD groups showed decreased levels of these markers. PCR revealed that hippocampal tissue from the HFD group had increased levels of pro-inflammatory interleukin (IL)-1β and tumor necrosis factor-α. Interestingly, the same samples showed increased levels of the anti-inflammatory IL-10. All these changes were attenuated by NIR treatment. Lastly, hippocampal levels of the neurotrophic factor BDNF were increased in NIR-treated HFD mice, compared to untreated HFD mice. The marked reductions in glial activation and pro-inflammatory cytokines along with elevated BDNF provide insights into how NIR could reduce neuroinflammation. These results support the use of NIR as a potential non-invasive and preventive therapeutic approach against chronic obesity-induced deficits that are known to occur with AD neuropathology.
Collapse
|
25
|
Delport A, Hewer R. The amyloid precursor protein: a converging point in Alzheimer's disease. Mol Neurobiol 2022; 59:4501-4516. [PMID: 35579846 DOI: 10.1007/s12035-022-02863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
The decades of evidence that showcase the role of amyloid precursor protein (APP), and its fragment amyloidβ (Aβ), in Alzheimer's disease (AD) pathogenesis are irrefutable. However, the absolute focus on the single APP metabolite Aβ as the cause for AD has resulted in APP and its other fragments that possess toxic propensity, to be overlooked as targets for treatment. The complexity of its processing and its association with systematic metabolism suggests that, if misregulated, APP has the potential to provoke an array of metabolic dysfunctions. This review discusses APP and several of its cleaved products with a particular focus on their toxicity and ability to disrupt healthy cellular function, in relation to AD development. We subsequently argue that the reduction of APP, which would result in a concurrent decrease in Aβ as well as all other toxic APP metabolites, would alleviate the toxic environment associated with AD and slow disease progression. A discussion of those drug-like compounds already identified to possess this capacity is also included.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
26
|
Association between Visceral Adipose Tissue Metabolism and Alzheimer’s Disease Pathology. Metabolites 2022; 12:metabo12030258. [PMID: 35323701 PMCID: PMC8949138 DOI: 10.3390/metabo12030258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
The visceral adipose tissue (VAT) has been recognized as an endocrine organ, and VAT dysfunction could be a risk factor for Alzheimer’s disease (AD). We aimed to evaluate the association of VAT metabolism with AD pathology. This cross-sectional study included 54 older subjects with cognitive impairment who underwent 2-deoxy-2-[fluorine-18]-fluoro-D-glucose (18F-FDG) torso positron emission tomography (PET) and 18F-florbetaben brain PET. 18F-FDG uptake in VAT on 18F-FDG PET images was used as a marker of VAT metabolism, and subjects were classified into high and low VAT metabolism groups. A voxel-based analysis revealed that the high VAT metabolism group exhibited a significantly higher cerebral amyloid-β (Aβ) burden than the low VAT metabolism group. In the volume-of-interest analysis, multiple linear regression analyses with adjustment for age, sex, and white matter hyperintensity volume revealed that 18F-FDG uptake in VAT was significantly associated with the cerebral Aβ burden (β = 0.359, p = 0.007). In conclusion, VAT metabolism was associated with AD pathology in older subjects. Our findings suggest that VAT dysfunction could contribute to AD development.
Collapse
|
27
|
Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev 2021; 80:774-785. [PMID: 34957519 PMCID: PMC8907488 DOI: 10.1093/nutrit/nuab118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Patients with type 2 diabetes can have several neuropathologies, such as memory deficits. Recent studies have focused on the association between metabolic imbalance and neuropathological problems, and the associated molecular pathology. Diabetes triggers neuroinflammation, impaired synaptic plasticity, mitochondrial dysfunction, and insulin resistance in the brain. Glucose is a main energy substrate for neurons, but under certain conditions, such as fasting and starvation, ketone bodies can be used as an energy fuel for these cells. Recent evidence has shed new light on the role of ketone bodies in regulating several anti-inflammation cellular pathways and improving glucose metabolism, insulin action, and synaptic plasticity, thereby being neuroprotective. However, very high amount of ketone bodies can be toxic for the brain, such as in ketoacidosis, a dangerous complication that may occur in type 1 diabetes mellitus or alcoholism. Recent findings regarding the relationship between ketone bodies and neuropathogenesis in dementia are reviewed in this article. They suggest that the adequately low amount of ketone bodies can be a potential energy source for the treatment of diabetes-induced dementia neuropathology, considering the multifaceted effects of the ketone bodies in the central nervous system. This review can provide useful information for establishing the therapeutic guidelines of a ketogenic diet for diabetes-induced dementia.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition and the Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| |
Collapse
|
28
|
Alkasabera A, Onyali CB, Anim-Koranteng C, Shah HE, Ethirajulu A, Bhawnani N, Mostafa JA. The Effect of Type-2 Diabetes on Cognitive Status and the Role of Anti-diabetes Medications. Cureus 2021; 13:e19176. [PMID: 34877187 PMCID: PMC8642129 DOI: 10.7759/cureus.19176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes mellitus prevalence is constantly increasing; this is explained by the increase of its risk factors and the amelioration of its management. Therefore, people are living longer with diabetes mellitus, which, in turn, has revealed new complications of the disease. Dementia is represented mainly by Alzheimer's disease and is an interesting topic of study. Accordingly, statistics have shown that dementia incidence is doubled in diabetic patients. The establishment of a relation between type-2 diabetes mellitus was studied on several levels in both humans and animal subjects. First, insulin receptors were found in the brain, especially the hippocampus, and insulin transport to the brain is mainly accomplished through the blood-brain barrier. Secondly, several studies showed that insulin affects multiple neurotransmitters in favor of promoting memory and cognition status. Thirdly, multiple pathological studies showed that insulin and Alzheimer's disease share many common lesions in the brain, such as beta-amyloid plaques, amylin-Aβ plaques, hyper-phosphorylated tau protein, and brain atrophy, especially in the hippocampus. After recognizing the positive effect of insulin on cognitive status, and the harmful effect of insulin resistance on cognitive status, multiple studies were focused on the role of anti-diabetes medications in fighting dementia. Consequently, these studies showed a positive impact of oral anti-diabetes medication, as well as insulin in limiting the progression of dementia and promoting cognitive status. Moreover, their effects were also noticed on limiting the pathological lesions of Alzheimer's disease. Accordingly, we can consider type-2 diabetes mellitus as a risk factor for dementia and Alzheimer's disease. Therefore, this can be used on the pharmaceutical level by the promising implication of antidiabetics as a treatment of dementia and Alzheimer's disease or at least to limit its progression. However, multiple clinical studies should be dedicated to proving the true benefits of anti-diabetes medications in treating dementia before they can be used in reality.
