1
|
Abd Elkader HTAE, Al-Shami AS. Unveiling the impact of bisphenol A on date mussels: Insights into oxidative stress, hormonal imbalance, gonadal atresia, and immune resilience. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107143. [PMID: 40250025 DOI: 10.1016/j.marenvres.2025.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
Sedentary organisms, such as mussels, may be susceptible to environmental estrogenic compounds, including bisphenol A (BPA). This study aimed to evaluate the interplay between BPA exposure and the immune response, hormonal imbalance, tissue damage (specifically in the digestive glands, labial palps, and male gonads), gonadal atresia, and antioxidant mechanisms in the marine mussel, Lithophaga lithophaga. Over a period of 28 days, mussels were exposed to BPA concentrations of 0, 0.25, 1, 2, and 5 μg/L. The exposure resulted in notable morphological alterations in the hemocytes of L. lithophaga, characterized by irregularities in the outer cell membranes of granulocytes and hyalinocytes, with some cells exhibiting filopodia formation. Granulocytes displayed an increased number of granules and vacuoles, while the nuclei of hyalinocytes appeared shrunken. The condition index, along with levels of testosterone and 17β-estradiol, significantly decreased with increasing BPA concentration, except for the 1 and 2 μg/L treatments. BPA exposure led to a marked increase in malondialdehyde (MDA) levels and a reduction in reduced glutathione (GSH) across all tissues at every concentration tested. The activity of antioxidant enzymes varied among the gonads, digestive glands, and labial palps. Notably, there was a significant increase in superoxide dismutase (SOD) activity in the gonads of mussels exposed to 2 μg/L of BPA, as well as in the digestive glands and labial palps of those exposed to 1 μg/L, suggesting a potential alteration in redox homeostasis. Additionally, structural changes in the digestive tubules of BPA-exposed mussels were observed. The observed pathological symptoms were characteristic of an inflammatory response, including hemocyte diapedesis and infiltration, the formation of syncytia, and the sloughing of epithelial tissue, indicated by an increased ratio of mean luminal radius to mean epithelial thickness in a dose-dependent manner. In the BPA-exposed group, testicular follicles exhibited atrophy, deformation, and a reduction in both size and number per area, appearing nearly empty and lacking spermatids and spermatozoa, alongside hypertrophy and hyperplasia of auxiliary cells. Scanning electron microscopy further revealed structural abnormalities in the heads and flagella of spermatids from the BPA-exposed group. Thus, this study demonstrates the risk of long-term exposure to BPA in immune response, tissue, and biochemical responses of date mussel L. lithophaga. The gonad was the most affected tissues followed by the digestive gland and labial palps.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Bordalo D, Soares AMVM, Sokolova I, Pretti C, Freitas R. 2-Ethylhexyl-4-methoxycinnamate on marine and coastal environments: A comprehensive review of its environmental significance and biological impact. MARINE POLLUTION BULLETIN 2025; 211:117340. [PMID: 39626498 DOI: 10.1016/j.marpolbul.2024.117340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 02/13/2025]
Abstract
Marine and coastal environments are constantly subjected to increasing pressures associated with population growth, industrialization development, pollution and higher demand feeding society's consumerism. Among these pressures, there has been an increasing concern towards UV filters occurrence in aquatic ecosystems due to a greater use of personal care products (PCPs). 2-ethylhexyl-4-methoxycinnamate (EHMC) is one of the most used UV filters in sunscreen formulations, yet few reports address its effects in biota. This literature review intends to collect the available information concerning the environmental presence of EHMC in marine and coastal ecosystems and their effects in biota. The EHMC effects have been reported for the taxonomic groups: Actinomycetes, Alphaproteobacteria, Bacilli, Cytophagia, Flavobacteriia, Gammaproteobacteria, Actinopterygii, Anthozoa, Bacillariophyceae, Bivalvia, Branchiopoda, Coccolithophyceae, Echinoidea, Gastropoda, Malacostraca, Annelida and Thecostraca. The reported literature evaluated endpoints mainly related to development, viability, mortality, estrogenicity, gene transcription disruptions, biochemical alterations and morphophysiological changes. Based on the available information, there is still a clear need for further investigations related to EHMC and its toxicological effects on marine and coastal organisms.
Collapse
Affiliation(s)
- Diana Bordalo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Carlo Pretti
- Department of Veterinary, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Hu W, Cao Y, Liu Q, Yuan C, Hu Z. Effect of salinity on the physiological response and transcriptome of spotted seabass (Lateolabrax maculatus). MARINE POLLUTION BULLETIN 2024; 203:116432. [PMID: 38728954 DOI: 10.1016/j.marpolbul.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Salinity fluctuations significantly impact the reproduction, growth, development, as well as physiological and metabolic activities of fish. To explore the osmoregulation mechanism of aquatic organisms acclimating to salinity stress, the physiological and transcriptomic characteristics of spotted seabass (Lateolabrax maculatus) in response to varying salinity gradients were investigated. In this study, different salinity stress exerted inhibitory effects on lipase activity, while the impact on amylase activity was not statistically significant. Notably, a moderate increase in salinity (24 psu) demonstrated the potential to enhance the efficient utilization of proteins by spotted seabass. Both Na+/K+-ATPase and malondialdehyde showed a fluctuating trend of increasing and then decreasing, peaking at 72 h. Transcriptomic analysis revealed that most differentially expressed genes were involved in energy metabolism, signal transduction, the immune response, and osmoregulation. These results will provide insights into the molecular mechanisms of salinity adaptation and contribute to sustainable development of the global aquaculture industry.
Collapse
Affiliation(s)
- Wenjing Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yi Cao
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Chen Yuan
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhongjun Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China..
| |
Collapse
|
4
|
Kim J, Kim HJ, Choi E, Cho M, Choi S, Jeon MA, Lee JS, Park H. Expansion of the HSP70 gene family in Tegillarca granosa and expression profiles in response to zinc toxicity. Cell Stress Chaperones 2024; 29:97-112. [PMID: 38272254 PMCID: PMC10939072 DOI: 10.1016/j.cstres.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Zinc (Zn) is an essential micronutrient in organisms and an abundant element in the Earth's crust. Trace amounts of Zn released from natural sources can enter aquatic ecosystems through weathering and erosion. Zn accumulates in organisms, and when its intracellular concentration exceeds a certain level, it can induce oxidative stress and trigger oxidative stress-mediated heat shock protein (HSP) modulation. HSP70 is the most evolutionarily conserved among the HSP families. Despite extensive research on HSP70 genes in bivalves, the HSP70 gene family of Tegillarca granosa is still poorly characterized. We identified 65 HSP70 genes belonging to 6 families in the T. granosa genome, with 50 HSPa12 and 11 HSPa B2 genes highly expanded. On chromosome 11, 39 HSP70 (60%) genes were identified, and the HSPa12A genes were highly duplicated. A total of 527 and 538 differentially expressed genes were identified in the gills and mantle based on Zn exposure, respectively. The Gene Ontology of cellular anatomical entities was significantly enriched with upregulated differentially expressed genes in the gills and mantle. Eight of the 11 HSPa B2 genes were upregulated in both tissues. Most of the genes identified in both tissues were involved in "protein homeostasis" and "inhibition of apoptosis," which are associated with the HSP70 family's resistance to extrinsic and intrinsic stress. Hence, this study identified that the HSP70 gene family plays a vital role in the adaptation of aquatic organisms to heavy metal (e.g., Zn) stress in contaminated environments by compiling the different physiological responses to preserve homeostasis.
Collapse
Affiliation(s)
- Jinmu Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyeon Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Korea
| | - Eunkyung Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Minjoo Cho
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Soyun Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Mi Ae Jeon
- Aquaculture Management Division, South Sea Fisheries Research Institute, NIFS, Yeosu, Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Korea.
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
| |
Collapse
|
5
|
Carella F, Prado P, De Vico G, Palić D, Villari G, García-March JR, Tena-Medialdea J, Cortés Melendreras E, Giménez-Casalduero F, Sigovini M, Aceto S. A widespread picornavirus affects the hemocytes of the noble pen shell ( Pinna nobilis), leading to its immunosuppression. Front Vet Sci 2023; 10:1273521. [PMID: 38164394 PMCID: PMC10758234 DOI: 10.3389/fvets.2023.1273521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The widespread mass mortality of the noble pen shell (Pinna nobilis) has occurred in several Mediterranean countries in the past 7 years. Single-stranded RNA viruses affecting immune cells and leading to immune dysfunction have been widely reported in human and animal species. Here, we present data linking P. nobilis mass mortality events (MMEs) to hemocyte picornavirus (PV) infection. This study was performed on specimens from wild and captive populations. Methods We sampled P. nobilis from two regions of Spain [Catalonia (24 animals) and Murcia (four animals)] and one region in Italy [Venice (6 animals)]. Each of them were analyzed using transmission electron microscopy (TEM) to describe the morphology and self-assembly of virions. Illumina sequencing coupled to qPCR was performed to describe the identified virus and part of its genome. Results and discussion In 100% of our samples, ultrastructure revealed the presence of a virus (20 nm diameter) capable of replicating within granulocytes and hyalinocytes, leading to the accumulation of complex vesicles of different dimensions within the cytoplasm. As the PV infection progressed, dead hemocytes, infectious exosomes, and budding of extracellular vesicles were visible, along with endocytic vesicles entering other cells. The THC (total hemocyte count) values observed in both captive (eight animals) (3.5 × 104-1.60 × 105 ml-1 cells) and wild animals (14 samples) (1.90-2.42 × 105 ml-1 cells) were lower than those reported before MMEs. Sequencing of P. nobilis (six animals) hemocyte cDNA libraries revealed the presence of two main sequences of Picornavirales, family Marnaviridae. The highest number of reads belonged to animals that exhibited active replication phases and abundant viral particles from transmission electron microscopy (TEM) observations. These sequences correspond to the genus Sogarnavirus-a picornavirus identified in the marine diatom Chaetoceros tenuissimus (named C. tenuissimus RNA virus type II). Real-time PCR performed on the two most abundant RNA viruses previously identified by in silico analysis revealed positive results only for sequences similar to the C. tenuissimus RNA virus. These results may not conclusively identify picornavirus in noble pen shell hemocytes; therefore, further study is required. Our findings suggest that picornavirus infection likely causes immunosuppression, making individuals prone to opportunistic infections, which is a potential cause for the MMEs observed in the Mediterranean.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patricia Prado
- Institute of Agrifood Research and Technology (IRTA)-Sant Carles de la Ràpita, Tarragona, Spain
| | - Gionata De Vico
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Grazia Villari
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - José Rafael García-March
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | - José Tena-Medialdea
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | | | - Francisca Giménez-Casalduero
- Department of Marine Science and Applied Biology, Research Marine Centre in Santa Pola (CIMAR), University of Alicante, Alicante, Spain
| | - Marco Sigovini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Venice, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Grinchenko A, Buriak I, Kumeiko V. Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential. Mar Drugs 2023; 21:570. [PMID: 37999394 PMCID: PMC10672478 DOI: 10.3390/md21110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules.
Collapse
Affiliation(s)
- Andrei Grinchenko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
7
|
Schwaner C, Farhat S, Barbosa M, Boutet I, Tanguy A, Pales Espinosa E, Allam B. Molecular Features Associated with Resilience to Ocean Acidification in the Northern Quahog, Mercenaria mercenaria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:83-99. [PMID: 36417051 DOI: 10.1007/s10126-022-10183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The increasing concentration of CO2 in the atmosphere and resulting flux into the oceans will further exacerbate acidification already threatening coastal marine ecosystems. The subsequent alterations in carbonate chemistry can have deleterious impacts on many economically and ecologically important species including the northern quahog (Mercenaria mercenaria). The accelerated pace of these changes requires an understanding of how or if species and populations will be able to acclimate or adapt to such swift environmental alterations. Thus far, studies have primarily focused on the physiological effects of ocean acidification (OA) on M. mercenaria, including reductions in growth and survival. However, the molecular mechanisms of resilience to OA in this species remains unclear. Clam gametes were fertilized under normal pCO2 and reared under acidified (pH ~ 7.5, pCO2 ~ 1200 ppm) or control (pH ~ 7.9, pCO2 ~ 600 ppm) conditions before sampled at 2 days (larvae), 32 days (postsets), 5 and 10 months (juveniles) and submitted to RNA and DNA sequencing to evaluate alterations in gene expression and genetic variations. Results showed significant shift in gene expression profiles among clams reared in acidified conditions as compared to their respective controls. At 10 months of exposure, significant shifts in allele frequency of single nucleotide polymorphisms (SNPs) were identified. Both approaches highlighted genes coding for proteins related to shell formation, bicarbonate transport, cytoskeleton, immunity/stress, and metabolism, illustrating the role these pathways play in resilience to OA.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
8
|
Salis P, Peyran C, Morage T, de Bernard S, Nourikyan J, Coupé S, Bunet R, Planes S. RNA-Seq comparative study reveals molecular effectors linked to the resistance of Pinna nobilis to Haplosporidium pinnae parasite. Sci Rep 2022; 12:21229. [PMID: 36482098 PMCID: PMC9731998 DOI: 10.1038/s41598-022-25555-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
With the intensification of maritime traffic, recently emerged infectious diseases have become major drivers in the decline and extinction of species. Since 2016, mass mortality events have decimated the endemic Mediterranean Sea bivalve Pinna nobilis, affecting ca. 100% of individuals. These events have largely been driven by Haplosporidium pinnae's infection, an invasive species which was likely introduced by shipping. While monitoring wild populations of P. nobilis, we observed individuals that survived such a mass mortality event during the summer of 2018 (France). We considered these individuals resistant, as they did not show any symptoms of the disease, while the rest of the population in the area was devastated. Furthermore, the parasite was not detected when we conducted a PCR amplification of a species-specific fragment of the small subunit ribosomal DNA. In parallel, the transcriptomic analysis showed evidence of some parasite RNA indicating that the resistant individuals had been exposed to the parasite without proliferating. To understand the underlying mechanisms of resistance in these individuals, we compared their gene expression with that of susceptible individuals. We performed de novo transcriptome assembly and annotated the expressed genes. A comparison of the transcriptomes in resistant and susceptible individuals highlighted a gene expression signature of the resistant phenotype. We found significant differential expressions of genes involved in immunity and cell architecture. This data provides the first insights into how individuals escape the pathogenicity associated with infection.
Collapse
Affiliation(s)
- Pauline Salis
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, 66860 Perpignan, France
| | - Claire Peyran
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, 66860 Perpignan, France
| | - Titouan Morage
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, 66860 Perpignan, France
| | | | | | - Stéphane Coupé
- grid.12611.350000000088437055CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, University of Toulon, 83130 La Garde, France
| | - Robert Bunet
- Institut Océanographique Paul Ricard, Ile des Embiez, 83140 Six-Fours-Les-Plages, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, 66860 Perpignan, France ,grid.452595.aLaboratoire d’Excellence “CORAIL”, Perpignan, France
| |
Collapse
|
9
|
Dong F, Zheng M, Wang H, Jing C, He J, Liu S, Zhang W, Hu F. Comparative transcriptome analysis reveals immunotoxicology induced by three organic UV filters in Manila clam (Ruditapes philippinarum). MARINE POLLUTION BULLETIN 2022; 185:114313. [PMID: 36327937 DOI: 10.1016/j.marpolbul.2022.114313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are commonly used organic ultraviolet (UV) filters and are frequently detected in water environments. In the present study, we studied the potential adverse impacts of UV filter exposures in Ruditapes philippinarum by investigating transcriptomic profiles and non-specific immune enzyme activities. Transcriptome analysis showed that more genes were differentially regulated in EHMC-treated group, and down-regulated genes (2009) were significantly more than up-regulated ones (410) at day 7. Function annotation revealed that pathways "immune system", "cell growth and death" and "infectious diseases" were significantly enriched. Generally, combined qPCR and biochemical analyses demonstrated that short-term exposure to low dose of UV filters could activate immune responses, whereas the immune system would be restrained after prolonged exposure. Taken together, the present study firstly demonstrated the immunotoxicology induced by BP-3, 4-MBC and EHMC on R. philippinarum, indicating their potential threats to the survival of marine bivalves.
Collapse
Affiliation(s)
- Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyan Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Gong J, Li Q, Yu H, Liu S, Kong L. Effects of low salinity on hemolymph osmolality and transcriptome of the Iwagaki oyster, Crassostrea nippona. FISH & SHELLFISH IMMUNOLOGY 2022; 126:211-216. [PMID: 35636697 DOI: 10.1016/j.fsi.2022.05.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Crassostrea nippona is a kind of oysters with great development value as it can be edible in summer for its late reproductive period. Salinity is one of the important limiting abiotic factors to the survival and distribution of this stenohaline species. To better understand the physiological and immunological response of C. nippona to varying environmental salinities, the effects of low salinity on the hemolymph osmolality and gill transcriptome were investigated in this study. The osmolality of hemolymph in vivo and surrounding water were assessed regularly over one week at five test salinities ranging from 5 psμ to 30 psμ. They reached osmotic equilibrium within hours above 15 psμ but remained hyperosmotic at 10 and 5 psμ for the whole sampling period. Through comparative transcriptome analysis, there were less differentially expressed genes (DEGs) in pairwise comparison of S1 (10 psμ) vs S3 (30 psμ) than in S2 (20 psμ) vs S3. KEGG enrichment analysis identified ubiquitin-mediated proteolysis and mitochondrial apoptosis pathway specifically enriched at 10 psμ. This study gained comprehensive insights on the low salinity response of C. nippona at the molecular level, which provide a theoretical basis for understanding the immune mechanism under low salinity stress.
Collapse
Affiliation(s)
- Jianwen Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 66003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 66003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 66003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 66003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 66003, China
| |
Collapse
|
11
|
Jiang K, Nie H, Yin Z, Yan X, Li Q. Apextrin from Ruditapes philippinarum functions as pattern recognition receptor and modulates NF-κB pathway. Int J Biol Macromol 2022; 214:33-44. [PMID: 35697169 DOI: 10.1016/j.ijbiomac.2022.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022]
Abstract
Apextrin belongs to ApeC-containing proteins (ACPs) and features a signal-peptide, an N-terminal membrane attack complex component/perforin (MACPF) domain, and a C-terminal ApeC domain. Recently, apextrin-like proteins were identified as pattern recognition receptor (PRR), which recognize the bacterial cell wall component and participate in innate immunity. Here, an apextrin (Rpape) was identified and characterized in Ruditapes philippinarum. Our results showed that Rpape mRNA was significantly induced under bacterial challenges. The Rpape recombinant protein exhibited a significant inhibitory effect on gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and bound with Vibrio anguillarum, S. aureus and B. subtilis. We found Rpape protein positively activated the NF-κB signaling cascade and increased the activity of Nitric oxide (NO). This study revealed the immunity role of apextrin in R. philippinarum and provided a reference for further study on the role of apextrin in bivalves.
Collapse
Affiliation(s)
- Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhihui Yin
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
12
|
Yang L, Sun Y, Chang M, Zhang Y, Qiao H, Huang S, Kan Y, Yao L, Li D, Ayra-Pardo C. RNA Interference-Mediated Knockdown of Bombyx mori Haemocyte-Specific Cathepsin L ( Cat L)-Like Cysteine Protease Gene Increases Bacillus thuringiensis kurstaki Toxicity and Reproduction in Insect Cadavers. Toxins (Basel) 2022; 14:toxins14060394. [PMID: 35737055 PMCID: PMC9230843 DOI: 10.3390/toxins14060394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
The silkworm’s Cat L-like gene, which encodes a lysosomal cathepsin L-like cysteine protease, is thought to be part of the insect’s innate immunity via an as-yet-undetermined mechanism. Assuming that the primary function of Cat L-like is microbial degradation in mature phagosomes, we hypothesise that the suppression of the Cat L-like gene expression would increase Bacillus thuringiensis (Bt) bacteraemia and toxicity in knockdown insects. Here, we performed a functional analysis of Cat L-like in larvae that were fed mulberry leaves contaminated with a commercial biopesticide formulation based on Bt kurstaki (Btk) (i.e., Dipel) to investigate its role in insect defence against a known entomopathogen. Exposure to sublethal doses of Dipel resulted in overexpression of the Cat L-like gene in insect haemolymph 24 and 48 h after exposure. RNA interference (RNAi)-mediated suppression of Cat L-like expression significantly increased the toxicity of Dipel to exposed larvae. Moreover, Btk replication was higher in RNAi insects, suggesting that Cat L-like cathepsin may be involved in a bacterial killing mechanism of haemocytes. Finally, our results confirm that Cat L-like protease is part of the antimicrobial defence of insects and suggest that it could be used as a target to increase the insecticidal efficacy of Bt-based biopesticides.
Collapse
Affiliation(s)
- Linlin Yang
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
| | - Yanyan Sun
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
| | - Meiling Chang
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
| | - Yun Zhang
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
| | - Huili Qiao
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
| | - Siliang Huang
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
| | - Yunchao Kan
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
- School of Life Science, Henan University, Jin Ming Avenue, Kaifeng 475004, China
| | - Lunguang Yao
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
| | - Dandan Li
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
- Correspondence: (D.L.); (C.A.-P.)
| | - Camilo Ayra-Pardo
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.)