Collapse
Affiliation(s)
- Almothana Alkasabera
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | | | - Hira E Shah
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aarthi Ethirajulu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nitin Bhawnani
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
29
|
Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 2021; 70:101397. [PMID: 34214643 DOI: 10.1016/j.arr.2021.101397] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
An excess of saturated fatty acids and simple sugars in the diet is a known environmental risk factor of Alzheimer's disease (AD) but the holistic view of the interacting processes through which such diet may contribute to AD pathogenesis is missing. We addressed this need through extensive analysis of published studies investigating the effects of western diet (WD) on AD development in humans and laboratory animals. We reviewed WD-induced systemic alterations comprising metabolic changes, induction of obesity and adipose tissue inflammation, gut microbiota dysbiosis and acceleration of systemic low-grade inflammation. Next we provide an overview of the evidence demonstrating that WD-associated systemic alterations drive impairment of the blood-brain barrier (BBB) and development of neuroinflammation paralleled by accumulation of toxic amyloid. Later these changes are followed by dysfunction of synaptic transmission, neurodegeneration and finally memory and cognitive impairment. We conclude that WD can trigger AD by acceleration of inflammaging, and that BBB impairment induced by metabolic and systemic inflammation play the central role in this process. Moreover, the concurrence of neuroinflammation and Aβ dyshomeostasis, which by reciprocal interactions drive the vicious cycle of neurodegeneration, contradicts Aβ as the primary trigger of AD. Given that in 2019 the World Health Organization recommended focusing on modifiable risk factors in AD prevention, this overview of the sequential, complex pathomechanisms initiated by WD, which can lead from peripheral disturbances to neurodegeneration, can support future prevention strategies.
Collapse
|
30
|
Kwon OJ, Noh JW, Lee BC. Mechanisms and Effect of Coptidis Rhizoma on Obesity-Induced Inflammation: In Silico and In Vivo Approaches. Int J Mol Sci 2021; 22:ijms22158075. [PMID: 34360840 PMCID: PMC8347796 DOI: 10.3390/ijms22158075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is characterized as a chronic, low-grade inflammation state accompanied by the infiltration of immune cells into adipose tissue and higher levels of inflammatory cytokines and chemokines. This study aimed to investigate the mechanisms and effects of Coptidis Rhizoma (CR) on obesity and its associated inflammation. First, we applied a network pharmacology strategy to search the target genes and pathways regulated by CR in obesity. Next, we performed in vivo experiments to confirm the antiobesity and anti-inflammatory effects of CR. Mice were assigned to five groups: normal chow (NC), control (high-fat diet (HFD)), HFD + CR 200 mg/kg, HFD + CR 400 mg/kg, and HFD + metformin 200 mg/kg. After 16 weeks of the experimental period, CR administration significantly reduced the weight of the body, epididymal fat, and liver; it also decreased insulin resistance, as well as the area under the curve of glucose in the oral glucose tolerance test and triglyceride in the oral fat tolerance test. We observed a decrease in adipose tissue macrophages (ATMs) and inflammatory M1 ATMs, as well as an increase in anti-inflammatory M2 ATMs. Gene expression levels of inflammatory cytokines and chemokines, including tumor necrosis factor-α, F4/80, and C-C motif chemokine (CCL)-2, CCL4, and CCL5, were suppressed in adipose tissue in the CR groups than levels in the control group. Additionally, histological analyses suggested decreased fat accumulation in the epididymal fat pad and liver in the CR groups than that in the control group. Taken together, these results suggest that CR has a therapeutic effect on obesity-induced inflammation, and it functions through the inhibition of macrophage-mediated inflammation in adipose tissue.