- Correspondence: (D.L.); (C.A.-P.)
| |
Collapse
|
13
|
de la Ballina NR, Villalba A, Cao A. Shotgun analysis to identify differences in protein expression between granulocytes and hyalinocytes of the European flat oyster Ostrea edulis. FISH & SHELLFISH IMMUNOLOGY 2021; 119:678-691. [PMID: 34748932 DOI: 10.1016/j.fsi.2021.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Recovery of wild populations of the European flat oyster Ostrea edulis is important for ecosystem health and conservation of this species, because native oyster populations have dramatically declined or disappeared in most European waters. Diseases have contributed to oyster decline and are important constrains for oyster recovery. Understanding oyster immune system should contribute to design effective strategies to fight oyster diseases. Haemocytes play a pivotal role in mollusc immune responses protecting from infection. Two main types of haemocytes, granulocytes and hyalinocytes, are distinguished in O. edulis. A study aiming to explore differential functions between both haemocyte types and, thus, to enrich the knowledge of Ostrea edulis immune system, was performed by comparing the proteome of the two haemolymph cell types, using a shotgun approach through liquid chromatography (LC) coupled to mass spectrometry (MS). Cells from oyster haemolymph were differentially separated by Percoll density gradient centrifugation. Shotgun LC-MS/MS performance allowed the identification of 145 proteins in hyalinocytes and 138 in the proteome of granulocytes. After a comparative analysis, 55 proteins with main roles in defence were identified, from which 28 were representative of granulocytes and 27 of hyalinocytes, plus 11 proteins shared by both cell types. Different proteins involved in signal transduction, apoptosis, oxidative response, processes related with the cytoskeleton and structure, recognition and wound healing were identified as representatives of each haemocyte type. Important signalling pathways in the immune response such as MAPK, Ras and NF-κβ seemed to be more relevant for granulocytes, while the Wnt signalling pathway, particularly relevant for wound healing, more relevant in hyalinocytes. The differences in proteins involved in recognition and in cytoskeleton and structure suggest differential specialisation in processes of phagocytosis and internalisation of pathogens between haemocyte types. Apoptosis seemed more active in granulocytes. The differences in proteins involved in oxidative response also suggest different redox processes in each cell type.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| |
Collapse
|
14
|
Cracking the Challenge of Antimicrobial Drug Resistance with CRISPR/Cas9, Nanotechnology and Other Strategies in ESKAPE Pathogens. Microorganisms 2021; 9:microorganisms9050954. [PMID: 33946643 PMCID: PMC8145940 DOI: 10.3390/microorganisms9050954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance is mushrooming as a silent pandemic. It is considered among the most common priority areas identified by both national and international agencies. The global development of multidrug-resistant strains now threatens public health care improvement by introducing antibiotics against infectious agents. These strains are the product of both continuous evolution and unchecked antimicrobial usage (AMU). The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the leading cause of nosocomial infections throughout the world. Most of them are now multidrug-resistant, which pose significant challenges in clinical practice. Understanding these bacteria’s resistance mechanisms is crucial for developing novel antimicrobial agents or other alternative tools to fight against these pathogens. A mechanistic understanding of resistance in these pathogens would also help predict underlying or even unknown mechanisms of resistance of other emerging multidrug-resistant pathogens. Research and development to find better antibacterial drugs and research on tools like CRISPER-Cas9, vaccines, and nanoparticles for treatment of infections that can be further explored in the clinical practice health sector have recognized these alternatives as essential and highly effective tools to mitigate antimicrobial resistance. This review summarizes the known antimicrobial resistance mechanisms of ESKAPE pathogens and strategies for overcoming this resistance with an extensive overview of efforts made in this research area.
Collapse
|
15
|
Estrada N, Núñez-Vázquez EJ, Palacios A, Ascencio F, Guzmán-Villanueva L, Contreras RG. In vitro Evaluation of Programmed Cell Death in the Immune System of Pacific Oyster Crassostrea gigas by the Effect of Marine Toxins. Front Immunol 2021; 12:634497. [PMID: 33868255 PMCID: PMC8047078 DOI: 10.3389/fimmu.2021.634497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/24/2021] [Indexed: 01/09/2023] Open
Abstract
Programmed cell death (PCD) is an essential process for the immune system's development and homeostasis, enabling the remotion of infected or unnecessary cells. There are several PCD's types, depending on the molecular mechanisms, such as non-inflammatory or pro-inflammatory. Hemocytes are the main component of cellular immunity in bivalve mollusks. Numerous infectious microorganisms produce toxins that impair hemocytes functions, but there is little knowledge on the role of PCD in these cells. This study aims to evaluate in vitro whether marine toxins induce a particular type of PCD in hemocytes of the bivalve mollusk Crassostrea gigas during 4 h at 25°C. Hemocytes were incubated with two types of marine toxins: non-proteinaceous toxins from microalgae (saxitoxin, STX; gonyautoxins 2 and 3, GTX2/3; okadaic acid/dynophysistoxin-1, OA/DTX-1; brevetoxins 2 and 3, PbTx-2,-3; brevetoxin 2, PbTx-2), and proteinaceous extracts from bacteria (Vibrio parahaemolyticus, Vp; V. campbellii, Vc). Also, we used the apoptosis inducers, staurosporine (STP), and camptothecin (CPT). STP, CPT, STX, and GTX 2/3, provoked high hemocyte mortality characterized by apoptosis hallmarks such as phosphatidylserine translocation into the outer leaflet of the cell membrane, exacerbated chromatin condensation, DNA oligonucleosomal fragments, and variation in gene expression levels of apoptotic caspases 2, 3, 7, and 8. The mixture of PbTx-2,-3 also showed many apoptosis features; however, they did not show apoptotic DNA oligonucleosomal fragments. Likewise, PbTx-2, OA/DTX-1, and proteinaceous extracts from bacteria Vp, and Vc, induced a minor degree of cell death with high gene expression of the pro-inflammatory initiator caspase-1, which could indicate a process of pyroptosis-like PCD. Hemocytes could carry out both PCD types simultaneously. Therefore, marine toxins trigger PCD's signaling pathways in C. gigas hemocytes, depending on the toxin's nature, which appears to be highly conserved both structurally and functionally.
Collapse
Affiliation(s)
- Norma Estrada
- Programa Cátedras CONACyT (Consejo Nacional de Ciencia y Tecnología), Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Erick J. Núñez-Vázquez
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Alejandra Palacios
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Felipe Ascencio
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Laura Guzmán-Villanueva
- Programa Cátedras CONACyT (Consejo Nacional de Ciencia y Tecnología), Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Rubén G. Contreras
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
16
|
Vogeler S, Carboni S, Li X, Joyce A. Phylogenetic analysis of the caspase family in bivalves: implications for programmed cell death, immune response and development. BMC Genomics 2021; 22:80. [PMID: 33494703 PMCID: PMC7836458 DOI: 10.1186/s12864-021-07380-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Apoptosis is an important process for an organism's innate immune system to respond to pathogens, while also allowing for cell differentiation and other essential life functions. Caspases are one of the key protease enzymes involved in the apoptotic process, however there is currently a very limited understanding of bivalve caspase diversity and function. RESULTS In this work, we investigated the presence of caspase homologues using a combination of bioinformatics and phylogenetic analyses. We blasted the Crassostrea gigas genome for caspase homologues and identified 35 potential homologues in the addition to the already cloned 23 bivalve caspases. As such, we present information about the phylogenetic relationship of all identified bivalve caspases in relation to their homology to well-established vertebrate and invertebrate caspases. Our results reveal unexpected novelty and complexity in the bivalve caspase family. Notably, we were unable to identify direct homologues to the initiator caspase-9, a key-caspase in the vertebrate apoptotic pathway, inflammatory caspases (caspase-1, - 4 or - 5) or executioner caspases-3, - 6, - 7. We also explored the fact that bivalves appear to possess several unique homologues to the initiator caspase groups - 2 and - 8. Large expansions of caspase-3 like homologues (caspase-3A-C), caspase-3/7 group and caspase-3/7-like homologues were also identified, suggesting unusual roles of caspases with direct implications for our understanding of immune response in relation to common bivalve diseases. Furthermore, we assessed the gene expression of two initiator (Cg2A, Cg8B) and four executioner caspases (Cg3A, Cg3B, Cg3C, Cg3/7) in C. gigas late-larval development and during metamorphosis, indicating that caspase expression varies across the different developmental stages. CONCLUSION Our analysis provides the first overview of caspases across different bivalve species with essential new insights into caspase diversity, knowledge that can be used for further investigations into immune response to pathogens or regulation of developmental processes.
Collapse
Affiliation(s)
- Susanne Vogeler
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden
| | - Stefano Carboni
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Xiaoxu Li
- South Australia Research and Development Institute Aquatic Sciences Centre, 2 Hamra Ave, West Beach, SA, 5024, Australia
| | - Alyssa Joyce
- Department of Marine Science, University of Gothenburg, Carl Skottbergsgata 22 B, 41319, Gothenburg, Sweden.
| |
Collapse
|
17
|
Molecular cloning and expression analysis of mc5r like genes (mc5rl) in Ruditapes philippinarum (Manila clam) after aerial exposure and low-temperature stress. Mol Biol Rep 2020; 47:8891-8901. [PMID: 33128687 DOI: 10.1007/s11033-020-05941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
The melanocortin-5 receptor (mc5r) plays an important role in exocrine function, lipid metabolism, obesity, and stress response in the vertebrate. However, the functions of the mc5r in mollusks have been rarely investigated. We cloned the full length of Ruditapes philippinarum mc5r like gene (mc5rl) and the sequence structure and phylogenetic relationship of mc5rl were analyzed. Besides, we detected the tissue distribution and the expression pattern of R. philippinarum mc5r like (mc5rl) genes after aerial exposure and low-temperature stress. The full-length cDNA of the mc5rl-1 was 2143 bp, consisting of a 1224 bp open reading frame encoding (ORF) 408 amino acids. Sequence and phylogenetic analyses revealed that the nucleotide and amino acid sequences of Manila clam mc5rl were highly homologous with mc5r of Crassostrea virginica, Crassostrea gigas, Mizuhopecten yessoensis, and Pecten maximus (32%-36%) and low homologous with vertebrates. The results of the distribution of mc5rl genes showed that mc5rl genes were dominant in the mantle, gonad, and hepatopancreas in R. philippinarum. The expression of mc5rl genes was significantly increased after aerial exposure and low-temperature stress in R. philippinarum in hepatopancreas. Aerial exposure and low-temperature stress could induce mc5rl expressed. Mc5rl might serve as a sensor and promote stress response in R. philippinarum. The cloning and expression characteristics of mc5rl will facilitate the investigation of its function in stress response and other physiological processes in R. philippinarum.
Collapse
|
18
|
Zuo S, Jiang K, Li D, Yan X, Nie H. Transcriptomic analysis of Manila clam Ruditapes philippinarum under lipopolysaccharide challenge provides molecular insights into immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 106:110-119. [PMID: 32755682 DOI: 10.1016/j.fsi.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/14/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
The Manila clam, Ruditapes philippinarum, is an economically important shellfish in marine aquaculture. A better understanding of the immune system in R. philippinarum will provide the basis for the development of strategies to mitigate the impact of infectious diseases affecting this species but can also be of relevance for other bivalves of commercial interest. In this study, the transcriptional response of the Manila clam under lipopolysaccharide (LPS) challenge was characterized using RNA sequencing. The transcriptomes of LPS challenged group of clams (LH1, LH2 and LH3), and the PBS control group (CH1, CH2 and CH3), were sequenced with the Illumina HiSeq platform. Compared with the unigene expression profile of the control group, 223 unigenes were up-regulated and 389 unigenes were down-regulated in the LPS challenged group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that signal transduction, defense response, and immune-related pathways such as Chemokine signaling pathway, Complement and coagulation cascades, NOD-like receptor signaling pathway, and Inflammatory mediator regulation of TRP channels in sensory system were the most highly enriched pathways among the genes that were differentially expressed under LPS challenge. This study present understanding of the molecular basis underpinning response to LPS challenge and provides useful information for future work on the molecular mechanism of pathogen resistance and immunity in Manila clam.
Collapse
Affiliation(s)
- Shuqi Zuo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Kunyin Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Dongdong Li
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
19
|
Jiang K, Nie H, Li D, Yan X. New insights into the Manila clam and PAMPs interaction based on RNA-seq analysis of clam through in vitro challenges with LPS, PGN, and poly(I:C). BMC Genomics 2020; 21:531. [PMID: 32738896 PMCID: PMC7430831 DOI: 10.1186/s12864-020-06914-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background Manila clam (Ruditapes philippinarum) is a worldwide commercially important marine bivalve species. In recent years, however, microbial diseases caused high economic losses and have received increasing attention. To understand the molecular basis of the immune response to pathogen-associated molecular patterns (PAMPs) in R. philippinarum, transcriptome libraries of clam hepatopancreas were constructed at 24 h post-injection with Lipopolysaccharide (LPS), peptidoglycan (PGN), and polyinosinic-polycytidylic acid (poly(I:C)) and phosphate-buffered saline (PBS) control by using RNA sequencing technology (RNA-seq). Results A total of 832, 839, and 188 differentially expressed genes (DEGs) were found in LPS, PGN, and poly(I:C) challenge group compared with PBS control, respectively. Several immune-related genes and pathways were activated in response to the different PAMPs, suggesting these genes and pathways might specifically participate in the immune response to pathogens. Besides, the analyses provided useful complementary data to compare different PAMPs challenges in vivo. Functional enrichment analysis of DEGs demonstrated that PAMPs responsive signal pathways were related to apoptosis, signal transduction, immune system, and signaling molecules and interaction. Several shared or specific DEGs response to different PAMPs were revealed in R. philippinarum, including pattern recognition receptors (PRRs), antimicrobial peptides (AMPs), interferon-induced proteins (IFI), and some other immune-related genes were found in the present work. Conclusions This is the first study employing high throughput transcriptomic sequencing to provide valuable genomic resources and investigate Manila clam response to different PAMPs through in vivo challenges with LPS, PGN, and poly(I:C). The results obtained here provide new insights to understanding the immune characteristics of R. philippinarum response to different PAMPs. This information is critical to elucidate the molecular basis of R. philippinarum response to different pathogens invasion, which potentially can be used to develop effective control strategies for different pathogens.
Collapse
Affiliation(s)
- Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China. .,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Dongdong Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
20
|
Wang G, Zhang C, Huang B. Transcriptome analysis and histopathological observations of Geloina erosa gills upon Cr(VI) exposure. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108706. [PMID: 31927119 DOI: 10.1016/j.cbpc.2020.108706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 10/25/2022]
Abstract
The heavy metal contamination like Cr(VI) has been increased by human activities and that threats the ecosystem health of mangrove areas. Bioindicator is an emerging tool in the environmental contamination assessment. The objective of this study was to investigate the Geloina erosa response mechanisms and sensitivities of several biomarkers in the Cr(VI) exposure and identify the G. erosa capability of being used as heavy metals bioindicator. In this study, G. erosa was exposed to 100 μmol·L-1 Cr(VI) for 48 h. After transcriptome sequencing, a total of 134,817 unigenes were obtained, including 12,555 up-regulated and 18,829 down-regulated differentially expressed genes and were validated through quantitative real-time PCR. In addition, a total of 12,185 SSRs and 1,428,214 candidate SNPs were identified from all the G. erosa transcriptome libraries. Histopathology of the gill indicated the Cr(VI) exposure induced damage of the organ leading to its immunization, detoxification or apoptosis reactions. Among eight genes of the selected biomarkers, Calm, HSP70, CYP450, ATG5, TLR2, MYD88 and CASP8 were up-regulated, while TLR4 was down-regulated in response to the Cr(VI) exposure.
Collapse
Affiliation(s)
- Gongsi Wang
- College of Marine Sciences, Hainan University, Haikou, Hainan 570228,PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan 570228, PR China; Key Laboratory of Tropical Biological Resources in Hainan University, Haikou, Hainan 570228, PR China
| | - Chengkai Zhang
- College of Marine Sciences, Hainan University, Haikou, Hainan 570228,PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan 570228, PR China; Key Laboratory of Tropical Biological Resources in Hainan University, Haikou, Hainan 570228, PR China
| | - Bo Huang
- College of Marine Sciences, Hainan University, Haikou, Hainan 570228,PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan 570228, PR China; Key Laboratory of Tropical Biological Resources in Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
21
|
Rahmani A, Corre E, Richard G, Bidault A, Lambert C, Oliveira L, Thompson C, Thompson F, Pichereau V, Paillard C. Transcriptomic analysis of clam extrapallial fluids reveals immunity and cytoskeleton alterations in the first week of Brown Ring Disease development. FISH & SHELLFISH IMMUNOLOGY 2019; 93:940-948. [PMID: 31419531 DOI: 10.1016/j.fsi.2019.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 02/05/2023]
Abstract
The Brown Ring Disease is an infection caused by the bacterium Vibrio tapetis on the Manila clam Ruditapes philippinarum. The process of infection, in the extrapallial fluids (EPFs) of clams, involves alteration of immune functions, in particular on hemocytes which are the cells responsible of phagocytosis. Disorganization of the actin-cytoskeleton in infected clams is a part of what leads to this alteration. This study is the first transcriptomic approach based on collection of extrapallial fluids on living animals experimentally infected by V. tapetis. We performed differential gene expression analysis of EPFs in two experimental treatments (healthy-against infected-clams by V. tapetis), and showed the deregulation of 135 genes. In infected clams, a downregulation of transcripts implied in immune functions (lysosomal activity and complement- and lectin-dependent PRR pathways) was observed during infection. We also showed a deregulation of transcripts encoding proteins involved in the actin cytoskeleton organization such as an overexpression of β12-Thymosin (which is an actin sequestration protein) or a downregulation of proteins that closely interact with capping proteins such as Coactosin, that counteract action of capping proteins, or Profilin. We validated these transcriptomic results by cellular physiological analyses that showed a decrease of the lysosome amounts and the disorganization of actin cytoskeleton in infected hemocytes.
Collapse
Affiliation(s)
- Alexandra Rahmani
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France.
| | - Erwan Corre
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Gaëlle Richard
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France
| | - Adeline Bidault
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France
| | - Christophe Lambert
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France
| | - Louisi Oliveira
- Centro de Ciências da Saúde, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Centro de Ciências da Saúde, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Centro de Ciências da Saúde, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vianney Pichereau
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France.
| | - Christine Paillard
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France.
| |
Collapse
|
22
|
Milan M, Smits M, Dalla Rovere G, Iori S, Zampieri A, Carraro L, Martino C, Papetti C, Ianni A, Ferri N, Iannaccone M, Patarnello T, Brunetta R, Ciofi C, Grotta L, Arcangeli G, Bargelloni L, Cardazzo B, Martino G. Host-microbiota interactions shed light on mortality events in the striped venus clam Chamelea gallina. Mol Ecol 2019; 28:4486-4499. [PMID: 31482594 DOI: 10.1111/mec.15227] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Mass mortalities due to disease outbreaks have recently affected a number of major taxa in marine ecosystems. Climate- and pollution-induced stress may compromise host immune defenses, increasing the risk of opportunistic diseases. Despite growing evidence that mass mortality events affecting marine species worldwide are strongly influenced by the interplay of numerous environmental factors, the reductionist approaches most frequently used to investigate these factors hindered the interpretation of these multifactorial pathologies. In this study, we propose a broader approach based on the combination of RNA-sequencing and 16S microbiota analyses to decipher the factors underlying mass mortality in the striped venus clam, Chamelea gallina, along the Adriatic coast. On one hand, gene expression profiling and functional analyses of microbial communities showed the over-expression of several genes and molecular pathways involved in xenobiotic metabolism, suggesting potential chemical contamination in mortality sites. On the other hand, the down-regulation of several genes involved in immune and stress response, and the over-representation of opportunistic pathogens such as Vibrio and Photobacterium spp. indicates that these microbial species may take advantage of compromised host immune pathways and defense mechanisms that are potentially affected by chemical exposure, resulting in periodic mortality events. We propose the application of our approach to interpret and anticipate the risks inherent in the combined effects of pollutants and microbes on marine animals in today's rapidly changing environment.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Morgan Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy.,Marine Environmental Science Laboratory (LEMAR), IUEM Technopole Brest-Iroise, Université de Bretagne Occidentale -Rue Dumont d'Urville, Plouzané, France
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Angela Zampieri
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Papetti
- Department of Biology, University of Padova, Padua, Italy
| | - Andrea Ianni
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Marco Iannaccone
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Romina Brunetta
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, Padova, Italy
| | - Claudio Ciofi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Lisa Grotta
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| | - Giuseppe Arcangeli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Giuseppe Martino
- Faculty of BioSciences and Technologies for Agriculture Food and Environment, University of Teramo, Mosciano Sant'Angelo, Italy
| |
Collapse
|
23
|
Bouallegui Y. Immunity in mussels: An overview of molecular components and mechanisms with a focus on the functional defenses. FISH & SHELLFISH IMMUNOLOGY 2019; 89:158-169. [PMID: 30930277 DOI: 10.1016/j.fsi.2019.03.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Bivalves' immunity has received much more attention in the last decade, which resulted to a valuable growth in the availability of its molecular components. Such data availability coupled with the economical importance of these organisms aimed to shift the increase in the number of immunological and stress-related studies. Unfortunately, the crowd of generated data deciphering the involved physiological processes, investigators' differential conceptualization and the aimed objectives, has complicated the sensu stricto outlining of immune-related mechanisms. Overall, this review tried to compiles a summary about the molecular components of the mussels' immune response, surveying an overview of the mussels' functional immunity through gathering the most recent-related topics of bivalves' immunity as apoptosis and autophagy which deserves a great attention as stress-related mechanisms, the disseminated neoplasia as outbreak transmissible disease, not only within the same specie but also among different species, the hematopoiesis as topic that still generating interesting debate in the scientific community, the mucosal immunity described as the interface where host-pathogen interactions would occurs and determinate the late immune response, and innate immune memory and transgenerational priming, which described as very recent research topic with extensive applications in shellfish farming industry.