Collapse
|
31
|
Kim H, Chung JY. Pathobiolgy and Management of Alzheimer's Disease. Chonnam Med J 2021; 57:108-117. [PMID: 34123738 PMCID: PMC8167446 DOI: 10.4068/cmj.2021.57.2.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023] Open
Abstract
Amyloid and tau protein abnormalities have been identified as the main causes of Alzheimer's disease but exact mechanisms remain to be revealed. Especially, amyloid beta and tau protein coupling and neuroinflammatory and neurovascular contributions to Alzheimer disease are quite mysterious. Many animal models and basic biological research are trying to solve these puzzles. Known as aging processes, autophagy, mitochondrial degeneration with generation of reactive oxygen species, and age-related epigenetic modifications are also known to be associated with development of Alzheimer's disease. Environmental factors such as bacterial and viral infections, heavy metal ions, diet, sleep, stress, and gut microbiota are also risk factors of Alzheimer's disease. Future development of preventive and therapeutic modalities may be dependent on the pathobiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Hoowon Kim
- Department of Neurology, Chosun University Hospital, Gwangju, Korea
| | - Ji Yeon Chung
- Department of Neurology, Chosun University Hospital, Gwangju, Korea
| |
Collapse
|
32
|
Herrada AA, Olate-Briones A, Rojas A, Liu C, Escobedo N, Piesche M. Adipose tissue macrophages as a therapeutic target in obesity-associated diseases. Obes Rev 2021; 22:e13200. [PMID: 33426811 DOI: 10.1111/obr.13200] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023]
Abstract
Obesity is an increasing problem in developed and developing countries. Individuals with obesity have a higher risk of several diseases, such as cardiovascular disease, increased risk of insulin resistance, type 2 diabetes, infertility, degenerative disorders, and also certain types of cancer. Adipose tissue (AT) is considered an extremely active endocrine organ, and the expansion of AT is accompanied by the infiltration of different types of immune cells, which induces a state of low-grade, chronic inflammation and metabolic dysregulation. Even though the exact mechanism of this low-grade inflammation is not fully understood, there is clear evidence that AT-infiltrating macrophages (ATMs) play a significant role in the pro-inflammatory state and dysregulated metabolism. ATMs represent the most abundant class of leukocytes in AT, constituting 5% of the cells in AT in individuals with normal weight. However, this percentage dramatically increases up to 50% in individuals with obesity, suggesting an important role of ATMs in obesity and its associated complications. In this review, we discuss current knowledge of the function of ATMs during steady-state and obesity and analyze its contribution to different obesity-associated diseases, highlighting the potential therapeutic target of ATMs in these pathological conditions.
Collapse
Affiliation(s)
- Andrés A Herrada
- Lymphatic vasculature and inflammation research laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Alexandra Olate-Briones
- Lymphatic vasculature and inflammation research laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Noelia Escobedo
- Lymphatic vasculature and inflammation research laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
- Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
33
|
Piatkowska-Chmiel I, Herbet M, Gawronska-Grzywacz M, Ostrowska-Lesko M, Dudka J. The Role of Molecular and Inflammatory Indicators in the Assessment of Cognitive Dysfunction in a Mouse Model of Diabetes. Int J Mol Sci 2021; 22:3878. [PMID: 33918576 PMCID: PMC8069936 DOI: 10.3390/ijms22083878] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 01/03/2023] Open
Abstract
The brain is the most vulnerable organ to glucose fluctuations, as well as inflammation. Considering that cognitive impairment might occur at the early stage of diabetes, it is very important to identify key markers of early neuronal dysfunction. Our overall goal was to identify neuroinflammatory and molecular indicators of early cognitive impairment in diabetic mice. To confirm cognitive impairment in diabetic mice, series of behavioral tests were conducted. The markers related to cognitive decline were classified into the following two groups: Neuroinflammatory markers: IL-1β, IL-6, tumor necrosis factor-α (TNF-α) and genetic markers (Bdnf, Arc, Egr1) which were estimated in brain regions. Our studies showed a strong association between hyperglycemia, hyperinsulinemia, neuroinflammation, and cognitive dysfunction in T2DM mice model. Cognitive impairment recorded in diabetes mice were associated not only with increased levels of cytokines but also decreased Arc and Egr1 mRNA expression level in brain regions associated with learning process and memory formation. The results of our research show that these indicators may be useful to test new forms of treatment of early cognitive dysfunction associated not only with diabetes but other diseases manifesting this type of disorders. The significant changes in Arc and Egr1 gene expression in early stage diabetes create opportunities it possible to use them to track the progression of CNS dysfunction and also to differential disease diagnosis running with cognitive impairment.
Collapse
Affiliation(s)
- Iwona Piatkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 20-090 Lublin, Poland; (M.H.); (M.G.-G.); (M.O.-L.); (J.D.)