Collapse
Affiliation(s)
- Younes Bouallegui
- University of Carthage, Faculty of Sciences Bizerte, LR01ES14 Laboratory of Environmental Biomonitoring, Zarzouna, 7021, Bizerte, Tunisia.
| |
Collapse
|
24
|
Ip JCH, Mu H, Zhang Y, Sun J, Heras H, Chu KH, Qiu JW. Understanding the transition from water to land: Insights from multi-omic analyses of the perivitelline fluid of apple snail eggs. J Proteomics 2018; 194:79-88. [PMID: 30557667 DOI: 10.1016/j.jprot.2018.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/02/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Unlike most of the freshwater gastropod families, the family Ampullariidae includes members that exhibit both underwater and aerial oviposition, making it an ideal model for understanding mechanisms underlying the evolutionary transition from water to land. We applied SDS-PAGE and LC-MS/MS to analyse the proteome of the egg perivitelline fluid (PVF) of Marisa cornuarietis - an aquatic ovipositing ampullariid. Comparison with the reported PVF proteomes of two aerial ovipositing ampullariids (Pomacea canaliculata and P. maculata) showed that the three species all contain several major perivitellins that nourish the embryos. However, M. cornuarietis invests more heavily on immune-related proteins, which might be due to exposure to aquatic pathogens. Interestingly, only the PVF of out-of-water egg laying species have PV2 - a neurotoxin lethal to mice, and a calcium-binding protein which might be involved in the formation of calcareous eggshell. Integrated phylogenetic, evolutionary and gene expressional analyses detected the involvement of gene duplication, positive selection and neofunctionalisation in the formation of several major PVF proteins. Overall, our study provides multiple lines of evidence of adaptive evolution in the PVF proteins, and contributes to a better understanding of how aquatic gastropod ancestors invaded terrestrial habitats. SIGNIFICANCE: Aerial egg deposition has evolved in several groups of animals, but except for Vertebrata little is known about the mechanisms underlying this critical evolution process. We compared aquatic and aerial egg laying apple snails to understand the molecular mechanisms enabling such a transition in egg laying habitat. We found that the composition of perivitelline fluid proteomes of underwater and aerial egg depositors was remarkably different, and then gene duplication and positive selection were responsible for the formation of such novel proteins than enabled the evolutionary transition.
Collapse
Affiliation(s)
- Jack C H Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Huawei Mu
- School of Life Sciences, University of Science and Technology of China, Hefei 230071, China
| | - Yanjie Zhang
- HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Jin Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)-CONICET CCT-La Plata, La Plata, Argentina; Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, Argentina
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
25
|
Wang H, Pan L, Xu R, Miao J, Si L, Pan L. Comparative transcriptome analysis between the short-term stress and long-term adaptation of the Ruditapes philippinarum in response to benzo[a]pyrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:59-69. [PMID: 30189351 DOI: 10.1016/j.aquatox.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
In order to monitor the pollution of polycyclic aromatic hydrocarbons (PAHs) in the seawater environment, screening biomarkers capable of monitoring PAHs is the focus of many studies. The transcriptomic profiles of the digestive gland tissue from the R. philippinarum groups after the exposure to BaP (4 μg/L) at four time points (0, 0.5, 6 and 15 days) were investigated to globally screen the key genes and pathways involved in the responses to short-term stress and long-term adaptation of BaP resistance. By comparative transcriptome analysis, 233, 282 and 58 differentially expressed genes (DEGs) were identified at 0.5 day, 6 day and 15 day (vs 0 day). The differential expression genes were related to stress response, detoxification metabolic process and innate immunity. DEGs of each group at different stages were clustered in six profiles based on gene expression pattern. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used on all genes to determine the biological functions and processes. We selected Multidrug resistance protein 3 (MRP3), transcriptional regulator ATRX-like isoform X2 (ATRX) as biomarker indicator genes for short-term pollution monitoring and NADH dehydrogenase [ubiquinone] 1 (NQO1), Complement C1q-like protein 4 (C1q), Glutathione-S-transferase theta (GST), E3 ubiquitin-protein ligase (E3) for long-term pollution monitoring based on the different expression patterns and the function in detoxification and antioxidant defense system. Besides, the expression of seven genes was measured through Quantitative real-time PCR (qPCR) according to their gene expression patterns which was confirmed by the DGE analysis. Taken together, adoption of transcriptomic analysis to explore the bivalves' mRNA abundance changes and detoxification metabolic mechanism under the BaP stress at different time points can aid the development of sensitive and informed molecular endpoints for application towards ecotoxicogenomic monitoring of bivalves.
Collapse
Affiliation(s)
- Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
26
|
Humphries JE, Deneckere LE. Characterization of a Toll-like receptor (TLR) signaling pathway in Biomphalaria glabrata and its potential regulation by NF-kappaB. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:118-129. [PMID: 29746981 DOI: 10.1016/j.dci.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 05/16/2023]
|
27
|
Molecular and cellular characterization of apoptosis in flat oyster a key mechanisms at the heart of host-parasite interactions. Sci Rep 2018; 8:12494. [PMID: 30131502 PMCID: PMC6104086 DOI: 10.1038/s41598-018-29776-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/14/2018] [Indexed: 01/09/2023] Open
Abstract
Bonamia ostreae has been associated with the decline of flat oyster Ostrea edulis populations in some European countries. This obligatory intracellular parasite persists and multiplies into hemocytes. Previous in vitro experiments showed that apoptosis is activated in hemocytes between 1 h and 4 h of contact with the parasite. The flat oyster uses the apoptosis pathway to defend against B. ostreae. However, the parasite might be also able to modulate this response in order to survive in its host. In order to investigate this hypothesis the apoptotic response of the host was evaluated using flow cytometry, transmission electron microscopy and by measuring the response of genes involved in the apoptotic pathway after 4 h. In parallel, the parasite response was investigated by measuring the expression of B. ostreae genes involved in different biological functions including cell cycle and cell death. Obtained results allow describing molecular apoptotic pathways in O. edulis and confirm that apoptosis is early activated in hemocytes after a contact with B. ostreae. Interestingly, at cellular and molecular levels this process appeared downregulated after 44 h of contact. Concurrently, parasite gene expression appeared reduced suggesting that the parasite could inhibit its own metabolism to escape the immune response.
Collapse
|
28
|
Nguyen TV, Alfaro AC, Young T, Ravi S, Merien F. Metabolomics Study of Immune Responses of New Zealand Greenshell™ Mussels (Perna canaliculus) Infected with Pathogenic Vibrio sp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:396-409. [PMID: 29611031 DOI: 10.1007/s10126-018-9804-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Vibrio coralliilyticus is a bacterial pathogen which can affect a range of marine organisms, such as corals, fish and shellfish, with sometimes devastating consequences. However, little is known about the mechanisms involved in the host-pathogen interaction, especially within molluscan models. We applied gas chromatography-mass spectrometry (GC-MS)-based metabolomics to characterize the physiological responses in haemolymph of New Zealand Greenshell™ mussels (Perna canaliculus) injected with Vibrio sp. DO1 (V. coralliilyticus/neptunius-like isolate). Univariate data analyses of metabolite profiles in Vibrio-exposed mussels revealed significant changes in 22 metabolites at 6 h post-infection, compared to non-exposed mussels. Among them, 10 metabolites were up-regulated, while 12 metabolites were down-regulated in infected mussels. Multivariate analyses showed a clear distinction between infected and non-infected mussels. In addition, secondary pathway analyses indicated perturbations of the host innate immune system following infection, including oxidative stress, inflammation and disruption of the TCA cycle, change in amino acid metabolism and protein synthesis. These findings provide new insights into the pathogenic mechanisms of Vibrio infection of mussels and demonstrate our ability to detect detailed and rapid host responses from haemolymph samples using a metabolomics approach.
Collapse
Affiliation(s)
- Thao V Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Sridevi Ravi
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
29
|
Tanguy M, Gauthier-Clerc S, Pellerin J, Danger JM, Siah A. The immune response of Mytilus edulis hemocytes exposed to Vibrio splendidus LGP32 strain: A transcriptomic attempt at identifying molecular actors. FISH & SHELLFISH IMMUNOLOGY 2018; 74:268-280. [PMID: 29305989 DOI: 10.1016/j.fsi.2017.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The marine mussel Mytilus edulis, tolerant to a wide range of environmental changes, combines a key role as a sentinel species for environmental monitoring programs and a significant economic importance. Mortality events caused by infective agents and parasites have not been described in mussels, which suggests an efficient immune system. This study aims at identifying the molecular mechanisms involved in the early immune responses M. edulis' hemocytes challenged with Vibrio splendidus LGP32 strain during 2, 4 and 6 h. A total of 149,296 assembled sequences has been annotated and compared to KEGG reference pathways. Several immune related sequences were identified such as Toll-Like receptors (TLRs), transcription factors, cytokines, protease inhibitors, stress proteins and sequences encoding for proteins involved in cell adhesion, phagocytosis, oxidative stress, apoptosis and autophagy. Differential gene expression clustered 10 different groups of transcripts according to kinetics of transcript occurrence. Sequences were assigned to biological process gene ontology categories. Sequences encoding for galectins, fibrinogen-related proteins, TLRs, MyD88, some antimicrobial peptides, lysosomal hydrolases, heat shock proteins and protease inhibitors, as well as proteins of oxidative stress and apoptosis were identified as differently regulated during the exposure to V. splendidus LGP32. The levels of candidate transcripts were quantified in M. edulis' hemocytes exposed to V. splendidus LGP32 and 7SHRW by using branched DNA technology. Transcripts encoding for inhibitor kappa B, inhibitor of apoptosis proteins, tumor protein D54, serine/threonine-proteine kinase SIK2 were identified as up-regulated in hemocytes exposed to both strains.
Collapse
Affiliation(s)
- Marion Tanguy
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France; Institute of Marine Science, University of Quebec at Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada; Department of Pathology & Microbiology, Atlantic Veterinary College (AVC), University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Sophie Gauthier-Clerc
- Institute of Marine Science, University of Quebec at Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
| | - Jocelyne Pellerin
- Institute of Marine Science, University of Quebec at Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
| | - Jean-Michel Danger
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Ahmed Siah
- Department of Pathology & Microbiology, Atlantic Veterinary College (AVC), University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada; British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, V9W 2C2, Campbell River, BC, Canada.
| |
Collapse
|
30
|
Hasanuzzaman AFM, Rubiolo JA, Robledo D, Gómez-Tato A, Álvarez-Dios JA, Fernández-Boo S, Cao A, Villalba A, Pardo BG, Martínez P. Gene expression analysis of Ruditapes philippinarum haemocytes after experimental Perkinsus olseni zoospore challenge and infection in the wild. FISH & SHELLFISH IMMUNOLOGY 2018; 72:611-621. [PMID: 29162545 DOI: 10.1016/j.fsi.2017.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
The production of Manila clam (Ruditapes philippinarum) is seriously threatened by the protistan parasite Perkinsus olseni. We characterized and compared gene expression of Manila clam haemocytes in response to P. olseni in a time-course (10 h, 24 h, 8 d) controlled laboratory challenge (LC), representing the first step of infection, and in a more complex infection in the wild (WI), using a validated oligo-microarray containing 11,232 transcripts, mostly annotated. Several immune-genes involved in NIK/NF-kappaB signalling, Toll-like receptor signalling and apoptosis were activated at LC-10 h. However, down-regulation of genes encoding lysozyme, histones, cathepsins and heat shock proteins indicated signals of immunodepression, which persisted at LC-24 h, when only down-regulated genes were detected. A rebound of haemocyte activity occurred at LC-8 d as shown by up-regulation of genes involved in cytoskeleton organization and cell survival. The WI study showed a more complex picture, and several immune-relevant processes including cytoskeleton organization, cell survival, apoptosis, encapsulation, cell redox- and lipid-homeostasis were activated, illustrating the main mechanism of host response. Our results provide useful information, including potential biomarkers, to develop strategies for controlling Manila clam perkinsosis.