| | | | | | | | | |
Collapse
|
34
|
Guo Y, Wang Q, Chen S, Xu C. Functions of amyloid precursor protein in metabolic diseases. Metabolism 2021; 115:154454. [PMID: 33248065 DOI: 10.1016/j.metabol.2020.154454] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Amyloid precursor protein (APP) is a transmembrane precursor protein that is widely expressed in the central nervous system and peripheral tissues in the liver and pancreas, adipose tissue, and myotubes. APP can be cleaved by proteases in two different ways to produce a variety of short peptides, each with different physiological properties and functions. APP peptides generated by non-amyloidogenic processing can positively influence metabolism, while the peptides produced by amyloidogenic processing have the opposite effects. Here, we summarize the regulatory effects of APP and its cleavage peptides on metabolism in the central nervous system and peripheral tissues. In addition, abnormal expression and function of APP and APP-derived peptides are associated with metabolic diseases, such as type 2 diabetes, obesity, non-alcoholic fatty liver disease, and cardiovascular disease, and cancers. Pharmacological intervention of APP function or reduction of the production of peptides derived from amyloidogenic processing may be effective strategies for the prevention and treatment of Alzheimer's disease, and they may also provide new guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qinqiu Wang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shenghui Chen
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
35
|
Herrero-Labrador R, Trueba-Saiz A, Martinez-Rachadell L, Fernandez de Sevilla ME, Zegarra-Valdivia JA, Pignatelli J, Diaz-Pacheco S, Fernandez AM, Torres Aleman I. Circulating Insulin-Like Growth Factor I is Involved in the Effect of High Fat Diet on Peripheral Amyloid β Clearance. Int J Mol Sci 2020; 21:ijms21249675. [PMID: 33352990 PMCID: PMC7766006 DOI: 10.3390/ijms21249675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/11/2023] Open
Abstract
Obesity is a risk factor for Alzheimer’s disease (AD), but underlying mechanisms are not clear. We analyzed peripheral clearance of amyloid β (Aβ) in overweight mice because its systemic elimination may impact brain Aβ load, a major landmark of AD pathology. We also analyzed whether circulating insulin-like growth factor I (IGF-I) intervenes in the effects of overweight as this growth factor modulates brain Aβ clearance and is increased in the serum of overweight mice. Overweight mice showed increased Aβ accumulation by the liver, the major site of elimination of systemic Aβ, but unaltered brain Aβ levels. We also found that Aβ accumulation by hepatocytes is stimulated by IGF-I, and that mice with low serum IGF-I levels show reduced liver Aβ accumulation—ameliorated by IGF-I administration, and unchanged brain Aβ levels. In the brain, IGF-I favored the association of its receptor (IGF-IR) with the Aβ precursor protein (APP), and at the same time, stimulated non-amyloidogenic processing of APP in astrocytes, as indicated by an increased sAPPα/sAPPβ ratio after IGF-I treatment. Since serum IGF-I enters into the brain in an activity-dependent manner, we analyzed in overweight mice the effect of brain activation by environmental enrichment (EE) on brain IGF-IR phosphorylation and its association to APP, as a readout of IGF-I activity. After EE, significantly reduced brain IGF-IR phosphorylation and APP/IGF-IR association were found in overweight mice as compared to lean controls. Collectively, these results indicate that a high-fat diet influences peripheral clearance of Aβ without affecting brain Aβ load. Increased serum IGF-I likely contributes to enhanced peripheral Aβ clearance in overweight mice, without affecting brain Aβ load probably because its brain entrance is reduced.
Collapse
Affiliation(s)
- Raquel Herrero-Labrador
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Angel Trueba-Saiz
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Laura Martinez-Rachadell
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Mᵃ Estrella Fernandez de Sevilla
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Jonathan A. Zegarra-Valdivia
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
- Universidad Nacional de San Agustín de Arequipa, 04001 Arequipa, Peru
| | - Jaime Pignatelli
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Sonia Diaz-Pacheco
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
| | - Ana M. Fernandez
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
| | - Ignacio Torres Aleman
- Cajal Institute, CSIC, 28002 Madrid, Spain; (R.H.-L.); (A.T.-S.); (L.M.-R.); (M.E.F.d.S.); (J.A.Z.-V.); (J.P.); (S.D.-P.); (A.M.F.)
- Ciberned, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
36
|
Tabassum S, Misrani A, Yang L. Exploiting Common Aspects of Obesity and Alzheimer's Disease. Front Hum Neurosci 2020; 14:602360. [PMID: 33384592 PMCID: PMC7769820 DOI: 10.3389/fnhum.2020.602360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is an example of age-related dementia, and there are still no known preventive or curative measures for this disease. Obesity and associated metabolic changes are widely accepted as risk factors of age-related cognitive decline. Insulin is the prime mediator of metabolic homeostasis, which is impaired in obesity, and this impairment potentiates amyloid-β (Aβ) accumulation and the formation of neurofibrillary tangles (NFTs). Obesity is also linked with functional and morphological alterations in brain mitochondria leading to brain insulin resistance (IR) and memory deficits associated with AD. Also, increased peripheral inflammation and oxidative stress due to obesity are the main drivers that increase an individual’s susceptibility to cognitive deficits, thus doubling the risk of AD. This enhanced risk of AD is alarming in the context of a rapidly increasing global incidence of obesity and overweight in the general population. In this review, we summarize the risk factors that link obesity with AD and emphasize the point that the treatment and management of obesity may also provide a way to prevent AD.
Collapse
Affiliation(s)
- Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
37
|
Ciudin A, Simó-Servat A, Palmas F, Barahona MJ. Obesidad sarcopénica: un nuevo reto en la clínica práctica. ENDOCRINOL DIAB NUTR 2020; 67:672-681. [PMID: 32565081 DOI: 10.1016/j.endinu.2020.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
|
38
|
López-Taboada I, González-Pardo H, Conejo NM. Western Diet: Implications for Brain Function and Behavior. Front Psychol 2020; 11:564413. [PMID: 33329193 PMCID: PMC7719696 DOI: 10.3389/fpsyg.2020.564413] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Western diet (WD) pattern characterized by high daily intake of saturated fats and refined carbohydrates often leads to obesity and overweight, and it has been linked to cognitive impairment and emotional disorders in both animal models and humans. This dietary pattern alters the composition of gut microbiota, influencing brain function by different mechanisms involving the gut-brain axis. In addition, long-term exposure to highly palatable foods typical of WD could induce addictive-like eating behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with chronic stress, anxiety, and depression. In turn, chronic stress modulates eating behavior, and it could have detrimental effects on different brain regions such as the hippocampus, hypothalamus, amygdala, and several cortical regions. Moreover, obesity and overweight induce neuroinflammation, causing neuronal dysfunction. In this review, we summarize the current scientific evidence about the mechanisms and factors relating WD consumption with altered brain function and behavior. Possible therapeutic interventions and limitations are also discussed, aiming to tackle and prevent this current pandemic.
Collapse
Affiliation(s)
| | | | - Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
39
|
Yang AJT, Frendo-Cumbo S, MacPherson REK. Resveratrol and Metformin Recover Prefrontal Cortex AMPK Activation in Diet-Induced Obese Mice but Reduce BDNF and Synaptophysin Protein Content. J Alzheimers Dis 2020; 71:945-956. [PMID: 31450493 DOI: 10.3233/jad-190123] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obesity, insulin resistance, and type 2 diabetes are established risk factors for the development of Alzheimer's disease (AD). Given this connection, two drugs, metformin (MET) and resveratrol (RESV), are considered for the clearance of amyloid-β peptides through AMPK-mediated activation of autophagy. However, overactivation of AMPK observed in late-stage AD brains and relationships between AMPK and neurogenesis (through mTORC1 inhibition), questions treatment with these drugs. OBJECTIVE To examine if MET and/or RESV supplementation activates brain AMPK, regulates markers of autophagy, and affects markers of neuronal health/neurogenesis. METHODS 8-week-old male C57BL/6J mice were fed a low (N = 12; 10% kcal fat; LFD) or high fat diet (N = 40; 60% kcal fat; HFD) for 9 weeks to induce insulin resistance and obesity. HFD mice were then treated with/without MET (250 mg/kg/day), RESV (100 mg/kg/day), or COMBO (MET: 250 mg/kg/day, RESV: 100 mg/kg/day) for 5 weeks. Hippocampus and prefrontal cortex were extracted for western blotting analysis. RESULTS Cortex AMPK (T172) and raptor (S792, the regulatory subunit of mTORC1) phosphorylation were upregulated following RESV, COMBO treatments. mTOR (S2448) and ULK1 (S555) activation was seen following MET, COMBO and RESV, COMBO treatments, respectively, in the cortex and hippocampus. p62 content was decreased following RESV, COMBO, with LC3 content being increased following RESV treatment in the cortex. Brain derived neurotropic factor (BDNF) was significantly decreased following RESV, COMBO, and synaptophysin following all treatment in the cortex. CONCLUSION These results demonstrate that while treatments upregulated markers of autophagy in the prefrontal cortex, reductions in neuronal health markers question the efficacy of AMPK as a therapy for AD.
Collapse
Affiliation(s)
- Alex J T Yang
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Scott Frendo-Cumbo
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
40
|
Cao X, Guo Y, Wang Y, Wang H, Liu D, Gong Y, Wang J, Chen X, Zhang W. Effects of high-fat diet and Apoe deficiency on retinal structure and function in mice. Sci Rep 2020; 10:18601. [PMID: 33139746 PMCID: PMC7606505 DOI: 10.1038/s41598-020-75576-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
To investigate the effects of a high-fat diet (HFD) and apolipoprotein E (Apoe) deficiency on retinal structure and function in mice. Apoe KO mice and wild-type C57BL/6J mice were given a low-fat diet (LFD) or a HFD for 32 weeks. Blood glucose, serum lipids, body weight and visceral fat weight were evaluated. Retinal sterol quantification was carried out by isotope dilution gas chromatography-mass spectrometry. The cholesterol metabolism related genes SCAP-SREBP expressions were detected by qRT-PCR. Retinal function was recorded using an electroretinogram. The thickness of each layer of the retina was measured by optical coherence tomography. Fundus fluorescein angiography was performed to detect retinal vasculature changes. Immunohistochemical staining was used to determine the expression of NF-κB, TNF-α and VEGFR2 in the retina among HFD, HFD Apoe-/-, LFD Apoe-/- and WT mice retinas. HFD feeding caused the mice to gain weight and develop hypercholesterinemia, while Apoe-/- abnormalities also affected blood lipid metabolism. Both HFD and Apoe deficiency elevated retinal cholesterol, especially in the HFD Apoe-/- mice. No up-regulated expression of SCAP-SREBP was observed as a negative regulator. Impaired retinal functions, thinning retinas and abnormal retinal vasculature were observed in the peripheral retinas of the HFD and Apoe-/- mice compared with those in the normal chow group, particularly in the HFD Apoe-/- mice. Moreover, the expression of NF-κB in the retinas of the HFD and Apoe-/- mice was increased, together with upregulated TNF-α mRNA levels and TNF-α expression in the layer of retinal ganglion cells of the peripheral retina. At the same time, the expression level of VEGFR2 was elevated in the intervention groups, most notably in HFD Apoe-/- mice. HFD or Apoe gene deletion had certain adverse effects on retinal function and structure, which were far below the combined factors and induced harm to the retina. Furthermore, HFD caused retinal ischemia and hypoxia. Additionally, Apoe abnormality increased susceptibility to ischemia. These changes upregulated NF-κB expression in ganglion cells and activated downstream TNF-α. Simultaneously, they activated VEGFR2, accelerating angiogenesis and vascular permeability. All of the aforementioned outcomes initiated inflammatory responses to trigger ganglion cell apoptosis and aggravate retinal neovascularization.