Collapse
Affiliation(s)
- Abul Farah Md Hasanuzzaman
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo 27002, Spain; Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna 9208, Bangladesh.
| | - Juan Andrés Rubiolo
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Diego Robledo
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo 27002, Spain; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - Antonio Gómez-Tato
- Departamento de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Sergio Fernández-Boo
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain.
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Spain.
| | - Belén G Pardo
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
31
|
Wei M, Xu WT, Li HL, Wang L, Xiu YJ, Yang YM, Li YZ, Zhao FZ, Chen SL. Molecular characterization and expression analysis of a novel r-spondin member (rspo2l) in Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2018; 72:436-442. [PMID: 29154943 DOI: 10.1016/j.fsi.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Numerous studies suggest R-spondins (Rspos) plays a role in mammalian sex development and differentiation by activating WNT signaling pathways. However, Rspos are frequently less reported in teleosts. In this study, a molecular characterization and expression analysis was conducted with a new rspondin member in the Chinese tongue sole, rspondin2-like (rspo2l). The length of rspo2l cDNA is 1251 bp with 732 bp of coding sequence. A qRT-PCR analysis revealed that the transcription of rspo2l was distributed in various tissues, with high transcription levels in the liver, skin, and gills which might indicate a possible role in immunity. We next examined a time-course of transcription levels in four immune tissues (gill, liver, spleen, and kidney) after Vibrio harveyi challenge. It was found that rspo2l was up-regulated in the gills, spleen, and kidney and down-regulated in the liver, and the greatest responses occurred at 24 and 48 h after bacterial challenge. An assessment of β-catenin, the key regulator of the canonical WNT signaling pathway, at different time points in four immune organs revealed that its transcription profile was similar to that of rspo2l after bacterial challenge. The results suggest that tongue sole rspo2l might play a role in immune responses after bacterial challenge, while the potential link with the WNT signaling pathway still requires further investigation. This is the first report about the involvement of rspondins in fish immune responses.
Collapse
Affiliation(s)
- Min Wei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wen-Teng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hai-Long Li
- Research Institute of Metabolic Disease, Qingdao University, Qingdao, 266003, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yun-Ji Xiu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ying-Ming Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang-Zhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fa-Zhen Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Song-Lin Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
32
|
Mun S, Kim YJ, Markkandan K, Shin W, Oh S, Woo J, Yoo J, An H, Han K. The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum). Genome Biol Evol 2017; 9:1487-1498. [PMID: 28505302 PMCID: PMC5499747 DOI: 10.1093/gbe/evx096] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 12/23/2022] Open
Abstract
The manila clam, Ruditapes philippinarum, is an important bivalve species in worldwide aquaculture including Korea. The aquaculture production of R. philippinarum is under threat from diverse environmental factors including viruses, microorganisms, parasites, and water conditions with subsequently declining production. In spite of its importance as a marine resource, the reference genome of R. philippinarum for comprehensive genetic studies is largely unexplored. Here, we report the de novo whole-genome and transcriptome assembly of R. philippinarum across three different tissues (foot, gill, and adductor muscle), and provide the basic data for advanced studies in selective breeding and disease control in order to obtain successful aquaculture systems. An approximately 2.56 Gb high quality whole-genome was assembled with various library construction methods. A total of 108,034 protein coding gene models were predicted and repetitive elements including simple sequence repeats and noncoding RNAs were identified to further understanding of the genetic background of R. philippinarum for genomics-assisted breeding. Comparative analysis with the bivalve marine invertebrates uncover that the gene family related to complement C1q was enriched. Furthermore, we performed transcriptome analysis with three different tissues in order to support genome annotation and then identified 41,275 transcripts which were annotated. The R. philippinarum genome resource will markedly advance a wide range of potential genetic studies, a reference genome for comparative analysis of bivalve species and unraveling mechanisms of biological processes in molluscs. We believe that the R. philippinarum genome will serve as an initial platform for breeding better-quality clams using a genomic approach.
Collapse
Affiliation(s)
- Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan, Republic of Korea
| | - Yun-Ji Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan, Republic of Korea
| | | | - Wonseok Shin
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan, Republic of Korea
| | - Sumin Oh
- Division of Marine-Bio Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Republic of Korea
| | - Jiyoung Woo
- Division of Marine-Bio Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Republic of Korea
| | - Jongsu Yoo
- Division of Marine-Bio Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Republic of Korea
| | - Hyesuck An
- Division of Marine-Bio Research, National Marine Biodiversity Institute of Korea, Seocheon-gun, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,DKU-Theragen Institute for NGS Analysis (DTiNa), Cheonan, Republic of Korea
| |
Collapse
|
33
|
Dong W, Chen Y, Lu W, Wu B, Qi P. Transcriptome analysis of Mytilus coruscus hemocytes in response to Vibrio alginnolyficus infection. FISH & SHELLFISH IMMUNOLOGY 2017; 70:560-567. [PMID: 28863889 DOI: 10.1016/j.fsi.2017.08.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
As an economically important bivalve, the Mytilus coruscus is cultured widely in the eastern coast of China. In recent years, this bivalve has been seriously affected by the pathogenic infections. To elucidate the host defense mechanisms of M. coruscus against pathogenic challenge, the hemocyte transcriptomes of M. coruscus before and after Vibrio alginnolyficus infection were analyzed using the deep-sequencing platform Illumina/HiSeq-2500, meanwhile the differentially expressed genes (DEGs) were investigated. In total, 130,031,083 clean reads were obtained and then assembled into 63,942 unigenes with an average length of 810 bp and an N50 of 1056 bp. Unigenes were annotated by comparing against nr, Swiss-Prot, KEGG, COG, KOG, GO, and Pfam databases, and 27,345 unigenes (42.77%) were annotated in at least one database. After bacterial challenge, 1270 and 265 genes were identified as remarkably up- or down-regulated, respectively, amongst 1154 were associated with 122 pathways, including classical immune-related pathways, such as 'Toll-like receptor signaling', 'the complement cascades', 'MAPK signaling pathway', 'Apoptosis' and 'Wnt signaling pathway'. Besides, nine genes which were differently-expressed immuno-related were confirmed by using quantitative real-time PCR. These findings would provide new insights on the M. coruscus innate immunity, based on which, some novel strategies for management of diseases and long-term sustainability of M. coruscus culture could be developed.
Collapse
Affiliation(s)
- Wenqiang Dong
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Yongxia Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Weixiao Lu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Bin Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China.
| |
Collapse
|
34
|
Der Sarkissian C, Pichereau V, Dupont C, Ilsøe PC, Perrigault M, Butler P, Chauvaud L, Eiríksson J, Scourse J, Paillard C, Orlando L. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past. Mol Ecol Resour 2017; 17:835-853. [PMID: 28394451 DOI: 10.1111/1755-0998.12679] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 02/05/2023]
Abstract
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Vianney Pichereau
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | | | - Peter C Ilsøe
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Mickael Perrigault
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Paul Butler
- CGES, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Laurent Chauvaud
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Jón Eiríksson
- Institute of Earth Sciences, University of Iceland, Askja, Reykjavík, Iceland
| | - James Scourse
- CGES, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Christine Paillard
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
- Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, Toulouse, France
| |
Collapse
|
35
|
Ding J, Yang D, Chang Y, Wang Y, Zhang W, Chen T. Comparative transcriptome analysis of tube feet of different colors in the sea urchin Strongylocentrotus intermedius. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0565-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Li Y, Zhang L, Qu T, Tang X, Li L, Zhang G. Conservation and divergence of mitochondrial apoptosis pathway in the Pacific oyster, Crassostrea gigas. Cell Death Dis 2017; 8:e2915. [PMID: 28682310 PMCID: PMC5550854 DOI: 10.1038/cddis.2017.307] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/27/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023]
Abstract
Apoptosis is considered a crucial part of the host defense system in oysters according to previous reports; however, the exact process by which this occurs remains unclear. Besides, mitochondrial apoptosis is the primary method of apoptosis in vertebrate cells, but has been poorly studied in invertebrates and is quite controversial. In this study, we investigated the molecular mechanism of mitochondrial apoptosis in the Pacific oyster Crassostrea gigas. Notably, we show that most key elements involved in the vertebrate mitochondrial apoptosis pathway – including mitochondrial outer membrane permeabilization, cytochrome c release, and caspase activation – are also present in C. gigas. In contrast, the lack of Bcl-2 homology 3-only subfamily members and apoptotic protease activating factor-1 (APAF-1) protein revealed evolutionary diversity from other phyla. Our results support that mitochondrial apoptosis in animals predates the emergence of vertebrates, but suggest that an unexpectedly diverse mitochondrial apoptosis pathway may exist in invertebrates. In addition, our work provided new clues for an improved understanding of how bivalve acclimate themselves to an inconstant environment.
Collapse
Affiliation(s)
- Yingxiang Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tao Qu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xueying Tang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National &Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
37
|
Jiang X, Tang T, Zhao H, Song Q, Zhou H, Han Q, Diao X. Differential gene responses in the embryo of the green mussel Perna viridis exposed to dichlorodiphenyltrichloroethane (DDT). Toxicol Res (Camb) 2017; 6:477-486. [PMID: 30090516 PMCID: PMC6062083 DOI: 10.1039/c7tx00087a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023] Open
Abstract
The green-lipped mussel, Perna viridis, is considered to be an ideal indicator for marine environmental pollution. Dichlorodiphenyltrichloroethane (DDT), a typical persistent organic pollutant, is extensively distributed in marine environments. However, little is known about the toxic effects of DDT on the embryo of marine animals, particularly in marine bivalves. Using next-generation sequencing technology, we studied P. viridis embryo after DDT stress at the transcriptome level. A total of 99 202 unigenes were obtained based on the 2383 bp of unigene N50. These differentially expressed genes (DEGs) participated in the various molecular pathways of biological effects, including oxidative stress, detoxification, innate immunity and neurobehavioral disease. Quantitative real-time PCR was performed to verify the mRNA expression of several genes identified by differential gene expression (DGE) analysis. The results indicated that DDT was in induced a dose-dependent manner in the embryo of P. viridis, and most genes involved in oxidative stress and detoxification were up-regulated by DDT exposure; however, the immunity-related genes were down-regulated, except the genes involved in phagocytosis. Gene expression changes in embryo from P. viridis provide a preliminary basis to better understand the molecular toxic response mechanisms of embryo to DDT.