Collapse
Affiliation(s)
- Xiupeng Cao
- Tianjin Medical University, Tianjin, China.,Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China.,Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Yatu Guo
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China. .,Nankai University Affiliated Eye Hospital, Tianjin, China.
| | - Yuchuan Wang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China.,Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Yibo Gong
- Tianjin Medical University, Tianjin, China.,Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China.,Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Jue Wang
- Tianjin Medical University, Tianjin, China.,Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China.,Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Xia Chen
- Tianjin Medical University, Tianjin, China. .,Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China. .,Nankai University Affiliated Eye Hospital, Tianjin, China.
| | - Wei Zhang
- Tianjin Medical University, Tianjin, China. .,Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China. .,Nankai University Affiliated Eye Hospital, Tianjin, China.
| |
Collapse
|
41
|
Panwar A, Jhun M, Rentsendorj A, Mardiros A, Cordner R, Birch K, Yeager N, Duvall G, Golchian D, Koronyo-Hamaoui M, Cohen RM, Ley E, Black KL, Wheeler CJ. Functional recreation of age-related CD8 T cells in young mice identifies drivers of aging- and human-specific tissue pathology. Mech Ageing Dev 2020; 191:111351. [PMID: 32910956 PMCID: PMC7567339 DOI: 10.1016/j.mad.2020.111351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/02/2023]
Abstract
Mitigating effects of aging on human health remains elusive because aging impacts multiple systems simultaneously, and because experimental animals exhibit critical aging differences relative to humans. Separation of aging into discrete processes may identify targetable drivers of pathology, particularly when applied to human-specific features. Gradual homeostatic expansion of CD8 T cells dominantly alters their function in aging humans but not in mice. Injecting T cells into athymic mice induces rapid homeostatic expansion, but its relevance to aging remains uncertain. We hypothesized that homeostatic expansion of T cells injected into T-deficient hosts models physiologically relevant CD8 T cell aging in young mice, and aimed to analyze age-related T cell phenotype and tissue pathology in such animals. Indeed, we found that such injection conferred uniform age-related phenotype, genotype, and function to mouse CD8 T cells, heightened age-associated tissue pathology in young athymic hosts, and humanized amyloidosis after brain injury in secondary wild-type recipients. This validates a model conferring a human-specific aging feature to mice that identifies targetable drivers of tissue pathology. Similar examination of independent aging features should promote systematic understanding of aging and identify additional targets to mitigate its effects on human health.
Collapse
Affiliation(s)
- Akanksha Panwar
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Michelle Jhun
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Altan Rentsendorj
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Armen Mardiros
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Ryan Cordner
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States; Dep. Biomedical Sciences, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Kurtis Birch
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Nicole Yeager
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States; Dep. Biomedical Sciences, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Gretchen Duvall
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - David Golchian
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Maya Koronyo-Hamaoui
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States; Dep. Biomedical Sciences, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Robert M Cohen
- Dept. Psychiatry & Behavioral Sciences and Neuroscience Program, GDBBS, Emory University, 201 Dowman Dr., Atlanta, GA 30322, United States
| | - Eric Ley
- Dept. Surgery, 8700 Beverly Blvd., Los Angeles, CA, 90048, United States
| | - Keith L Black
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States
| | - Christopher J Wheeler
- Dept. Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, United States; Brain Mapping Foundation, Society for Brain Mapping & Therapeutics, 860 Via De la Paz, Pacific Palisades, CA 90272, United States; T-Neuro Pharma, 1451 Innovation Parkway SE, Albuquerque, NM 87123, United States.
| |
Collapse
|
42
|
Crosstalk between obesity, diabetes, and alzheimer's disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev 2020; 62:101095. [PMID: 32535272 DOI: 10.1016/j.arr.2020.101095] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes are the most common metabolic disorders, which are strongly related to Alzheimer's disease (AD) in aging. Diabetes and obesity can lead to the accumulation of amyloid plaques, neurofibrillary tangles (NFTs), and other symptoms of AD through several pathways, including insulin resistance, hyperglycemia, hyperinsulinemia, chronic inflammation, oxidative stress, adipokines dysregulation, and vascular impairment. Currently, the use of polyphenols has been expanded in animal models and in-vitro studies because of their comparatively negligible adverse effects. Among them, quercetin (QT) is one of the most abundant polyphenolic flavonoids, which is present in fruits and vegetables and displays many biological, health-promoting effects in a wide range of diseases. The low bioavailability and poor solubility of QT have also led researchers to make various QT-involved nanoparticles (NPs) to overcome these limitations. In this paper, we review significant molecular mechanisms induced by diabetes and obesity that increase AD pathogenesis. Then, we summarize in vitro, in vivo, and clinical evidence regarding the anti-Alzheimer, anti-diabetic and anti-obesity effects of QT. Finally, QT in pure and combination form using NPs has been suggested as a promising therapeutic agent for future studies.
Collapse
|
43
|
Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. Int J Mol Sci 2020; 21:ijms21175964. [PMID: 32825115 PMCID: PMC7504224 DOI: 10.3390/ijms21175964] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic dysfunctions induced by high fat diet (HFD) consumption are not limited to organs involved in energy metabolism but cause also a chronic low-grade systemic inflammation that affects the whole body including the central nervous system. The brain has been considered for a long time to be protected from systemic inflammation by the blood–brain barrier, but more recent data indicated an association between obesity and neurodegeneration. Moreover, obesity-related consequences, such as insulin and leptin resistance, mitochondrial dysfunction and reactive oxygen species (ROS) production, may anticipate and accelerate the physiological aging processes characterized by systemic inflammation and higher susceptibility to neurological disorders. Here, we discussed the link between obesity-related metabolic dysfunctions and neuroinflammation, with particular attention to molecules regulating the interplay between energetic impairment and altered synaptic plasticity, for instance AMP-activated protein kinase (AMPK) and Brain-derived neurotrophic factor (BDNF). The effects of HFD-induced neuroinflammation on neuronal plasticity may be mediated by altered brain mitochondrial functions. Since mitochondria play a key role in synaptic areas, providing energy to support synaptic plasticity and controlling ROS production, the negative effects of HFD may be more pronounced in synapses. In conclusion, it will be emphasized how HFD-induced metabolic alterations, systemic inflammation, oxidative stress, neuroinflammation and impaired brain plasticity are tightly interconnected processes, implicated in the pathogenesis of neurological diseases.
Collapse
|
44
|
Baranowski BJ, Marko DM, Fenech RK, Yang AJT, MacPherson REK. Healthy brain, healthy life: a review of diet and exercise interventions to promote brain health and reduce Alzheimer's disease risk. Appl Physiol Nutr Metab 2020; 45:1055-1065. [PMID: 32717151 DOI: 10.1139/apnm-2019-0910] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the world's population aging at a rapid rate, the prevalence of Alzheimer's disease (AD) has significantly increased. These statistics are alarming given recent evidence that a third of dementia cases may be preventable. The role of lifestyle factors, such as diet and exercise, can directly alter the risk of disease development. However, an understanding of the effectiveness of dietary patterns and exercise strategies to reduce AD risk or improve brain function is not fully understood. The aim of this review is to discuss the effects of diet and exercise on AD risk. Key components of the Western and Mediterranean diets are discussed in relation to AD progression, as well as how physical activity promotes brain health. Components of the Western diet (saturated fatty acids and simple carbohydrates) are detrimental to the brain, impair cognition, and increase AD pathologies. While components of the Mediterranean diet (polyunsaturated fatty acids, polyphenols, and antioxidants) are considered to be neuroprotective. Exercise can significantly reduce the risk of AD; however, specific exercise recommendations for older adults are limited and optimal intensity, duration, and type remains unknown. This review highlights important modifiable risk factors for AD and points out potential avenues for future research. Novelty Diet and exercise are modifiable factors that can improve brain health and reduce the risk of AD. Polyunsaturated fatty acids, polyphenols, and antioxidants are neuroprotective. Exercise reduces neuroinflammation, improves brain insulin sensitivity, and increases brain derived neurotrophic factor.
Collapse
Affiliation(s)
- Bradley J Baranowski
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rachel K Fenech
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alex J T Yang
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
45
|
Spagnuolo MS, Pallottini V, Mazzoli A, Iannotta L, Tonini C, Morone B, Ståhlman M, Crescenzo R, Strazzullo M, Iossa S, Cigliano L. A Short‐Term Western Diet Impairs Cholesterol Homeostasis and Key Players of Beta Amyloid Metabolism in Brain of Middle Aged Rats. Mol Nutr Food Res 2020; 64:e2000541. [DOI: 10.1002/mnfr.202000541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | - Valentina Pallottini
- Department of ScienceBiomedical and Technology Science SectionUniversity Roma Tre Rome 00146 Italy
| | - Arianna Mazzoli
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Lucia Iannotta
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Claudia Tonini
- Department of ScienceBiomedical and Technology Science SectionUniversity Roma Tre Rome 00146 Italy
| | - Barbara Morone
- Institute of Genetics and Biophysics “A. Buzzati‐Traverso”National Research Council Naples 80131 Italy
| | - Marcus Ståhlman
- Wallenberg LaboratoryDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of Gothenburg Gothenburg 413 45 Sweden
| | | | - Maria Strazzullo
- Institute of Genetics and Biophysics “A. Buzzati‐Traverso”National Research Council Naples 80131 Italy
| | - Susanna Iossa
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Luisa Cigliano
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| |
Collapse
|
46
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 532] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
47
|
Bracko O, Vinarcsik LK, Cruz Hernández JC, Ruiz-Uribe NE, Haft-Javaherian M, Falkenhain K, Ramanauskaite EM, Ali M, Mohapatra A, Swallow MA, Njiru BN, Muse V, Michelucci PE, Nishimura N, Schaffer CB. High fat diet worsens Alzheimer's disease-related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow. Sci Rep 2020; 10:9884. [PMID: 32555372 PMCID: PMC7303150 DOI: 10.1038/s41598-020-65908-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is linked to increased risk for and severity of Alzheimer's disease (AD). Cerebral blood flow (CBF) reductions are an early feature of AD and are also linked to obesity. We recently showed that non-flowing capillaries, caused by adhered neutrophils, contribute to CBF reduction in mouse models of AD. Because obesity could exacerbate the vascular inflammation likely underlying this neutrophil adhesion, we tested links between obesity and AD by feeding APP/PS1 mice a high fat diet (Hfd) and evaluating behavioral, physiological, and pathological changes. We found trends toward poorer memory performance in APP/PS1 mice fed a Hfd, impaired social interactions with either APP/PS1 genotype or a Hfd, and synergistic impairment of sensory-motor function in APP/PS1 mice fed a Hfd. The Hfd led to increases in amyloid-beta monomers and plaques in APP/PS1 mice, as well as increased brain inflammation. These results agree with previous reports showing obesity exacerbates AD-related pathology and symptoms in mice. We used a crowd-sourced, citizen science approach to analyze imaging data to determine the impact of the APP/PS1 genotype and a Hfd on capillary stalling and CBF. Surprisingly, we did not see an increase in the number of non-flowing capillaries or a worsening of the CBF deficit in APP/PS1 mice fed a Hfd as compared to controls, suggesting that capillary stalling is not a mechanistic link between a Hfd and increased severity of AD in mice. Reducing capillary stalling by blocking neutrophil adhesion improved CBF and short-term memory function in APP/PS1 mice, even when fed a Hfd.