Collapse
Affiliation(s)
- Xiu Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| | - Tianle Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- School of Tropical and Laboratory Medicine , Hainan Medical University , Haikou , 571199 , China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- School of Tropical and Laboratory Medicine , Hainan Medical University , Haikou , 571199 , China
| | - Qinqin Song
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| |
Collapse
|
38
|
Zannella C, Mosca F, Mariani F, Franci G, Folliero V, Galdiero M, Tiscar PG, Galdiero M. Microbial Diseases of Bivalve Mollusks: Infections, Immunology and Antimicrobial Defense. Mar Drugs 2017. [PMID: 28629124 PMCID: PMC5484132 DOI: 10.3390/md15060182] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A variety of bivalve mollusks (phylum Mollusca, class Bivalvia) constitute a prominent commodity in fisheries and aquacultures, but are also crucial in order to preserve our ecosystem’s complexity and function. Bivalve mollusks, such as clams, mussels, oysters and scallops, are relevant bred species, and their global farming maintains a high incremental annual growth rate, representing a considerable proportion of the overall fishery activities. Bivalve mollusks are filter feeders; therefore by filtering a great quantity of water, they may bioaccumulate in their tissues a high number of microorganisms that can be considered infectious for humans and higher vertebrates. Moreover, since some pathogens are also able to infect bivalve mollusks, they are a threat for the entire mollusk farming industry. In consideration of the leading role in aquaculture and the growing financial importance of bivalve farming, much interest has been recently devoted to investigate the pathogenesis of infectious diseases of these mollusks in order to be prepared for public health emergencies and to avoid dreadful income losses. Several bacterial and viral pathogens will be described herein. Despite the minor complexity of the organization of the immune system of bivalves, compared to mammalian immune systems, a precise description of the different mechanisms that induce its activation and functioning is still missing. In the present review, a substantial consideration will be devoted in outlining the immune responses of bivalves and their repertoire of immune cells. Finally, we will focus on the description of antimicrobial peptides that have been identified and characterized in bivalve mollusks. Their structural and antimicrobial features are also of great interest for the biotechnology sector as antimicrobial templates to combat the increasing antibiotic-resistance of different pathogenic bacteria that plague the human population all over the world.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Francesco Mosca
- Faculty of Veterinary Medicine, University of Teramo, Piano d'Accio, 64100 Teramo, Italy.
| | - Francesca Mariani
- Faculty of Veterinary Medicine, University of Teramo, Piano d'Accio, 64100 Teramo, Italy.
| | - Gianluigi Franci
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Veronica Folliero
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Marilena Galdiero
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Pietro Giorgio Tiscar
- Faculty of Veterinary Medicine, University of Teramo, Piano d'Accio, 64100 Teramo, Italy.
| | - Massimiliano Galdiero
- Department of Experimental Medicine-University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Napoli, Italy.
| |
Collapse
|
39
|
Ren Y, Xue J, Yang H, Pan B, Bu W. Transcriptome analysis of Ruditapes philippinarum hepatopancreas provides insights into immune signaling pathways under Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2017; 64:14-23. [PMID: 28267631 DOI: 10.1016/j.fsi.2017.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 05/27/2023]
Abstract
The Manila clam, Ruditapes philippinarum, is one of the most economically important aquatic clams that are harvested on a large scale by the mariculture industry in China. However, increasing reports of bacterial pathogenic diseases have had a negative effect on the aquaculture industry of R. philippinarum. In the present study, the two transcriptome libraries of untreated (termed H) and challenged Vibrio anguillarum (termed HV) hepatopancreas were constructed and sequenced from Manila clam using an Illumina-based paired-end sequencing platform. In total, 75,302,886 and 66,578,976 high-quality clean reads were assembled from 101,080,746 and 99,673,538 raw data points from the two transcriptome libraries described above, respectively. Furthermore, 156,116 unigenes were generated from 210,685 transcripts, with an N50 length of 1125 bp, and from the annotated SwissProt, NR, NT, KO, GO, KOG and KEGG databases. Moreover, a total of 4071 differentially expressed unigenes (HV vs H) were detected, including 903 up-regulated and 3168 down-regulated genes. Among these differentially expressed unigenes, 226 unigenes were annotated using KEGG annotation in 16 immune-related signaling pathways, including Toll-like receptor, NF-kappa B, MAPK, NOD-like receptor, RIG-I-like receptor, and the TNF and chemokine signaling pathways. Finally, 20,341 simple sequence repeats (SSRs) and 214,430 potential single nucleotide polymorphisms (SNPs) were detected from the H and HV transcriptome libraries. In conclusion, these studies identified many candidate immune-related genes and signaling pathways and conducted a comparative analysis of the differentially expressed unigenes from Manila clam hepatopancreas in response to V. anguillarum stimulation. These data laid the foundation for studying the innate immune systems and defense mechanisms in R. philippinarum.
Collapse
Affiliation(s)
- Yipeng Ren
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Junli Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Huanhuan Yang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Baoping Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
40
|
Paynter AN, Metzger MJ, Sessa JA, Siddall ME. Evidence of horizontal transmission of the cancer-associated Steamer retrotransposon among ecological cohort bivalve species. DISEASES OF AQUATIC ORGANISMS 2017; 124:165-168. [PMID: 28425429 DOI: 10.3354/dao03113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bivalve specimens from legacy frozen tissue collections, and others freshly obtained, were surveyed for the presence of the Steamer long terminal repeat (LTR)-retrotransposon associated with disseminated hemic neoplasia of the soft-shelled clam Mya areneria. Of 22 species investigated using primers for the pol region, only Atlantic M. arenaria, Atlantic and North Sea razor clams Ensis directus, and Baltic clams Macoma balthica from the North Sea were found to possess copies of Steamer in their genomes. Notably, close relatives like Mya truncata and Siliqua patula did not exhibit evidence of Steamer. Amplified Steamer sequences were uniformly identical in all M. areneria specimens, and were highly variable across specimens of E. directus. Variation in the latter included nucleotide polymorphisms among and within individuals as well as length variation in 2 specimens corresponding to the deletion of a predicted stable hairpin structure. Results implicate Atlantic razor clams as the proximal source for horizontal transmission of Steamer among ecologically similar yet markedly distantly related bivalves. The consequences of cross-species transmission of the Steamer retrotransposon are unknown, and the finding of Steamer in 3 bivalve species suggests that further spread is possible.
Collapse
Affiliation(s)
- Ashley N Paynter
- Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, New York 10024, USA
| | | | | | | |
Collapse
|
41
|
Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Manila clam Ruditapes philippinarum. Sci Rep 2017; 7:229. [PMID: 28331182 PMCID: PMC5427961 DOI: 10.1038/s41598-017-00246-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Genetic linkage maps are indispensable tools in a wide range of genetic and genomic research. With the advancement of genotyping-by-sequencing (GBS) methods, the construction of a high-density linkage maps has become achievable in marine organisms lacking sufficient genomic resources, such as mollusks. In this study, high-density linkage map was constructed for an ecologically and commercially important clam species, Ruditapes philippinarum. For the consensus linkage map, a total of 9658 markers spanning 1926.98 cM were mapped to 18 sex-averaged linkage groups, with an average marker distance of 0.42 cM. Based on the high-density linkage map, ten QTLs for growth-related traits and shell color were detected. The coverage and density of the current map are sufficient for us to effectively detect QTL for segregating traits, and two QTL positions were all coincident with the closest markers. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of R. philippinarum and other bivalve molluscan species.
Collapse
|
42
|
Guo X, Ford SE. Infectious diseases of marine molluscs and host responses as revealed by genomic tools. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2015.0206. [PMID: 26880838 DOI: 10.1098/rstb.2015.0206] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
More and more infectious diseases affect marine molluscs. Some diseases have impacted commercial species including MSX and Dermo of the eastern oyster, QPX of hard clams, withering syndrome of abalone and ostreid herpesvirus 1 (OsHV-1) infections of many molluscs. Although the exact transmission mechanisms are not well understood, human activities and associated environmental changes often correlate with increased disease prevalence. For instance, hatcheries and large-scale aquaculture create high host densities, which, along with increasing ocean temperature, might have contributed to OsHV-1 epizootics in scallops and oysters. A key to understanding linkages between the environment and disease is to understand how the environment affects the host immune system. Although we might be tempted to downplay the role of immunity in invertebrates, recent advances in genomics have provided insights into host and parasite genomes and revealed surprisingly sophisticated innate immune systems in molluscs. All major innate immune pathways are found in molluscs with many immune receptors, regulators and effectors expanded. The expanded gene families provide great diversity and complexity in innate immune response, which may be key to mollusc's defence against diverse pathogens in the absence of adaptive immunity. Further advances in host and parasite genomics should improve our understanding of genetic variation in parasite virulence and host disease resistance.
Collapse
Affiliation(s)
- Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Susan E Ford
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| |
Collapse
|
43
|
Jia Z, Zhang H, Jiang S, Wang M, Wang L, Song L. Comparative study of two single CRD C-type lectins, CgCLec-4 and CgCLec-5, from pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2016; 59:220-232. [PMID: 27765697 DOI: 10.1016/j.fsi.2016.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
C-type lectins (CTLs), a superfamily of Ca2+-dependent carbohydrate-recognition proteins, are involved in nonself-recognition and pathogen elimination, and play crucial roles in the innate immunity. In the present study, two single CRD C-type lectins, CgCLec-4 and CgCLec-5, were identified from oyster Crassostrea gigas. The open reading frame (ORF) of CgCLec-4 and CgCLec-5 encoded polypeptides of 152 and 150 amino acids, respectively. Both CgCLec-4 and CgCLec-5 contained one CRD with six conserved cysteines to form three disulfide bridges. The motif in Ca2+-binding site 2 of CgCLec-4 was QPE, while it was QYE, a non-a typical motif in CgCLec-5. CgCLec-4 was a secreted lectin with a signal peptide which was highly expressed in hepatopancreas, mantle and hemocytes. CgCLec-5 was an intracellular lectin which was mostly expressed in hemocytes. The lipopolysaccharide stimulation could induce the expressions of CgCLec-4 and CgCLec-5. The recombinant proteins of CgCLec-4 and CgCLec-5 (rCgCLec-4 and rCgCLec-5) could bind to various PAMPs including LPS, PGN, GLU and mannan, while the binding affinity of rCgCLec-5 was stronger than that of rCgCLec-4. Meanwhile, rCgCLec-4 and rCgCLec-5 could bind to different kinds of microorganisms, including Staphylococcus aureus, Escherichia coli and Vibro anguillarum and Yarrowia lipolytica, and the microbial agglutinating ability of rCgCLec-4 was stronger than that of CgCLec-5. Moreover, rCgCLec-4 exhibited anti-microbial activity against bacteria and fungi, but anti-microbial activity of CgCLec-5 was not obvious. All these results suggested that CgCLec-4 and CgCLec-5 could function as an important PRR involved in immune defense against invading pathogen in oyster, and the diversity and complexity of motifs in Ca2+ binding site 2 in CRDs determined their comprehensive recognition spectrum and multiple immune functions.
Collapse
Affiliation(s)
- Zhihao Jia
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China
| | - Shuai Jiang
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China
| | - Mengqiang Wang
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Rd., Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
44
|
Fernández-Boo S, Villalba A, Cao A. Protein expression profiling in haemocytes and plasma of the Manila clam Ruditapes philippinarum in response to infection with Perkinsus olseni. JOURNAL OF FISH DISEASES 2016; 39:1369-1385. [PMID: 27233620 DOI: 10.1111/jfd.12470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
The protein expression profiling in clam haemocytes and plasma in response to Perkinsus olseni was addressed. Adult Manila clams from a P. olseni-free bed were experimentally challenged with parasite zoospores to analyse immune response. In another experiment, the effects of longer term infection were assessed in adult clams collected from a P. olseni-affected bed, by comparing moderate to very heavily infected clams with non-infected ones. Haemocyte and plasma proteins were separated by two-dimensional electrophoresis; spot patterns were qualitatively compared between treatments within each experiment and the spots indicating differential protein expression associated with P. olseni challenge or with field infection were processed for protein identification. Fifteen clam proteins (four in haemocytes and eleven in plasma) of which expression was markedly affected by P. olseni were identified. Some of the identified proteins have a well-known role in clam immune response against the parasite, such as lysozyme and lectins. Rho GTPase-activating protein 6 could be a marker of resistance against P. olseni, which should be further studied.
Collapse
Affiliation(s)
- S Fernández-Boo
- Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, Vilanova de Arousa, Spain
| | - A Villalba
- Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, Vilanova de Arousa, Spain.
- Department of Life Sciences, University of Alcalá de Henares, Alcalá de Henares, Spain.
| | - A Cao
- Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, Vilanova de Arousa, Spain
| |
Collapse
|
45
|
Jiang X, Qiu L, Zhao H, Song Q, Zhou H, Han Q, Diao X. Transcriptomic responses of Perna viridis embryo to Benzo(a)pyrene exposure elucidated by RNA sequencing. CHEMOSPHERE 2016; 163:125-132. [PMID: 27522184 DOI: 10.1016/j.chemosphere.2016.07.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/12/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
The green mussel Perna viridis is an ideal biomonitor to evaluate marine environmental pollution. Benzo(a)pyrene (BaP) is a typical polycyclic aromatic hydrocarbon (PAH), which is well known for the mutagenic and carcinogenic characteristics. However, the toxicological effects of BaP on Perna viridis embryo are still unclear. In this study, we investigated the embryo transcriptomic profile of Perna viridis treated with BaP via digital gene expression analysis. A total of 92,362,742 reads were produced from two groups (control and BaP exposure) by whole transcriptome sequencing (RNA-Seq). Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used on all genes to determine the biological functions and processes. Genes involved in various molecular pathways of toxicological effects were enriched further. The differential expression genes (DEGs) were related to stress response, infectious disease and innate immunity. Quantitative real-time PCR (qRT-PCR) measured expressional levels of six genes confirmed through the DGE analysis. This study reveals that RNA-seq for transcriptome profiling of P. viridis embryo can better understand the embryo toxic effects of BaP. Furthermore, it also suggests that RNA-seq is a superior tool for generating novel and valuable information for revealing the toxic effects caused by BaP at transcriptional level.
Collapse
Affiliation(s)
- Xiu Jiang
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Liguo Qiu
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hongwei Zhao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China
| | - Qinqin Song
- College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China.
| | - Qian Han
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| |
Collapse
|
46
|
Hernroth B, Baden S, Tassidis H, Hörnaeus K, Guillemant J, Bergström Lind S, Bergquist J. Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis). FISH & SHELLFISH IMMUNOLOGY 2016; 55:452-459. [PMID: 27288994 DOI: 10.1016/j.fsi.2016.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 06/06/2023]
Abstract
Here, we aimed to investigate potential effects of ocean acidification on antimicrobial peptide (AMP) activity in the gills of Mytilus edulis, as gills are directly facing seawater and the changing pH (predicted to be reduced from ∼8.1 to ∼7.7 by 2100). The AMP activity of gill and haemocyte extracts was compared at pH 6.0, 7.7 and 8.1, with a radial diffusion assay against Escherichia coli. The activity of the gill extracts was not affected by pH, while it was significantly reduced with increasing pH in the haemocyte extracts. Gill extracts were also tested against different species of Vibrio (V. parahaemolyticus, V. tubiashii, V. splendidus, V. alginolyticus) at pH 7.7 and 8.1. The metabolic activity of the bacteria decreased by ∼65-90%, depending on species of bacteria, but was, as in the radial diffusion assay, not affected by pH. The results indicated that AMPs from gills are efficient in a broad pH-range. However, when mussels were pre-exposed for pH 7.7 for four month the gill extracts presented significantly lower inhibit of bacterial growth. A full in-depth proteome investigation of gill extracts, using LC-Orbitrap MS/MS technique, showed that among previously described AMPs from haemocytes of Mytilus, myticin A was found up-regulated in response to lipopolysaccharide, 3 h post injection. Sporadic occurrence of other immune related peptides/proteins also pointed to a rapid response (0.5-3 h p.i.). Altogether, our results indicate that the gills of blue mussels constitute an important first line defence adapted to act at the pH of seawater. The antimicrobial activity of the gills is however modulated when mussels are under the pressure of ocean acidification, which may give future advantages for invading pathogens.
Collapse
Affiliation(s)
- B Hernroth
- The Royal Swedish Academy of Sciences, Sven Lovén Center for Marine Science, Kristineberg 566, SE - 451 78 Fiskebäckskil, Sweden; Dept. of Natural Science, Kristianstad University, SE - 291 88 Kristianstad, Sweden.
| | - S Baden
- Dept. of Biological and Environmental Sciences, University of Gothenburg, Kristineberg 566, SE - 451 78 Fiskebäckskil, Sweden
| | - H Tassidis
- Dept. of Natural Science, Kristianstad University, SE - 291 88 Kristianstad, Sweden
| | - K Hörnaeus
- Dept. of Chemistry - BMC, Analytical Chemistry and SciLifeLab, Uppsala University, Box 599, SE - 75124 Uppsala, Sweden
| | - J Guillemant
- Dept. of Chemistry - BMC, Analytical Chemistry and SciLifeLab, Uppsala University, Box 599, SE - 75124 Uppsala, Sweden
| | - S Bergström Lind
- Dept. of Chemistry - BMC, Analytical Chemistry and SciLifeLab, Uppsala University, Box 599, SE - 75124 Uppsala, Sweden
| | - J Bergquist
- Dept. of Chemistry - BMC, Analytical Chemistry and SciLifeLab, Uppsala University, Box 599, SE - 75124 Uppsala, Sweden
| |
Collapse
|
47
|
Discovery of genes associated with cadmium accumulation from gill of scallop Chlamys farreri based on high-throughput sequencing. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0391-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Wang K, del Castillo C, Corre E, Pales Espinosa E, Allam B. Clam focal and systemic immune responses to QPX infection revealed by RNA-seq technology. BMC Genomics 2016; 17:146. [PMID: 26921237 PMCID: PMC4769524 DOI: 10.1186/s12864-016-2493-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022] Open
Abstract
Background The hard clam Mercenaria mercenaria is an important seafood species widely exploited along the eastern coasts of the United States and play a crucial role in coastal ecology and economy. Severe hard clam mortalities have been associated with the protistan parasite QPX (Quahog Parasite Unknown). QPX infection establishes in pallial organs with the lesions typically characterized as nodules, which represent inflammatory masses formed by hemocyte infiltration and encapsulation of parasites. QPX infection is known to induce host changes on both the whole-organism level and at specific lesion areas, which imply systemic and focal defense responses, respectively. However, little is known about the molecular mechanisms underlying these alterations. Results RNA-seq was performed using Illumina Hiseq 2000 (641 Million 100 bp reads) to characterize M. mercenaria focal and systemic immune responses to QPX. Transcripts were assembled and the expression levels were compared between nodule and healthy tissues from infected clams, and between these and tissues from healthy clams. De novo assembly reconstructed a consensus transcriptome of 62,980 sequences that was functionally-annotated. A total of 3,131 transcripts were identified as differentially expressed in different tissues. Results allowed the identification of host immune factors implicated in the systemic and focal responses against QPX and unraveled the pathways involved in parasite neutralization. Among transcripts significantly modulated upon host-pathogen interactions, those involved in non-self recognition, signal transduction and defense response were over-represented. Alterations in pathways regulating hemocyte focal adhesion, migration and apoptosis were also demonstrated. Conclusions Our study is the first attempt to thoroughly characterize M. mercenaria transcriptome and identify molecular features associated with QPX infection. It is also one of the first studies contrasting focal and systemic responses to infections in invertebrates using high-throughput sequencing. Results identified the molecular signatures of clam systemic and focal defense responses, to collectively mediate immune processes such as hemocyte recruitment and local inflammation. These investigations improve our understanding of bivalve immunity and provide molecular targets for probing the biological bases of clam resistance towards QPX. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2493-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kailai Wang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| | - Carmelo del Castillo
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| | - Erwan Corre
- Analyses and Bioinformatics for Marine Science, Station Biologique de Roscoff, 29688, Roscoff Cedex, France.
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| |
Collapse
|
49
|
Fernández-Boo S, Villalba A, Cao A. Variable protein profiles in extracellular products of the protistan parasite Perkinsus olseni among regions of the Spanish coast. J Invertebr Pathol 2015; 132:233-241. [DOI: 10.1016/j.jip.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
50
|
Slavokhotova AA, Shelenkov AA, Odintsova TI. Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. PLANT MOLECULAR BIOLOGY 2015; 89:203-14. [PMID: 26369913 DOI: 10.1007/s11103-015-0346-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/14/2015] [Indexed: 05/06/2023]
Abstract
Leymus arenarius is a unique wild growing Poaceae plant exhibiting extreme tolerance to environmental conditions. In this study we for the first time performed whole-transcriptome sequencing of lymegrass seedlings using Illumina platform followed by de novo transcriptome assembly and functional annotation. Our goal was to identify transcripts encoding antimicrobial peptides (AMPs), one of the key components of plant innate immunity. Using the custom software developed for this study that predicted AMPs and classified them into families, we revealed more than 160 putative AMPs in lymegrass seedlings. We classified them into 7 families based on their cysteine motifs and sequence similarity. The families included defensins, thionins, hevein-like peptides, snakins, cyclotide, alfa-hairpinins and LTPs. This is the first communication about the presence of almost all known AMP families in trascriptomic data of a single plant species. Additionally, cysteine-rich peptides that potentially represent novel families of AMPs were revealed. We have confirmed by RT-PCR validation the presence of 30 transcripts encoding selected AMPs in lymegrass seedlings. In summary, the presented method of pAMP prediction developed by us can be applied for relatively fast and simple screening of novel components of plant immunity system and is well suited for whole-transcriptome or genome analysis of uncharacterized plants.
Collapse
Affiliation(s)
- Anna A Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991.
| | - Andrey A Shelenkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991
| | - Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991
| |
Collapse
|