Collapse
Affiliation(s)
- Oliver Bracko
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Lindsay K Vinarcsik
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Nancy E Ruiz-Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Kaja Falkenhain
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Muhammad Ali
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Aditi Mohapatra
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Madisen A Swallow
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brendah N Njiru
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Victorine Muse
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
48
|
Picone P, Di Carlo M, Nuzzo D. Obesity and Alzheimer’s disease: Molecular bases. Eur J Neurosci 2020; 52:3944-3950. [DOI: 10.1111/ejn.14758] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Pasquale Picone
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| | - Marta Di Carlo
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| | - Domenico Nuzzo
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| |
Collapse
|
49
|
Ibrahim Fouad G. Combination of Omega 3 and Coenzyme Q10 Exerts Neuroprotective Potential Against Hypercholesterolemia-Induced Alzheimer's-Like Disease in Rats. Neurochem Res 2020; 45:1142-1155. [PMID: 32124160 DOI: 10.1007/s11064-020-02996-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia that progressively disrupts neurocognitive function, which has neither cure nor effective treatment. Hypercholesterolemia might be involved in brain alterations that could evolve into AD. The present study aims to evaluate the potential of omega-3, Co-enzyme Q10 (Co-Q10), as well as their combination in ameliorating hypercholesterolemia-initiated AD-like disease. We adapted a hypercholesterolemic (HC) rat model, a model of oxidative stress-mediated neurodegeneration, to study AD-like pathology. Hypercholesterolemia resulted in increased lipid peroxidation coupled with declined nitric oxide production, reduced glutathione levels, and decreased antioxidant activities of glutathione-s-transferase (GST) and glutathione peroxidase (GSH-Px) in the brain. Moreover, hypercholesterolemia resulted in decreased acetylcholine (ACh) levels and increased acetylcholine-esterase (AChE) activity, along with an increment of tumor necrosis factor and amyloid-β 42. Behaviorally, HC-rats demonstrated depressive-like behavior and declined memory. Treatment of HC-rats with omega-3 and Co-Q10 (alone or in combination) alleviated the brain oxidative stress and inflammation, regulated cholinergic functioning, and enhanced the functional outcome. These findings were verified by the histopathological investigation of brain tissues. This neuroprotective potential of omega-3 and Co-Q10 was achieved through anti-oxidative, anti-inflammatory, anti-amyloidogenic, pro-cholinergic, and memory-enhancing activities against HC-induced AD-like disease; suggesting that they may be useful as prophylactic and therapeutic agents against the neurotoxic effects of hypercholesterolemia.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
50
|
Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease. Neurochem Int 2020; 135:104707. [PMID: 32092326 DOI: 10.1016/j.neuint.2020.104707] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Its major pathological hallmarks, neurofibrillary tangles (NFT), and amyloid-β plaques can result from dysfunctional insulin signaling. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function, autophagy, oxidative stress, synaptic plasticity, and cognitive function. Insulin and its downstream signaling molecules are located majorly in the regions of cortex and hippocampus. The major molecules involved in impaired insulin signaling include IRS, PI3K, Akt, and GSK-3β. Activation or inactivation of these major molecules through increased or decreased phosphorylation plays a role in insulin signaling abnormalities or insulin resistance. Insulin resistance, therefore, is considered as a major culprit in generating the hallmarks of AD arising from neuroinflammation and oxidative stress, etc. Moreover, caspases, Nrf2, and NF-κB influence this pathway in an indirect way. Various studies also suggest a strong link between Diabetes Mellitus and AD due to the impairment of insulin signaling pathway. Moreover, studies also depict a strong correlation of other neurodegenerative diseases such as Parkinson's disease and Huntington's disease with insulin resistance. Hence this review will provide an insight into the role of insulin signaling pathway and related molecules as therapeutic targets in AD and other neurodegenerative diseases.
Collapse
|